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Abstract

The K-staged two-dimensional cutting stock problem with variable sheet size (K-2CSV)
represents a common problem in industry where a cutting pattern to cut rectangular
shaped elements out of large stock sheets is required. The NP-hard nature of the problem
makes it difficult to find a good pattern, which directly translates to unused waste
material of the stock sheet. The historical approach is to try and find an optimal pattern
through dynamic programming, which later was supplemented by Branch-and-Bound
and heuristic approaches.

In this paper we develop a bottom-up Branch-and-Bound approach, creating an
optimal cutting pattern for a singular stock sheet. While top-down approaches sucessively
subdivide the sheet into smaller rectangles and ultimately into the required elements,
bottom-up approaches combine elements and combinations thereof together to create
whole patterns.

The process is supplemented with a general framework to integrate it into the
implementation of the Algorithms and Complexity Group at the TU Wien. The framework
allows to solve problem instances spanning multiple stock sheets by applying the algorithm
multiple times.

We then boost the performance of the algorithm by improving the used lower and
upper bounds as well as reducing the search space through the detection of dominated or
duplicate patterns.

Lastly, using different settings we apply the algorithm to problem instances taken
from the literature to obtain computational results.
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Kurzfassung

Das K-stufige 2-dimensionale Zuschnittproblem mit variabler Plattengröße (K-2CSV ) ist
ein häufig in der Industrie auftretendes Problem. Oftmals sollen rechteckige Elemente
aus großen Platten oder Blättern herausgeschnitten werden. Die NP-harte Natur dieses
Problems macht es schwer ein gutes Schnittmuster zu finden das möglichst wenig Ausschuss
produziert. Der historische Ansatz ist mittels Dynamic Programming ein optimales Muster
zu finden. Später wurde diese Vorgehensweise durch Branch-and-Bound und heuristische
Ansätze ergänzt.

In dieser Arbeit entwickeln wir einen bottom-up Branch-and-Bound Ansatz welcher
ein optimales Schnittmuster für eine einzelne Platte aus dem Bestand berechnet. Während
ein top-down Ansatz die Platte Schritt für Schritt in kleinere Rechtecke unterteilt um
letztendlich an die geforderten Elemente zu gelangen, kombiniert ein bottom-up Ansatz
Elemente und Kombinationen von Elementen um sein Ziel zu erreichen.

Dieser Prozess wird um ein generelles Framework erweitert um es in die Implementie-
rung der Algorithms and Complexity Group der TU Wien zu integrieren. Das Framework
erlaubt das Lösen von Probleminstanzen die mehrere Platten benötigen indem es den
Algorithmus auf jede Platte einzeln anwendet.

Anschließend verbessern wir die Leistung des Algorithmus indem wir bessere Schranken
finden und den Suchraum durch Erkennung von dominierten oder doppelten Mustern
einschränken.

Zu guter Letzt wird der Algorithmus in verschiedenen Konfigurationen auf Proble-
minstanzen aus der Literatur angewandt um an rechnerische Ergebnisse zu gelangen.
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CHAPTER 1
Introduction

In industry it is often required to cut numerous elements out of a raw material sheet,
usually made out of metal, glass, wood or similar. We describe an approach to find an
optimal cutting pattern for a single sheet, subdividing it to obtain rectangular elements.
These cuts made are restricted to guillotine cuts, which are explained in 1.2. The approach
utilizes Branch-and-Bound and can be expanded to process multiple sheets and fulfil
complex constraints.

This document is structured as follows: The next section describes the importance
of the problem to solve as well as the goals to achieve. In Chapter 1.3 and following
we describe the K-staged two-dimensional cutting stock problem with variable sheet
size in detail and establish the naming conventions and structures used throughout
this document. The literature survey in Chapter 2 displays previous work and related
approaches. Chapter 3 contains the implementation of the Branch-and-Bound algorithm.
Chapter 4 contains the achieved results, comparing the impact of the different measures
taken. Chapter 5 finishes this thesis by summarizing the achieved work.

1.1 Aim of This Work

The aim of this work is to develop a bottom-up Branch-and-Bound approach to solve the
K-staged two-dimensional cutting stock problem with variable sheet size (K-2CSV). It is
a sub-type of the general two-dimensional cutting stock problem expanded by additional
constraints. For further information see 1.3 below.

This variant of the problem is applicable to a wide range of real life situations in
different industries like metal, paper or glass manufacturing. A typical application is
cutting many units out of a material sheet in a way to minimize the material waste
produced.

The algorithms discussed in this thesis produce an optimal result for a single sheet.
The complete algorithm implemented in the K-2CSV framework of the Algorithms and
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1. Introduction

Complexity Group1 solves as many sheets as are required for cutting out all elements,
but does not guarantee a optimal solution over multiple sheets.

In real life applications it often is the case that different sheets with different costs
are available, or it is necessary that remnants of previous assignments shall be used.
Since Branch-and-Bound is an exact approach it allows to maximize the gain out of those
sheets. Another common scenario is the need for very high quantities of small units, cut
from a single sheet size. Again a Branch-and-Bound approach is advantageous over a
heuristic approach since it minimizes the waste, which can add up quickly for a large
number of sheets to cut.

As noted before this Branch-and-Bound approach is not suited to solve a K-2CSV
problem over multiple sheets optimally. However it can help to find a better overall
solution in combination with other approaches. The algorithm can be used to obtain
an optimal solution for the first sheet which, in real world applications with high unit
counts, will be needed many times. This means that the single sheet can be applied many
times and a heuristic approach can be used to obtain a possibly better overall solution
for the remaining units, while still minimizing waste.

An additional advantage of Branch-and-Bound is that it can be used to create solutions
from already pre-filled sheets since it explores possibilities from a beginning state (usually
an empty sheet). This state can be given by manufacturing constraints, other approaches
used as preprocessing steps. It is also possible to set a pattern from another problem
as the beginning state, combining the two different problems to save material. The
explanation of the cutting tree in 1.4 illustrates this well.

Another use is optimizing solutions or sub-problems in the context of local search
methods. In particular it can be applied in very large neighbourhood structures (VLNS)
based on the ruin-and-recreate principle [34]. This approach allows for specifically
targeting weak parts of the solutions and reoptimizing them. The optimal nature of
solutions generated with Branch-and-Bound allows to take a part of existing solutions,
remove that part and improve it by generating a new solution for the bounding rectangle
with the still available parts.

To summarize, the goal is to create a Branch-and-Bound approach for the K-2CSV
problem using a bottom-up strategy to optimally fill a single sheet.

1.2 Guillotine Cuts

Guillotine cuts are a special kind of cut. They are defined as a division that must take
place by a series of straight lines that extend from one edge of a rectangle to an opposing
edge, parallel to the other two edges [19]. That means that a guillotine cut always has to
extend the whole width/height of the rectangle that it divides into smaller rectangles.
Figure 1.1 and 1.2 below illustrate the difference. Pattern A has two clearly defined
cuts that span the whole rectangle they subdivide, while pattern B does not have that
property and therefore does not contain any guillotine cuts.

1https://www.ac.tuwien.ac.at/
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1.3. Problem Definition

A

1 2

Figure 1.1: Guillotine Cuts

B

Figure 1.2: Non-Guillotine Cuts

1 2

3 4 4

5

Figure 1.3: Guillotine Cut Stages

A pattern consisting only of guillotine cuts is easily executable on machinery and
brings several advantages. It is more efficient since the machine only has to make cuts in
one direction. Furthermore some machines are only able to perform such cuts. Some
production techniques are only possible with guillotine cuts. An example of this is glass
cutting, where the cuts get carved into the sheet and broken off afterwards. This is
only possible along continuous cuts over the whole length since the glass would break on
undesired locations otherwise.

A cutting pattern made out of guillotine cuts can be separated into stages. A cut
at stage k divides a rectangle that was created at stage k − 1. The first stage divides the
whole sheet. Figure 1.3 illustrates this on a five-staged example.

1.3 Problem Definition
We are considering a K-staged two-dimensional cutting stock problem with variable sheet
size (K-2CSV) in which we are given:

• a set of nE rectangular element types E = {1, . . . , nE}, where each element type
Ei = (hi, wi, di, ri) ∈ E is specified by a height hi ∈ N+, a width wi ∈ N+, a

3



1. Introduction

demand di ∈ N+ and a flag ri ∈ {0, 1} indicating if elements of this type are
rotatable by 90◦ (ri = 1) or not (ri = 0), i.e., width and height may be swapped;

• a set of nT stock sheet types T = {1, . . . , nT }, where each sheet type Tt =
(Ht,Wt, qt, Rt, ct) ∈ T is specified by a height Ht ∈ N+, a width Wt ∈ N+, an
available quantity qt ∈ N+, a flag Rt ∈ {0, 1} indicating if sheets of this type are
rotatable by 90◦ (Rt = 1) or not (Rt = 0), i.e., width and height may be swapped,
and a cost factor ct > 0

• a parameter K ∈ N+ indicating the maximal number of stages of guillotine cuts for
processing each sheet.

A feasible solution is a set of (cutting) patterns P = {P1, . . . , Pn} describing an
arrangement of all elements specified by E on a subset of the stock sheets specified
by T without overlap and using guillotine cuts up to depth K only. Each pattern Pj ,
j = 1, . . . , n, has an associated stock sheet type tj and a quantity aj specifying how often
the pattern is to be applied, i.e., how many sheets of type tj are cut following pattern Pj .
More precisely, a cutting pattern is specified by a tree structure, which will be detailed
in Section 1.4. The result of a singular application of the Branch-and-Bound algorithm
is exactly one cutting pattern Pj .

We assume that at least one feasible solution exists, which implies in particular for
each element type i ∈ E that there is a stock sheet type t ∈ T s.t. 0 < hi ≤ Ht and
0 < wi ≤Wt, or if ri = 1 or Rt = 1 then 0 < hi ≤Wt and 0 < wi ≤ Ht and the quantities
of the stock sheet types are large enough.

For each sheet of type t ∈ T , we define the upper left corner to have coordinates
(0, 0) and the lower right corner with coordinates (Ht,Wt). Often the lower left corner
is used as (0, 0) in the literature, however this does not have any impact on the quality
of the solutions. W.l.o.g., we assume that the direction of the guillotine cuts always is
horizontal for odd stages (in particular the first stage) and vertical for even stages. Note
that because of this it may be necessary to rotate the used stock sheet t to fulfill the
K-stage requirement for the given instance. We refer to the rectangles resulting from
stage-k cuts as k-rectangles. In particular, the rectangles resulting from stage-1 cuts are
also called strips, the ones resulting from stage-2 cuts are called stacks and the requested
target rectangles, resulting from stage-K cuts the latest, are called elements.

W.l.o.g., we assume that a cutting pattern only contains cuts necessary to cut out
the requested elements defined by E, i.e., each cut goes along at least one element
edge. Furthermore, we assume that in each (sub-)pattern possibly contained pure waste-
rectangles are always located as far to the lower right as possible; in other words, all the
requested elements are always shifted as far as possible towards the upper left corner.

For each stock sheet type t ∈ T , let σt(P ) be the number of used sheets of this type
in P . Furthermore, for each cutting pattern Pj , for j = 1, . . . , n, let ρj be the height of
the possibly remaining waste-strip at the pattern’s bottom (ρj = 0 if there is no such
remainder).

The objective is to find a feasible set of cutting patterns P minimizing a cost function
c(P ). In case of our basic problem variant, this cost function considers primarily the

4



1.4. Cutting Tree

numbers of used sheets weighted by the sheet type’s cost factors and secondarily the
largest remaining waste-strip of each sheet type:

min c(P ) =
∑
t∈T

ct

(
σt(P )− maxremaint

Ht

)
. (1.1)

with
maxremaint = max{0, ρj | j = 1, . . . , n ∧ tj = t}. (1.2)

W.l.o.g., we do not need to explicitly consider blade width. It is sufficient to simply
add the blade width to both hi and wi of each element type i ∈ E and to both Ht and
Wt of each sheet type t ∈ T in a preprocessing step.

Similarly, trim cuts on the sheet edges can be taken care of during preprocessing and
therefore do not need to be considered by the core algorithm: Subtracting the trim cut
width twice from both Ht and Wt of each sheet type t ∈ T is sufficient.

Weighted and Unweighted Problems

Problem instances for the K-2CSV problem can be either weighted or unweighted.
Each element type Ei has a profit value. For weighted problems, this value is given

explicitly in the problems description. For unweighted problem this value is derived from
the elements dimensions using its area.

We only consider unweighted problems in this thesis.

1.4 Cutting Tree

Each cutting pattern Pj ∈ P is represented by a (cutting) tree structure (in the literature
also referred to as slicing tree, see e.g. [18]). It consists of leaf nodes corresponding to
individual elements (possibly in their rotated variants) and inner nodes being either
horizontal or vertical compounds containing at least one subpattern. Vertical compounds
always only appear at odd stages (levels), starting with stage one, and represent parts
separated by horizontal cuts of the respective stage. Horizontal compounds always only
appear at even stages and represent parts separated by vertical cuts. Each node thus
corresponds to a rectangle of a certain size (h,w), which is, in case of compound nodes,
the bounding box of the respectively aligned subpatterns. A pattern’s root node always
has a size that is not larger than the respective sheet size, i.e., h ≤ Htj , w ≤Wtj . Sheets
having identical cutting patterns are represented by the same cutting tree; remember that
aj represents the quantity of sheets cut according to pattern Pj . Similarly, compound
nodes store congruent subpatterns only by one subtree and maintain an additional
quantity.

Within its sheet, a pattern is always supposed to be aligned at the top left corner
so that possible residual space appears to its right and bottom. In vertical compounds,
specified substructures are always supposed to be arranged next to each other from top
to bottom and aligned at their left edges, i.e., in case the substructures have different

5
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root

P1
V-Comp.
h: 5870
w: 3080
a: 1

H-Comp.
h: 1988
w: 2985
a: 1

H-Comp.
h: 1875
w: 2809
a: 1

H-Comp.
h: 1875
w: 2174
a: 1

E1
h: 1988
w: 2985
a: 1

E2
h: 1875
w: 2174
a: 1

V-Comp.
h: 1773
w: 635
a: 1

E2
h: 1875
w: 2174
a: 1

E3
h: 857
w: 635
a: 1

E4
h: 429
w: 635
a: 2

0

(Ht, Wt)

E1

E2

E2

E3

E4
E4

Figure 1.4: A three-staged cutting tree (left) and the corresponding single cutting pattern
P1 (right). The leaf nodes represent actual elements of types E1, . . . , E4 obtained by the
application of at most K stages of guillotine cuts. Note that the two elements of type E4
are part of the same horizontal compound and need therefore only to be stored once in
the tree. Figure adapted from [16]

.

widths, remaining space appears to their right. In horizontal compounds, substructures
are always arranged from left to right and aligned at the top, i.e., in case the substructures
have different heights, remaining space appears at the bottom.

Compound nodes with only one successor are required in cases where a cut is necessary
to cut off a waste rectangle, otherwise they are avoided. Compound nodes are never
directly followed by other compound nodes of the same type, i.e., horizontal or vertical,
as they can be merged. Let us point out that in this tree structure, residual (waste)
rectangles are never explicitly stored, but each compound node indirectly represents
a possible additional residual rectangle when considering its embedding in the parent
compound or sheet.

For representing a whole solution in an actual implementation the separate pattern
trees can consistently be joined to a single tree by introducing an additional root node
at tree level zero. This node represents a sheet compound whose subpatterns are the
separate sheet patterns.

Figure 1.4 shows a three-staged cutting pattern for a single sheet and the cutting tree
representing it.

6



1.4. Cutting Tree

1.4.1 Normal Form

We say a cutting pattern Pj ∈ P is in normal form, if

(i) in each vertical compound the subpatterns are ordered by nonincreasing width and
in case of equal width by nonincreasing height and

(ii) in each horizontal compound the subpatterns are ordered by nonincreasing height
and in case of equal height by nonincreasing width.

Further ties in these orderings might be broken arbitrarily or in a way so that congruent
subpatterns appear next to each other.

Considering the objective function as defined above, every feasible cutting pattern
can be transformed into a pattern in normal form with identical objective value. It is
therefore sufficient to only consider patterns in normal form in the optimization.

7





CHAPTER 2
Literature Survey

In [20] and [19] P.C. Gilmore and R.E. Gomory describe the general theory of two-
dimensional cutting stock problems, including staged cutting and restrictions to guillotine
cuts. The papers suggest different algorithms using a dynamic programming approach.
In general column generation techniques are used.

Christofides and Whitlock describe a Branch-and-Bound approach in [4]. They present
a tree-search algorithm for the constrained two-dimensional cutting stock problem, taking
advantage of pattern symmetry and maximum amounts of pieces needed.

Building upon that Beasley [2] obtained improved bounds for the tree-search using
a Lagrange relaxation of a zero-one integer programming formulation of the problem.
Hifi and Zissimopoulos [25] create an improved tree-search algorithm by obtaining better
bounds through dynamic programming procedures and reducing the problem to a one-
dimensional knapsack. Hifi [23] and Cui et al. [8][9] improve upon exact algorithms and
propose new variants. All of these algorithms are top-down, meaning they start with
a sheet and successively cut it into smaller pieces, until the required elements are obtained.

Opposed to that we have the category of bottom-up approaches, discussed by Wang [37],
Viswanathan and Bagchi [36], Cung et al. [12], Hifi [22][24] and Kang and Yoon [27].
These papers propose algorithms that combine pieces to fill the sheet, instead of dividing
the sheet into smaller subsections to obtain the pieces.

In [12] Cung et al. elaborate on the top-down approach by Christofides and Whit-
lock [4] and more importantly the bottom-up approach by Viswanathan and Bagchi [36]
and its improvement by Hifi [22]. The paper then describes a modified version of Hifis
MVB (Modified Viswanathan Bagchi) algorithm. While the paper and its predeces-
sors [36][22] do not concern themselves with the K-2CSV problem specifically, they still
do offer a good basis to build a general Branch-and-Bound approach for the cutting stock
problem and are often cited in the literature.

Kang and Yoon [27] describe an approach to obtain a better upper bound for cutting
patterns. While most Branch-and-Bound algorithms utilize the relatively simple area-

9



2. Literature Survey

based approach proposed by Hifi [22], Kang and Yoon respect the maximum obtainable
height and respectively width in the leftover area not covered by the current pattern. The
paper is based on the unconstrained cutting stock problem, however the methodology to
calculate the bounds can be adapted for the K-2CSV problem.

A related problem is the 2-dimensional bin packing problem (2BP) which packs ele-
ment types into equally sized bins. There is no limit to the number of bins, and each
element type has a fixed rotation. This problem category considers multiple bins, as
opposed to the exact algorithms who fill exactly one bin/sheet.

In [28] Lodi et al. gather several approaches to solve the 2BP. The paper covers
one-phase, two-phase and non-level heuristics as well as strip packing. Besides those the
work also describes exact algorithms and metaheuristic techniques.

In another paper by Lodi et al. [29] they focus on the level-heuristics for the 2BP and
the 2-dimensional strip packing problem (2SP). Level based packing has the advantage of
creating guillotine cuts, which relates directly to the cutting problem. Lodi et al. exploit
the level restriction to obtain mathematical models for the level-restricted 2BP and 2SP
that involves a polynomial number of variables. Through the use of those models they
obtain a new lower bound through LP relaxation. They show that this bound dominates
the standard area bound.

In [33] Puchinger et al. describe how to solve the 3-staged 2-dimensional Cutting
Stock Problem specialized in cutting glass. The restriction to three stages often occurs
in real-world applications due to machine limitations. The algorithm creates solutions
spanning multiple sheets. An additional constraint in this work is the partition of the
element types into logical groups. Only elements from a maximum of three logical groups
can be produced in an intertwined way, therefore the order in which the patterns are
produced also matters. In the paper Puchinger et al. describe a greedy heuristic as well
as two Branch-and-Bound algorithms and an evolutionary approach to solve the problem.
Due to the complexity of the problem instances the Branch-and-Bound algorithms make
use of heuristics, resulting in non-optimal solutions.

Puchinger and Raidl follow up on this paper in [32]. They describe integer linear
programming formulations to solve both the restricted and the unrestricted 3-staged 2-
dimensional Cutting Stock Problem, without the additional constraints from the previous
paper. Besides the polynomial-sized ILP models a column generation approach and a
branch-and-price algorithm were developed.

In [5] Cintra et al. investigate several cutting stock problem variants, including 2CS and
K-2CS. All variants use guillotine cuts and are considered with and without K-stage
requirement and with and without rotation of elements. The Rectangular Knapsack (RK)
problem is a variant where only one stock sheet is available and should be filled with
element types. Cintra et al. propose two algorithms to solve the RK problem, of which
only one is suited for the K-staged problem, but both utilizing Discretization Points.
For the 2CS with and without variable sheet size and the 2-dimensional Strip Packing

10



problem a column generation approach is used. The focus in the paper lies on 2-, 3- and
4-staged patterns, however the proposed algorithms support K stages.

Wei et al. [38] explore a hybrid approach, combining a bottom-up approach, a top-
down approach and a best-first heuristic into one algorithm. Other heuristic algorithms
are described by Hong et al. [26], Cui et al. [11][10].

Recent studies have mostly dealt with heuristic approaches [18][26][10]. These algo-
rithms use construction heuristics over an exact approach. While many of these findings
are not directly applicable to a Branch-and-Bound algorithm they remain useful in hybrid
combinations thereof.

Cui and Huang also explore T-shaped cutting patterns in [7]. They present an
algorithm for the Constrained 2-dimensional Cutting Problem. There are four different
versions of the algorithm presented, however only two are of practical relevance. The sheet
is split into two segment: an X-segment, containing horizontal strips, and a Y-segment,
containing vertical strips. The algorithm itself is split into two parts: a strip-generator
that finds candidates for one of the segments, and a layout-generator to arrange the
strips within the segment.

In [6] Cui develops a dynamic programming procedure to solve the Unconstrained
3-staged 2-dimensional Cutting Problem (UTDC), using guillotine cuts. The proposed
algorithm solves three large knapsack problems, one for each cutting stage. At first the
elements are packed into strips, then the strips to pack onto the sheet are considered
from all generated strips. The chosen strips are then packed into the second cutting stage
to obtain larger segments. Last those segments are packed onto the sheet.

Dolatabadi et al. [13] propose two exact algorithms to solve the K-staged 2-dimensional
Knapsack Problem without element rotation, using guillotine cuts. It can also be classi-
fied as a Guillotine 2-dimensional single large object placement problem. As the name
indicates the elements are fitted onto a single sheet. The algorithms are based on an
exact recursive procedure that enumerates all packings of element-types on a stock sheet
type. The patterns created exact, where all strips must have elements of equal height, as
opposed to non-exact patterns where elements must trimmed using an additional cut.

The first algorithm stepwise converges an upper bound towards the optimal solution.
The second algorithm utilizes branch-and-cut and is based on an ILP model of the
problem.
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CHAPTER 3
Solving Single Sheets by

Branch-and-Bound

The algorithm was implemented in C++, extending an existing K-2CSV framework
specialized on solving large scale problems on multiple sheets. The Branch-and-Bound
approach will supplement the framework, since it does not contain any exact algorithms.

The K-2CSV framework is explained in the following chapter (3.1). Afterwards the
general scheme of the Branch-and-Bound approach is explained in 3.2 and its subsections.
A detailed explanation of the scheme can be found in algorithm 3.1. A simple enumerating
Branch-and-Bound algorithm is explained in 3.3. The actual cutting stock algorithm
follows in 3.4 and following.

3.1 Existing K-2CSV Framework

The base framework provides data structures and logic for the elements, patterns and
in- and output of problem instances and solutions. Solutions can also be visualized
via a SVG (Scalable Vector Graphics) image. Furthermore the framework contains
several construction heuristics, based on the work by Charalambous and Fleszar [3] and
Fleszar [18], and a Beam-Search approach.

The framework utilizes a scheduler to apply its different algorithms and supports
methods to improve existing solutions or create new ones. This includes a ruin-and-
recreate approach based on Dusberger [14]. The term ruin-and-recreate was coined by
Schrimpf et al. [34] who applied this technique to solve the Travelling Salesman Problem
(TSP) and the Vehicle Routing Problem (VRP). Exact algorithms like Branch-and-Bound
supplement this kind of approach very well, since it guarantees an improvement of a
recreated partial solution, if one exists, while being very fast on such a small scope.
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3. Solving Single Sheets by Branch-and-Bound

3.2 Branch-and-Bound Framework

We build a framework for general Branch-and-Bound algorithms as the foundation of
our work. The framework defines a general scheme for Branch-and-Bound algorithms,
allowing the easy implementation of different approaches.
Due to the limitations imposed by the K-2CSV framework the Branch-and-Bound
framework also provides functionality to solve a complete problem instance, filling
multiple sheets. It contains the following components:

• The framework itself, providing the standard scheme and the integration into the
K-2CSV framework

• The base class for Branch-and-Bound algorithms

• The node class representing the branches and the tree

3.2.1 Basis for Branch-and-Bound Algorithms

The base class provides functions for integration into the framework. These functions set
up the algorithm and execute the different steps of the algorithm. Furthermore the base
class also provides helper functions to ease the implementation of the concrete algorithm.

The interface functions entail:

• Setting up the algorithm

• Obtaining the next node to process

• Determining if a node should be pruned

• Branching on a node

• Calculating the score of a pattern

• Calculating the lower and upper bound of a pattern

The concrete algorithm implementations have to provide the logic behind these steps.
For a detailed description on how those functions are called and their interplay with the
rest of the framework see the next section (3.2.2).

Node class

The node is a simple structure to manage the branching tree. It only provides two
functionalities: adding a node as child, which corresponds to creating a new branch, and
pruning a child-node, removing it completely.

The nodes are used to manage the current state of the algorithm and as means of
communication between the framework and the Branch-and-Bound algorithm.
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3.3. Simple Algorithm

3.2.2 Framework

The framework exposes two functionalities to the outside: filling a sheet and solving a
complete problem instance.

The procedure for filling a sheet sets up a concrete Branch-and-Bound algorithm imple-
mentation and processes the sheet with the still available elements. Besides allowing the
choice of different algorithms the framework also supports different parameters to modify
the behaviour of said algorithms, as supported by the implementations. Additionally the
framework features a timeout that allows to stop execution when a time-threshold is met.
In that case the procedure returns with the currently best known result. Usage of the
timeout-feature removes the guarantee for an optimal solution!

Additionally to the standard behaviour the framework also tracks several metrics of
the algorithm.

The detailed process of filling a sheet can be found in algorithm 3.1. Note that
line 18 removes all obsolete intermediate nodes whose children have been evaluated. It
is guaranteed that only branches that are fully evaluated are removed by this, since
only parent nodes without children (not counting the current node to be removed) are
concerned.

Processing a complete problem instance

Since the K-2CSV Framework (see 3.1) requires us to solve a complete problem instance
we propose a simple approach to apply the single-sheet Branch-and-Bound algorithm to
a complete K-2CSV problem in algorithm 3.2.

Line 5 invokes the general Branch-and-Bound framework scheme previously described
in algorithm 3.1. This function is invoked as often as it takes until all elements are
assigned.

3.3 Simple Algorithm

We propose a simple enumerating algorithm to be used with the scheme 3.1. This
algorithm provides a baseline for future results and the cutting stock algorithm in the next
section (3.4). The bounds and traversal methods can be reused for any other algorithm,
however they only serve as a starting point and equate to a near full enumeration of the
search space.
This section is split into the different aspects needed by the algorithm. The Branching
and the Traversal subsection explain the node expansion and traversal to process the
problem.

The Scoring subsection elaborates on how the best solution is identified, while Pruning
& Bounds deals with the basic methods in place to reduce the branching tree and therefore
the search space.
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3. Solving Single Sheets by Branch-and-Bound

Algorithm 3.1: General Branch-and-Bound Framework Scheme
Data: The algorithm A to use
The sheet TT to fill
The remaining demands D = d1, ..., dE of the element types eE ∈ E
Result: The filled sheet

1 initialize A with the sheet TT and the demands D;
/* The branching tree gets initialized by the algorithm */

2 root←− root node of A’s branching tree;
3 node←− root;
4 last←− null;
5 best←− 0;
6 pattern←− null;
7 while true do
8 if timeout occurred then
9 break

10 end
/* Evaluate node */

11 if node has no children and node 6= last then
12 score←− A.evaluate(node);
13 if score > best then
14 best←− score;
15 pattern←− node;
16 A.updateLowerBound(pattern);
17 end
18 remove last evaluated node and all its parents without children;
19 last←− node;
20 end
21 newNode←− A.getNextNode(node);

/* If the root node is returned it signals that the whole
tree has been processed. This condition can be
replaced with any arbitrary termination condition. */

22 if newNode = root then
23 break
24 end
25 if A.shouldPrune(newNode) then
26 prune newNode from the branching tree;
27 continue;
28 end
29 node←− newNode;
30 A.expand(newNode);
31 end
32 set pattern as the pattern of the sheet TT ;
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3.3. Simple Algorithm

Algorithm 3.2: Processing Multiple Sheets with Branch-and-Bound Algorithms
Data: Available Sheets T
Element types E
Result: A feasible Solution P

1 P ←− ∅;
2 while not all demands di of E fulfilled do
3 chose Tt ∈ T, qt > 0;
4 if Tt = null then Error: Not enough sheets;

/* Invoke the BnB Scheme: Take a specific stock sheet
type and a set of elements and fill the sheet with it.

*/
5 filledSheet←−fillSheet(Tt, E);
6 while element demands ≥ elements used in filledSheet and qt > 0 do
7 subtract elements in filledSheet from demands;
8 reduce qt by one;
9 P ←− P ∪ filledSheet;

10 end
11 end
12 return P ;

3.3.1 Branching

This algorithm uses a bottom-up approach, meaning it obtains new patterns by combining
existing ones, instead of subdividing the area. Each new branch is created by taking
the pattern of the current node and combining it vertically or horizontally with another
pattern. For this simple algorithm the strategy is to take the nodes pattern and combine
it with each element type ei horizontally and vertically. Since the cutting tree requires
alternating horizontal and vertical combinations, the combination of a previous pattern
with the new element in the same manner results in the extension of the pattern by the
new element.

Furthermore the last child of the root of the cutting tree is extended with the new
element. Due to the way patterns are constructed the last child node always contains the
element added in the previous node. This ensures that the whole search space is covered.

Only element types which still have a residual demand left considering the node’s
pattern are taken into account. Residual demands are calculated at the beginning of the
algorithm and represent the element demands that have not been fulfilled in the current
solution so far. The complete procedure is detailed in 3.3.

3.3.2 Traversal

We use a depth-first traversal for this algorithm. Later algorithms (3.4) also support
best-first traversal. If the last visited node has children, possibly added through the
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3. Solving Single Sheets by Branch-and-Bound

Algorithm 3.3: Simple Algorithm Branching
Data: Node n to expand
Element Types E
Residual Element Demands dRi ∈ DR ⊆ D for the current sheet

1 foreach ei ∈ E do
2 if dRi is fulfilled in n then continue;
3 p←− n.pattern;
4 if p is empty then

/* Root node has no pattern to combine, add the
element as a pattern */

5 n.addBranch(ei);
6 else if p is a vertical compound then
7 n.addBranch(composeHorizontal(p, ei));
8 n.addBranch(extendCompound(p, ei));
9 p′ ←− extend last subpattern in the first stage of p with ei;

10 n.addBranch(p′);
11 else if p is a horizontal compound then
12 n.addBranch(composeVertical(p, ei));
13 n.addBranch(extendCompound(p, ei));
14 p′ ←− extend last subpattern in the first stage of p with ei;
15 n.addBranch(p′);
16 else if p is an element then
17 n.addBranch(composeVertical(p, ei));
18 n.addBranch(composeHorizontal(p, ei));
19 end
20 end

last branching call, we continue to its first child. If the last node has no children we
recursively return to the next child in the parent above.

3.3.3 Scoring

The score, or fitness, of a pattern is determined by how well it utilizes the available space.
A pattern is an element or a rectangular composition containing other patterns. As this
thesis deals with unweighted problem instances only, the value of an element type ei is
defined by its area wi · hi. The score of a pattern can easily be calculated by utilizing its
Cutting Tree representation(1.4). Each node in the tree has an assigned width and height
that it takes up on the sheet. The area that is not utilized can be calculated by taking
the difference between the area of a node and the area of its children. By saving that
data during tree construction the score of a pattern can be obtained in O(1) by querying
the root of the cutting tree.
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3.4. CSA Algorithm

We formally define a(Pj) as the effective area used by the pattern Pj . Furthermore we
define the function inP (Pj , ei) which returns how often the element type ei is present in
the pattern Pj . This number represents the actual elements created by the pattern, not
the number of nodes containing ei in the cutting tree.

a(Pj) =
∑

ei∈E

hi · wi · inP (Pj , ei) (3.1)

inP (Pj , ei) = number of occurences of ei in Pj (3.2)

3.3.4 Pruning & Bounds

We define the following conditions. A node should be pruned if its pattern Pj . . .

• width wi is larger than the sheet’s width WT

• height hi is larger than the sheet’s height HT

• uses more than K cutting stages

• contains more elements of type ei than its demand di

• has an upper bound lower than the current lower bound

The constraint for element demands can be resolved implicitly, since the branching
strategy detailed in algorithm 3.3 does not create any branches for element types for
which there are no more elements available.

The lower bound blower is updated whenever a new best pattern is found. It is
obtained by using the score-function detailed in Equation3.1 in Section 3.3.3.

The upper bound bupper is calculated by estimating the area that could potentially be
used, if the remaining space would be filled perfectly. This is a very simple upper bound.

blower(Pj) = a(Pj) (3.3)

bupper(Pj) = a(Pj) + (Ht ·Wt − wmax(Pj) · hmax(Pj)) (3.4)

where wmax(Pj) and hmax(Pj) are the total width and height used by the normalized
pattern Pj .

3.4 CSA Algorithm
We propose a Cutting Stock Algorithm (CSA) based on the literature. The algorithm
builds upon the Modified Viswanathan and Bagchi (MVB) [22] algorithm version by
Cung et al. [12].

As any bottom up approach, the MVB algorithm obtains new patterns by combining
two previous patterns horizontally and vertically. To do so it holds a list named clist
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3. Solving Single Sheets by Branch-and-Bound

that holds all previously constructed patterns. This includes patterns only containing a
single element ei ∈ E.

In the initialization step we add a branch for each element ei ∈ E to the root node.
The elements will be added to the clist as they are encountered during traversal.

The pruning behaviour and constraints are taken from the Simple algorithm 3.3.

3.4.1 Branching

Each new branch is created by combining the current pattern to process, represented
by the current node, with the other patterns from the clist. Whenever a new branch is
explored (meaning the node does not violate any constraints) we add its pattern to the
clist before branching. Therefore each pattern is also combined with itself. Each two
patterns are combined once horizontally and once vertically. It is assumed that branching
is called for valid patterns, that do not violate any constraints or bounds, only. This
saves additional checks and keeps the clist size as small as possible. For performance
reasons it makes sense to only add newly created patterns that do not violate the basic
constraints like sheet-dimensions or element demands.

It is important to note that the compose functions in algorithm 3.4 also have to take
care of correctly combining the two patterns. When combining two patterns of different
height horizontally the resulting pattern requires an additional horizontal cut to cut out
the smaller one. The same goes for vertical combinations and different widths respectively.

A basic duplication check is implemented into the Branch-and-Bound framework. It
is provided by the K-2CSV framework and considers patterns with identical internal
structure. Duplicate patterns like this are not added.

Whenever a new lower bound is discovered each node whose upper bound is below
the new lower bound are removed, since they cannot result in a better pattern than the
current best one.

3.4.2 Traversal

The CSA algorithm utilizes best-first traversal. To do so it keeps a sorted queue containing
all leaf nodes.

Whenever a node is added during branching, we insert the node into the sorted queue.
When the Branch-and-Bound framework requests the next node in algorithm 3.1 line 21
we pop the head of the queue and return it.

The sorting criteria is the nonincreasing score of the corresponding nodes pattern.

Since the returned node will be evaluated next, and since nodes are only added during
branching and initialization it is ensured that the queue always contains all leaf nodes as
well as that it only contains leaf nodes.
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3.4. CSA Algorithm

Algorithm 3.4: CSA Algorithm Branching
Data: Node n to expand
List clist of previous patterns

1 p←− n.pattern;
2 clist.add(p);
3 foreach pi ∈ clist do
4 p′ ←− composeHorizontal(p, pi);
5 if p′ violates no constraints then n.addBranch(p′) ;
6 p′′ ←− composeVertical(p, pi);
7 if p′′ violates no constraints then n.addBranch(p′′) ;
8 end

3.4.3 Demand-Aware Area Upper Bound

We develop a modified version of the upper bound proposed by Hifi [22]. The original
bound was a dynamic programming procedure to solve a bounded knapsack problem.
The bound is restricted to sheet-dimensions, but does not account for element type
demands. The number of occurrences of an element type is constrained by how often it
fits into the sheet vertically/horizontally.

Our modified approach takes the remaining area of the sheet, that is not occupied
by its current pattern Pj , and calculates the best possible use of the area while taking
element demands into account.

As we only deal with unweighted instances the profit of an element type ei is defined
by its area wi · hi. This simplification allows us to take the combination of elements that
requires the largest area, but still uses at most as much area as the sheet. Otherwise the
upper bound can undershoot the optimal value, resulting in incorrect output.

bupper = min

a(Pj) +
∑

ei∈E

wi · hi · ni

 (3.5)

subject to bupper ≤Wt ·Ht

0 ≤ ni ≤ (dRi − inP (Pj , ei))∀ni

Pj is the pattern already present on the sheet andWt and Ht are the sheet dimensions.
wi and hi are the dimensions of the element ei ∈ E. ni is a value between zero and the
maximum number the element type ei can be used without violating demands considering
the already present pattern Pj and possible other patterns in the solution. The goal is
to minimize the resulting value by picking ni for each ei accordingly, while not packing
more element types onto the sheet than there is space available.

ni’s are constructed by considering the remaining free space on the sheet and adding
the element with the largest possible area not exceeding the space. The remaining free
space after adding an element must not become negative. After the element has been
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Figure 3.1: Strip Partitioning of Unused Pattern Space

added we subtract its area from the remaining free space. This is repeated until no
element can be added under the constraints given in 3.5.

3.5 Algorithm Improvements
We propose several improvements to the CSA algorithm. This entails the lower bound,
the upper bound and advanced detection of unnecessary patterns.

3.5.1 Initialize Lower Bound

As a first step we initialize the lower bound with a value greater than 0. This is done by
obtaining a valid solution through a construction heuristic. Hifi [22] has already used
such an approach, however for our approach we use an already existing construction
heuristic. The K-2CSV framework provides an insertion heuristic [15] based on Fleszars
work [18] which provides a simple lower bound for a very low computing time.

3.5.2 A Better Upper Bound Based on Element Combinations

We adapt a better upper bound by Kang & Yoon (2011) [27]. They propose a bound that
not only takes the elements into account, but also the horizontal/vertical combination of
those elements. To do so the area not covered by the pattern on the sheet is split into
strips. Next the combination of elements that use the most of one strip is calculated and
is then expanded to the available strips of the same size. These combinations only take
one dimension into account, since we only care about the horizontal/vertical combination
thereof. This approach is designed for the unconstrained variant of the problem and
therefore does not take element demands into account.

Figure 3.1 shows the horizontal and vertical partitioning of the area into strips. We
will detail the algorithm for the horizontal partitioning here. The vertical partitioning
follows the same procedure, but with width and height swapped respectively.
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3.5. Algorithm Improvements

First the area is split into the two rectangles that shape it: One spanning the whole
width WT and the unused height H ′T = HT − hj of the pattern Pj . The other one using
up the space next to the pattern, defined through the unused width W ′T = WT − wj and
the patterns height hj . Those areas are then partitioned into strips of height 1 and width
WT and W ′T respectively.

The next step is to find the combination of elements that yield the highest profit
when relativised to one strip. To obtain the relativised profit we divide the profit of the
element type through its height (width for a vertical strip). Since we use unweighted
elements we can simplify this to the width of the corresponding element. The profit of
an arrangement of elements in a strip is therefore equal to the width of those elements.
We find the widest arrangement wmax that fits WT as well as the widest arrangement
that fits W ′T (Equation3.7) and then apply their profit to each corresponding strip. The
sum of those is the upper bound (Equation3.9)

The final upper bound is then the result of either the horizontal or the vertical process,
whichever is lower.

As this bound does not take element demands into account it is possible to calculate the
different arrangements (linear combinations) of elements and their lengths beforehand.
This reduces Equation3.7 to a search or lookup in the cached lengths at runtime.

W ′T = WT − wj

H ′T = HT − hj
where

wj = width of Pj

hj = height of Pj
(3.6)

wmax(w) = max

 ∑
ei∈E′

wi :
∑

ei∈E′

wi ≤ w,E′ ⊆ E

 (3.7)

hmax(h) = max

 ∑
ei∈E′

hi :
∑

ei∈E′

hi ≤ h,E′ ⊆ E

 (3.8)

b′upper(Pj) = H ′T · wmax(WT ) + hj · wmax(W ′T ) (3.9)
b′′upper(Pj) = W ′T · hmax(HT ) + wj · hmax(H ′T ) (3.10)

bupper(Pj) = min
(
b′upper(Pj), b′′upper(Pj)

)
(3.11)

This bound can be further improved by also calculating the best possible usage of the
height.

Usually not all strips of one width can be used, since often no combination of elements
results in exactly the available height. We can account for this by calculating the best
case usage of H ′T and using the leftover height as additional strips of width W ′T .
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H ′′T = hmax(H ′T )
h′j = HT −H ′′T

b′upper(Pj) = H ′′T · wmax(WT ) + h′j · wmax(W ′T ) (3.12)

The same is applied to the vertical partitioning, but with the leftover width.

3.5.3 Dominated Pattern

Kang and Yoon [27] and Young-gun et al. [39] propose a method of detecting dominated
patterns which can be pruned to reduce the search space. A pattern P is dominated if P
can always safely be replaced by the dominating pattern P’ without changing the final
soluion. The original constraints are:

wP ≥ wP ′ and hP ≥ hP ′ (3.13)
profit(P ) ≤ profit(P ′) (3.14)

However their work deals with unconstrained and both weighted and unweighted
problems. We have to tighten the domination constraints for them to be applicable to
constrained problems.

Since our elements are unweighted we can substitute the profit of a pattern with the
effective area used a(P). Afterwards we tighten the profit constraint 3.14 to:

a(P ) < a(P ′) (3.15)

It is important that patterns with equal area are not removed, since the element
demands do not guarantee that equal area also means that they share the same optimal
pattern for the remaining space. Without the relaxation a parent-pattern of the optimal
solution might be removed.

The second constraint is tightened to:

wP > wP ′ and hP > hP ′ (3.16)

This is for the same reason as above. The basic premise is to remove any patterns
that are bigger than others while not providing any extra gain. However equal patterns
cannot be removed because of the element demands.

Before we add a pattern P during branching we check if any pattern P’ in clist dominates
P. If both 3.15 and 3.16 hold we can remove P and do not add it.
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3.5.4 Advanced Detection of Obsolete Patterns

We propose a method to recognize duplicate patterns to reduce the amount of branches
created. We perform this check every time before adding a new node.

The check is based on the principle that we only combine existing patterns, but do
not alter them. If two normalized (1.4.1) patterns share the same width, height and used
space they are equal if they contain the same elements. This means that the two patterns
represent the same pattern, but in a different arrangement. Since we only combine
them with other patterns, it does not matter which of the two we use. For our K-2CSV
problem we always keep the pattern that uses less stages, and discard the other pattern.

Algorithm 3.5 shows a possible implementation for the process.

3.6 Flexible Algorithm
The flexible algorithm serves as an intermediate layer between the base and the concrete
algorithm implementation. It provides access to already implemented logic for the
different algorithms and a way to access them in a parametrized manner. This allows
for easy code reuse as well as the ability to perform multiple runs of an algorithm in
different configurations without the need to change the source code.
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Algorithm 3.5: Advanced Duplicate Detection
Data: Normalized pattern p to check
List clist containing normalized patterns
Result: Whether p is a duplicate of a pattern in clist

1 for ∀p′ ∈ clist do
// Only consider patterns that share dimensions and area

2 if p′.width 6= p.width or p′.height 6= p.height or p′.waste 6= p.waste then
3 continue;
4 end
5 duplicate←− true;
6 for ∀e ∈ p do
7 if e 6∈ p′ then
8 duplicate←− false;
9 break;

10 end
11 end

/* If all elements were in both patterns we found a
duplicate */

12 if duplicate then
/* We replace the pattern in the clist if it has less

stages */
13 if p.stages < p′.stages then
14 clist.remove(p’);
15 clist.add(p);
16 end
17 return p is a duplicate;
18 end
19 end
20 return p is not a duplicate
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CHAPTER 4
Computational Results

The test runs were done on a cluster consisting of multiple nodes with 2x Intel Xeon
E5540 (2.53 GHz Quad Core) and 24GB RAM each.

Each instance is processed on the same hardware. Each run has a timeout of 60
minutes, after which the current best known solution is accepted as the result.

For each instance it is recorded whether it can be solved within the timeout in any
configuration and if the result is the optimal result. Since the algorithm is optimal, all
runs that complete before the timeout must also have the optimal score.

The number of stages allowed, K, is set to nine. This value was chosen since it is
the highest supported value and has the highest probability of discovering the optimal
cutting pattern for the given element types. Therefore a high K value allows for the best
results score-wise.

The algorithm is executed in the following configurations:

• Simple algorithm with naive bounds as described

• Simple algorithm with the area upper-bound (3.4.3)

• Simple algorithm with the strip upper-bound (3.5.2)

• CSA Algorithm with best first traversal (BFS), as described in 3.4

• CSA Algorithm with BFS and strip upper-bound (3.5.2)

• CSA Algorithm with BFS, strip upper-bound and no extra-check for constraint
violations before adding branches (check). That means all branches are getting
added, even though they will be pruned once they are considered.

• CSA Algorithm with depth first traversal (DFS) and strip upper-bound

• CSA Algorithm with BFS, strip upper-bound and domination-check (dom., 3.5.3)
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• CSA Algorithm with BFS and advanced duplication detection (dupe, 3.5.4)

• CSA Algorithm with BFS, strip upper-bound and all improvements

The following metrics are captured:

• Best Score

• If the instance can be completed within the timeout

• Stages required for the score

• Algorithm runtime

• Runtime until the best score is achieved

• Branches explored

• Leaf nodes evaluated

4.1 Instances

We use a total of 55 test instances taken from the literature to obtain comparable results.
All Instances are constrained, unweighted instances and can be found at ftp://cermsem.
univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/2Dcutting.html.

We use 38 instances from:

• 4 weighted instances from Hifi [22] that were modified to be unweighted by Cung
et al. [12]:
2s, 3s, A1s, A2s

• 3 unweighted instances from Hifi [22]:
A3 - A5

• 2 weighted instances from Tschöke and Holthöfer [35] that were modified to be
unweighted by Cung et al. [12]:
STS2s, STS4s

• 7 instances from Cung et al. [12]:
CHL1s - CHL4s, CHL5 - CHL7

• 11 instances from Fayard et al. [17]:
CU1 - CU11

• 8 instances from Alvarez-Valdés [1]:
ATP37, ATP39, Hchl3s - Hchl8s
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4.2. Results

• 1 instances by Wang [37]:
W

• 2 instances from Oliveira and Ferreira [31]:
OF1, OF2

Furthermore we take 17 unconstrained instances from the literature and constrain
them to 50 pieces per element. This allows the algorithm to solve them while still
retaining high possibility to obtain the optimal result as if the instance would be solved
unconstrained. Those instances are denoted with an ’s’ suffix, just like the modified
instances above.

The converted instances are:

• 1 from Herz [21]:
Hs

• 1 from Hifi and Zissimopoulos [25]
HZ1s

• 5 from Martello and Toth [30]:
M1s - M5s

• 10 from Fayard et al. [17]:
UU1s - UU10s

4.2 Results
Table 4.1 shows the optimal score as well as the best achieved score for each instance and
its required stages. For instances that did not finish before the timeout the results of the
highest score are taken. Furthermore the fastest achieved runtime for each instance is
shown. The values for the optima are taken from Cung et al. [12], Alvarez-Valdés [1] and
Kang and Yoon [27].

Changes made to detect duplicate patterns were implemented into the Branch-and-
Bound framework during the development of the CSA algorithm. The utilities provided
by the K-2CSV framework for this purpose also cache and simplify patterns. The Simple
algorithm relies on the order in which the patterns are constructed, which is destroyed
by this caching. Patterns which are needed to obtain the optimal result might therefore
be changed or discarded by the duplicate detection. This can lead to a false, suboptimal
solution as well as shortened runtimes for more complex patterns. The duplicate check
cannot be separated from the framework easily. Furthermore the runtimes without any
duplication check would be too long to be feasible for actual use on a more complex
problem instance. We therefore do not consider the results of the Simple algorithm, but
list them for completeness.
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4. Computational Results

Table 4.1: Score, Stage and Timeout Results for K=9
Instance Optimum Best Score Stages Best Runtime [s]
2s 2.778 2.778 6 0,441
3s 2.721 2.721 4 0,322
A1s 2.950 2.950 2 0,026
A2s 3.535 3.535 6 0,127
A3 5.451 5.451 6 14,697
A4 6.179 6.179 7 52,871
A5 12.985 12.985 6 79,253
ATP37 387.276 387.276 6 3096,560
ATP39 268.750 268.750 7 3142,320
CHL1s 13.099 13.099 5 50,567
CHL2s 3.279 3.279 3 0,312
CHL3s 7.402 3.967 3 Timeout
CHL4s 13.932 8.801 2 Timeout
CHL5 390 390 4 0,205
CHL6 16.869 16.869 4 156,005
CHL7 16.881 16.881 5 509,392
CU1 12.330 12.330 4 0,175
CU2 26.100 26.100 2 0,571
CU3 16.723 16.723 4 1,248
CU4 99.495 99.495 6 2,688
CU5 173.364 173.364 4 1,252
CU6 158.572 158.572 2 0,130
CU7 247.150 247.150 4 0,518
CU8 433.331 433.331 6 0,358
CU9 657.055 657.055 4 0,081
CU10 773.772 773.772 6 25,443
CU11 924.696 924.696 3 701,695
Hchl3s 12.215 12.215 8 1082,300
Hchl4s 11.994 11.859 7 Timeout
Hchl5s 45.361 45.223 5 Timeout
Hchl6s 61.040 61.040 4 205,379
Hchl7s 63.112 63.112 6 617,082
Hchl8s 911 906 7 Timeout
Hs 12.348 12.348 4 0,349
HZ1s 5.226 5.226 2 1,136
M1s 15.024 15.024 2 0,070
M2s 73.176 73.176 6 0,356
M3s 142.817 142.817 4 0,064
M4s 265.768 265.768 2 0,099
M5s 577.882 577.882 2 0,090
OF1 2.737 2.737 6 0,064
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4.2. Results

Score, Stage and Timeout Results
Instance Optimum Best Score Stages Best Runtime [s]
OF2 2.690 2.690 4 0,298
STS2s 4.653 4.653 5 0,881
STS4s 9.770 9.770 6 25,597
UU1s 242.919 242.919 4 0,201
UU2s 595.288 595.288 4 0,046
UU3s 1.072.764 1.072.764 5 0,195
UU4s 1.179.050 1.179.050 6 1,580
UU5s 1.868.999 1.868.999 5 0,370
UU6s 2.950.760 2.950.760 3 0,096
UU7s 2.930.654 2.930.654 4 5,603
UU8s 3.959.352 3.959.352 5 0,849
UU9s 6.100.692 6.100.692 3 0,310
UU10s 11.955.852 11.955.852 4 5,439
W 2.721 2.721 5 0,328

As shown in Table 4.1, all instances besides CHL3s, CHL4s, Hchl4s, Hchl5s and
Hchl8s could be solved optimally and, besides CHL3s and CHL4s, were close to the
optimal value.

No instance required nine stages, however it is unknown how many stages are required
for the optimal solution of the unsolved instances. Only five instances exceed six stages
and more than half of the instances can be solved with four or less stages. We will further
analyse this in below in Section 4.3.

Table 4.2: Runtime Results in Seconds

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

2s 7,38 31,34 2,50 - 1,10 1,07 1,10 3,42 0,51 0,44
3s 0,42 66,84 0,22 - 0,65 0,56 0,65 2,46 0,38 0,32
A1s 0,46 25,95 0,15 - 0,03 0,03 0,03 0,07 0,03 0,03
A2s 1,14 29,58 0,75 - 0,18 0,17 0,18 0,57 0,13 0,13
A3 3,46 378,98 3,28 - 42,36 43,20 42,13 211,74 16,04 14,70
A4 146,80 - 81,18 - 156,02 156,08 157,08 904,75 59,25 52,87
A5 136,97 - 45,27 - 297,03 281,18 298,81 - 90,76 79,25
ATP37 - - - - - - - - - 3096,56
ATP39 - - - - - - - - - 3142,32
CHL1s 390,48 - 913,05 - 226,19 232,02 228,05 - 64,73 50,57
CHL2s 0,08 1,71 0,04 - 0,66 0,66 0,66 2,08 0,34 0,31
CHL3s - - - - - - - - - -
CHL4s - - - - - - - - - -
CHL5 0,13 2,05 0,13 1199,86 0,94 0,91 0,94 3,25 0,20 0,21
CHL6 - - 156,01 - 1760,03 1719,54 1923,30 - 276,34 210,04
CHL7 - - - - - - - - 918,17 509,39
CU1 6,07 18,63 3,50 - 0,27 0,26 0,26 0,71 0,17 0,18
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4. Computational Results

Runtime Results in Seconds

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

CU2 12,17 104,89 3,20 - 0,87 0,88 0,87 2,76 0,60 0,57
CU3 246,79 - 15,73 - 1,99 1,98 1,96 6,02 1,24 1,25
CU4 27,15 - 3,86 - 4,14 4,19 4,12 14,27 2,88 2,69
CU5 32,99 481,76 0,61 - 1,71 1,74 1,69 5,84 1,42 1,25
CU6 4,87 1019,44 0,88 - 0,15 0,15 0,15 0,39 0,13 0,13
CU7 1,83 94,66 0,70 - 0,87 0,87 0,86 3,14 0,67 0,52
CU8 1,39 - 0,51 - 0,50 0,51 0,50 1,67 0,41 0,36
CU9 7,90 22,35 0,71 - 0,09 0,09 0,09 0,26 0,08 0,08
CU10 1185,11 - 877,70 - 60,42 61,46 60,85 221,58 28,43 25,44
CU11 - - - - 2325,43 2128,67 2284,43 - 895,65 701,70
Hchl3s 0,67 178,76 6,48 - - - - - 1137,97 1082,30
Hchl4s 149,21 - 138,58 - - - - - - -
Hchl5s - - - - - - - - - -
Hchl6s - - 624,83 - 929,97 981,61 982,73 - 262,73 205,38
Hchl7s - - - - 2220,31 2371,37 2279,67 - 800,44 617,08
Hchl8s 189,18 - 218,32 - - - - - - -
Hs 0,20 0,38 0,04 - 461,62 487,76 482,90 - 0,36 0,35
HZ1s 0,01 - 0,01 - - - - - 1,10 1,14
M1s 0,31 0,57 0,07 - 0,78 0,79 0,78 2,72 0,07 0,07
M2s 0,81 16,65 0,12 - 1,39 0,99 1,39 4,15 0,36 0,36
M3s 0,12 0,53 0,03 863,78 0,11 0,11 0,11 0,30 0,08 0,06
M4s 0,17 0,49 0,06 - 0,98 0,99 1,00 3,25 0,11 0,10
M5s 0,42 0,71 0,09 - 0,96 0,96 0,97 3,35 0,10 0,09
OF1 0,06 0,41 0,04 266,30 0,10 0,09 0,10 0,27 0,07 0,06
OF2 0,40 0,51 0,08 423,19 0,55 0,59 0,55 1,83 0,37 0,30
STS2s 0,69 28,24 0,46 - 1,35 1,50 1,35 4,75 1,02 0,88
STS4s 1507,97 - - - 157,32 136,91 155,37 - 66,35 25,60
UU1s 2,51 97,05 0,47 - 0,36 0,39 0,36 1,15 0,24 0,20
UU2s 5,35 43,84 5,75 - 0,06 0,06 0,06 0,14 0,05 0,05
UU3s 0,50 24,45 0,92 - 0,27 0,26 0,26 0,82 0,20 0,20
UU4s 4,44 360,42 18,01 - 2,77 2,83 2,75 9,56 1,87 1,58
UU5s 24,60 - 5,19 - 0,51 0,51 0,51 1,41 0,37 0,37
UU6s 13,36 222,47 0,91 - 0,11 0,11 0,11 0,30 0,11 0,10
UU7s 394,00 439,10 27,76 - 11,16 11,68 11,65 37,32 6,90 5,60
UU8s 126,04 - 72,42 - 1,41 1,53 1,40 4,41 0,89 0,85
UU9s 26,67 - 7,78 - 0,39 0,39 0,39 1,04 0,32 0,31
UU10s 173,49 - 18,57 - 12,78 12,87 12,83 40,81 6,44 5,44
W 0,34 2,08 0,11 459,10 0,70 0,72 0,70 2,72 0,38 0,33

Table 4.2 shows the runtime required to find the solution. Instances that could not
finish within the timeout are denoted with ’-’.

The Simple algorithm produces very fast results for some instances, however due to
the implementation changes described above only three instances resulted in the correct
result: CHL3s, CHL4s and HZ1s. Both CHL3s and CHL4s terminated by running
into the timeout, surprisingly only the unreliable Simple algorithm managed to find the
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4.2. Results

optimal solution for those. Closer inspection of the created pattern shows that roughly
half the sheet is covered by a large amount of small elements. This is an unfavourable
problem instance for the CSA algorithm, since it gives the algorithm plenty of empty
space to combine patterns, resulting in a much longer runtime required.

Overall the strip-bound provides the greatest improvement and is necessary to solve
many of the instances. What is surprising, however, is that the area bound stays far
behind the naive bound. This might be due to implementation details or caused by slow
demand calculations. The strip bound represents an improvement in either case.

The results show that the Best-First-Search has next to no impact. DFS sometimes
is a bit slower as well as being a bit faster sometimes, leading to no clear conclusion
whether BFS provides any improvement.

The same outcome can be observed with respect to the domination-check, however
the general tendency seems to be a minor improvement there.

The extra-check to prevent nodes from being added to the tree if they would have
been pruned anyway shows a definite impact on runtime. This is expected, since it saves
memory and sorting operations. The improvement it provides is much greater than
expected. Most striking here is instance STS4s which could be solved in 157 seconds
with just the strip bound, but can’t be solved within the timeout with the extra-check
disabled.

The advanced duplicate check also has a very positive impact. The runtime gain from
the reduced search space is much greater than the additional calculations required for
the duplicate check. Extreme cases like instance Hs and W show that the gains can be
massive, but instances on which the algorithms generally run faster also show definite
benefits from it.

The combined results of all improvements show that it is not solely the duplicate
check that reduces runtime, but their combination. The other improvements clearly
complement the duplicate check, allowing for a greater speedup. The instances ATP37
and ATP39 only become solvable within the timeout once all improvements are taken
into account.

Overall the results confirm the expectations that the CSA Algorithm outperforms the
Simple algorithm. Instances like CHL3s and CHL4s also show its worst case scenario:
The algorithm does not handle instances with large sheets and many small element types
that do not cover it completely well.

Table 4.3: Runtime Until Best Solution Found in Seconds

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

2s 2,53 30,77 2,46 1151,08 1,03 1,00 1,03 3,24 0,48 0,41
3s 0,36 11,50 0,13 2452,55 0,64 0,56 0,64 2,43 0,37 0,31
A1s 0,00 0,66 0,00 0,47 0,01 0,01 0,01 0,04 0,01 0,01
A2s 0,98 27,55 0,00 482,35 0,16 0,15 0,16 0,51 0,12 0,11
A3 0,00 2,31 0,00 1330,15 41,30 41,99 41,09 206,61 15,85 14,53
A4 0,01 1924,66 0,00 2325,96 150,88 150,90 151,94 878,68 56,99 50,71
A5 0,56 130,75 0,14 721,19 260,46 241,76 261,93 88,59 80,61 69,19
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4. Computational Results

Runtime Until Best Solution Found in Seconds

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

ATP37 520,57 278,10 1125,48 83,49 2973,48 3018,97 3230,97 29,44 3458,99 3055,94
ATP39 0,27 57,68 2,10 242,05 3211,68 3034,12 3559,03 183,57 639,54 3042,36
CHL1s 13,18 467,58 0,22 2729,31 202,47 208,13 204,17 102,93 52,82 38,41
CHL2s 0,00 1,08 0,00 386,42 0,47 0,45 0,47 1,45 0,26 0,23
CHL3s 217,95 262,52 346,42 2342,96 2278,39 2555,57 2417,95 1,10 1919,28 1153,79
CHL4s 449,96 534,92 343,07 59,42 58,96 2743,45 59,43 167,13 30,89 1379,38
CHL5 0,08 0,86 0,08 337,60 0,40 0,37 0,40 1,37 0,13 0,14
CHL6 17,27 595,35 31,24 3011,65 1759,74 1719,25 99,98 262,81 276,12 209,82
CHL7 413,36 45,35 22,23 2527,96 3494,28 3599,70 3556,40 279,68 917,87 509,09
CU1 3,05 4,72 0,01 504,01 0,05 0,05 0,05 0,15 0,04 0,04
CU2 4,03 6,33 3,01 2830,73 0,83 0,83 0,82 2,63 0,59 0,56
CU3 6,38 1374,21 15,08 3235,34 1,83 1,83 1,80 5,59 1,20 1,21
CU4 0,00 1902,52 0,00 274,56 2,83 2,85 2,81 9,70 2,09 1,94
CU5 0,06 47,73 0,45 376,67 1,62 1,65 1,59 5,56 1,36 1,20
CU6 0,41 32,47 0,77 76,14 0,13 0,13 0,13 0,34 0,11 0,11
CU7 1,79 93,48 0,00 205,07 0,73 0,79 0,72 2,67 0,59 0,46
CU8 0,03 312,74 0,01 42,89 0,40 0,41 0,39 1,33 0,35 0,31
CU9 6,39 15,09 0,00 5,50 0,03 0,03 0,03 0,09 0,03 0,03
CU10 587,92 575,49 843,28 65,30 49,50 54,31 49,87 177,86 25,70 23,07
CU11 1841,50 1625,60 0,00 271,23 1565,96 1448,27 1529,76 22,62 642,84 480,58
Hchl3s 0,02 0,12 0,01 3064,20 1773,20 3038,01 1905,28 100,30 428,83 407,85
Hchl4s 0,11 1,89 75,14 97,06 379,75 349,96 385,43 181,27 1040,19 3133,74
Hchl5s 0,00 0,00 0,00 115,80 379,91 435,48 388,99 674,25 2843,14 2674,75
Hchl6s 5,40 30,49 0,01 84,56 915,75 971,56 967,41 751,33 256,61 199,84
Hchl7s 2417,56 0,41 1542,54 2238,55 2088,03 2244,02 2144,87 659,62 737,02 549,32
Hchl8s 161,09 383,00 43,52 1377,18 192,07 222,85 193,48 3118,78 2713,03 1930,89
Hs 0,01 0,01 0,00 541,01 2,02 2,64 2,01 6,82 0,35 0,34
HZ1s 0,00 0,00 0,00 0,08 0,01 0,01 0,02 0,04 0,01 0,01
M1s 0,00 0,49 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00
M2s 0,00 1,45 0,00 47,35 1,38 0,93 1,38 4,10 0,36 0,35
M3s 0,04 0,19 0,00 23,71 0,07 0,08 0,07 0,20 0,05 0,04
M4s 0,00 0,41 0,00 0,16 0,01 0,01 0,01 0,01 0,00 0,00
M5s 0,14 0,63 0,08 0,15 0,00 0,01 0,00 0,01 0,00 0,00
OF1 0,04 0,38 0,02 144,67 0,08 0,08 0,08 0,24 0,06 0,06
OF2 0,30 0,45 0,03 173,57 0,52 0,57 0,53 1,76 0,35 0,28
STS2s 0,00 0,00 0,00 2041,10 1,25 1,40 1,26 4,47 0,94 0,80
STS4s 278,32 104,44 0,03 1799,72 156,96 136,55 155,01 1816,41 66,15 25,39
UU1s 1,53 21,46 0,43 1235,01 0,34 0,37 0,34 1,07 0,22 0,19
UU2s 2,53 3,71 0,00 824,75 0,02 0,02 0,02 0,05 0,02 0,02
UU3s 0,05 0,01 0,00 1721,96 0,10 0,09 0,10 0,29 0,09 0,08
UU4s 1,54 72,36 11,66 3330,60 2,47 2,55 2,45 8,53 1,75 1,46
UU5s 0,00 2988,44 0,00 1342,75 0,40 0,39 0,41 1,10 0,29 0,29
UU6s 8,83 45,32 0,02 711,79 0,06 0,06 0,06 0,17 0,06 0,05
UU7s 226,28 132,02 0,01 586,56 6,10 6,66 6,39 22,50 4,15 3,17
UU8s 118,35 1410,49 71,57 0,02 0,83 0,94 0,83 2,69 0,58 0,54
UU9s 0,00 92,73 0,00 3,46 0,06 0,06 0,06 0,19 0,06 0,05
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4.2. Results

Runtime Until Best Solution Found in Seconds

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

UU10s 0,01 7,78 0,01 125,15 5,75 6,07 5,76 18,31 3,74 3,41
W 0,20 0,96 0,03 290,85 0,69 0,72 0,69 2,69 0,37 0,32

Table 4.3 display the runtime until the best result is found. The results indicate
that, overall, improved solutions are found throughout the whole process. Most instances
take up to 70% - 99% of their runtime to find the optimal solution. Outliers which only
required a fraction of their overall runtime to find the best result usually are far below 1
second runtime.

The most interesting instance in these results is CU11, which only took 68% (480 of
701 seconds) of its runtime to find the optimal solution. Generally the instances with
runtimes above a few seconds also require most of the time to find the solution.

Another thing to note is the instances which could not be solved within the timeout.
CHL3s and CHL4s both have not found an improved solution in the last 35 minutes of
their runtime. This may indicate that the slowdown through the combinatorial explosion
of patterns becomes too big to solve those instances.

Table 4.4: Branches Explored

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

2s 48.727 191.844 16.199 62.428 1.674 1.644 1.674 1.674 1.025 908
3s 1.022 40.443 622 49.405 865 824 865 865 640 570
A1s 1.199 17.605 438 50.010 163 166 163 163 153 152
A2s 1.866 18.325 1.349 51.044 479 465 479 479 407 383
A3 5.329 113.380 4.574 52.807 7.511 7.585 7.511 7.511 4.538 4.217
A4 103.659 593.196 64.778 51.401 14.469 14.480 14.469 14.469 8.928 8.208
A5 249.966 2.218.391 84.825 59.613 23.030 22.317 23.030 13.933 12.792 11.299
ATP37 837.091 489.008 1.117.401 54.458 57.482 55.394 53.840 13.578 93.663 85.279
ATP39 898.606 776.981 882.803 52.966 63.111 62.138 57.324 13.747 60.673 70.033
CHL1s 380.601 705.099 739.752 63.036 22.730 22.576 22.730 11.664 12.770 10.802
CHL2s 556 10.290 345 50.414 799 788 799 799 556 533
CHL3s 4.309.204 3.731.836 4.733.964 41.908 42.426 41.380 41.199 11.597 38.205 37.578
CHL4s 5.361.98911.442.249 8.560.223 39.997 41.129 39.625 39.987 7.986 36.860 36.605
CHL5 1.128 16.298 1.042 31.385 1.198 1.155 1.198 1.198 515 515
CHL6 1.484.615 640.154 143.589 60.829 61.964 60.642 61.964 15.987 25.989 21.494
CHL7 1.236.560 512.886 617.004 68.392 75.778 71.238 74.013 17.345 48.582 34.436
CU1 6.268 15.051 4.592 52.421 488 486 488 488 389 386
CU2 12.852 66.540 4.274 51.280 1.122 1.129 1.122 1.122 868 822
CU3 122.554 408.984 14.734 51.431 1.522 1.536 1.522 1.522 1.138 1.125
CU4 19.121 403.131 3.691 51.666 2.244 2.275 2.244 2.244 1.850 1.734
CU5 26.444 135.391 716 52.052 1.529 1.566 1.529 1.529 1.362 1.224
CU6 4.461 201.092 1.040 53.976 404 412 404 404 368 358
CU7 2.503 49.406 1.321 52.296 955 955 955 955 820 693
CU8 2.107 189.067 835 51.459 831 836 831 831 724 654
CU9 7.791 15.659 1.404 51.262 327 324 327 327 300 281
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4. Computational Results

Branches Explored

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

CU10 397.492 333.981 167.115 55.678 7.916 7.947 7.916 7.916 5.345 4.938
CU11 729.994 367.112 384.886 54.482 62.135 62.321 62.135 9.730 36.238 31.203
Hchl3s 4.356 667.781 30.430 69.127 66.586 62.079 64.542 12.222 31.294 29.182
Hchl4s 710.617 2.693.216 667.676 56.776 63.931 60.939 63.239 10.196 51.794 56.843
Hchl5s 212.242 323.290 675.706 56.294 71.453 72.387 69.437 16.154 76.141 76.557
Hchl6s 621.147 612.235 233.411 53.668 44.556 45.903 44.556 16.708 22.591 18.293
Hchl7s 965.496 270.853 705.853 54.402 88.316 90.981 88.316 14.512 50.228 38.429
Hchl8s 1.927.204 6.761.109 1.828.451 69.160 61.259 60.106 59.211 13.717 57.525 52.076
Hs 2.521 3.954 516 71.322 21.175 21.440 21.175 9.923 772 742
HZ1s 95 2.647.012 77 50.850 53.124 52.385 51.808 11.791 819 819
M1s 2.143 3.098 445 49.531 799 800 799 799 208 206
M2s 4.670 83.586 709 51.550 1.123 973 1.123 1.123 527 519
M3s 796 2.968 193 27.496 379 401 379 379 300 267
M4s 1.053 2.675 421 49.965 889 894 889 889 258 246
M5s 2.413 3.703 583 49.465 878 883 878 878 251 233
OF1 540 3.114 302 14.951 368 375 368 368 286 269
OF2 2.827 3.709 590 21.268 864 903 864 864 681 611
STS2s 1.320 30.409 851 54.818 1.423 1.510 1.423 1.423 1.194 1.083
STS4s 573.415 847.614 603.140 56.777 19.007 17.906 19.007 8.294 12.080 7.161
UU1s 3.455 39.330 824 50.647 643 661 643 643 507 451
UU2s 6.221 34.961 6.921 53.970 217 217 217 217 184 179
UU3s 1.004 17.127 1.621 52.623 567 564 567 567 481 438
UU4s 5.435 125.423 19.039 52.232 1.677 1.683 1.677 1.677 1.333 1.195
UU5s 18.138 319.601 4.828 51.681 609 613 609 609 504 496
UU6s 12.155 97.458 1.336 52.439 350 349 350 350 334 314
UU7s 145.046 192.507 20.392 52.155 3.488 3.591 3.488 3.488 2.669 2.314
UU8s 44.069 265.802 39.767 51.913 1.167 1.215 1.167 1.167 896 851
UU9s 15.640 306.372 5.929 52.907 598 597 598 598 546 512
UU10s 77.820 161.361 12.963 51.531 3.595 3.605 3.595 3.595 2.496 2.238
W 808 4.222 323 22.350 901 919 901 901 646 584

Table 4.4 shows the number of branches created during the process. Nodes whose
addition was prevented by the extra-check are not counted.

A direct correlation between the runtime and the branches explored is visible. The
most branches achieved within the timeout for any CSA configuration is roughly 70.000
branches, while the Simple algorithm, even with the reduced search space, can go well
past millions.

This leads to the conclusion that the Simple algorithm can process the single branches
much faster than the CSA algorithm with its additional checks. However it is apparent
that the CSA algorithms require much fewer branches, which can be attributed to those
checks, resulting in a greater speedup overall as seen before.
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4.2. Results

Table 4.5: Leaf Nodes Evaluated

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

2s 24.711 89.120 8.207 45.381 1.009 994 1.009 1.009 612 539
3s 619 23.668 364 43.323 669 640 669 669 484 428
A1s 711 11.127 278 46.010 121 124 121 121 114 113
A2s 1.278 12.423 903 48.094 340 330 340 340 288 267
A3 3.910 76.229 3.069 49.464 6.118 6.171 6.118 6.118 3.661 3.377
A4 64.265 366.330 39.591 46.955 11.265 11.281 11.265 11.265 6.893 6.299
A5 145.779 1.287.057 48.974 51.031 16.313 15.774 16.313 10.060 9.123 7.964
ATP37 412.999 222.338 525.678 47.770 51.378 49.387 48.066 11.522 73.074 64.414
ATP39 450.892 412.293 428.341 48.135 56.485 55.984 51.324 12.539 53.479 52.331
CHL1s 232.791 435.241 454.572 52.899 17.313 17.261 17.313 9.249 9.393 7.816
CHL2s 318 5.205 202 42.132 578 574 578 578 391 377
CHL3s 2.286.281 1.998.721 2.364.564 27.457 27.798 26.487 26.990 7.088 24.966 24.888
CHL4s 2.723.718 5.792.733 4.205.990 27.445 28.179 26.585 27.437 6.453 25.310 30.954
CHL5 505 7.688 465 20.869 701 674 701 701 312 312
CHL6 970.920 409.973 87.641 54.360 46.745 45.588 46.745 12.782 20.252 16.590
CHL7 867.632 357.525 393.584 60.404 67.409 63.498 65.931 15.172 40.584 28.037
CU1 4.355 10.568 3.219 47.547 343 343 343 343 269 266
CU2 9.088 46.019 3.029 47.863 799 812 799 799 616 577
CU3 89.564 279.959 9.309 48.524 1.033 1.043 1.033 1.033 783 772
CU4 13.915 296.272 2.539 48.661 1.697 1.722 1.697 1.697 1.387 1.292
CU5 19.148 93.919 518 49.563 1.164 1.197 1.164 1.164 1.030 907
CU6 3.608 149.640 715 51.375 293 301 293 293 267 257
CU7 1.700 33.455 891 48.134 685 685 685 685 584 490
CU8 1.474 119.489 581 48.235 634 637 634 634 561 497
CU9 4.926 10.774 951 47.041 232 230 232 232 211 194
CU10 257.685 184.011 98.833 49.342 6.124 6.141 6.124 6.124 4.091 3.755
CU11 502.730 260.071 234.982 49.951 49.388 49.595 49.388 7.777 28.288 24.266
Hchl3s 2.003 342.583 15.709 51.973 48.560 45.701 47.078 8.485 21.406 19.969
Hchl4s 356.516 1.374.143 330.872 40.150 48.101 46.082 47.442 6.955 38.151 41.316
Hchl5s 155.014 198.406 476.539 49.393 58.902 59.799 57.270 13.801 59.889 59.360
Hchl6s 440.650 404.700 156.076 45.636 35.201 36.291 35.201 13.812 17.374 13.877
Hchl7s 658.853 169.730 472.933 50.253 71.616 74.042 71.616 12.667 39.169 28.865
Hchl8s 921.549 3.290.748 875.997 49.378 41.780 43.204 40.428 8.969 32.586 32.291
Hs 950 1.509 209 56.418 16.085 15.698 16.085 7.729 465 445
HZ1s 15 950.111 14 45.586 46.727 46.513 45.528 10.404 529 529
M1s 1.061 1.479 237 45.264 602 591 602 602 132 131
M2s 2.147 41.229 327 44.458 755 653 755 755 333 327
M3s 445 1.609 116 24.381 269 279 269 269 204 177
M4s 521 1.315 222 45.316 676 669 676 676 168 158
M5s 1.183 1.808 288 44.548 666 658 666 666 164 151
OF1 254 1.505 140 10.072 228 228 228 228 179 164
OF2 1.508 2.015 323 16.853 619 639 619 619 485 431
STS2s 912 18.419 578 50.098 1.046 1.120 1.046 1.046 869 773
STS4s 376.832 519.520 371.876 54.003 16.215 15.184 16.215 7.610 10.085 5.688
UU1s 2.288 25.460 567 46.395 475 486 475 475 375 325
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4. Computational Results

Leaf Nodes Evaluated

File Simple CSA
naive area strip BFS strip DFS dom. check dupe all

UU2s 4.301 24.910 4.561 49.778 129 129 129 129 113 108
UU3s 739 11.807 1.056 47.910 410 406 410 410 342 302
UU4s 3.892 87.036 12.361 47.640 1.288 1.292 1.288 1.288 1.009 899
UU5s 13.537 231.650 3.389 48.510 398 400 398 398 335 327
UU6s 7.813 60.616 915 50.404 265 263 265 265 255 235
UU7s 104.025 133.771 13.963 48.513 2.663 2.742 2.663 2.663 2.046 1.755
UU8s 32.006 184.969 27.570 48.963 854 893 854 854 653 617
UU9s 11.767 205.641 4.148 48.781 443 441 443 443 404 372
UU10s 56.610 114.182 8.904 47.423 2.711 2.708 2.711 2.711 1.875 1.664
W 467 2.242 191 18.422 675 692 675 675 468 422

Table 4.5 shows how many of the explored branches were leaf nodes containing finished
solutions. Again the results show that the CSA algorithm generally needs to consider
fewer branches than the Simple algorithm.

4.3 Restricted Stages
We restrict the stages to a lower value to determine their impact on runtime and score.

We reduce the configurations used for this to the main four ones: Simple naive, Simple
strip, CSA strip and CSA with all improvements.

For each instance we denote the deviation from the optimal score under the stage
restriction as well as a comparison of the runtime to K=9.

4.3.1 6 Stages

Since most instances can be solved in six stages or lower we first restrict K to six and
see if the runtime improves.

Table 4.6: Runtime Results for K=6 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=6 K=9 K=6 K=9 K=6 K=9 K=6
2s - 7,38 7,41 2,50 2,58 1,10 0,52 0,44 0,26
3s - 0,42 0,49 0,22 0,22 0,65 0,09 0,32 0,06
A1s - 0,46 0,49 0,15 0,15 0,03 0,02 0,03 0,02
A2s - 1,14 1,28 0,75 0,82 0,18 0,16 0,13 0,12
A3 - 3,46 3,85 3,28 3,43 42,36 42,19 14,70 14,77
A4 0,99 146,80 167,91 81,18 87,41 156,02 279,28 52,87 84,26
A5 - 136,97 145,96 45,27 46,15 297,03 275,23 79,25 73,45
ATP37 - - - - - - - 3096,56 2761,64
ATP39 0,15 - - - - - - 3142,32 -
CHL1s - 390,48 - 913,05 - 226,19 217,95 50,57 48,12
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4.3. Restricted Stages

Runtime Results for K=6 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=6 K=9 K=6 K=9 K=6 K=9 K=6
CHL2s - 0,08 0,07 0,04 0,05 0,66 0,67 0,31 0,31
CHL3s 46,41 - - - - - - - -
CHL4s 36,83 - - - - - - - -
CHL5 - 0,13 0,13 0,13 0,13 0,94 0,65 0,21 0,14
CHL6 - - - 156,01 172,66 1760,03 1956,82 210,04 258,74
CHL7 - - - - - - - 509,39 500,50
CU1 - 6,07 6,60 3,50 4,76 0,27 0,27 0,18 0,18
CU2 - 12,17 11,94 3,20 3,84 0,87 0,87 0,57 0,57
CU3 - 246,79 275,17 15,73 17,69 1,99 1,97 1,25 1,35
CU4 - 27,15 26,57 3,86 3,88 4,14 4,15 2,69 2,67
CU5 - 32,99 34,57 0,61 0,63 1,71 1,67 1,25 1,26
CU6 - 4,87 5,36 0,88 0,90 0,15 0,16 0,13 0,14
CU7 - 1,83 1,78 0,70 0,76 0,87 0,86 0,52 0,52
CU8 - 1,39 1,49 0,51 0,52 0,50 0,39 0,36 0,28
CU9 - 7,90 8,06 0,71 0,75 0,09 0,08 0,08 0,07
CU10 - 1185,11 2826,87 877,70 966,27 60,42 61,54 25,44 25,07
CU11 - - - - - 2325,43 2130,03 701,70 671,50
Hchl3s 0,01 0,67 0,66 6,48 6,72 - - 1082,30 1180,34
Hchl4s 1,36 149,21 156,56 138,58 193,66 - - - -
Hchl5s 0,30 - - - - - - - -
Hchl6s - - - 624,83 - 929,97 964,83 205,38 196,00
Hchl7s - - - - - 2220,31 2763,82 617,08 788,25
Hchl8s 1,87 189,18 161,08 218,32 166,96 - - - -
Hs - 0,20 0,20 0,04 0,05 461,62 188,15 0,35 0,02
HZ1s - 0,01 0,01 0,01 0,01 - - 1,14 1,13
M1 - 0,31 0,35 0,07 0,08 0,78 0,78 0,07 0,07
M2 - 0,81 0,79 0,12 0,12 1,39 1,38 0,36 0,36
M3 - 0,12 0,13 0,03 0,03 0,11 0,11 0,06 0,07
M4s - 0,17 0,17 0,06 0,07 0,98 0,99 0,10 0,10
M5 - 0,42 0,42 0,09 0,10 0,96 0,95 0,09 0,09
OF1 - 0,06 0,06 0,04 0,04 0,10 0,09 0,06 0,07
OF2 - 0,40 0,39 0,08 0,08 0,55 0,33 0,30 0,18
STS2s - 0,69 0,75 0,46 0,53 1,35 1,19 0,88 0,82
STS4s - 1507,97 - - - 157,32 31,83 25,60 14,83
UU1s - 2,51 2,74 0,47 0,50 0,36 0,37 0,20 0,20
UU2s - 5,35 5,97 5,75 6,82 0,06 0,06 0,05 0,05
UU3s - 0,50 0,52 0,92 1,05 0,27 0,25 0,20 0,17
UU4s - 4,44 4,82 18,01 19,45 2,77 2,78 1,58 1,60
UU5s - 24,60 26,19 5,19 5,63 0,51 0,52 0,37 0,37
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4. Computational Results

Runtime Results for K=6 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=6 K=9 K=6 K=9 K=6 K=9 K=6
UU6s - 13,36 17,27 0,91 1,15 0,11 0,09 0,10 0,08
UU7s - 394,00 - 27,76 29,36 11,16 11,03 5,60 5,64
UU8s - 126,04 143,63 72,42 77,86 1,41 1,43 0,85 0,86
UU9 - 26,67 28,49 7,78 8,43 0,39 0,38 0,31 0,30
UU10 - 173,49 185,37 18,57 20,62 12,78 12,94 5,44 5,42
W - 0,34 0,37 0,11 0,12 0,70 0,61 0,33 0,20

Table 4.6 shows the runtime of the algorithm with the number of stages K limited
to six, the gap to the optimal score and the runtime compared to K = 9. Only eight
instances could not be solved within the six stage requirement, five of which couldn’t be
solved optimally with K = 9. The score deviation for stages whose optimum requires
more than six stages is less than one percent for all except Hchl8s, which could not be
solved optimally anyway.

There is a disparity between the Simple algorithm and the CSA algorithm. The
runtimes of the Simple algorithm increased, while the runtimes of the CSA algorithm
generally decreased or remained roughly the same. The instances with an optimal solution
above six stages generally show increased runtimes for the CSA algorithm. It might be
useful to attempt to solve an instance with a higher K than is desired, if the amount of
stages required is unknown.

4.3.2 4 Stages

Restricting K to four means that some instances will achieve a lower score than with a
higher K. We observe the changes in runtime and how much the score deviates.

Table 4.7: Runtime Results for K=4 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=4 K=9 K=4 K=9 K=4 K=9 K=4
2s 1,37 7,38 8,68 2,50 5,57 1,10 6,60 0,44 1,38
3s - 0,42 0,44 0,22 0,22 0,65 0,09 0,32 0,06
A1s - 0,46 0,41 0,15 0,14 0,03 0,02 0,03 0,02
A2s 2,15 1,14 1,16 0,75 0,73 0,18 0,43 0,13 0,28
A3 0,75 3,46 3,35 3,28 3,10 42,36 48,11 14,70 16,47
A4 1,57 146,80 154,94 81,18 79,58 156,02 353,20 52,87 99,98
A5 0,07 136,97 141,16 45,27 77,02 297,03 120,70 79,25 133,67
ATP37 0,96 - - - - - - 3096,56 -
ATP39 0,32 - - - - - - 3142,32 -
CHL1s 0,45 390,48 403,12 913,05 1853,62 226,19 316,55 50,57 132,51
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4.3. Restricted Stages

Runtime Results for K=4 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=4 K=9 K=4 K=9 K=4 K=9 K=4
CHL2s - 0,08 0,07 0,04 0,05 0,66 0,58 0,31 0,27
CHL3s 46,41 - - - - - - - -
CHL4s 32,72 - - - - - - - -
CHL5 - 0,13 0,12 0,13 0,11 0,94 0,28 0,21 0,11
CHL6 - - - 156,01 345,79 1760,03 2580,48 210,04 405,05
CHL7 0,25 - - - - - - 509,39 1664,15
CU1 - 6,07 7,04 3,50 3,69 0,27 0,25 0,18 0,17
CU2 - 12,17 12,38 3,20 3,32 0,87 0,84 0,57 0,56
CU3 - 246,79 292,77 15,73 17,86 1,99 2,13 1,25 1,46
CU4 0,16 27,15 29,05 3,86 3,97 4,14 5,10 2,69 3,25
CU5 - 32,99 35,43 0,61 0,62 1,71 1,63 1,25 1,21
CU6 - 4,87 4,98 0,88 0,90 0,15 0,15 0,13 0,14
CU7 - 1,83 2,04 0,70 0,74 0,87 0,88 0,52 0,52
CU8 0,14 1,39 1,39 0,51 0,46 0,50 0,40 0,36 0,29
CU9 - 7,90 7,99 0,71 0,72 0,09 0,09 0,08 0,07
CU10 0,04 1185,11 1210,11 877,70 896,33 60,42 57,29 25,44 25,67
CU11 - - - - - 2325,43 - 701,70 1127,25
Hchl3s 0,05 0,67 0,64 6,48 6,10 - - 1082,30 416,28
Hchl4s 1,36 149,21 133,78 138,58 114,83 - - - -
Hchl5s 1,37 - - - - - - - -
Hchl6s - - - 624,83 756,19 929,97 1521,51 205,38 326,20
Hchl7s 0,14 - - - - 2220,31 - 617,08 1532,46
Hchl8s 3,18 189,18 87,11 218,32 90,90 - - - 2507,97
Hs - 0,20 0,18 0,04 0,04 461,62 3,52 0,35 0,02
HZ1s - 0,01 0,01 0,01 0,01 - - 1,14 1,07
M1 - 0,31 0,35 0,07 0,07 0,78 0,37 0,07 0,07
M2 0,84 0,81 0,70 0,12 0,12 1,39 0,94 0,36 0,33
M3 - 0,12 0,12 0,03 0,03 0,11 0,11 0,06 0,06
M4s - 0,17 0,15 0,06 0,07 0,98 0,49 0,10 0,09
M5 - 0,42 0,41 0,09 0,10 0,96 0,47 0,09 0,08
OF1 0,88 0,06 0,06 0,04 0,05 0,10 0,10 0,06 0,06
OF2 - 0,40 0,36 0,08 0,07 0,55 0,54 0,30 0,27
STS2s 0,19 0,69 0,74 0,46 0,51 1,35 1,24 0,88 0,88
STS4s 0,19 1507,97 1560,83 - - 157,32 23,78 25,60 22,38
UU1s - 2,51 2,76 0,47 0,46 0,36 0,37 0,20 0,21
UU2s - 5,35 5,92 5,75 5,89 0,06 0,06 0,05 0,05
UU3s 0,62 0,50 0,52 0,92 0,94 0,27 0,48 0,20 0,30
UU4s 0,14 4,44 4,75 18,01 18,40 2,77 2,68 1,58 1,53
UU5s 0,00 24,60 23,84 5,19 5,25 0,51 0,48 0,37 0,35
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4. Computational Results

Runtime Results for K=4 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=4 K=9 K=4 K=9 K=4 K=9 K=4
UU6s - 13,36 14,20 0,91 1,03 0,11 0,09 0,10 0,08
UU7s - 394,00 384,26 27,76 29,80 11,16 9,02 5,60 4,81
UU8s - 126,04 126,50 72,42 74,02 1,41 1,32 0,85 0,83
UU9 - 26,67 26,11 7,78 7,96 0,39 0,36 0,31 0,29
UU10 - 173,49 194,37 18,57 18,95 12,78 10,91 5,44 5,55
W 0,77 0,34 0,35 0,11 0,10 0,70 0,56 0,33 0,21

Table 4.7 shows the runtime of the algorithm with the number of stages K limited to
four, the gap to the optimal score and the runtime compared to K = 9.

Instance CHL4s still can not be solved within the timeout, but is the only instance
that shows a, relatively sizeable, improvement with a lower K. With this the best found
score of the CSA algorithm for CHL4s rises to 9373 (Optimum: 13923).

The biggest relative change is CHL4s with a 6,4% gain. The biggest relative change
on an instance that can be solved within the timeout is A2s with a 2,15% loss.

The runtimes show a slight increase for most, but not all, instances that can be solved
optimally within four stages. Overall restricting the stages does not show any distinct
advantage.

4.3.3 3 Stages

Three-staged cutting patterns represent a widely used category in industry. In general
the three-staged patterns make a good balance between material utilization and cutting
complexity [6]. 13 out of the 55 instances can be solved optimally with K = 3. As before
we observer runtime changes and score deviation.

Table 4.8: Runtime Results for K=3 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=3 K=9 K=3 K=9 K=3 K=9 K=3
2s 5,40 7,38 159,53 2,50 114,81 1,10 277,43 0,44 377,94
3s 0,77 0,42 9,25 0,22 2,82 0,65 4,10 0,32 2,00
A1s - 0,46 5,67 0,15 0,56 0,03 0,20 0,03 0,19
A2s 2,55 1,14 10,61 0,75 2,54 0,18 2,47 0,13 1,82
A3 0,75 3,46 10,51 3,28 20,18 42,36 72,18 14,70 38,91
A4 2,59 146,80 224,35 81,18 110,42 156,02 - 52,87 708,14
A5 1,59 136,97 878,06 45,27 332,08 297,03 - 79,25 1351,08
ATP37 1,29 - - - - - - 3096,56 -
ATP39 1,09 - - - - - - 3142,32 -
CHL1s 0,48 390,48 - 913,05 - 226,19 1746,67 50,57 598,35
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4.3. Restricted Stages

Runtime Results for K=3 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=3 K=9 K=3 K=9 K=3 K=9 K=3
CHL2s - 0,08 0,34 0,04 0,30 0,66 9,12 0,31 4,08
CHL3s 46,41 - - - - - - - -
CHL4s 36,83 - - - - - - - -
CHL5 1,03 0,13 0,74 0,13 0,75 0,94 3,36 0,21 1,14
CHL6 3,16 - - 156,01 - 1760,03 - 210,04 -
CHL7 3,02 - - - - - - 509,39 -
CU1 0,15 6,07 30,78 3,50 10,05 0,27 2,27 0,18 1,74
CU2 - 12,17 111,39 3,20 5,59 0,87 5,85 0,57 4,77
CU3 0,54 246,79 256,19 15,73 2314,40 1,99 20,09 1,25 14,73
CU4 0,23 27,15 3414,75 3,86 35,98 4,14 37,40 2,69 24,62
CU5 1,05 32,99 1484,75 0,61 67,27 1,71 49,41 1,25 27,29
CU6 - 4,87 617,04 0,88 168,66 0,15 1,15 0,13 1,04
CU7 0,41 1,83 6,92 0,70 2,75 0,87 4,66 0,52 3,15
CU8 0,14 1,39 23,26 0,51 0,50 4,16 0,36 3,31
CU9 2,24 7,90 68,48 0,71 6,20 0,09 7,29 0,08 4,00
CU10 0,04 1185,11 - 877,70 1375,62 60,42 165,01 25,44 90,73
CU11 0,80 - - - 901,95 2325,43 - 701,70 -
Hchl3s 2,89 0,67 - 6,48 - - - 1082,30 -
Hchl4s 5,63 149,21 - 138,58 - - - - -
Hchl5s 3,17 - - - - - - - -
Hchl6s 0,35 - - 624,83 834,14 929,97 - 205,38 3483,90
Hchl7s 2,05 - - - - 2220,31 - 617,08 -
Hchl8s 8,89 189,18 426,98 218,32 445,88 - - - -
Hs 1,75 0,20 4,83 0,04 1,29 461,62 8,05 0,35 1,57
HZ1s - 0,01 0,07 0,01 0,06 - 165,45 1,14 8,66
M1 - 0,31 2,32 0,07 1,31 0,78 1,86 0,07 0,52
M2 0,84 0,81 1,95 0,12 0,38 1,39 2,32 0,36 1,35
M3 1,47 0,12 4,85 0,03 1,33 0,11 2,01 0,06 1,70
M4s - 0,17 1,84 0,06 1,15 0,98 2,46 0,10 0,74
M5 - 0,42 2,00 0,09 1,13 0,96 2,33 0,09 0,71
OF1 0,88 0,06 0,86 0,04 0,93 0,10 0,49 0,06 0,37
OF2 6,51 0,40 2,85 0,08 1,09 0,55 11,64 0,30 4,23
STS2s 0,92 0,69 170,73 0,46 - 1,35 458,87 0,88 263,58
STS4s 3,48 1507,97 - - 383,83 157,32 - 25,60 -
UU1s 0,68 2,51 34,18 0,47 4,73 0,36 2,87 0,20 1,75
UU2s - 5,35 39,05 5,75 22,95 0,06 0,61 0,05 0,52
UU3s 1,22 0,50 11,75 0,92 7,23 0,27 4,30 0,20 2,86
UU4s 0,14 4,44 899,23 18,01 120,96 2,77 18,92 1,58 12,49
UU5s 0,00 24,60 402,38 5,19 158,56 0,51 3,54 0,37 2,87
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4. Computational Results

Runtime Results for K=3 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=3 K=9 K=3 K=9 K=3 K=9 K=3
UU6s - 13,36 213,41 0,91 15,06 0,11 0,72 0,10 0,66
UU7s 0,23 394,00 2631,99 27,76 1076,39 11,16 151,76 5,60 65,52
UU8s - 126,04 1312,69 72,42 158,58 1,41 7,01 0,85 5,35
UU9 - 26,67 1923,52 7,78 309,98 0,39 2,78 0,31 2,39
UU10 0,21 173,49 - 18,57 749,79 12,78 101,54 5,44 52,02
W 3,60 0,34 2,16 0,11 3,84 0,70 5,29 0,33 2,33

Table 4.8 shows the runtime of the algorithm with the number of stages K limited to
three, the gap to the optimal score and the runtime compared to K = 9.

Again the runtimes increase overall. Several instances that were solvable with a higher
stage limit could not be solved within the timeout. All the optimally solvable instances
show a notably increased runtime. Instance HZ1s, which has a very simple two staged
optimal pattern, requires nearly eight seconds as opposed to one second before.

Another striking result is that instance CU11, which is optimally solvable with three
stages, does not find an optimal solution within the timeout. Using K = 9 the optimal
solution was found within 12 minutes.

From all instances that finished within the timeout OF2 and 2s show the worst
decline in score.

4.3.4 2 Stages

As with a three stage requirement, K = 2 represents a widely used restriction in industry.
Only eight instances have an optimal pattern with a two stage requirement.

Table 4.9: Runtime Results for K=2 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=2 K=9 K=2 K=9 K=2 K=9 K=2
2s 17,42 7,38 4,01 2,50 4,09 1,10 - 0,44 206,88
3s 11,61 0,42 3,52 0,22 2,48 0,65 16,05 0,32 2,79
A1s - 0,46 1,69 0,15 1,77 0,03 0,14 0,03 0,13
A2s 4,61 1,14 1,10 0,75 1,21 0,18 0,49 0,13 0,39
A3 1,30 3,46 6,32 3,28 6,28 42,36 6,08 14,70 4,08
A4 7,46 146,80 3,31 81,18 3,41 156,02 135,14 52,87 24,73
A5 5,46 136,97 7,76 45,27 8,40 297,03 962,96 79,25 306,60
ATP37 1,77 - - - - - - 3096,56 -
ATP39 1,44 - - - - - - 3142,32 -
CHL1s 2,90 390,48 37,27 913,05 37,15 226,19 2798,38 50,57 1160,77
CHL2s 3,57 0,08 0,41 0,04 0,41 0,66 1,52 0,31 0,64
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4.3. Restricted Stages

Runtime Results For K=2 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=2 K=9 K=2 K=9 K=2 K=9 K=2
CHL3s 41,35 - - - - - - - -
CHL4s 25,23 - - - 3345,35 - - - -
CHL5 6,92 0,13 0,24 0,13 0,22 0,94 1,70 0,21 0,61
CHL6 2,58 - 288,73 156,01 277,36 1760,03 - 210,04 3455,41
CHL7 3,23 - 1551,92 - 1708,06 - - 509,39 -
CU1 0,61 6,07 2,00 3,50 2,01 0,27 0,58 0,18 0,55
CU2 - 12,17 17,49 3,20 18,49 0,87 16,01 0,57 5,11
CU3 0,69 246,79 109,42 15,73 106,45 1,99 15,88 1,25 14,50
CU4 1,03 27,15 80,82 3,86 80,00 4,14 49,12 2,69 14,97
CU5 3,56 32,99 89,86 0,61 94,99 1,71 140,82 1,25 19,99
CU6 - 4,87 174,85 0,88 165,37 0,15 6,26 0,13 4,55
CU7 1,80 1,83 2,92 0,70 3,25 0,87 1,25 0,52 0,90
CU8 4,13 1,39 14,61 0,51 16,36 0,50 9,89 0,36 3,49
CU9 4,44 7,90 3,92 0,71 3,93 0,09 5,58 0,08 2,24
CU10 1,36 1185,11 593,76 877,70 596,90 60,42 192,47 25,44 80,54
CU11 1,74 - 3068,38 - 2820,26 2325,43 - 701,70 2422,49
Hchl3s 3,98 0,67 2,54 6,48 2,67 - - 1082,30 2483,26
Hchl4s 5,78 149,21 2,24 138,58 2,21 - - - 1423,19
Hchl5s 3,51 - - - - - - - -
Hchl6s 4,28 - 72,26 624,83 80,91 929,97 - 205,38 933,75
Hchl7s 1,52 - 1657,77 - 1733,48 2220,31 - 617,08 -
Hchl8s 21,62 189,18 0,52 218,32 0,52 - 2597,75 - 68,07
Hs 1,75 0,20 0,09 0,04 0,11 461,62 0,58 0,35 0,55
HZ1s - 0,01 0,28 0,01 0,28 - 9,55 1,14 4,39
M1 - 0,31 0,31 0,07 0,30 0,78 0,21 0,07 0,18
M2 1,37 0,81 0,20 0,12 0,21 1,39 0,38 0,36 0,36
M3 3,06 0,12 0,40 0,03 0,40 0,11 1,20 0,06 0,58
M4s - 0,17 0,29 0,06 0,30 0,98 0,23 0,10 0,24
M5 - 0,42 0,31 0,09 0,31 0,96 0,20 0,09 0,19
OF1 0,88 0,06 0,17 0,04 0,18 0,10 0,15 0,06 0,12
OF2 10,89 0,40 0,23 0,08 0,25 0,55 2,67 0,30 0,98
STS2s 3,55 0,69 142,77 0,46 140,77 1,35 526,08 0,88 141,37
STS4s 3,00 1507,97 21,66 - 23,13 157,32 690,06 25,60 240,08
UU1s 2,97 2,51 3,34 0,47 3,18 0,36 2,05 0,20 1,04
UU2s 1,94 5,35 8,20 5,75 8,21 0,06 1,92 0,05 1,39
UU3s 5,19 0,50 4,04 0,92 4,10 0,27 4,80 0,20 2,03
UU4s 1,56 4,44 38,53 18,01 40,55 2,77 9,38 1,58 5,72
UU5s 1,92 24,60 94,52 5,19 97,52 0,51 17,88 0,37 10,16
UU6s 0,22 13,36 16,32 0,91 16,51 0,11 0,56 0,10 0,54
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4. Computational Results

Runtime Results For K=2 in Seconds

File Gap
[%]

Simple CSA
naive strip strip all

K=9 K=2 K=9 K=2 K=9 K=2 K=9 K=2
UU7s 1,19 394,00 159,39 27,76 154,32 11,16 15,84 5,60 9,75
UU8s 0,57 126,04 111,34 72,42 109,86 1,41 2,04 0,85 1,91
UU9 2,20 26,67 162,47 7,78 156,18 0,39 15,83 0,31 7,62
UU10 2,66 173,49 777,99 18,57 828,19 12,78 169,52 5,44 45,07
W 9,22 0,34 0,26 0,11 0,27 0,70 0,74 0,33 0,61

Table 4.9 shows the runtime of the algorithm with the number of stages K limited to
two, the gap to the optimal score and the runtime compared to K = 9.

Several instances that weren’t solvable with K = 3 finished within the timeout again.
Overall the runtimes still show a notable increase, however the times decreased when
compared to K = 3.

CHL3s and CHL4s show an increase in score again. This is due to the algorithm
creating bigger compounds faster, since it is limited to two stages.

Both score and runtime perform worse than K = 9. The runtime difference between
K = 3 and K = 2 suggests that the lower stage limit can be used in cases where
three-staged patterns take too long to compute. This is as a tradeoff to solution quality,
since the three-staged patterns show a much better score, if applicable.

4.4 Comparison to a Beam-Search Approach Utilizing an
Insertion Heuristic

The K-2CSV Framework of the Algorithms and Complexity Group contains a Beam-
Search algorithm, described in [15], that utilizes an adapted insertion heuristic from
Fleszar [18]. The algorithm creates a full solution for the problem, containing multiple
sheet. No sheet is fixed until the algorithm finishes. We therefore take the first sheet of
the complete solution for the comparison, since it is bound to have the highest value due
to the normal form. All instances only contain exactly one stock sheet type, meaning
that we do not have to consider multiple sheet types for the comparison.

Table 4.10: Beam-Search Comparison

File Gap [%] Score Runtime [s]
CSA Optimum CSA Beam-Search CSA Beam-Search

2s 1,37 1,37 2778 2740 0,44 0,01
3s 20,32 20,32 2721 2168 0,32 0,07
A1s 6,51 6,51 2950 2758 0,03 0,08
A2s 25,86 25,86 3535 2621 0,13 0,06
A3 13,26 13,26 5451 4728 14,70 0,05
A4 8,14 8,14 6179 5676 52,87 0,05
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4.4. Comparison to a Beam-Search Approach Utilizing an Insertion Heuristic

Beam-Search Comparison

File Gap [%] Score Runtime [s]
CSA Optimum CSA Beam-Search CSA Beam-Search

A5 15,73 15,73 12985 10943 79,25 0,01
ATP37 15,54 15,54 387276 327094 3096,56 0,20
ATP39 6,93 6,93 268750 250122 3142,32 0,14
CHL1s 11,42 11,42 13099 11603 50,57 0,08
CHL2s 9,45 9,45 3279 2969 0,31 0,05
CHL3s −86,59 - 3967 7402 - 0,05
CHL4s −58,30 - 8801 13932 - 0,05
CHL5 12,05 12,05 390 343 0,21 0,05
CHL6 7,90 7,90 16869 15536 210,04 0,08
CHL7 37,27 37,27 16881 10590 509,39 0,08
CU10 9,03 9,03 773772 703924 25,44 0,01
CU11 8,09 8,09 924696 849844 701,70 0,02
CU1 7,37 7,37 12330 11421 0,18 0,01
CU2 14,73 14,73 26100 22255 0,57 0,01
CU3 8,14 8,14 16723 15362 1,25 0,17
CU4 3,99 3,99 99495 95527 2,69 0,14
CU5 4,42 4,42 173364 165708 1,25 0,19
CU6 8,58 8,58 158572 144965 0,13 0,16
CU7 7,69 7,69 247150 228145 0,52 0,08
CU8 11,91 11,91 433331 381716 0,36 0,11
CU9 15,83 15,83 657055 553020 0,08 0,09
Hchl3s 7,92 7,92 12215 11248 1082,30 0,06
Hchl4s 24,02 24,87 11859 9011 - 0,05
Hchl5s 6,70 6,99 45223 42192 - 0,07
Hchl6s 23,17 23,17 61040 46897 205,38 0,07
Hchl7s 8,13 8,13 63112 57981 617,08 0,10
Hchl8s 14,46 14,93 906 775 - 0,05
Hs 2,92 2,92 12348 11988 0,35 0,05
HZ1s - - 5226 5226 1,14 0,01
M1 4,60 4,60 15024 14333 0,07 0,01
M2 5,53 5,53 73176 69132 0,36 0,01
M3 3,83 3,83 142817 137352 0,06 0,01
M4s 3,99 3,99 265768 255172 0,10 0,07
M5 5,15 5,15 577882 548098 0,09 0,07
OF1 7,31 7,31 2737 2537 0,06 0,05
OF2 13,83 13,83 2690 2318 0,30 0,05
STS2s 8,17 8,17 4653 4273 0,88 0,09
STS4s 12,58 12,58 9770 8541 25,60 0,01
UU10 6,19 6,19 11955852 11215805 5,44 0,06
UU1s 9,22 9,22 242919 220520 0,20 0,01
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4. Computational Results

Beam-Search Comparison

File Gap [%] Score Runtime [s]
CSA Optimum CSA Beam-Search CSA Beam-Search

UU2s 7,37 7,37 595288 551418 0,05 0,01
UU3s 15,72 15,72 1072764 904106 0,20 0,01
UU4s 13,78 13,78 1179050 1016542 1,58 0,29
UU5s 11,97 11,97 1868999 1645257 0,37 0,46
UU6s 18,97 18,97 2950760 2390917 0,10 0,03
UU7s 17,83 17,83 2930654 2408113 5,60 0,48
UU8s 8,26 8,26 3959352 3632198 0,85 0,55
UU9 14,95 14,95 6100692 5188841 0,31 0,54
W 17,90 17,90 2721 2234 0,33 0,06

Table 4.10 compares the results of the Beam-Search to the CSA algorithm with all
improvements. Both algorithms were executed with a stage limit of K = 9. The score
derivation between the algorithms is shown in the absolute column. The CSA-Gap column
shows how close the Beam-Search came to the score of the CSA algorithm, while the
Optimum-Gap column shows how close the Beam-Search came to the optimal value.

The runtime column shows that the heuristic Beam-Search approach is very fast
compared to the exact Branch-and-Bound algorithm. Even though the Beam-Search has
to calculate all sheets, this is to be expected since its search space is much smaller.

Average solution value of the Beam-Search is 88.9% of the optimal value. The worst
instance for it is A2s where only 74,14% of the optimal value where achieved, which is
rather surprising considering A2s’ optimal pattern is not very complex. The amount of
unused element types in the optimal solution makes it harder for the Beam-Search to find
a good pattern for only one sheet. Opposed to that are CHL3s and CHL4s which the
CSA algorithm could not solve within the timeout, but the Beam-Search solved optimally.
Both of these instances are a worst-caste situation for the Branch-and-Bound algorithm:
Many small elements on a very large sheet. The optimal solution for those instances only
cover 39% and 29% of the sheets area.

Overall the Beam-Search finds acceptable solutions very quickly, however there is
room for improvement since the average solution quality only reaches about 90% of the
best one. The CAS algorithm is superior when the stock sheet material is expensive,
since it utilizes the available area better. For only partially filled sheets, or when a quick
result is needed and the material used is cheap, the Beam-Search or another heuristic
should be preferred.

4.5 Comparison of the Results
In this section we give an overview over the gap between the optimal score and the CSA
algorithm with different K restrictions as well as the Beam-Search.
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4.5. Comparison of the Results

Table 4.11: Comparison of Score Gaps to Optimum

File Gap to Optimum [%]
K = 9 K = 6 K = 4 K = 3 K = 2 Beam

2s - - 1,37 5,40 17,42 1,37
3s - - - 0,77 11,61 20,32
A1s - - - - - 6,51
A2s - - 2,15 2,55 4,61 25,86
A3 - - 0,75 0,75 1,30 13,26
A4 - 0,99 1,57 2,59 7,46 8,14
A5 - - 0,07 1,59 5,46 15,73
ATP37 - - 0,96 1,29 1,77 15,54
ATP39 - 0,15 0,32 1,09 1,44 6,93
CHL1s - - 0,45 0,48 2,90 11,42
CHL2s - - - - 3,57 9,45
CHL3s 46,41 46,41 46,41 46,41 41,35 -
CHL4s 36,83 36,83 32,72 36,83 25,23 -
CHL5 - - - 1,03 6,92 12,05
CHL6 - - - 3,16 2,58 7,90
CHL7 - - 0,25 3,02 3,23 37,27
CU1 - - - 0,15 0,61 7,37
CU2 - - - - - 14,73
CU3 - - - 0,54 0,69 8,14
CU4 - - 0,16 0,23 1,03 3,99
CU5 - - - 1,05 3,56 4,42
CU6 - - - - - 8,58
CU7 - - - 0,41 1,80 7,69
CU8 - - 0,14 0,14 4,13 11,91
CU9 - - - 2,24 4,44 15,83
CU10 - - 0,04 0,04 1,36 9,03
CU11 - - - 0,80 1,74 8,09
Hchl3s - 0,01 0,05 2,89 3,98 7,92
Hchl4s 1,13 1,36 1,36 5,63 5,78 24,87
Hchl5s 0,30 0,30 1,37 3,17 3,51 6,99
Hchl6s - - - 0,35 4,28 23,17
Hchl7s - - 0,14 2,05 1,52 8,13
Hchl8s 0,55 1,87 3,18 8,89 21,62 14,93
Hs - - - 1,75 1,75 2,92
HZ1s - - - - - -
M1 - - - - - 4,60
M2 - - 0,84 0,84 1,37 5,53
M3 - - - 1,47 3,06 3,83
M4s - - - - - 3,99
M5 - - - - - 5,15
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4. Computational Results

Comparison of Score Gaps to Optimum

File Gap to Optimum [%]
K = 9 K = 6 K = 4 K = 3 K = 2 Beam

OF1 - - 0,88 0,88 0,88 7,31
OF2 - - - 6,51 10,89 13,83
STS2s - - 0,19 0,92 3,55 8,17
STS4s - - 0,19 3,48 3,00 12,58
UU1s - - - 0,68 2,97 9,22
UU2s - - - - 1,94 7,37
UU3s - - 0,62 1,22 5,19 15,72
UU4s - - 0,14 0,14 1,56 13,78
UU5s - - 0,00 0,00 1,92 11,97
UU6s - - - - 0,22 18,97
UU7s - - - 0,23 1,19 17,83
UU8s - - - - 0,57 8,26
UU9 - - - - 2,20 14,95
UU10 - - - 0,21 2,66 6,19
W - - 0,77 3,60 9,22 17,90

Table 4.11 shows the gaps to the optimal value for different stage restrictions with
the CSA algorithm and the beam search.

The table shows that less allowed stages result in less optimal patterns, which is to be
expected considering it decreases pattern complexity and therefore limits the possibility
to fill gaps. Considering only instances that could be solved within the timeout, the gap
mostly stays below five percent for low values of K. It also becomes apparent that the
CSA algorithm outperforms the Beam-Search on nearly every instance with respect to
the score.
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CHAPTER 5
Summary, Conclusion and Future

Work

In the course of this work we presented two bottom-up Branch-and-Bound approaches
to solve the K-2CSV problem. The basic principle behind the algorithms is to combine
patterns together to find an optimal cutting pattern with the least possible space wasted
for a given stock sheet. All elements used have a demand, which represents a constraint
on how often it can occur, and each element type’s profit is equal to the area it requires.
All patterns are in normal form, aligned in the top left corner, sorted by size. All cuts
made in the pattern are guillotine cuts. This ensures that the patterns can be processed
in industrial machinery and usually is a standard requirement. The algorithms were
integrated in a framework to solve instances across multiple sheets, solving each sheet
separately. This does not guarantee an optimal solution over all sheets but for each
individual sheet.

Since this type of problem can take very long the option to abort after a timeout is
presented. In this case the best known solution at the moment of the timeout is taken.
Should a timeout occur all guarantees for optimality are forfeited.

The first algorithm is a basic implementation called Simple algorithm. The basic premise
is to take a pattern, starting with a single element, and combine it with each element in
every way possible. Then continue on to do this recursively. The big difference to other
Branch-and-Bound approaches is that this algorithm only adds a single element to the
existing pattern, while other algorithms typically combine with more complex patterns.
This also requires it to take the order in which the elements are combined into account.

The second Cutting Stock Algorithm (CSA) is based on the Modified Viswanathan
and Bagchi (MVB) algorithm. We keep a list of all valid patterns encountered so far
and create new ones by taking the current given pattern and combining it vertically and
horizontally with each of those and itself.
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5. Summary, Conclusion and Future Work

We implemented several improvements to increase runtime performance. The strip
upper-bound provided the best improvement. It takes the remaining space on the sheet,
divides it into strips and then calculates which combination of elements would provide
the best possible gain. The results show that this upper bound outperforms other bounds,
unless the total runtime is short enough to be dominated by the setup-time to calculate
the combinations required for the strips (< 1 second).

The CSA algorithm has been improved with best-first-traversal (BFS), detection of
dominated patterns and advanced detection of duplicate patterns. BFS and dominated
patterns do not provide a big improvement on their own however they still make sense
in the overall picture and provide means of reducing the search space not provided by
other measures. This mostly helps reducing the runtime in combination with other
improvements.

The results show that the advanced duplicate detection brings notable improvements.
However it is apparent that the inherent property to not add constraint-violating pat-
terns to the branching tree of the CSA algorithm plays an important role. While the
improvement from saved memory operations is obvious, this property also drastically
reduces the combinations to check for the advanced duplicate detection. Without it the
additional computations required can outweigh the gains from the advanced detection.

Overall the computational results show that the CSA algorithm is a good general
approach to solve the K-2CSV problem.

A thing to note is that the stage limit K can impact the runtime negatively even
when the optimal solution is within the limit. Slow instances might be solvable faster by
increasing K, if their optimal solution turns out to lie within the original K.

Furthermore it is noticeable that the general impact of K on the achievable score is
relatively low (≤ 2%). In rare cases it is possible to find a better solution with a lower K
in combination with a reasonable timeout.

5.1 Future Work

The Simple algorithm will not be able to compete with the CSA algorithm on most
patterns, however additional work may be beneficial to obtain an algorithm that can
complement the CSA algorithm on unfavourable instances that profit of the depth-first
nature of the Simple algorithm.

Several properties of the CSA algorithm may be adapted to fit the Simple algorithm.
Premature checks of patterns before adding them to the branching tree, advanced

duplicate detection and possibly different data structures are only a few.

The current strip-bound is based on an unconstrained problem. A better upper bound
that also takes element demands into account is a promising area of research. As the
results show, the upper bound has the biggest impact on performance.
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5.1. Future Work

One could also try to find a better and/or faster means to reduce the search space
like:

• a more sophisticated duplicate detection for patterns that covers more cases.

• a different vector of attack to find dominated or obsolete patterns.

• earlier detection of promising patterns to process them first.

• detecting when the sheet cannot be fully filled because the elements are too small
and terminating the algorithm with the first acceptable solution that uses all
elements.
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