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Abstract In the minimum common string partition (MCSP) problem two
related input strings are given. “Related” refers to the property that both
strings consist of the same set of letters appearing the same number of times
in each of the two strings. The MCSP seeks a minimum cardinality partitioning
of one string into non-overlapping substrings that is also a valid partitioning
for the second string. This problem has applications in bioinformatics e.g.
in analyzing related DNA or protein sequences. For strings with lengths less
than about 1000 letters, a previously published integer linear programming
(ILP) formulation yields, when solved with a state-of-the-art solver such as
CPLEX, satisfactory results. In this work, we propose a new, alternative ILP
model that is compared to the former one. While a polyhedral study shows
the linear programming relaxations of the two models to be equally strong, a
comprehensive experimental comparison using real-world as well as artificially
created benchmark instances indicates substantial computational advantages
of the new formulation.

Keywords Minimum Common String Partition · Bioinformatics · Integer
Linear Programming · Computational Comparision

1 Introduction

String problems related to DNA and/or protein sequences are abundant in
bioinformatics. Well-known examples include the longest common subsequence
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problem and its variants [15,23], the shortest common supersequence prob-
lem [10], and string consensus problems such as the far from most string prob-
lem and the close to most string problem [21,20]. Many of these problems are
strongly NP -hard [11] and also computationally very challenging.

This work deals with a string problem which is known as the minimum
common string partition (MCSP) problem. The MCSP problem can techni-
cally be described as follows. Given are two related input strings s1 and s2

which are both of length n over a finite alphabet Σ. The term related refers to
the fact that each letter appears the same number of times in each of the two
input strings. Note that being related implies that s1 and s2 have the same
length. A valid solution to the MCSP problem is obtained by partitioning s1

(resp. s2) into a set P 1 (resp. P 2) of non-overlapping substrings such that
P 1 = P 2. The optimization goal consists in finding a valid solution such that
|P 1| = |P 2| is minimal.

Consider the following example. Given are sequences s1 = AGACTG
and s2 = ACTAGG. Obviously, s1 and s2 are related because A and G
appear twice in both input strings, while C and T appear once. A trivial
valid solution can be obtained by partitioning both strings into substrings of
length one, that is, P 1 = P 2 = {A,A,C,T,G,G}. The objective value of
this solution is six. However, the optimal solution, with objective value three,
is P 1 = P 2 = {ACT,AG,G}.

The MCSP problem has applications, for example, in the bioinformatics
field. Chen et al. [3] point out that the MCSP problem is closely related to
the problem of sorting by reversals with duplicates, a key problem in genome
rearrangement.

1.1 History of Research for the MCSP Problem

The original definition of the MCSP problem by Chen et al. [3] was inspired by
computational problems arising in the context of genome rearrangement such
as: May a given DNA string possibly be obtained by reordering subsequences
of another DNA string? In the meanwhile, the general version of the problem
was shown to be NP -hard [12]. Other papers concerning problem hardness
consider problem variants such as, for example, the k-MCSP problem in which
each letter occurs at most k times in each input string. The 2-MCSP problem
was shown to be APX-hard in [12]. Jiang et al. [16] proved that the decision
version of the MCSPc problem—where c indicates the size of the alphabet—is
NP -complete when c ≥ 2.

A lot of research has been done concerning the approximability of
the problem. Cormode and Muthukrishnan [5], for example, proposed an
O(log n log∗ n)-approximation for the edit distance with moves problem, which
is a more general case of the MCSP problem. Other approximation approaches
were proposed in [22,19]. Chrobak et al. [4] studied a simple greedy approach
for the MCSP problem, showing that the approximation ratio concerning the
2-MCSP problem is 3, and for the 4-MCSP problem the approximation ratio
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is in Ω(log n). In the case of the general MCSP problem, the approximation
ratio lies between Ω(n0.43) and O(n0.67), assuming that the input strings use
an alphabet of size O(log n). Later Kaplan and Shafir [17] improved the lower
bound to Ω(n0.46). Kolman proposed a modified version of the simple greedy
algorithm with an approximation ratio of O(k2) for the k-MCSP [18]. Re-
cently, Goldstein and Lewenstein [13] proposed a greedy algorithm for the
MCSP problem that runs in O(n) time. He [14] introduced another a greedy
algorithm with the aim of obtaining better average results.

Damaschke [6] was the first one to study the fixed-parameter tractability
(FPT) of the problem. Later, Jiang et al. [16] showed that both the k-MCSP
and MCSPc problems admit FPT algorithms when k and c are constant pa-
rameters. Fu et al. [9] proposed an O(2nnO(1)) time algorithm for the general
case and an O(n(log n)2) time algorithm applicable under certain constraints.

Finally, in recent years researchers have also focused on algorithms for
deriving high quality solutions in practical settings. Ferdous and Sohel Rah-
man [7,8], for example, developed aMAX -MIN Ant System metaheuristic.
Blum et al. [1] proposed a probabilistic tree search approach. Both works ap-
plied their algorithm to a range of artificial and real DNA instances from [7].
The first integer linear programming (ILP) model, as well as a heuristic ap-
proach on the basis of the proposed ILP model, was presented in [2]. The
heuristic is a 2-phase approach which—in the first phase—aims at covering
most of the input strings with few but long substrings, while—in the second
phase—the so-far uncovered parts of the input strings are covered in the best
way possible. Experimental results showed that for smaller problem instances
with n < 1000 applying a solver such as CPLEX1 to the proposed ILP is
currently state-of-the-art. For larger problem instances, runtimes are typically
too high and best results are usually obtained by the heuristic from [2].

1.2 Contribution of this Work

In this paper we introduce an alternative ILP model for solving the MCSP
problem. We show that the LP-relaxations of both models are equally strong
from a theoretical point of view. An extensive experimental comparison with
the model from [2] shows, however, that CPLEX is able to derive feasible
integer solutions much faster with the new model. Moreover, the results when
given the same computation time as for solving the existing ILP model are
significantly better.

1.3 Organization of the Paper

The remainder is organized as follows. In Section 2, the ILP model from [2] as
well as the newly proposed ILP model are described. A polyhedral compari-
son of the two models is performed in Section 3. The experimental evaluation

1 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
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on problem instances from the related literature as well as on newly gener-
ated problem instances is provided in Section 4. Finally, in Section 5 we draw
conclusions and give an outlook on future work.

2 ILP Models for the MCSP

In the following we first review the existing ILP model for solving the MCSP
as proposed in [2]. Subsequently, the new alternative model is presented.

2.1 Existing ILP Model

The existing ILP model from [2] is based on the notion of common blocks.
Therefore we will henceforth refer to this model as the common blocks model.
A common block bi of input strings s1 and s2 is a triple (ti, k

1
i , k

2
i ) where ti is

a string which appears as substring in s1 at position k1i and in s2 at position
k2i , with k1i , k

2
i ∈ {1, . . . , n}. Let the length of a common block bi be its string’s

length, i.e., |ti|. Let us now consider the set B = {b1, . . . , bm} of all existing
common blocks of s1 and s2. Any valid solution S to the MCSP problem can
then be expressed as a subset of B, i.e., S ⊂ B, such that:

1.
∑

bi∈S |ti| = n, that is, the sum of the lengths of the common blocks in S
is equal to the length of the input strings.

2. For any two common blocks bi, bj ∈ S it holds that their corresponding
strings neither overlap in s1 nor in s2.

The ILP uses for each common block bi ∈ B a binary variable xi indicating
its selection in the solution. In other words, if xi = 1, the corresponding
common block bi is selected for the solution, and if xi = 0, common block bi
is not selected.

(Ilpcb) min

m∑
i=1

xi

s.t.
∑

i∈{1,...,m|k1
i≤j<k1

i+|ti|}

xi = 1 for j = 1, . . . , n

∑
i∈{1,...,m|k2

i≤j<k2
i+|ti|}

xi = 1 for j = 1, . . . , n

xi ∈ {0, 1} for i = 1, . . . ,m

(1)

(2)

(3)

The objective function (1) minimizes the number of selected common
blocks. Equations (2) ensure that each position j = 1, . . . , n of string s1 is
covered by exactly one selected common block and selected common blocks
also do not overlap. Equations (3) ensure the same with respect to s2. Note
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that equations (2) (and also (3)) implicitly guarantee that the sum of the
lengths of the selected blocks is n as

m∑
i=1

|ti| · xi =

m∑
i=1

k1
i+|ti|−1∑
j=k1

i

xj =

n∑
j=1

∑
i∈{1,...,m|k1

i≤j<k1
i+|ti|}

xi = n.

Finally, note that the number of variables in model Ilpcb is of order O(n3).

2.2 An Alternative ILP Model: The Common Substrings Model

An aspect which the above model does not effectively exploit is the fact that,
frequently, some string appears multiple times at different positions as sub-
string in s1 and/or s2. For example, assume that string AC appears five times
in s1 and four times in s2. Model Ilpcb will then consider 5 · 4 = 20 different
common blocks, one for each pairing of an occurrence in s1 and in s2. Es-
pecially when the cardinality of the alphabet is low and n large, it is likely
that some smaller strings appear very often and induce a huge set of possible
common blocks B. To overcome this disadvantage, we propose the following
alternative modeling approach.

Let T denote the set of all (unique) strings that appear as substrings at
least once in both s1 and s2. For each t ∈ T , let Q1

t and Q2
t denote the set

of all positions between 1 and n at which t starts in input strings s1 and s2,
respectively.

We now use binary variables y1t,k for each t ∈ T , k ∈ Q1
t , and y2t,k for each

t ∈ T , k ∈ Q2
t . If and only if yit,k = 1, the occurance of string t ∈ T at position

k ∈ Qi
t in input string si is selected for the solution (where i ∈ {1, 2}). The

new alternative model, henceforth also referred to as the common substrings
model, can then be expressed as follows.

(Ilpcs) min
∑
t∈T

∑
k∈Q1

t

y1t,k

s.t.
∑
t∈T

∑
k∈Q1

t |k≤j<k+|t|

y1t,k = 1 for j = 1, . . . , n

∑
t∈T

∑
k∈Q2

t |k≤j<k+|t|

y2t,k = 1 for j = 1, . . . , n

∑
k∈Q1

t

y1t,k =
∑
k∈Q2

t

y2t,k for t ∈ T

y1t,k ∈ {0, 1} for t ∈ T, k ∈ Q1
t

y2t,k ∈ {0, 1} for t ∈ T, k ∈ Q2
t

(4)

(5)

(6)

(7)
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The objective function (4) counts the number of chosen substrings; note
that

∑
t∈T

∑
k∈Q2

t
y2t,k would yield the same value. Equations (5) and (6) en-

sure that for each position j = 1, . . . , n of input string s1 (respectively, s2)
exactly one covering substring is chosen. These equations consider for each
position j all substrings t ∈ T for which the starting position k is at most j
and less than k+ |t|. Equations (7) ensure that each string t ∈ T is chosen the
same number of times within s1 and s2. Similarly as in Ilpcb, the requirement
that the sum of the lengths of the selected substrings has to sum up to n
follows implicitly from (5) and (6).

Concerning the number of variables involved in model Ilpcs, the following
can be observed. A string of length n has exactly n(n − 1)/2 possibly partly
equal substrings of size greater than zero. In the worst case, the model uses
one y variable for each of these substrings for s1 and s2, respectively. In case
some substring t appears multiple times at different positions, it will only be
considered once in |T |, but nevertheless its different occurrences appear in Q1

t

and Q2
t and thus the number of y variables stays n(n − 1)/2. When some

substring of s1 does not appear in s2 or vice versa, no respective y variable(s)
are considered and the overall number of variables is smaller. Therefore, in the
general case, the number of variables of the new model is bounded by O(n2)
and there are also O(n2) constraints.

3 Polyhedral Comparison

We compare the two ILP models by projecting solutions of Ilpcb expressed
in terms of variables xi, i = 1, . . . ,m, into the space of variables y1t,k, t ∈
T, k ∈ Q1

t , and y2t,k, t ∈ T, k ∈ Q2
t , from Ilpcs. A corresponding solution is

obtained by

y1t,k =
∑

i∈{1,...,m|ti=t∧k1
i=k}

xi and y2t,k =
∑

i∈{1,...,m|ti=t∧k2
i=k}

xi. (8)

Let Lpcb and Lpcs be the linear programming relaxations of models Ilpcb
and Ilpcs, respectively, obtained by relaxing the integrality conditions. In the
following we show that both models describe the same polyhedron in the space
of y-variables and are thus equally strong from a theoretical point.

Lemma 1 The polyhedron defined by Lpcb is contained in Lpcs.

Proof We show that for any feasible solution to Lpcb, the solution in terms
of the y-variables obtained by (8) is also feasible in Lpcs. For equations (5)
replacing y1t,k yields

∑
t∈T

∑
k∈Q1

t |k≤j<k+|t|

∑
i∈{1,...,m|ti=t∧k1

i=k}

xi =
∑

i∈{1,...,m|k1
i≤j<k1

i+|t1i |}

xi, (9)
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which corresponds to the left side of (2) and is thus always equal to one.
Equations (6) are correspondingly fulfilled. For constraints (7) we obtain for
each t ∈ T∑
k∈P 1

t

∑
i∈{1,...,m|ti=t∧k1

i=k}

xi =
∑

i∈{1,...,m|ti=t}

xi =
∑
k∈P 2

t

∑
i∈{1,...,m|ti=t∧k2

i=k}

xi,

and they are therefore also always fulfilled. Last but not least, also 0 ≤ y1t,k ≤ 1

and 0 ≤ y2t,k ≤ 1 trivially hold due to (2) and (3).

Lemma 2 The polyhedron defined by Lpcs is contained in Lpcb.

Proof Due to the correspondence (9), equations (2) can be written in terms
of the y-variables and therefore also hold for any feasible solution of Lpcs.
Correspondingly, equations (3) are always fulfilled for any solution of Lpcs. If
one is interested in a specific solution in terms of the x-variables for a feasible
solution expressed by y-variables, it can be easily derived by considering each
t ∈ T and assigning values to variables xi with i ∈ {1, . . . ,m | ti = t} in
an iterative, greedy fashion so that relations (8) are fulfilled for any k1i and
k2i . A feasible assignment of such values must always exist as an individual xi
variable exists for each possible pair of positions Q1

t in s1 and positions Q2
t in

s2, due to constraints (7), and the variable domains.

From the above results, we can directly conclude the following.

Theorem 1 Lpcb corresponds to Lpcs when projected into the domain of y-
variables, and therefore Ilpcb and Ilpcs yield the same LP-values and are
equally strong.

4 Experimental Evaluation

Both Ilpcb and Ilpcs were implemented using GCC 4.7.3 and IBM ILOG
CPLEX V12.1. The experimental results were obtained on a cluster of PCs
with 2933 MHz Intel(R) Xeon(R) 5670 CPUs having 12 nuclei and 32GB RAM.
Moreover, CPLEX was configured for single-threaded execution.

4.1 Benchmark Instances

Two different benchmark sets were used for the experimental evaluation. The
first one was introduced by Ferdous and Sohel Rahman in [7] for the evalua-
tion of their ant colony optimization approach. This set contains in total 30
artificial instances and 15 real-life instances consisting of DNA sequences, that
is, |Σ| = 4. Remember, in this context, that each problem instance consists of
two related input strings. Moreover, the benchmark set consists of four subsets
of instances. The first subset (henceforth labelled Group1) consists of 10 ar-
tificial instances in which the input strings have lengths up to 200. The second
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Table 1 Results for the 10 instances of Group1.

id n Ilpcb Ilpcs
value time (s) gap LP gap # vars value time (s) gap LP gap # vars

1 114 ∗41 0/1 0.0% 3.3% 4299 ∗41 0/0 0.0% 3.3% 781
2 137 ∗47 1/2 0.0% 3.6% 6211 ∗47 0/0 0.0% 3.6% 928
3 158 ∗52 2/34 0.0% 5.7% 8439 ∗52 0/14 0.0% 5.7% 1172
4 113 ∗41 0/1 0.0% 2.0% 4299 ∗41 0/1 0.0% 2.0% 736
5 119 ∗40 1/1 0.0% 3.0% 4718 ∗40 0/1 0.0% 3.0% 833
6 115 ∗40 0/3 0.0% 4.2% 4435 ∗40 0/1 0.0% 4.2% 765
7 162 ∗55 2/38 0.0% 2.9% 8687 ∗55 0/18 0.0% 2.9% 1159
8 123 ∗43 1/2 0.0% 3.2% 4995 ∗43 0/2 0.0% 3.2% 816
9 118 ∗42 1/2 0.0% 3.7% 4995 ∗42 0/1 0.0% 3.7% 767

10 170 ∗54 1/51 0.0% 3.7% 9699 ∗54 0/16 0.0% 3.7% 1254
avg. 45.5 1/14 0.0% 3.5% 6029.3 45.5 0/5 0.0% 3.5% 921.1

subset (Group2) consists of 10 artificial instances with input string lengths in
(200, 400]. In the third subset (Group3) the input strings of the 10 artificial
instances have lengths in (400, 600]. Finally, the fourth subset (Real) consists
of 15 real-life instances of various lengths in [200, 600]. The second benchmark
set that we used is new. It consists of 10 uniformly randomly generated in-
stances for each combination of n ∈ {100, 200, . . . , 1000} and alphabet size
|Σ| ∈ {4, 12, 20}. In total, this set thus consists of 300 benchmark instances.

4.2 Results for the instances from Ferdous and Sohel Rahman

The results for the four subsets of instances from the benchmark set by Fer-
dous and Sohel Rahman [7] are shown in Tables 1-4, in terms of one table
per instance subset. The structure of these tables is as follows. The first and
second columns provide the instance identifiers and the input string length,
respectively. Then the results of Ilpcb and Ilpcs are shown by means of five
columns each. The first column provides the objective values of the best so-
lutions found within a limit of 3600 CPU seconds. In case optimality of the
corresponding solution was proven by CPLEX, the value is marked by an as-
terisk. The second column provides computation times in the form X/Y, where
X is the time at which CPLEX was able to find the first valid integer solution,
and Y the time at which CPLEX found the best (possibly optimal) solution
within the 3600s limit. The third column shows optimality gaps, which are the
relative differences in percent between the values of the best feasible solutions
and the lower bounds at the times of stopping the runs. The fourth column
provides LP gaps, i.e., the relative differences between the LP relaxation val-
ues and the best (possibly optimal) integer solution values.2 Finally, the last
column lists the numbers of variables of the ILP models. The best result for
each problem instance is marked by a grey background, and the last row of
each table provides averages over the whole table.

The following observations can be made. First, apart from the instances of
Group1 which are all solved with both models to optimality, the results for

2 Note that we confirmed, in this context, that in all cases the values of the LP relaxations
concerning Ilpcb and Ilpcs were equal.
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Table 2 Results for the 10 instances of Group2.

id n Ilpcb Ilpcs
value time (s) gap LP gap # vars value time (s) gap LP gap # vars

1 337 98 50/2067 2.9% 4.1% 37743 98 1/1218 2.2% 4.1% 2740
2 376 106 80/1046 7.5% 7.8% 47174 103 1/2554 3.6% 5.2% 3191
3 334 97 35/1220 2.7% 3.7% 36979 ∗96 1/523 0.0% 2.7% 2776
4 351 102 48/891 4.9% 5.6% 40960 100 1/470 2.2% 3.7% 2914
5 398 116 83/2703 6.7% 7.5% 52697 114 1/903 4.5% 5.9% 3291
6 327 93 39/1476 5.6% 6.5% 35650 94 1/269 6.2% 7.5% 2694
7 303 88 31/3107 6.0% 7.7% 30839 87 1/1358 4.2% 6.7% 2494
8 358 104 61/3248 5.1% 6.2% 42668 104 1/72 5.7% 6.2% 2954
9 360 104 49/1563 5.2% 6.1% 42998 103 1/162 4.2% 5.2% 2924

10 306 89 27/1397 3.6% 4.9% 31169 ∗88 1/434 0.0% 3.8% 2423
avg. 99.7 50/1872 5.0% 6.0% 39887.7 98.7 1/796 3.3% 5.1% 2840.1

Table 3 Results for the 10 instances of Group3.

id n Ilpcb Ilpcs
value time (s) gap LP gap # vars value time (s) gap LP gap # vars

1 577 155 333/858 7.5% 7.7% 110973 154 2/1015 6.4% 6.5% 5230
2 556 155 345/693 7.7% 7.7% 102670 152 2/972 5.3% 5.9% 4849
3 599 166 462/2063 8.5% 8.6% 119287 160 2/643 4.8% 5.2% 5339
4 588 159 458/976 6.9% 7.1% 114975 159 2/1783 6.4% 7.1% 5251
5 547 150 279/682 9.7% 9.9% 99775 147 3/237 7.6% 8.1% 4917
6 517 147 239/573 9.1% 9.2% 88839 143 2/621 6.0% 6.7% 4441
7 535 149 253/620 9.8% 10.0% 95765 145 2/1572 6.7% 7.5% 4734
8 542 151 312/3591 6.7% 6.9% 97400 149 1/1092 5.0% 5.7% 4691
9 559 158 352/1022 10.9% 11.1% 104186 148 2/3418 4.2% 5.1% 5009

10 543 148 343/1334 9.1% 9.5% 98237 145 2/3316 6.7% 8.2% 4823
avg. 153.8 338/1241 8.6% 8.8% 103211.0 150.2 2/1467 5.9% 6.6% 4928.4

Table 4 Results for the 15 instances of set Real.

id n Ilpcb Ilpcs
value time (s) gap LP gap # vars value time (s) gap LP gap # vars

1 252 ∗78 14/968 0.0% 3.9% 22799 ∗78 0/232 0.0% 3.9% 1966
2 487 139 196/441 9.2% 9.3% 80523 134 1/988 5.2% 5.9% 4330
3 363 104 61/3575 5.6% 6.4% 45869 102 1/115 3.9% 4.6% 3052
4 513 144 301/1353 6.5% 6.6% 91663 141 1/227 4.3% 4.7% 4467
5 559 150 379/1998 7.9% 8.2% 108866 148 2/3230 6.2% 7.0% 5068
6 451 128 170/3584 6.5% 7.0% 70655 124 1/1392 3.0% 4.0% 3836
7 458 121 180/1814 6.9% 7.6% 73502 119 1/2729 4.3% 6.1% 4187
8 433 116 127/3268 6.8% 7.6% 65560 115 1/607 5.5% 6.8% 3879
9 468 131 191/358 8.8% 8.9% 75833 127 1/844 5.2% 6.1% 4130

10 450 130 144/3429 6.1% 6.7% 69560 127 1/2669 3.1% 4.5% 3876
11 400 110 114/3591 4.8% 5.6% 56160 109 1/2309 3.3% 4.8% 3546
12 449 126 178/651 9.8% 10.2% 70861 122 1/562 6.3% 7.2% 3981
13 579 157 469/2236 7.1% 7.9% 115810 155 2/835 6.1% 6.7% 5251
14 458 130 161/3099 6.7% 7.2% 73449 129 1/581 5.5% 6.5% 3905
15 510 139 295/1430 7.7% 7.9% 91060 135 2/712 4.4% 5.2% 4556

avg. 126.9 212/2120 6.7% 7.4% 74163.9 124.3 1/1202 4.4% 5.6% 4002.0

subsets Group2, Group3 and Real are clearly in favor of model Ilpcs. Only
in one out of 35 cases (leaving Group1 aside) a better result is obtained with
Ilpcb, and in further four cases the results obtained with Ilpcs are matched.
In all remaining cases the solutions obtained with Ilpcs are better than those
obtained with Ilpcb. This observation is confirmed by a study of the optimality
gaps. They are significantly smaller for Ilpcs than for Ilpcb. One of the main
reasons for the superiority of model Ilpcs over Ilpcb is certainly the difference
in the number of the variables. For the instance of Group1, Ilpcb needs, on
average, about 6.5 times more variables than Ilpcs. This factor seems to grow
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with growing instance size. Concerning instances of Group2, Ilpcb requires,
on average, about 14.0 times more variables. The corresponding number for
Group3 is about 20.9. Another reason for the advantage of Ilpcs over Ilpcb is
that symmetries are avoided. Finally, a last observation concerns the compu-
tation times: the first feasible integer solution is found for Ilpcs, on average,
in about 0.7% of the time that is needed in the case of Ilpcb.

4.3 Results for the New Instance Set

The results for the new set of problem instances are presented in Table 5. Each
line provides the results of both Ilpcb and Ilpcs averaged over the 10 instances
for a combination between n and |Σ|. The results are presented for each ILP
model by means of six table columns. The first five represent the same infor-
mation as was provided in the case of the first benchmark set. An additional
sixth column (with heading # opt) indicates for each row how many (out of
10) instances were solved to optimality. The additional last table column (with
heading Impr. in %) indicates the average improvement in solution quality of
Ilpcs over Ilpcb. The results permit, basically, to draw the same conclusions as
in the case of the results for the instance set treated in the previous subsection.
The application of CPLEX to Ilpcs outperforms the application of CPLEX
to Ilpcb both in final solution quality and in the computation time needed to
find the first feasible integer solution. These differences in results become more
pronounced with increasing input string length and with decreasing alphabet
size. In the case of |Σ| = 4, for example, the solutions provided by Ilpcs are
on average 5.0% better than those provided by Ilpcb. The superiority of Ilpcs
over Ilpcb is also indicated by the number of instances that were solved to
optimality: 160 out of 300 in the case of Ilpcb, and 183 out of 300 in the case
of Ilpcs.

In order to facilitate the study of the computation times at which the first
integer solutions were found, these times are graphically shown for different
values of |Σ| in three different barplots in Figure 1. The charts clearly show
that the advantages of Ilpcs over Ilpcb are considerable. In fact, the numbers
concerning Ilpcs are so small (in comparison to the ones concerning Ilpcb) that
the bars are not visible in these plots. Moreover, these advantages seem to grow
with increasing alphabet size. This means that, even though the differences in
solution quality are negligible when |Σ| = 20, the first integer solutions are
found much faster in the case of Ilpcs. The average gap sizes concerning the
quality of the best solutions found and the best lower bounds at the time of
termination are plotted in the same way in the three charts of Figure 2. These
charts clearly show that, for all combinations of n and |Σ|, the average gap
is smaller in the case of Ilpcs. Finally, Figure 3 shows the evolution of the
number of variables needed by the two models for instances of different sizes.
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Fig. 1 Evolution of the average computation time the first integer solution is found.
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Fig. 2 Evolution of the average optimality gap size (in percent).

5 Conclusions and Future Work

While (meta-)heuristic approaches are the state-of-the-art for approximately
solving large instances of the MCSP, instances with string lengths of less than
about 1000 letters can be well solved with an ILP model in conjunction with a
state-of-the-art solver like CPLEX. In this work we have proposed the model
based on common substrings that reduces symmetries appearing in the for-
merly suggested common blocks model. While our polyhedral analysis indi-
cated that both models are equally strong w.r.t. their linear programming
relaxations, there are significant differences in the computational difficulties
to solve these models. The new formulation allows for finding feasible solu-
tions of already reasonable quality in substantially less time and also yields
better final solutions in most cases where proven optimal solutions could not
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Fig. 3 Evolution of the number of variables used by the two ILP models.

be identified within the time limit. An important reason for this is to be found
in the number of variables needed by the two models. While the existing model
from the literature requires O(n3) variables (where n is the length of the input
strings), the new model only requires O(n2) variables.

In future work it would be interesting to consider extended variants of the
MCSP, in particular such where the input strings need not to be related. In
biological applications this would give a greater flexibility as sequences that
were also affected by other kinds of mutations can be compared in terms
of their reordering of subsequences. Another interesting generalization would
be to consider more than two input strings. The newly proposed ILP model
appears to be a promising basis also for these variants.
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