Applied Soft Computing 11 (2011) 4135-4151

Contents lists available at ScienceDirect

Applied

tin

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Hybrid metaheuristics in combinatorial optimization: A survey

Christian Blum®*, Jakob Puchinger®, Giinther R. Raidl¢, Andrea Roli4

3 ALBCOM Research Group, Universitat Politécnica de Catalunya, Barcelona, Spain

b Mobility Department, Austrian Institute of Technology, Vienna, Austria

¢ Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria

d Dipartimento di Elettronica, Informatica e Sistemistica (DEIS), Alma Mater Studiorum, Universita di Bologna, Campus of Cesena, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 29 August 2010

Received in revised form 12 February 2011
Accepted 24 February 2011

Available online 15 March 2011

Research in metaheuristics for combinatorial optimization problems has lately experienced a noteworthy
shift towards the hybridization of metaheuristics with other techniques for optimization. At the same
time, the focus of research has changed from being rather algorithm-oriented to being more problem-
oriented. Nowadays the focus is on solving the problem at hand in the best way possible, rather than
promoting a certain metaheuristic. This has led to an enormously fruitful cross-fertilization of different
areas of optimization. This cross-fertilization is documented by a multitude of powerful hybrid algorithms
that were obtained by combining components from several different optimization techniques. Hereby,
hybridization is not restricted to the combination of different metaheuristics but includes, for example,
the combination of exact algorithms and metaheuristics. In this work we provide a survey of some of
the most important lines of hybridization. The literature review is accompanied by the presentation of

Keywords:

Hybrid metaheuristics
Combinatorial optimization
Mathematical programming
Constraint programming

Local search illustrative examples.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The origins of metaheuristics are to be found in the Artifi-
cial Intelligence and Operations Research communities [1-3]. The
term metaheuristic generally refers to approximate algorithms
for optimization that are not specifically expressed for a partic-
ular problem. Ant colony optimization, genetic and evolutionary
algorithms, iterated local search, simulated annealing and tabu
search (in alphabetical order) are typical representatives of the
class of metaheuristic algorithms. Each of these metaheuristics has
its own historical background. Some metaheuristics are inspired
by natural processes such as evolution, others are extensions of
less sophisticated algorithms such as greedy heuristics and local
search [4].

During the first two decades of research on metaheuristics, dif-
ferent research communities working on metaheuristic techniques
co-existed without much interaction, neither among themselves
nor with the Operations Research community. This was surely justi-
fied by the fact that initially pure metaheuristics had a considerable
success: for many problems they quickly became state-of-the-art
algorithms. However, the attempt of being different to traditional
Operations Research has led to a pernicious disregard of valu-
able optimization expertise collected over the years. Only when

* Corresponding author.
E-mail addresses: cblum@Isi.upc.edu (C. Blum), jakob.puchinger@ait.ac.at
(J. Puchinger), raidl@ads.tuwien.ac.at (G.R. Raidl), andrea.roli@unibo.it (A. Roli).

1568-4946/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
do0i:10.1016/j.as0c.2011.02.032

it became clear that pure metaheuristics had reached their limits,
researchers turned towards the combination of different algo-
rithms.

Over the last years, quite an impressive number of algorithms
were reported that do not purely follow the paradigm of a single
traditional metaheuristic. On the contrary, they combine various
algorithmic components, often originating from algorithms of other
research areas on optimization. These approaches are commonly
referred to as hybrid metaheuristics. The lack of a precise defini-
tion of this term has sometimes been subject to criticism. Note,
however, that the relatively open nature of this expression can be
helpful, as strict borderlines between related fields of research are
often a hindrance for creative thinking and the exploration of new
research directions.

The main motivation behind the hybridization of different algo-
rithms is to exploit the complementary character of different
optimization strategies, that is, hybrids are believed to benefit
from synergy. In fact, choosing an adequate combination of com-
plementary algorithmic concepts can be the key for achieving top
performance in solving many hard optimization problems. Unfor-
tunately, developing an effective hybrid approach is in general a
difficult task which requires expertise from different areas of opti-
mization. Moreover, the literature shows that it is nontrivial to
generalize, that is, a certain hybrid might work well for specific
problems, but it might perform poorly for others. Nevertheless,
there are hybridization types that have shown to be successful for
many applications. They may serve as a guidance for new develop-
ments.

dx.doi.org/10.1016/j.asoc.2011.02.032
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:cblum@lsi.upc.edu
mailto:jakob.puchinger@ait.ac.at
mailto:raidl@ads.tuwien.ac.at
mailto:andrea.roli@unibo.it
dx.doi.org/10.1016/j.asoc.2011.02.032

4136 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

Conferences and workshops such as CPAIOR [5-7], Hybrid Meta-
heuristics [8,9], and Matheuristics [10-13] document the growing
popularity of hybridization. Moreover, the first book specifically
devoted to hybrid metaheuristics has been published in 2008 [14].
In this paper, we provide an overview of hybrid metaheuristics
for combinatorial optimization problems by illustrating prominent
and paradigmatic examples, which range from the integration of
metaheuristic techniques among themselves, to the hybridization
of metaheuristics with constraint and mathematical programming.
The interested reader can find other reviews on hybrid meta-
heuristics in [13-18]. Note that this article is an extension and
actualization of the work that has appeared in [19,20].

Finally, we would like to emphasize that this survey covers the
area of hybrid metaheuristics for single-objective combinatorial
optimization problems. Readers interested in recent developments
concerning hybrid metaheuristics for multi-objective optimization
are referred to a survey specifically devoted to this topic [21].
Concerning the very active field of (hybrid) metaheuristics for con-
tinuous - i.e., real parameter - optimization, readers may find
a good starting point in recent papers published in a dedicated
journal special issue [22]. Especially in the fields of evolutionary
algorithms and swarm intelligence, the use of pure as well as hybrid
metaheuristics for continuous optimization has already a quite long
tradition [23-25]. For an overview on parallel hybrid metaheuris-
tics we recommend [26,27]. Finally, it is also important to mention
the availability of several currently available software frameworks
that support the implementation of hybrid metaheuristics for sin-
gle and multi-objective optimization, both in a sequential and in a
parallel way. One of the most powerful ones is ParadisEO [28].

Organization. The following five sections are devoted to the
presentation of examples and short literature overviews con-
cerning five important categories of hybrid metaheuristics. More
specifically we focus on the hybridization of metaheuristics with
(meta-)heuristics, constraint programming, tree search methods,
problem relaxation, and dynamic programming. For each topic,
first, two representative examples are outlined, and then, a short
literature overview is provided.

2. Hybridizing metaheuristics with (meta-)heuristics

When researchers first considered the hybridization of their
preferred metaheuristic with another technique for optimization,
most started to look at possible combinations with heuristics or
other metaheuristics. In fact, nowadays the hybridization of differ-
ent metaheuristics is very widespread, especially for what concerns
the use of local search methods within population-based methods.
In fact, both evolutionary computation and ant colony optimiza-
tion often make use of local search procedures for refining the
solutions that are generated during the search process. This can
be attributed to the fact that these nature-inspired methods are
good concerning the exploration of the search space and the iden-
tification of areas with high quality solutions. At initialization they
generally try to capture a global picture of the search space. Then,
during the search process they successively focus the search on
more promising regions of the search space. However, they are
usually not so effective concerning the exploitation of the accumu-
lated search experience, that is, finding the best solutions in these
high quality areas. On the other side, the strength of local search
is the capability of quickly finding better solutions in the vicinity
of given starting solutions. In summary, population-based methods
are good in identifying promising areas of the search space in which
local search methods can then quickly determine the best solutions.
This is why this type of hybridization is usually very successful.
Evolutionary algorithms making use of local search methods are
sometimes labelled as memetic algorithms [29,30].

In contrast to the standard way of hybridization that was men-
tioned above, the two examples that are presented in more detail in
the following represent rather unconventional ways of hybridiza-
tion. First, population-based iterated local search is outlined. The
second example is devoted to multilevel techniques.

2.1. Example 1: population-based iterated local search

In contrast to the use of local search methods within population-
based methods, recent years have witnessed the appearance of
some algorithms that result from the enhancement of metaheuris-
tics based on local search with concepts from population-based
approaches. An example is population-based iterated local search
[31] where iterated local search is extended from working on a
single solution to working on a population which is managed in
the style of evolution strategies. The resulting algorithm, which we
will shortly outline in the following, is very competitive for the
quadratic assignment problem (QAP).

Iterated local search (ILS) [32,33] is a metaheuristic based on
a simple idea. Instead of repeatedly applying local search to ran-
domly generated starting solutions, an ILS algorithm produces the
starting solution for the next iteration by perturbing an incumbent
solution. This is done in the expectation that the perturbation
mechanism provides a solution located in the basin of attraction
of a local minimum that is better than the incumbent solution, but
close in distance. The pseudo-code of ILS is shown in Algorithm 1.
It works as follows. First, an initial solution is generated in function
GeneratelnitialSolution(). This solution is subsequently improved
by the application of local search in function LocalSearch(s). The
construction of initial solutions should be fast (computationally
not expensive), and - if possible - initial solutions should be a
good starting point for local search. At each iteration, the incum-
bent solution § is perturbed in function Perturbation(s, history),
resulting in a perturbed solution s'. The perturbation is usually
non-deterministic in order to avoid cycling. The importance of the
perturbation mechanismis obvious: On the one side, a perturbation
that is not strong enough might not enable the algorithm to escape
from the basin of attraction of the current solution. On the other
side, a perturbation that is too strong would make the algorithm
similar to a random restart local search. After the application of
local search to the perturbed solution, the resulting solution §' may
either be accepted as new current solution, or not. This is decided
in function ApplyAcceptanceCriterion (3, §, history). Two extreme
examples are (1) accepting the new local minimum only in case
of an improvement and (2) always accepting the new solution. In
between, there are several possibilities. For example, an acceptance
criterion that is similar to the one of simulated annealing can be
adopted.

Algorithm 1 Iterated Local Search

s < GeneratelnitialSolution()
§ < LocalSearch(s)
while termination conditions not met do
s’ < Perturbation(3, history)
§' < LocalSearch(s’)
§ < ApplyAcceptanceCriterion (3, §, history)
end while

Nouhkhwne

The extension to population-based ILS is quite simple. Instead
of working on a single incumbent solution, population-based ILS
maintains at all times a population P of n solutions. The usual ILS-
steps, that is, perturbation and the subsequent application of local
search are, at each iteration, applied to each solution s € P. Adding
all solutions generated in this way to P results in an augmented
population P’ of 2n solutions. The population for the next generation
is then obtained by removing the worst n solutions from P'. The
pseudo-code of this procedure is shown in Algorithm 2.

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4137

Algorithm 2 Population-Based Iterated Local Search

P < GeneratelnitialPopulation(rn)
Apply LocalSearch() to all se P
while termination conditions not met do

P <P

forallseP do

s’ < Perturbation(s,history)

§" < LocalSearch(s’)

P <~ P U8}
: end for
0: P < Best n solutions from P’
1: end while

- = O 00NOU N WN =

When to use this technique? As a simple extension of ILS,
population-based ILS can be applied to any problem for which a
neighborhood structure for local search can be designed. We expect
population-based ILS to improve over pure ILS especially in those
cases in which high-quality local optima are scattered all over the
search space. This is the case for the QAP, as opposed to other
problems with a high fitness-distance correlation.

2.2. Example 2: multilevel techniques

Multilevel techniques [34,35] are heuristic frameworks that
were introduced in particular for dealing with large-scale prob-
lem instances. Their origins are so-called multigrid methods [36].
Walshaw et al. were among the first ones to apply multilevel tech-
niques to combinatorial optimization problems. Among the earliest
applications were the ones to mesh partitioning [37], the traveling
salesman problem [38], and graph coloring [34].

The working of multilevel techniques is based on the following
simple idea. Taking as input an original problem instance, smaller
and smaller instances are generated by successive coarsening until
some stopping criteria are met. This process provides a hierarchy
of problem instances. Hereby, the problem instance corresponding
to a certain level is always smaller than (or of equal size as) the
problem instance corresponding to the next higher level. After this
coarsening process, an optimization technique (such as, for exam-
ple, a metaheuristic) is used to generate a solution to the smallest
problem instance. This solution is successively transformed into a
solution to the problem instance corresponding to the next level
until a solution to the original problem instance is obtained. Note
that these solutions may be subject to a refinement process at each
level. Any improvement technique may be used for this refinement
process, but most often a metaheuristic is applied. The working
of multilevel techniques is graphically illustrated in Fig. 1. More
sophisticated multilevel approaches may even use the best solution
produced by the above-mentioned method for guiding a successive
re-coarsening, which is again followed by the refinement process.
Both phases are iterated to obtain even better solutions [35].

Refinement

coarsen

Fig. 1. The principle of a multilevel technique. The original problem instance is
labelled P. This problem instance is iteratively simplified until a stopping criterion
is satisfied at some level n corresponding to instance P". Then, a metaheuristic may
be applied for the generation of a solution s" to instance P", which is subsequently
expanded into a solution s ! to instance P"~! of level n— 1. The refinement of
solution s"~! may be done by a metaheuristic again. This process is stopped once a
solution to the original problem instance has been obtained.

When to use this technique? In general, the application of a mul-
tilevel framework is only recommended if an efficient and not
excessively complicated way of coarsening problem instances can
be found. This is the case, for example, when graph-based problems
are considered. In these cases, the coarsening of a problem instance
may be done by means of edge or node contractions. However, it
is not only important to be able to identify a way of coarsening a
problem instance, it is equally important that this way of coarsen-
ing a problem instance approximates the corresponding backbone.
Roughly, the backbone of an optimization problem consists of the
set of solution components that are present in high-quality solu-
tions. A recent survey over existing applications is given in [35].
Applications that are not covered by this survey include [39,40].

2.3. Literature overview

In addition to the two examples that have been outlined
above, the literature offers a multitude of different hybridiza-
tions between metaheuristics and other (meta-)heuristic methods.
Other examples of rather unusual hybrids — similar to population-
based iterated local search - are proposed in the paper by Lozano
and Garcia-Martinez [41], where the authors use an evolutionary
algorithm as a perturbation technique for iterated local search.
Moreover, Resende et al. [42] devise several versions of a hybrid
algorithm based on greedy randomized adaptive search procedures
(GRASP) and path relinking methodologies for the max-min diver-
sity problem. One example is evolutionary path relinking where the
pool of elite solutions is evolved in order to be both diverse and of
high quality.

Variable fixing strategies are to some extent related to multilevel
techniques. Hereby, variables of the original problem are fixed to
certain values (according to some criterion) and optimization is
performed over the resulting restricted search space. Examples of
effective variable fixing strategies are the core concepts for knap-
sack problems [43,44]. Another example where variable fixing is
essential is the variable neighborhood decomposition approach
proposed in [45]. Problem kernelization, which is a systematic
approach based on tools from the field of parameterized complex-
ity, is also related to multilevel strategies and variable fixing. The
basic idea of this approach is to reduce a given problem instance in
polynomial time to a so-called problem kernel such that an optimal
solution to the problem kernel can be transformed in polynomial
time to an optimal solution for the original problem instance. In
[46], Gilmour and Dras proposed an ant colony optimization algo-
rithm that makes use - in several different ways - of the above
mentioned problem kernels.

One of the main arguments in favor of metaheuristics has always
been their generality. In principle metaheuristics may be applied
to any combinatorial optimization problem. However, over the
years the focus of many metaheuristic applications has shifted
towards performance, at the cost of loosing generality. Research on
so-called hyper-heuristics [47] has started with the idea of devel-
oping general algorithms that can potentially be applied to many
related problems without much effort of adaptation. The aim is to
raise the level of generality at which optimization systems oper-
ate. Hyper-heuristics do not directly operate on the search space
of the problem under consideration. Instead, they act on a search
space defined by lower-level heuristics - or even metaheuristics
- for the tackled problem. Hyper-heuristics are broadly concerned
with selecting the right (meta-)heuristic at any situation.

Another heuristic framework for potentially improving meta-
heuristics is the so-called proximate optimality principle (POP),
which was introduced by Glover and Laguna in the context of tabu
search [48].Itis based on the intuition that good solutions are likely
to have parts in common and can therefore be found close to each
otherin the search space. Fleurent and Glover made use of this prin-

4138 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

ciple in [49] in the context of partial solutions generated by GRASP.
The idea was that bad decisions made during the construction pro-
cess may be undone by applying local search during (and not only
at the end of) the GRASP construction phase. They proposed a prac-
tical application of POP within GRASP by applying local search at
certain stages of the construction phase. Other examples can be
found in [50,51].

A different branch of hybridization is concerned with enhancing
metaheuristics with additional techniques for decreasing run-time,
improving on the results, or both. Montemanni and Smith [52]
introduced an approach based on tabu search for solving the fre-
quency assignment problem. Hereby, tabu search is enhanced by
heuristic manipulation, a principle which is based on adding con-
straints to a problem having the effect of reducing the search space.
This, in turn, may facilitate the solution of the problem under con-
sideration. Another example is the paper by Chaves et al. [53]
dealing with clustering search, which works roughly as follows: first,
ametaheuristicis used to create a set of initial solutions. These solu-
tions are then clustered. As final step, local search is used to find
possibly better solutions within the cluster areas.

Finally, it is worthwhile to mention some rather unusual
hybridizations between different metaheuristics. In [54], Chen et al.
propose the combination of genetic algorithms with extremal opti-
mization [55], which is inspired by self-organized critical models of
co-evolution abstracted from the fundamentals of ecosystems. The
search process of extremal optimization tries to eliminate those
solution components that can be associated to bad performance.
Another example concerns the work proposed in [56], where the
authors propose the combination of genetic algorithms and parti-
cle swarm optimization. The last example concerns an algorithm
for the arc routing problem proposed in [57], which is obtained
by enhancing tabu search with scatter search principles. However,
note that thisis just arepresentative sample of many different ways
of combining different metaheuristics.

3. Hybridizing metaheuristics with constraint
programming

Metaheuristics and constraint programming (CP) are two quite
different problem solving techniques. Each one is usually applied
with success on problem classes for which the other is not par-
ticularly effective. In CP, constrained optimization problems are
modelled by means of variables, domains! and constraints, which
can be mathematical (as for example in linear programming) or
symbolic. Constraints encapsulate well-defined parts of the prob-
lem into sub-problems. Each constraint is associated to a filtering
algorithm that deletes values from a variable domain which do
not contribute to feasible solutions. The solution process of CP is
characterized by an interleaving of a propagation phase in which
values are removed from domains by means of the filtering algo-
rithms, and a labelling phase in which an unassigned variable is
chosen and assigned a value in its domain. In case of failure (e.g.,
an empty domain), the search backtracks. When an optimization
problem is tackled, a bound constraint on the cost function is
posted every time a new improving solution is found. This way,
non-improving assignments are considered infeasible. Metaheuris-
tics usually explore a search space in which states are defined
by complete - possibly infeasible — assignments and are mostly
guided by local information on the objective function. Conversely,
the strength of CP lies in its capability of exploring a search space of
partial assignments and finding a solution that satisfies the problem
constraints. Also CP makes use of heuristic criteria, for example, for

1 We restrict the discussion to finite domains.

choosing the variable/value assignment to extend a partial solution.
Summarizing, metaheuristics have been proven effective in finding
good-quality solutions to optimization problems, while they are
usually not very powerful in tackling constraint satisfaction prob-
lems. On the other side, CP is extremely effective in solving decision
problems, while it performs quite poorly on optimization problems
with large feasible spaces and loose bounds on the objective func-
tion. These two methods have complementary strengths and it is
therefore quite natural to try to combine them in order to exploit
possible synergies.

In this section, we outline two among the most paradigmatic
examples of combinations of metaheuristics and constraint propa-
gation techniques.? These two examples are chosen on purpose as
they have a quite different nature and they show two of the main
perspectives from which the integration of metaheuristics and CP
can be conceived.

3.1. Example 1: CP-based large neighborhood search

CP-based large neighborhood search (LNS) denotes a family
of problem solving techniques in which local search uses CP for
exploring a, typically very large, neighborhood. LNS tries to com-
bine the advantage of a large neighborhood, that usually enhances
the explorative capabilities of local search, with an exhaustive
CP exploration that is faster than enumeration, especially when
most problem variables are already assigned. LNS was first pro-
posed by Shaw in [58] and similar ideas were presented in
[59-61].

The core principle of LNS consists in viewing the exploration of
a neighborhood as the solution of a sub-problem. As an example,
let us suppose we want to solve a vehicle routing problem with n;
trucks, each starting and ending its tour in a depot. The trucks have
to visit n. customers within a given time window at a minimum
cost. Given the current solution, one may fix all routes but one and
optimally solve by CP on the free variables a traveling salesman
problem with time windows and possibly further side-constraints.
The process of fixing part of the current solution (i.e., defining a
partial assignment) and finding its optimal completion is guided
by a local search that employs CP to find the best candidate in the
neighborhood.

Algorithm 3 LNS high level algorithm

1: Input: Problem P(X, D, C, f) defined by variables X = {x1, ..., Xn},
domains D = {Dy, ..., Dy}, constraints C = {cy, ..., Cm}, Objective
function f to be minimized

2: Output: Best solution found

3: s < InitialSolution(); let s = {(x1 = v1), ..., (Xn = Vy)}

4: termination condition not met do

5: K < Select(n,k) Define neighborhood Nj, by selecting the indices
of k variables}

6: Let Pk be the problem in which variables x; with i e K are free
and x; = v; if iK

7: s’ « SolveCP(Pc) {Exhaustively explore N; by CP and find
solution s’ locally optimal w.r.t. Ny}

8: if f(s') < f(s) then

9: s« 5

10: end if

11: end while

In general, let us assume that the problem to be solved is mod-
elled with a set X of n variables x1, .. ., X, which can assume values
in discrete and finite domains D1, ..., Dn. The feasible set of solu-
tions S is defined by those assignments satisfying the constraints
C1, ..., Cm. The goal is to find a (nearly) optimal solution w.r.t. an
objective function fdefined over S. Suppose that the goal is to min-

2 Examples concerning the combination of metaheuristics and general tree-
search will be discussed in Section 4.

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4139

imize f. A complete assignment to the variables in X is denoted by
s={(xy =v1),...,(xn =)}, where x; = v; means that variable x;
is assigned value v; € D;. A partial assignment is simply a subset of
s. The high level LNS search scheme (see Algorithm 3) starts by
generating an initial solution (line 3), that is, a feasible complete
assignment s. Then, the main local search cycle is repeated until a
termination condition is satisfied. For simplicity, but without loos-
ing generality, let us suppose to apply a first improvement local
search - whereas in general, any local search may be used. A subset
of k variables is chosen so as to define the neighborhood Ny, (line 5).
Let us denote by K the set of indices corresponding to the selected
variables. The corresponding sub-problem Py is then solved by CP
(line 7). The solution s’ returned is the optimal completion of the
partial assignment s = {(x; = v;)lie {1, ..., n} — K}. This step corre-
sponds to the neighborhood exploration. Then, the current solution
s is compared to the new one s’ and it is possibly replaced by it
(line 8).

The crucial part of the algorithm is the choice of the k vari-
ables which will define the sub-problem to be solved. This choice
is usually made on the basis of both heuristic and stochastic
criteria. In general, the sub-problem/neighborhood size should
be large enough to diversify the search, but the complexity of
solving it should be rather low because this operation is per-
formed in each iteration of the algorithm. It has also to be noted
that, when CP is applied to extend a partial assignment into a
complete one, the propagation of constraints is usually effec-
tive and deep, due to the variables that are already instantiated.
Indeed, this is one of the main reasons for the effectiveness of
LNS.

The high level algorithm we have illustrated shows the usage
of a simple first improvement local search, while, in general, more
elaborated local search strategies can be used. For example, tabu
search can be effectively applied in this context, especially because
the tabu conditions can be posted as constraints.

Since its proposal, LNS has been further improved in [62], in
which a more efficient mechanism for combining local search
and CP has been proposed. Moreover, in [63] LNS is enhanced by
a method for automatically generating neighborhoods by means
of constraint propagation. LNS also shares some similarities with
hybrid approaches in which mathematical programming tools or
dynamic programming are employed for exploring the neighbor-
hood (see, for example [64,65] and Sections 4.2 and 6.1).

When to use this technique? The choice of CP-based LNS as a
method for tackling a given problem should primarily be condi-
tioned to the efficiency of solving the sub-problem corresponding
to the neighborhood exploration. Therefore, the first point to con-
sider is whether it is possible to define the neighborhood structure
in such a way that the resulting sub-problem can be efficiently
solved to optimality by CP. This is often the case, for example,
when neighborhoods are defined by means of additional con-
straints which fix some parts of a complete assignment or when
the problem has a large number of side constraints. Evidence
for the possible advantage of using a large neighborhood to be
explored by CP - as opposed to a (small) neighborhood searched
by enumeration - can be supported by the observation that, for
the problem at hand, a local search exploring the neighborhood
by enumeration often stagnates in confined areas of the search
space.

3.2. Example 2: ant colony optimization and constraint
programming

Ant colony optimization (ACO) and CP are constructive tech-
niques with complementary strengths: ACO is characterized by a
(reinforcement) learning capability, while CPis efficient in handling

constraint.3 The combination of ACO and CP has recently received
more interest especially because of the availability of tools for inte-
grating CP and local search. Moreover, a general framework for
combining ACO and CP, along with new insights on the possible
ways for integrating these two methods, is the subject of a recent
book by Solnon [66].

ACO is a population-based metaheuristic inspired by the ant
foraging behavior and further formalized as a model-based search
metaheuristic [67,68]. In ACO, solutions are iteratively built in par-
allel by a probabilistic constructive procedure. The parameters of
the probabilistic model upon which the procedure is based are
dynamically adjusted by using a learning mechanism, very similar
in spirit to reinforcement learning. In ACO terminology, it is com-
mon to denote the construction of one solution by the action of an
ant which iteratively adds a solution component to the current par-
tial solution. The choice of the component is stochastic and biased
towards components with a higher value of pheromone, which
accounts for the attractiveness of a solution component. Once the
solution is built, its components are rewarded by adding a quan-
tity of pheromone positively correlated with solution quality. This
operation increases the probability that a component belonging to
a high-quality solution is chosen in the successive iterations.

In the following, we succinctly illustrate the core idea of the
hybridization of ACO and CP proposed by Meyer in [69], in which
this combination is described along with experimental results for
a machine scheduling problem with sequence-dependent setup
times. Successively, we outline the other main approaches for
achieving such integration.

Algorithm 4 CP-with-ACO
Input: Variables x4, ..., X, domains Dy, ..., Dy, constraints ¢y, ..., Cm
Output: A feasible assignment, optimal w.r.t. a given objective function or nil
if no feasible solution exists
Setup initial domains for variables xq, ..., x,
Post initial constraints
while search not completed do
for each ant do
Propagate_And_Label(x1,. . .,xn)
end for
Update_Probabilistic_Model()
if new best solution found then
Post upper bound constraint
end if
end while
Let us consider Algorithm 4, which is a slight variation of
the original one from [69], in which we show a general scheme
of a solver based on CP and ACO. The algorithm is a variant
of a classical CP search. The main differences are the procedure
Propagate_And_Label(xy,. . .,xp) that makes use of the probabilistic
construction mechanism of ACO for variable and value ordering
and the procedure Update_Probabilistic_ Model() that updates the
pheromone values. The combination of ACO and CP can be achieved
by conceiving ACO as the main solution construction procedure and
viewing CP as a tool employed by the ants while constructing a
solution. In fact, the usual approach for constraint handling in ACO
- and metaheuristics in general - is to relax (a subset of) the prob-
lem constraints and penalize complete solutions that violate such
constraints. This procedure might not be very effective, especially
in case of tightly constrained optimization problems. Therefore, if
ants use CP for finding a feasible solution, search is concentrated
on finding a good-quality solution among the feasible ones and a
large amount of computational effort can be saved. It is crucial at
this point to observe that, in this algorithmic scheme, the proba-
bilistic/greedy decision mechanism of ACO comes into play in the

3 It has to be noted that the “learning capability” of ACO is conceptually different
from what is called the “no-good learning” typical of CP, which consists in adding
to the initial instance constraints representing sets of infeasible assignments.

4140 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

context of variable and value selection. In other words, while CP
provides filtering, ACO is in charge of performing labelling.

Besides the application to constrained optimization problems, a
hybrid method combining ACO and CP can also be applied to con-
straint satisfaction problems (CSPs). In this case, the goal is to find
any complete assignment satisfying all the constraints. As proposed
by Prestwich in [70], one of the possible ways of achieving this inte-
gration consists in using a metaheuristic algorithm for searching
the space of feasible (partial) assignments, trying to maximize the
number of assigned variables. A solution to the problem is found
when all the variables are assigned. This idea has been used to com-
bine ACO and CP in a hybrid algorithm successfully applied to the
car sequencing problem in [71].

Finally, another very promising way of integrating ACO and CP
has been presented in [72]. In this work, the problem is solved by a
two phase algorithm: in the first phase, a typical ACO is performed
and the final pheromone matrix is saved. In the second phase, the CP
solver performs a complete search and uses the pheromone matrix
as a heuristic information for value selection. A similar idea, which
makes use of initial samplings, has been proposed in [73].

When to use this technique? The problems for which the com-
bination of ACO and CP is expected to be effective are those
constrained optimization problems for which two conditions hold:
(i) finding a feasible solution by local search methods is very hard
and (ii) the space of feasible solutions is large. On one side, when
the first condition holds, CP is a promising candidate method for
tackling the feasibility part of the problem. On the other side, when
the feasible space is large, CP alone is not efficient in finding a
good solution and a heuristic method can considerably enhance
the performance of the overall technique. In case the two condi-
tions mentioned above are not fulfilled, the combination of ACO
and CP might not be particularly effective.

3.3. Literature overview

The literature on hybrid methods which combine metaheuris-
tics and CP is quite rich and publications range from theory of
algorithms to applications. Focacci et al. [74] illustrate the main
possibilities for integrating metaheuristics and CP. According to
their classification, the combination of metaheuristics and CP can
be mainly achieved by interleaving the two methods, by using one
as a subordinate technique to the other, or by including some algo-
rithmic component from one of the two methods into the other.

The first approach can be seen as an instance of cooperative
search, in which metaheuristics are applied before CP, providing a
valuable input, or vice versa. Besides the already mentioned work
by Solnon [72], a prominent example of integration in which meta-
heuristics are runin a first search phase in order to provide heuristic
guidance for CP is provided by Solution-Guided Multi-Point Con-
structive Search [75]. The algorithm starts by building a set of elite
solutions which are then used to guide CP solution construction;
this set of solutions is also updated during search and it can be ini-
tially derived by collecting the best solutions returned by several
runs of the best performing metaheuristic algorithms for the prob-
lem at hand. The combination of the solution-guided value heuristic
and CP search, with a bound on the objective function, provides
an effective and robust solver, as indeed proved by recent results
on the job shop scheduling problem [76]. Recently, also evolution-
ary computation and neural networks have been combined with
CP in a hybrid stochastic constraint programming framework [77],
in which the goal is to find a policy tree that specifies the deci-
sion variable assignments for any (or just a sample of the) possible
scenarios. The proposed approach defines the policy by means of a
parameterized model, implemented as a neural network. The input
of the network is the current partial policy tree and the output is
the suggested value for the variable to assign. The neural network is

trained by a genetic algorithm and it is used as a heuristic guidance
for CP.

The second hybridization approach combines the advantages of
a fast search space exploration by means of a metaheuristic with
the efficient neighborhood exploration performed by a systematic
method. A prominent example of such a kind of integration are
large neighborhood search and related approaches and CP-based
local branching [78]. Further examples can be found in [60,61,79].

The third approach consists in designing hybrid methods by
composing algorithmic components both from metaheuristics and
CP. A prominent example of this approach is the class of non-
systematic backtrack searches, which preserve the search space
exploration based on a systematic search (such as tree search),
but sacrifice the exhaustive nature of the search. The hybridiza-
tion is usually achieved by integrating concepts and mechanisms
developed for metaheuristics (e.g., probabilistic choices, aspiration
criteria, heuristic construction) into tree search methods. For exam-
ple, instead of a chronological backtracking, a back-jumping based
on search history or information retrieved from local search sam-
ples can be performed [80-83]. Another approach, proposed by
Dell’Amico and Lodi in [84], is based on the integration of tabu
search machinery into CP search. Other examples of this kind of
integration can be found in [85-87].

The implementation of methods integrating metaheuristics and
CP are currently supported by software tools which enable the
designer to combine both CP and (meta-)heuristic search strategies
in the same framework. Among the most known tools we mention
the IBM ILOG Solver and Comet®.

4. Hybridizing metaheuristics with tree search techniques

The hybridization of metaheuristics with tree search techniques
is probably one of the most popular lines of combining different
algorithms for optimization. This is because several metaheuris-
tics as well as some of the most prominent complete algorithms
are members of the class of tree search techniques. In general, opti-
mization techniques may be classified by their way of exploring
the search space of the problem at hand. Tree search techniques
consider the search space of an optimization problem in form of a
tree. Such a search tree is (sometimes only implicitly) defined by a
mechanism for the extension of partial solutions. Each path from
the root node to one of the leafs corresponds to the construction of
a candidate solution. Inner nodes of the tree correspond to partial
solutions. The move from an internal node to one of its children
is an extension of the corresponding partial solution, also called a
solution construction step.

As already mentioned above, the class of tree search tech-
niques contains approximate algorithms such as (meta-)heuristics,
but also many of the complete techniques. Specific examples of
approximate algorithms are greedy heuristics, extensions of greedy
heuristics such as roll-out methods [88], and construction-based
metaheuristics such as ACO [67] and GRASP [89]. The two men-
tioned metaheuristics are iterative algorithms that make use of the
repeated probabilistic construction of solutions. The main differ-
ence is that ACO algorithms are based on a learning component,
while GRASP algorithms are not. A prominent example of a com-
plete algorithm from the class of tree search techniques is branch
& bound, which can also be applied in several heuristic variants
such as, for example, in the form of beam search [90]. While branch
& bound (implicitly) considers all nodes of a certain level of the
search tree, beam search is restricted to a predefined number of
nodes.

4 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer.
5 http://dynadec.com/.

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://dynadec.com/

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4141

T
o&m& & b

Fig. 2. Search tree example. Assume that the solution highlighted by light gray nodes is the unique optimal solution. Moreover, black nodes indicate that bounding information

excludes them from the search process.

Two representative examples of hybridizing metaheuristics
with tree search techniques are presented in the following. In the
first example, which is about Beam-ACO, branch & bound concepts
are used make the solution construction process of ant colony
optimization more effective. The second example is about large
neighborhood search in the context of mathematical programming.
This type of algorithm exploits the fact that sub-problems of the
original problem instance can often be efficiently solved by com-
plete techniques such as MIP solvers.

4.1. Example 1: Beam-ACO

The construction of solutions based on greedy information has
an important disadvantage: while being correct for many (if not
most) decisions, the greedy information may sometimes mislead
the solution construction process. Metaheuristics such as ACO and
GRASP, which are based on the construction of solutions, partially
avoid this disadvantage by extending partial solutions according to
probabilistic decisions. Moreover, the learning component of ACO -
over time — may undo misleading greedy information. However, as
both metaheuristics are still biased by greedy information, the dan-
ger of being misled persists, even though to a less extent. Another
disadvantage of construction-based metaheuristics - this time in
comparison to complete techniques - is the fact that mechanisms
for reducing the search space are generally not employed. With
both disadvantages in mind, a recent line of research promotes the
incorporation of features from branch & bound derivatives such as
beam search into construction-based metaheuristics. Examples are
probabilistic beam search [91], incomplete and non-deterministic
tree search (ANTS) procedures [92-94], and Beam-ACO algorithms
[95-97]. Exemplary, the working of Beam-ACO is outlined in more
detail in the following.

As already mentioned in Section 3.2, ACO algorithms have the
following basic way of working. A certain number of solutions is
constructed independently from each other at each iteration. This
is done probabilistically by means of a so-called pheromone model,
which is a set of numerical values that are generally associated
to appropriately defined solution components. After solution con-
struction, some of the generated solutions are used for updating the
values of the pheromone model, that is, the pheromone values. The
aim of this procedure is to shift the probability distribution defined
by the pheromone values to high-quality areas of the search space.
In contrast to ACO, the central idea of beam search is to allow the
extension of partial solutions in parallel, in potentially more than
one way. At each step, the algorithm chooses maximally |ukpy, |
extensions of the partial solutions stored in a set B, called the beam.
Parameter ky,,, known as the beam width, limits the size of B, and
i >1 is another parameter of the algorithm. The choice of feasible
extensions is performed in a deterministic way using a greedy func-
tion assigning a weight to each feasible extension. At the end of each
step, the algorithm generates a new beam B by selecting maximally
kyyw partial solutions from the set of chosen feasible extensions. For
doing that, beam search algorithms make use of bounding infor-

mation. Only the maximally k;,, best extensions — with respect to
the available bounding information - are included in the new set B.
At termination of the algorithm, the best found complete solution
is returned.

The main idea of Beam-ACO is the non-independent and paral-
lel probabilistic construction of several solutions at each iteration,
as done by beam search. However, in contrast to beam search, the
choice of feasible extensions is done probabilistically in the way
of ACO algorithms. This algorithm has the advantage of using two
complementary types of information about the problem at hand:
greedy information as well as bounding information. The poten-
tial benefits of using bounding information in addition to greedy
information can be easily explained by means of a simple example:
Let us consider the search tree shown in Fig. 2. The unique opti-
mal solution is depicted in light gray. For simplicity let us assume
that all extensions have the same greedy value. Moreover, let us
assume that the available bounding information excludes the black
nodes from being further examined. Based on the greedy values we
may now assign the probability of 0.5 to all extensions of partial
solutions. Based on these probabilities we now consider a proba-
bilistic solution construction process. On the one side, an algorithm
not considering bounding information has, for each solution con-
struction, a probability of 0.0625 to generate the unique optimal
solution. On the other side, a (probabilistic) beam search algorithm
with ki, > 2 will solve this problem in only one run. A recent arti-
cle [98] gives theoretical evidence of the advantage of algorithms
using the non-independent and parallel probabilistic constructions
of solutions over algorithms that only employ the repeated inde-
pendent probabilistic construction of solutions.

When to use this technique? Several pre-conditions must be sat-
isfied for a successful application of Beam-ACO. First, the problem
at hand must be suitable for the application of ACO. A good indi-
cation for this is the existence of successful greedy algorithms.
Second, it must be possible to identify bounding information that is
computionally inexpensive. This is because Beam-ACO algorithms
employ a probabilistic beam search at each iteration, which means
that bounding information must be computed many times. Finally,
the bounding information should not be misleading in the sense
that the bound should correctly identify the best partial solution
most of the times, when comparing the bounds of two partial solu-
tions of equal size. On the other hand, it is not necessarily required
that the bound is tight.

4.2. Example 2: large neighborhood search based on
mathematical programming

For many combinatorial optimization problems the field of
mathematical programming and (mixed) integer linear pro-
gramming (MIP) in particular provides powerful tools; for
comprehensive introductions into this area see e.g., [99,100]. MIP-
solvers are in general based on a tree search framework but further
include the solution of linear programming relaxations of a given
MIP model for the problem at hand (besides primal heuristics) in

4142 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

order to obtain lower and upper bounds. To tighten these bounds,
various kinds of additional inequalities are typically dynamically
identified and added as cutting planes to the MIP-model, yielding a
branch & cut algorithm. Frequently, such MIP approaches are highly
effective for small to medium sized instances of hard problems;
however, they often do not scale well enough to large instances
relevant in practice.

Similarly to CP, see Section 3.1, MIP might therefore be very
useful for searching large neighborhoods within a metaheuristic
framework. Especially the availability of effective general purpose
MIP-solvers such as IBM ILOG CPLEX,® GUROBI,” XPRESS,® or the
freely available SCIP? and their relatively easy applicability makes
this approach particularly interesting in practice, providing the
problem at hand can be expressed by a MIP model.

The large neighborhoods that are to be solved by a MIP-solver
can be defined in different ways. In the simplest case, an appro-
priate portion of the decision variables is fixed to the values they
have in an incumbent solution, and only the remaining (“free”)
variables are optimized by the MIP-solver. If the MIP-solver finds
an improved solution, it becomes the new incumbent, a new large
neighborhood is defined around it, and the process is iterated. Obvi-
ously, the selection of the variables that remain fixed and that
are subject to optimization, respectively, plays a crucial role: The
number of free variables directly implies the size of the neighbor-
hood. Too restricted neighborhoods - that is, subproblems - are
unlikely to yield improved solutions, while too large neighborhoods
might result in excessive running times for solving the subproblem
by the MIP-solver. Therefore, a strategy for dynamically adapt-
ing the number of free variables is sometimes used. Furthermore,
the variables to be optimized might be selected either purely at
random or in a more sophisticated, guided way by considering
the variables’ potential impact on the objective function and their
relatedness.

For example, Mitrovi¢-Mini¢ and Punnen [101] describe such
an approach for solving general mixed integer programming prob-
lems, called variable intensity local search, and tested it specifically
on the generalized assignment problem and its multi-resource
variant.

A successful and more problem-specific, practical example for
the above definition of large neighborhoods has been described
by Prandtstetter and Raidl for the car sequencing problem [102].
Here, the goal is to find a cost-effective arrangement of com-
missioned cars along a production line, that is, a permutation.
Each car requires particular components to be installed by dif-
ferent working bays along the assembly line, and the objective
is to smooth the workload at the working bays. More formally,
no more than [. cars are allowed to require component c in any
subsequence of m. consecutive cars, and violations of this con-
straint are penalized by additional costs in the objective function.
Prandtstetter and Raidl describe a generalized variable neighbor-
hood search that makes use of eight different types of neighborhood
structures. Besides the more straight-forward simple move and
swap neighborhoods, more powerful xk-exchange neighborhoods
are considered: A set of « cars is selected either uniformly at ran-
dom or by a greedy strategy that prefers cars involved in conflicts,
thus, inducing higher costs. These cars are then released from their
current positions and reassigned in an optimal way by solving a
corresponding MIP. The number « of cars to be reassigned is var-
ied within the variable neighborhood search, starting with a small
value and thus, small neighborhoods, and increasing it up to 65

6 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer.
7 http://www.gurobi.com/.

8 http://www.aimms.com/features/solvers/xpress.

9 http://scip.zib.de/.

when no improved solution can be found. To avoid too long run-
ning times for larger «, the MIP solver is aborted when a certain time
limit is exceeded and the so far best solution (if available) is con-
sidered. Empirical investigations have shown that the utilization of
the MIP-neighborhood substantially improves the overall solution
quality.

An alternative way for defining large neighborhoods is to reduce
the whole search space by including additional constraints. Among
the more generally applicable ones are local branching constraints
[103], which in the basic version are suited for MIPs with binary
variables (x1, ..., Xp) €{0, 1}™. For a current incumbent solution x =
(x1, ..., Xn) this neighborhood is defined by

ARR=Y (-x)+ > x<k (1)

jes jell,..nn\S

where S represents the index set of the variables that are set to
one inX ie,S={=1,..., n|x; = 1}. For discrete values A(x,X)
resembles the Hamming distance, and thus, the neighborhood
induced by the local branching constraint corresponds to the clas-
sical k-opt neighborhood. Parameter k controls the size of the
neighborhood and its choice is critical. Frameworks that dynam-
ically adapt k are therefore common, e.g., by utilizing variable
neighborhood search [104]. Fischetti and Lodi [103] also showed
how the local branching constraints can be generalized to non-
binary integer variables. However, the major advantage of local
branching constraints - namely that no variables must be explicitly
selected for fixing - also comes with a downside: Local branch-
ing constraints are dense, i.e., they involve all binary variables, and
their inclusion increases the complexity of the MIP model in terms
of variables and constraints. In particular, including reverse local
branching constraints to exclude already searched neighborhoods
from consideration in further iterations has not turned out to be
fruitful [105].

In contrast to these relatively general local branching approach,
special problem-specific neighborhoods can sometimes be iden-
tified which are promising to be searched by MIP methods. For
example, Archetti et al. [106] consider the selective arc routing
problem with penalties, which is a generalization of the directed
rural postman problem in which a minimum cost cycle traversing
a subset of arcs at least once is sought; costs arise for unvisited
arcs. After performing tabu search, a large neighborhood is defined
based on the solutions visited by tabu search: First a minimal tour
containing a set of “good” arcs that are most likely contained in an
optimal solution, i.e., those arcs that appeared in most of the visited
solutions, is built. The large neighborhood, which is then searched
by means of a MIP-solver, consists of all possible extensions of this
minimal tour by further sequences of so-called “questionable” arcs.
Due to the relatively high running time of the MIP-solver, the large
neighborhood search is not iterated here, but only applied once as a
final refinement phase. Experimental results document the positive
impact of this approach.

A similar methodology has been proposed by De Franceschi
et al. [107] for the directed capacitated vehicle routing problem.
Further special MIP-based neighborhoods have, for example, been
described by Oncan et al. [108] for partitioning problems, Ropke
and Pisinger [109] for pickup and delivery problems with time
windows, and Pirkwieser and Raidl [110] for a Periodic Location-
Routing Problem.

When to use this technique? Large neighborhood search by means
of MIP solvers is nowadays a relatively frequent approach which is
promising in many cases. A particular advantage is the relative ease
of application, providing the problem to solve can be conveniently
expressed by a MIP model and a corresponding general purpose
solver is available. Also, when one first aims at solving the problem
exactly by means of a MIP solver and encounters too high running

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www.gurobi.com/
http://www.aimms.com/features/solvers/xpress
http://scip.zib.de/

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4143

times for practical instances, MIP-based large neighborhood search
is an obvious possibility to consider.

4.3. Literature overview

The hybridization of metaheuristics with tree search techniques
is surely one of the most popular hybridization approaches. Instead
of trying to mention all the articles that have appeared in this field,
we focus on a representative selection of works, different to the
ones mentioned already above, that is, different to Beam-ACO and
MIP-based large neighborhood search.

The work by Nagar et al. [111] for a two-machine flow-shop
scheduling problem was probably one of the first works on the
combination of branch & bound with an evolutionary algorithm.
The presented algorithm, which acts on permutations of all jobs,
may be seen as a multi-stage approach. In the first stage of the algo-
rithm, branch & bound is executed up to a fixed tree level k. The
calculated bounds are stored at each node of the branch & bound
tree. The second stage consists in the execution of the evolution-
ary algorithm. Hereby, each generated partial solution is mapped
to its corresponding tree node. If the bounds indicate that the par-
tial solution cannot be part of an optimal solution, guided mutation
operators are applied for changing the partial solution.

Meaningful restricted subproblems that are solved by tree
search methods for finding improved solutions do not necessar-
ily have to be defined based on a single incumbent solution only.
The concept of solution merging is based on the idea of deriving
hopefully better solutions from the attributes originating from two
or more input solutions. Applegate et al. [112,113] were among
the first to suggest tree search methods in the context of merg-
ing and applied it to the traveling salesman problem (TSP): A
set of promising solutions is derived by a series of runs of the
chained Lin-Kernighan iterated local search. The sets of edges of
all these solutions are merged and the TSP finally solved to opti-
mality on this resulting reduced graph. Solution merging further
is sometimes used as a replacement for naive crossover oper-
ators of evolutionary algorithms. Cotta and Troya [114] discuss
this aspect in the context of a more general framework for com-
bining branch & bound with evolutionary algorithms and show
the usefulness of identifying optimal offspring for different prob-
lems. Eremeev [115] studies the computational complexity of
producing a best possible offspring from two parents for binary
representations from a theoretical point of view. He concludes
that the optimal recombination problem is polynomially solv-
able for the maximum weight set packing problem, the minimum
weight partitioning problem, and linear Boolean programming
problems with at most two variables per inequality. On the other
hand, determining an optimal offspring is NP-hard for 0/1 inte-
ger programming with three or more variables per inequality,
the knapsack problem, set covering, the p-median problem, and
others.

So far, we have considered approaches where tree search is used
as a subordinate within a metaheuristic. However, the literature
also offers examples where metaheuristics are used for guiding
the search process of tree search. For mixed integer program-
ming, Rothberg[116] suggests a tight integration of an evolutionary
algorithmin a branch & cut based MIP solver. The evolutionary algo-
rithm is applied as branch & bound tree node heuristic in regular
intervals, and MIP-based optimal merging is done by first fixing all
variables that are common in a set of selected elite solutions. Muta-
tion selects a solution, fixes a randomly chosen subset of variables,
and calls the MIP-solver for determining optimal values for the
remaining problem. Experimental results indicate that this hybrid
can significantly improve the MIP-solver’s performance in finding
good solutions for very difficult MIPs, and this method therefore has
been integrated in the commercial MIP-solver CPLEX in version 10.

An example in which the spirit of local search is used to boost
the heuristic power of branch & bound is diving. Here, the strategy
for selecting the next tree node to be processed is modified in such
a way that the search is focused on the neighborhoods of promis-
ing incumbent solutions in order to quickly identify high-quality
solutions. Danna et al. [117] describe guided dives: The branch to
be processed next is chosen to be the one in which the branching
variable is allowed to take the value it has in an incumbent solu-
tion. Guided dives are repeatedly applied at regular intervals during
the whole optimization process. Again, this concept is included in
recent versions of CPLEX.

Further examples are the works by Gallardo et al. [118] and
Blum et al. [119], in which the control flows of beam search and a
memetic algorithm are intertwined, i.e., phases of beam search and
the memetic algorithm alternate. Beam search purges its queue of
open partial solutions by excluding those whose upper bounds are
worse than the value of the best solution found by the memetic
algorithm. On the other side, the memetic algorithm is guided by
injecting information about promising regions of the search space
identified by beam search into the population.

Apart from branch & bound, metaheuristics have also been
hybridized with backtracking techniques. In [120] the authors
describe various hybrid metaheuristics applied to problems rang-
ing from car sequencing and graph coloring to scheduling. One
example is the application of a tabu search algorithm to the job
shop scheduling problem where local search is combined with
complete enumeration as well as limited backtracking search.
Nested partitioning proposed by Shi and Olafsson [121] is another
example were breadth-first search combined with backtracking
is used to explore the search space under the guidance of a
metaheuristic. However, the search tree of nested partitioning cor-
responds to an explicit search space partitioning, rather than an
implicit one obtained by variable-value assignments. The obtained
sub-spaces are usually evaluated by a metaheuristic. In [122],
ACO is applied for this purpose, whereas in [123] local search is
used.

5. Hybridizing metaheuristics with problem relaxation

Enhancing metaheuristics with information gained from prob-
lem relaxation has turned into a quite popular hybridization
approach in recent years. Hereby, a relaxed version of a given prob-
lem is obtained by simplifying and/or removing constraints. When
removing constraints, they may either be dropped, or they may, for
example, be transformed to additional terms of the objective func-
tion. In case the relaxed problem can be efficiently solved, the hope
is that the structure of an optimal solution to the relaxed problem
together with its objective function value may facilitate somehow
the solution of the original problem. Problem relaxations are also
heavily used, for example, in complete techniques such as branch &
bound. This is because the optimal solution value of a relaxed prob-
lem can be regarded as a bound for the optimal solution value of the
original problem, and hence, it can be used for pruning the search
tree. An important type of relaxation in combinatorial optimization
concerns dropping the integrality constraints of the involved inte-
ger variables of a MIP model. The resulting relaxation, which is a
linear program (LP), can then be solved to optimality by efficient
methods such as the well-known simplex algorithm.

In the following we present two examples of hybrid metaheuris-
tics based on problem relaxations. In the first one a search algorithm
is guided by Lagrangian relaxation. The second example concerns
iterative relaxation based heuristics where LP relaxations and MIP
relaxations are used separately and in combination to solve 0-1
mixed integer programming problems.

4144 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

5.1. Example 1: hybrid metaheuristics based on Lagrangian
relaxation

In [124,125], Boschetti et al. identify simple metaheuristic
frameworks based on the guidance of problem relaxations such
as Benders decomposition, the Dantzig-Wolfe decomposition, and
Lagrangian relaxation. In fact, it turns out that such algorithms
have been used since quite a while in the Operations Research
community. However, most of these approaches have not been
developed from a metaheuristic perspective. Therefore, the authors
of [124,125] see a large potential for enhancing this type of algo-
rithm with algorithmic components from the metaheuristics field.
As an example, we outline a metaheuristic framework based on
Lagranging relaxation. For this purpose we start by shortly dis-
cussing the main ideas of Lagrangian relaxation. Consider the
following general mixed integer program P:

zp:=min c1X + 3y (2)
subject to:

Ax+By=>b (3)
Dy >d (4)
x>0 (5)
y>0 and integer (6)

Hereby, x is the vector of continuous variables, y is the vector
of integer variables, b and d are constant vectors and A, B, and D
are matrices. Moreover, zp is the optimal solution value of problem
P. A Lagrangian relaxation is obtained by moving some of the con-
straints — for example, constraints (2) - in the following way to the
objective function, resulting in a problem labelled as LR(}):

zig(A):=min c1x + ¢y + A(b — Ax — By) (7)
subject to:

Dy=>d (8)
x>0 9)
y>0 and integer (10)

Hereby, A is a given weight vector with weights greater or equal
to zero. These weights are also called the Lagrangian multipliers.
It is easy to show that z;g(1) <zp for all possible weight vectors.
Therefore LR(A) is, for each possible A, a relaxation of P. In order to
obtain the best relaxation possible, it is necessary to find the weight
vector A*> 0 such that z;g(A*) is maximal, that is:

Zir(A*) = max {z;r(A)|A = 0} (11)

A practical and efficient way of finding a good vector A of
Lagrangian multipliers is the so-called sub-gradient optimization
procedure (see, for example, [126]), which iteratively solves prob-
lems LR(X) and updates the Lagrangian multipliers in a systematic
but simple way. This procedure can also be used in the follow-
ing way for solving the original problem P. At each iteration, the
optimal solution (x*, y*) of the relaxation LR(1) may be used in
combination with A for the generation of feasible solutions to the
original problem P. This may be done by means of simple heuristics,
or alternatively by means of metaheuristic concepts. This way of
tackling a problem, which is sketched in Algorithm 5, was labelled
Lagrangian Metaheuristic in [124,125]. The authors of these works
also provide example implementations for combinatorial problems
such as the single source capacitated facility location problem. A

nicely working example of a Lagrangian metaheuristic applied to
the generalized assignment problem can be found in [127].

Algorthm 5 Lagrangian Metaheuristic

X <« InitialLagrangianMultipliers()
repeat
(x*, y*) < Solve(LR(1))
(x,y) < DeriveFeasibleSolution((x*, y*), 1)
A < Update(X)
until termination conditions are satisfied
output: the best feasible solution obtained for problem P

Nouhkhwn=

When to use this technique? The potential advantages of hybrid
metaheuristics of the type of the Lagrangian metaheuristic over
standard metaheuristics can be summarized as follows. First, due
to the fact that both lower and upper bounds are improved dur-
ing the search process, quality conditions may be derived for the
obtained solutions. In addition, whenever the lower and the upper
bounds coincide, optimality conditions are satisfied and the search
can safely be terminated. The availability of a constantly improv-
ing lower bound also allows the potential pruning of the search
space. Finally, a precondition for the use of this hybrid technique is
that function Solve(LR(A)) (see line 3 of Algorithm 5) is not too time
consuming.

5.2. Example 2: iterative relaxation based heuristics

The MIPLIB'® benchmark library, for example, contains a large
amount of 0-1 mixed integer programming problem instances that
originate in real-life applications ranging from railway line plan-
ning over protein folding to VLSI design. Wilbaut and Hanafi [128]
present several iterative relaxation based heuristics to solve 0-1
mixed integer programming problems. They combine LP as well as
MIP relaxations into a powerful set of heuristics. These are related to
the linear programming based algorithm (LPA) for solving 0-1 inte-
ger programs by Soyster et al. [129], that was further enhanced by
Hanafi and Wilbaut [130]. The main principle of LPA is to solve, in a
first step, the LP relaxation of the original problem. In a second step
the variables with integral values in the LP relaxation are fixed and
this reduced problem is solved to integer optimality. Finally a cut
is added to the problem excluding the already visited search space.
This process is repeated until the lower bound and the current best
feasible solution have a difference smaller than one.

Wilbaut and Hanafi then introduce three new heuristics based
on MIP relaxations, improving the upper bounds and introducing
intensification and diversification and thereby possibly improving
the lower bounds. The MIP relaxation is obtained by enforcing inte-
grality on a subset of the binary variables only. This leads to the
new iterative MIP relaxation algorithm (MIPA). In MIPA, first an
LP relaxation of the problem is solved yielding a solution x;p. Sec-
ondly, the MIP relaxation where integrality is enforced on those
binary variables with non-integral values in xp is solved, yielding
a solution xppr. Thirdly, as in the LPA algorithm, all variables with
integral values are fixed, forming a reduced problem that is solved
to integer optimality. Finally a cut is added to the problem exclud-
ing the already visited search space and all integrality constraints
are removed. In the next iteration integrality is enforced on those
binary variables with non-integral values in xyjpr of the previous
iteration. This process is repeated as in LPA. The main advantage of
this method is the solution diversification obtained by the fact that
the sets of variables on which integrality is enforced are disjoint
from one iteration to the next. In practice, however, the number of
binary variables in the MIP relaxation will be limited as will be the
number of iterations.

10 http://miplib.zib.de/.

http://miplib.zib.de/

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4145

Based on those ideas the authors then propose two new heuris-
tics, the iterative relaxation based heuristic (IRH) and the iterative
independent relaxation based heuristic (IIRH). In IRH, both the LP
relaxation as well as the MIP relaxation obtained by enforcing inte-
grality on those binary variables that have non-integral values in
the LP relaxation are solved at each iteration. The lower bounds
obtained by both relaxations are compared and the better one is
retained. Furthermore, as in the previous algorithms, the solutions
obtained by both relaxations are used to define two reduced prob-
lems that are solved yielding a feasible solution and thus an upper
bound. Cuts obtained by the solutions of both relaxations are then
added to the problem and the process is repeated until a stopping
criterion is reached. In IIRH the LP relaxation and the MIP relax-
ation are independent of each other. The LP and MIP relaxations
are working with separate problems to be solved, therefore keep-
ing the obtained cuts separated. Only the current best solution and
the lower bound are shared between this interleaved version of LPA
and MIPA.

LPA, IRH, and IIRH are evaluated on the multidimensional
knapsack problem (MKP) and on a benchmark set of binary MIP
problems. New improved solutions for some of the MKP bench-
marks as well as encouraging results on the binary MIP problems
demonstrate the potential of the algorithms.

The combined use of LP and MIP relaxations in a metaheuris-
tic context is a very promising direction and has already led to
many successful algorithmic approaches. In a theoretical article
[131] Glover proposes different ways of using cuts obtained from
relaxations in metaheuristic algorithms. Among others, the cuts
used by Wilbaut and Hanafi are further extended and strength-
ened in the article. Glover shows how such inequalities can be
used to embed target solutions and target objectives as well
as to obtain intensification and diversification in metaheuristic
search.

When to use this technique? The main advantage to be expected
from combining relaxations with metaheuristics is the global prob-
lem view that is often achieved by solving a problem relaxation.
This allows to lead metaheuristics and local search towards promis-
ing regions of the search space and possibly obtain higher quality
solutions requiring less run-time. Just like in the case of the first
example of this section, this hybrid technique should only be con-
sidered if solving the corresponding problem relaxation is not
computationally expensive.

5.2.1. Literature overview

Metaheuristics that are guided by problem relaxation can be
found quite frequently in the literature. In the following we present
representative examples. A more general overview on combina-
tions of metaheuristics with LP and ILP techniques is given in [13].

A straightforward way to make use of an optimal solution to the
LP relaxation of a problem at hand is to directly derive a heuristic
integer solution which is feasible for the original problem. Depend-
ing on the tackled problem, this can be achieved by simple rounding
or by more sophisticated repair strategies. For example, Raidl and
Feltl [132] present a hybrid genetic algorithm (GA) for the gener-
alized assignment problem. In their GA, the initial population is
obtained by a randomized rounding procedure for generating fea-
sible integer solutions from the LP relaxation. As these solutions are
ofteninfeasible, randomized repair and improvement operators are
applied as well.

Optimal solutions to LP relaxations may also be exploited for
guiding local search or for repairing infeasible candidate solutions.
In [133] the multi-dimensional knapsack problem, a popular test-
case for hybrid algorithms, is considered. The items are sorted
according to increasing LP-values of their corresponding variables.
Then, a greedy repair procedure removes the items in this order
from the knapsack until all constraints are fulfilled. Finally, a greedy

improvement procedure considers the items in reverse order and
includes them in the knapsack as long as no constraint is violated.
In contrast to the above mentioned approaches, Chu and Beasley
[134] present an evolutionary algorithm for the MKP that exploits
the dual variable values, coming as a by-product of solving LP
relaxations. On the basis of the dual variable values they calculate
pseudo-utility ratios for the variables. Interestingly, these pseudo-
utility ratios tend to give good indications of the likeliness of the
corresponding items to be included in an optimal solution.

A last example for the use of LP relaxations is the algorithm by
Vasquez and Hao [135,136], which was also applied to the MKP.
The basic idea consists in solving a series of LP relaxations which
are obtained by adding constraints with the aim of biasing solu-
tions towards a certain number of items. This is done in a first
phase. Afterwards, in a second phase, tabu search is used to search
around the optimal solutions to these relaxed problems. Hereby,
tabu search is enforced to search within a certain distance to the
non-integral solutions.

In contrast to the above-mentioned examples that use LP relax-
ations, the hybrid GA for the prize collecting Steiner tree problem
by Haouari and Siala [137] makes use of a Lagrangian relaxation.
More specifically, it is based on a Lagrangian decomposition of a
minimum spanning tree like ILP formulation of the problem. The
volume algorithm is used for solving the Lagrangian dual [138].
Afterwards, a GA is applied which exploits information provided
by the volume algorithm. The original graph is reduced by cutting
edges, meaningful initial solutions are generated, and the objective
function is modified by considering reduced costs.

A similar combination of Lagrangian decomposition with
genetic algorithms is described in Pirkwieser et al. [139] in the
context of the knapsack constrained maximum spanning tree prob-
lem. Moreover, a combination of a Lagrangian relaxation approach
and VND, which is based on similar ideas, has been developed by
Leitner and Raidl [140] for a real-world fiber optic network design
problem.

A different use of Lagrangian relaxation is proposed in Tamura
et al. [141], where a job-shop scheduling problem is tackled. Given
the MIP formulation of the problem, the domain of the variables is
splitinto sub-domains, which are then indexed. Moreover, the orig-
inal domains are replaced by the indices of the sub-domains. Then,
a GA is applied to this reduced problem version and the fitness of
the solutions is estimated by Lagrangian relaxation which gives an
indication on the quality of the search space region represented by
the corresponding solution. When the GA terminates, an exhaus-
tive search of the region identified as the most promising one is
carried out.

Reimann [142] introduces an ACO algorithm for the symmetric
TSP where an optimal solution to the minimum spanning tree (MST)
relaxation is used for biasing the search of the artificial ants towards
edges that form part of the minimum spanning tree. The proposed
algorithm is based on computational experience indicating that an
optimal solution to the symmetric TSP has about 70-80% of the
edges in common with an optimal MST solution.

6. Hybridizing metaheuristics with dynamic programming

Dynamic programming (DP) [143] is an algorithmic scheme for
optimization that solves a combinatorial problem as follows. First,
the given problem is divided into subproblems. Then a solution to
the given problem is obtained by combining the solutions to already
solved subproblems into solutions to larger subproblems until the
original problem is solved. A crucial point of DP is that the solutions
to already solved subproblems are stored. This has the advantage
that they do not have to be re-computed every time the solution
is required. Basically, an optimization problem must exhibit two
properties in order to be solved by DP:

4146 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

1. Optimal solutions to the problem must contain optimal solutions
to subproblems. In this case, a problem is said to show optimal
substructure.

2. The space of subproblems should be relatively small. Typically,
the total number of distinct subproblems is polynomial in the
input size.

The existing literature offers examples for the successful inte-
gration of DP with metaheuristics, both in the case of constructive
and local search techniques. In this section we illustrate two
representative examples of hybrid solvers obtained by integrat-
ing DP with metaheuristics: Iterated dynasearch and the corridor
method.

6.1. Example 1: iterated dynasearch

Iterated dynasearch is a hybrid metaheuristic that uses DP as
a neighborhood exploration strategy inside iterated local search
[4]. The rationale behind this integration is the same as for LNS, as
described in Sections 3.1 and 4.2. In some cases, DP can make it
possible to completely explore a neighborhood of exponential size
in polynomial time and space. In this paragraph, we will illustrate
the principles of iterated dynasearch with respect to its application
to the single-machine total weighted tardiness scheduling problem
(SMTWTSP) [144]. Further contributions to this work can be found
in the recent literature [145,146].

The SMTWTSP can be defined as the problem of finding the pro-
cessing order of n jobs on one machine such that the total tardiness
is minimized. More formally, for each of the n jobs, a processing
time p;, a positive weight w; and a due date d; are given. Jobs
are available at time zero and must be processed one at a time
without interruption. Once a job ordering is provided, for each
job a completion time C; can be computed, along with its tardi-
ness T; =max{C; — d;, 0}. Therefore, the function to be minimized is
ZLleTj'

For the moment, let us simply focus on the design of a suit-
able neighborhood structure for a best-improvement local search.
A natural neighborhood structure can be defined in terms of job
permutations. Any permutation of n objects can be obtained by the
repeated application of swaps. Each swap consists in exchanging
two objects. The resulting neighborhood is called the 2-exchange
neighborhood. In general, the k-exchange neighborhood, defined
by sequences of swaps involving k objects, has an O(n*) size. There-
fore, for efficiency concerns, usually only the cases of k{2, 3} are
considered.

The dynasearch swap neighborhood of a job sequence ¢ =(o(1),
...,0(n))is composed of all the permutations of o that can be gen-
erated by a series of independent swaps. Two swap moves {i, j} and
{k, I} are independent if max{i, j}< min{k, [} or min{i, j}> max{k, [}.
This neighborhood has size 2"-1 — 1. However, the independence
of moves makes it possible to define a recursive enumeration algo-
rithm based on DP such that the resulting exploration is polynomial
in time and space.

Let o, be the partial job sequence ordering with minimum total
weighted tardiness among the possible allowed orderings of the
sequence (o(1), ..., a(k)) and let F(o}) be the total weighted tar-
diness of oy. This partial sequence can be obtained from a partial
optimal sequence oj, 0 <i<k, by adding job o}. Two cases must be
considered:

1. i=k—1: job o}, is simply appended to o;.

2.i<k—1: job oy is first appended to o; and then immediately
swapped with job o(i+1); hence the final sequence is (o(1), ...,
o(i), o(k), ..., o(i+1)).

In both cases, the total tardiness F(o}) can easily be determined
by choosing the minimum of the tardiness values computed as a
sum of independent contributions. The best sequence o, can be
computed recursively by a DP algorithm that runs in O(n®) and
requires O(n) space.!!

Algorithm 6 Iterated dynasearch

s « GeneratelnitialSolution()
§ < Bestimprovement(s; dynasearch swap neighborhood)
while termination conditions not met do
s’ < Perturbation(s; sequence of random swaps)
§' < Bestlmprovement(s’; dynasearch swap neighborhood)
§ « ApplyAcceptanceCriterion(§', 3, history)
end while

Nouhkwne

A best-improvement local search based on the dynasearch
neighborhood has, on average, a better performance than a
best-improvement local search using the 2-exchange or the
3-exchange neighborhoods. In other words, the average total
tardiness of the local optimum returned in the case of the
dynasearch neighborhood is lower. Furthermore, this local search
can be taken as the inner local search component for an
iterated local search (ILS) algorithm [31], as illustrated in Algo-
rithm 6. The algorithm iteratively perturbs the current solution
s to provide an initial solution for a best improvement local
search.!? The local optimum found by the local search replaces
the current solution s depending on the given acceptance
criterion.

When to use this technique? The characteristics of iterated
dynasearch are very similar to those of LNS methods in general.
In this specific case, since the technique devoted to exploring the
neighborhood is DP, it is obvious that a precondition for the appli-
cability of this hybrid method is the availability of an efficient DP
approach for solving the sub-problem corresponding to neighbor-
hood exploration. In particular, this sub-problem must have an
optimal sub-structure, that is, an optimal solution is made of optimal
solutions to its sub-parts.

6.2. Example 2: corridor method based on dynamic programming

The so-called corridor method [147] is a hybrid metaheuris-
tic inspired by DP. It has its origins in attempts to deal with the
curse of dimensionality [148] in large-scale DP applications. Con-
ceptually, the idea is to optimize the objective function over a
corridor constructed around the state trajectory generated by the
incumbent feasible solution. The best solution found in this cor-
ridor is then chosen to be the new incumbent solution for the
next iteration. This process is repeated until the new incumbent
solution is identical to the old one. At this point the procedure
either stops, or a new incumbent solution is generated in some
way, and the search process is continued. The first algorithms of
that kind were devised in the context of reservoir control and
operation problems (see, for example, [149]). However, the cor-
ridor method is not restricted to the use of DP. In the case of
branch & bound, for example, corridors - that is, neighborhoods
- are constructed around the incumbent solutions themselves,
rather than around the DP state trajectories. This may be done by
adding exogenous constraints. Ideally, the neighborhoods should
be exponentially large and designed in such a way that the cho-
sen complete method can explore them in (pseudo-)polynomial
time. The pseudo-code of a general corridor method is shown in
Algorithm 7.

11" For brevity, we omit the details and point the interested reader to [144].
12 In general, any local search algorithm can be used.

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4147

Algorithm 7 Corridor Method

s < GeneratelnitialSolution()
while termination conditions not satisfied do
X < ConstructCorridor(s) {Note that X is a subspace of the search space}
s’ < ApplyCompleteOptimizationMethod(X)
if f(s') < f(s) then
S« ¢
else
s < GenerateNewSolution()
end if
0: end while
1: output: the best solution found

- =000 WN =

In a way, the corridor method is similar to large neighborhood
search (LNS) (see Sections 3.1 and 4.2). However, while - at least
the early — LNS approaches were developed with the aim of mak-
ing local search based metaheuristics more efficient, the corridor
method was designed with the aim of supporting complete tech-
niques such as dynamic programming in a heuristic way when
applied to large scale problems. In fact, the neighborhoods used in
local search based metaheuristic and in early LNS methods (see, for
example,[150]) are generally move-based. This refers to the fact that
the neighborhood around the incumbent solution is usually gener-
ated on a topological basis of moves, that is, relatively small changes
are applied to the incumbent solution. On the contrary, neighbor-
hoods used in the context of the corridor method are method-based,
which means that these neighborhoods are designed in order to ful-
fill the needs and the requirements of the complete optimization
technique used to explore the neighborhood.

When to use this technique? The corridor method should be con-
sidered as an option in cases in which efficient complete methods
are known for solving sub-problems of the original problem at
hand. If this is given, the algorithm designer is required to specify
a way in which these sub-problems can effectively be utilized for
neighborhood exploration. Although not yet widely in use, the cor-
ridor method has been successfully applied, for example, to a blocks
relocation problem [151], to a DNA sequencing problem [152], and
to a pre-marshalling problem [153].

6.3. Literature overview

Apart from the examples outlined above, a few other hybrids
involving DP have been proposed in the literature. In this section
we discuss a representative sample of them. In [154], for example,
Blum and Blesa present the use of a DP algorithm in two different
metaheuristics for the k-cardinality tree (KCT) problem. The general
idea of their approaches is not limited to the KCT problem and can,
potentially, be used for other subset problems. Basically, the idea
is to let the metaheuristic generate objects that are bigger than
solutions. Ideally, these objects contain an exponential number of
solutions to the problem under consideration. DP is then used to
efficiently find for each object the best solution that it contains.

Another example is the article by Hu and Raidl [155], where DP
is used in the context of an evolutionary algorithm for obtaining
the best solution that can be generated from an incomplete solu-
tion. The problem considered in this article is the generalized TSP in
which a clustered graph is given and a shortest tour visiting exactly
one node from each cluster is required. Hu and Raidl study a repre-
sentation where solutions are stored as a permutation of the given
clusters, representing the order in which the clusters are to be vis-
ited. ADP procedure is then used to derive a corresponding optimal
selection of particular nodes from each cluster.

The algorithm proposed in [156] combines an evolutionary
technique and DP for the application to a dynamic facility lay-
out problem with unequal sizes of departments, which may even
change from one period to the next. A number of T evolutionary
algorithms is run in parallel, one for each of T periods. In each case,

a solution represents a layout for the respective period. However,
as a solution to the original problem is a sequence of T periods,
the evaluation of a layout of a single period must take into account
the best combination of layouts that can be generated given the
current populations. This is done by DP. A related approach is pre-
sented in [157] for a dynamic plant layout problem. Here, solutions
are sequences of layouts for different planning periods. Given sev-
eral solutions, DP is used as a crossover operator for finding the best
combination of the layouts for the different planning periods.

The following examples represent hybrid algorithms based on
problem decomposition. In [158], the authors propose a hybrid
method combining adaptive memory, sparse DP, and reduc-
tion techniques to reduce and explore the search space. First, a
bi-partition of the variables is generated, which leads to the identi-
fication of small core problems with at most 15 variables. These
small problems are solved using the forward phase of DP. The
space defined by the remaining variables is explored using tabu
search. Hereby, partial solutions are completed using the informa-
tion stored during the forward phase of DP. The authors indicate
that their approach can be seen as a global intensification mecha-
nism, since at each iteration, the move evaluations involve solving
a reduced problem implicitly.

The application of DP to subproblems is also proposed in
[159], where the authors introduce and tackle a multi-drug can-
cer chemotherapy model to simulate the possible response of the
tumor cells under drug administration. The objective is to mini-
mize the tumor size under a set of constraints. A so-called adaptive
elitist GA is combined with a local search technique called iter-
ative dynamic programming. This local search technique works by
subdividing the problem into subproblems, and optimizing the sub-
problems separately by DP.

Another application from the bioinformatics field concerns the
approach presented in [160], where the authors tackle the multi-
ple sequence alignment problem. One of the main approaches for
multiple sequence alignment uses DP to align sequences as follows.
First, two of the sequences are optimally aligned. Then, the outcome
is aligned with a third sequence. This process is repeated until all
sequences have been considered. In this article, Juang and Su pro-
pose the application of particle swarm optimization for improving
the alignment result at each step of the afore-mentioned iterative
process.

A recent heuristic version of DP labelled bounded dynamic pro-
gramming was proposed in [161] for the simple assembly line
balancing problem. Hereby, the number of states is heuristically
reduced at each level. In this way, the authors were able to find
optimal solutions in a reduced amount of computation time.

Finally, in [162] DP is purely used as a solution decoder in the
context of the rectangle packing problem with general spatial costs,
which consists in packing given rectangles without overlap in the
plane so that the maximum cost of the rectangles is minimized.

7. Discussion and conclusions

In this article we have provided a survey on the hybridization of
metaheuristics with other techniques for optimization. We divided
this growing research area into five different lines of hybridization.
For each of these lines, two representative examples have been
outlined in more detail. In addition, a literature review has been
provided for each research line. We hope that this work will serve
as a starting point for researchers aiming to develop hybrid meta-
heuristics. However, we would recommend that, before starting
to develop a hybrid metaheuristic, researchers carefully consider
whether a hybrid metaheuristic technique is the appropriate solver
method for the problem at hand. The following questions should be
answered:

4148 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

1. What is the optimization goal? Do I need a reasonably good
solution very quickly, or can I afford to spend implementation
and computation time in order to obtain very good solutions?
If man-power and computation time are critical, hybrid meta-
heuristics are, in general, not advisable. Only when very good
solutions are needed which cannot be obtained by any complete
method in a feasible time frame, the development of a hybrid
metaheuristic is advised.

2. Is there still room to improve over the results of existing
metaheuristic approaches and/or complete techniques? In
some cases existing pure metaheuristic strategies might work
already very well for the problem instances that are to be
tackled. Or, alternatively, the problem instances under consider-
ation could be solvable by complete techniques in a reasonable
amount of computation time. In these cases it does not make
sense to spend time and effort into the development of a hybrid
metaheuristic.

3. Which type of hybrid metaheuristic might work well for my
problem? Unfortunately, the current state of research does not
provide conclusive answers to this question. It is hard to find
general guidelines. The process of designing and implement-
ing effective hybrid metaheuristics can be rather complicated
and involves knowledge about a broad spectrum of algorith-
mic techniques, programming and data structures, as well as
algorithm engineering and statistics. For the development of
well-performing algorithms the authors can only recommend
(1)acareful literature search with the aim of identifying the most
successful optimization approaches for the problem at hand or
for similar problems, and (2) the study of different ways of com-
bining the most promising features of the identified approaches.

For the extraction of useful guidelines for the development of
hybrid metaheuristics it will be necessary to improve the research
methodology that is nowadays commonly used in the metaheuris-
tics field. Unfortunately, the used research methodology is often
characterized by a rather ad hoc approach that consists in mix-
ing different algorithmic components without any really serious
attempts to identify the contribution of different components to the
algorithms’ performance. In our opinion, the research community
should make an effort to move towards a sound scientific method-
ology consisting of theoretical models for describing properties
of hybrid metaheuristics and using an experimental methodol-
ogy as done in natural sciences. In fact, among the key points
of the engineering process of a hybrid metaheuristic are scien-
tific testing [163,164] and the statistical assessment of the results
[165].

Researchers interested in this topic can find useful contribu-
tions in the literature about Artificial Intelligence and Operations
Research addressing the issues of experimental methodology.
Besides the already cited papers and book, we mention the well
known article by Johnson [166] that can be seen as an introduction
to empirical testing from a theoretician’s point of view. Further-
more, discussions on the overall experimental methodology or just
one of its issues, such as parameter tuning or the statistical assess-
ment of results, can be found in [164,167-169].

We are convinced that research on hybrid metaheuristics is still
in its early days. In the years to come, most publications on meta-
heuristic applications will be concerned with hybrids. We hope that
this work contributes to give some more structure and guidance to
this interesting line of research.

Acknowledgements

This work was supported by Grant TIN2007-66523 (FORMAL-
ISM) of the Spanish government, and by the Austrian Science Fund

(FWF) under contract number P20342-N13. Moreover, Christian
Blum acknowledges support from the Ramén y Cajal program of
the Spanish Ministry of Science and Innovation.

References

[1] C.R. Reeves (Ed.), Modern heuristic techniques for combinatorial problems,
John Wiley & Sons, New York, USA, 1993.

[2] F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, Vol. 57 of
International Series in Operations Research and Management Science, Kluwer
Academic Publishers, 2003.

[3] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview
and conceptual comparison, ACM Computing Surveys 35 (3) (2003) 268-
308.

[4] H. Hoos, T. Stiitzle, Stochastic Local Search—Foundations and Applications,
Morgan Kaufmann Publishers, 2005.

[5] L. Perron, M.A. Trick (Eds.), Proceedings of CPAIOR 2008—5th International
Conference on the Integration of Aland OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, Vol. 5015 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Germany, 2008.

[6] W.J. van Hoeve, J.N. Hooker (Eds.), Proceedings of CPAIOR 2009—6th Interna-
tional Conference on the Integration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Vol. 5547 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2009.

[7] A. Lodi, M. Milano, P. Toth (Eds.), Proceedings of CPAIOR 2010—7th Interna-

tional Conference on the Integration of Al and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, Vol. 6140 of Lecture

Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2010.

M. Blesa Aguilera, C. Blum, C. Cotta, AJ. Fernindez, J.E. Gallardo, A. Roli,

M. Sampels (Eds.), Proceedings of HM 2008—Fifth International Workshop

on Hybrid Metaheuristics, Vol. 5296 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, Germany, 2008.

M.J. Blesa Aguilera, C. Blum, L. di Gaspero, A. Roli, M. Sampels, A. Schaerf (Eds.),

Proceedings of HM 2009—Sixth International Workshop on Hybrid Meta-

heuristics, Vol. 5818 of Lecture Notes in Computer Science, Springer-Verlag,

Berlin, Germany, 2009.

[10] V.Maniezzo, P.Hansen, S.Voss (Eds.), Proceedings of Matheuristics 2006: First
International Workshop on Mathematical Contributions to Metaheuristics,
Bertinoro, Italy, 2006.

[11] P. Hansen, V. Maniezzo, M. Fischetti, T. Stiitzle (Eds.), Proceedings of
Matheuristics 2008: Second International Workshop on Model Based Meta-
heuristics, Bertinoro, Italy, 2008.

[12] K. Dorner et al. (Ed.), in: Proceedings of Matheuristics 2010: Third Interna-
tional Workshop on Model Based Metaheuristics, Vienna, Austria, 2010.

[13] V. Maniezzo, T. Stiitzle, S. VoR (Eds.), Matheuristics, Vol. 10 of Annals of Infor-
mation Systems, Springer-Verlag, Berlin, Germany, 2010.

[14] C. Blum, MJ]. Blesa Aguilera, A. Roli, M. Sampels (Eds.), Hybrid
Metaheuristics—An Emerging Approach to Optimization, Vol. 114 of
Studies in Computational Intelligence, Springer-Verlag, Berlin, Germany,
2008.

[15] C. Cotta, A study of hybridisation techniques and their application to the
design of evolutionary algorithms, Al Communications 11 (3-4) (1998)
223-224.

[16] L Dumitrescu, T. Stiitzle, Combinations of local search and exact algorithms,
in: G.R. Raidl, et al. (Eds.), Applications of Evolutionary Computation, Vol.
2611 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany,
2003, pp. 211-223.

[17] G.R. Raidl, A unified view on hybrid metaheuristics, in: F. Almeida, MJ. Blesa
Aguilera, C. Blum,].M. Moreno Vega, M.P. Pérez, A. Roli, M. Sampels (Eds.),
Proceedings of HM 2006—Third International Workshop on Hybrid Meta-
heuristics, Vol. 4030 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Germany, 2006, pp. 1-12.

[18] G.R. Raidl, J. Puchinger, C. Blum, Metaheuristic hybrids, in: M. Gendreau, J.Y.
Potvin (Eds.), Handbook of Metaheuristics, Vol. 146 of International Series in
Operations Research and Management Science, 2nd Edition, Springer-Verlag,
Berlin, Germany, 2010, pp. 469-496.

[19] C.Blum, J. Puchinger, G.R. Raidl, A. Roli, A brief survey on hybrid metaheuris-
tics, in: B. Filipi¢, J. Silc (Eds.), Proceedings of BIOMA 2010—4th International
Conference on Bio-Inspired Optimization Methods and their Applications,
Jozef Stefan Institute, Ljubljana, Slovenia, 2010, pp. 3-18.

[20] C.Blum,].Puchinger, G.R. Raidl, A. Roli, Hybrid metaheuristics, in: M. Milano,
P. van Hentenryck (Eds.), Hybrid Optimization: The 10 Years of CPAIOR,
Springer-Verlag, Berlin, Germany, 2010, pp. 305-336.

[21] M. Ehrgott, X. Gandibleux, Hybrid Metaheuristics for Multi-objective Com-
binatorial Optimization, Vol. 114 of Blum et al. [14], pp. 221-259 (Chapter
8).

[22] Z. Michalewicz, P. Siarry, Special issue on adaptation of discrete metaheuris-
tics to continuous optimization, European Journal of Operational Research
185 (2008) 1060-1273.

[23] K.V. Price, RM. Storn, J.A. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization, Springer-Verlag, Berlin, Germany, 2005.

[24] D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic algorithms for
continuous optimisation based on local search chains, Evolutionary Compu-
tation 18 (1) (2010) 27-63.

[8

[9

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4149

[25] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley
& Sons, Chichester, England, 2005.

[26] C. Cotta, E.-G. Talbi, E. Alba, Parallel Metaheuristics—A New Class of Algo-
rithms, Wiley & Sons, Hoboken, New Jersey, 2005, pp. 347-370 (Ch. Parallel
Hybrid Metaheuristics).

[27] E.-G. Talbi, Metaheuristics: From Design to Implementation, Wiley & Sons,
Hoboken, New Jersey, 2009.

[28] S.Cahon, N. Melab, E.-G. Talbi, ParadisEO: a framework for the reusable design
of parallel and distributed metaheuristics, Journal of Heuristics 10 (3) (2004)
357-380.

[29] A. Moscato, Memetic algorithms: a short introduction, in: D. Corne, et al.
(Eds.), New Ideas in Optimization, McGraw Hill, 1999, pp. 219-234.

[30] N.Krasnogor, J. Smith, A tutorial for competent memetic algorithms: model,
taxonomy, and design issues, IEEE Transactions on Evolutionary Computation
9(5) (2005) 474-488.

[31] T Stiitzle, Iterated local search for the quadratic assignment problem, Euro-
pean Journal of Operational Research 174 (3) (2006) 1519-1539.

[32] T. Stiitzle, Local Search Algorithms for Combinatorial Problems - Analysis,
Algorithms and New Applications, DISKI - Dissertationen zur Kiinstlichen
Intelligenz, infix, Sankt Augustin, Germany, 1999.

[33] H.R. Lourencgo, O. Martin, T. Stiitzle, Iterated local search, in: F. Glover, G.
Kochenberger (Eds.), Handbook of Metaheuristics, Vol. 57 of International
Series in Operations Research and Management Science, Kluwer Academic
Publishers, Norwell, MA, 2002, pp. 321-353.

[34] C.Walshaw, Multilevel refinement for combinatorial optimization problems,
Annals of Operations Research 131 (2004) 325-372.

[35] C.Walshaw, Multilevel Refinement for Combinatorial Optimisation: Boosting
Metaheuristic Performance, in: Blum et al. [14], pp. 261-289.

[36] A.Brandt, Multilevel computations: review and recent developments, in: S.F.
McCormick (Ed.), Multigrid Methods: Theory, Applications, and Supercom-
puting, Proceedings of the 3rd Copper Mountain Conference on Multigrid
Methods, Vol. 110 of Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, New York, 1988, pp. 35-62.

[37] C. Walshaw, M. Cross, Mesh partitioning: a multilevel balancing and refine-
ment algorithm, SIAM Journal on Scientific Computing 22 (1) (2000) 63-80.

[38] C.Walshaw, A multilevel approach to the travelling salesman problem, Oper-
ations Research 50 (5) (2002) 862-877.

[39] 1.0. Oduntana, M. Toulouse, R. Baumgartner, C. Bowman, R. Somorjai, T.G.
Crainic, A multilevel tabu search algorithm for the feature selection problem
in biomedical data, Computers and Mathematics with Applications 55 (5)
(2008) 1019-1033.

[40] S. Pirkwieser, G.R. Raidl, Multilevel variable neighborhood search for peri-
odic routing problems, in: P.I. Cowling, P. Merz (Eds.), Proceedings of EvoCOP
2010—10th European Conference on Evolutionary Computation in Com-
binatorial Optimization, Vol. 6022 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, 2010, pp. 226-238.

[41] M. Lozano, C. Garcia-Martinez, Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: overview and
progress report, Computers and Operations Research 37 (3) (2010) 481-
497.

[42] M.G.C. Resende, R. Marti, M. Gallego, A. Duarte, GRASP and path relinking for
the max-min diversity problem, Computers and Operations Research 37 (3)
(2010) 498-508.

[43] D. Pisinger, Core problems in knapsack algorithms, Operations Research 47
(1999) 570-575.

[44] J.Puchinger, G.R.Raidl, U. Pferschy, The core concept for the multidimensional
knapsack problem, in: J. Gottlieb, G.R. Raidl (Eds.), Evolutionary Computation
in Combinatorial Optimization—EvoCOP 2006, Vol. 3906 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Germany, 2006, pp. 195-208.

[45]].Lazi¢, S. Hanafi, N. Mladenovi¢, D. UroSevic, Variable neighbourhood decom-
position search for 0-1 mixed integer programs, Computers and Operations
Research 37 (6) (2010) 1055-1067.

[46] S. Gilmour, M. Dras, Kernelization as heuristic structure for the vertex cover
problem, in: M. Dorigo, et al. (Eds.), Proceedings of ANTS 2006—5th Inter-
national Workshop on Ant Colony Optimization and Swarm Intelligence, Vol.
4150 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany,
2006, pp. 452-459.

[47] EK. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-
heuristics: an emerging direction in modern search technology, in: Glover
and Kochenberger [2], pp. 457-474.

[48] F. Glover, Surrogate constraints, Operations Research 16 (4) (1968) 741-749.

[49] C. Fleurent, F. Glover, Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory, INFORMS Journal on
Computing 11 (1999) 198-204.

[50] S. Binato, W.J. Hery, D. Loewenstern, M.G.C. Resende, A GRASP for job shop
scheduling, in: C.C. Ribeiro, P. Hansen (Eds.), Essays and Surveys on Meta-
heuristics, Kluwer Academic Publishers, 2001, pp. 59-79.

[51] T.Kanazawa,K.Yasuda, Proximate optimality principle based tabu search, IEE]J
Transactions on Electronics Information and Systems 124 (3)(2004) 912-920.

[52] R. Montemanni, D.H. Smith, Heuristic manipulation, tabu search and fre-
quency assignment, Computers and Operations Research 37 (3) (2010)
543-551.

[53] A.A Chaves, F.A. Correa, LAAN. Lorena, Clustering search heuristic for the
capacitated p-median problem, in: E. Corchado, J.M. Corchado, A. Abraham
(Eds.), Innovations in Hybrid Intelligent Systems, Vol. 44 of Advances in Soft
Computing, Springer-Verlag, Berlin, Germany, 2008, pp. 136-143.

[54] Y.-W. Chen, Y.-Z.Lu, G.-K. Yang, Hybrid evolutionary algorithm with marriage
of genetic algorithm and extremal optimization for production scheduling,
The International Journal of Advanced Manufacturing Technology 36 (9-10)
(2008) 959-968.

[55] S. Boettcher, A.G. Percus, Nature's way of optimizing, Artificial Intelligence
119 (1-2) (2000) 275-286.

[56] X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu, L.M. Wang, An improved GA and a novel
PSO-GA-based hybrid algorithm, Information Processing Letters 93 (5) (2005)
255-261.

[57] P.Greistorfer, A tabu scatter search metaheuristic for the arc routing problem,
Computers and Industrial Engineering 44 (2) (2003) 249-266.

[58] P Shaw, Using constraint programming and local search methods to solve
vehicle routing problems, in: M. Maher, J.-F. Puget (Eds.), Principle and
Practice of Constraint Programming—CP98, Vol. 1520 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Germany, 1998, pp. 417-431.

[59] D. Applegate, W. Cook, A computational study of the job-shop scheduling
problem, ORSA Journal on Computing 3 (2) (1991) 149-156.

[60] G.Pesant, M. Gendreau, A view of local search in constraint programming, in:
E. Freuder (Ed.), Principles and Practice of Constraint Programming—CP’96,
Vol. 1118 of Lecture Notes in Computer Science, Springer-Verlag, Berlin Hei-
delberg, Germany, 1996, pp. 353-366.

[61] G.Pesant,M.Gendreau, A constraint programming framework for local search
methods, Journal of Heuristics 5 (1999) 255-279.

[62] P.Shaw, B. De Backer, V. Furnon, Improved local search for CP toolkits, Annals
of Operations Research 115 (2002) 31-50.

[63] L.Perron, P. Shaw, V. Furnon, Propagation guided large neighborhood search,
in: M. Wallace (Ed.), Principles and Practice of Constraint Programming—CP
2004, Vol. 3258 of Lecture Notes in Computer Science, Springer, 2004, pp.
468-481.

[64] R. Ahuja, O. Ergun, J. Orlin, A. Punnen, A survey of very large-scale neighbor-
hood search techniques, Discrete Applied Mathematics 123 (2002) 75-102.

[65] M. Chiarandini, I. Dumitrescu, T. Stiitzle, Very large-scale neighborhood
search: overview and case studies on coloring problems, in: Blum et al. [14],
pp. 117-150.

[66] C.Solnon, Ant Colony Optimization and Constraint Programming, Wiley-ISTE,
2010.

[67] M. Dorigo, T. Stiitzle, Ant Colony Optimization, MIT Press, Cambridge, MA,
2004

[68] C.Blum, Ant colony optimization: introduction and recent trends, Physics of
Life Reviews 2 (4) (2005) 353-373.

[69] B. Meyer, Hybrids of constructive meta-heuristics and constraint program-
ming: a case study with ACO, Vol. 114 of Blum et al. [14], pp. 151-183 (Chapter
6).

[70] S.Prestwich, The Relation Between Complete and Incomplete Search, Vol. 114
of Blum et al. [14], pp. 63-83 (Chapter 3).

[71] M. Khichane, P. Albert, C. Solnon, Integration of ACO in a constraint program-
ming language, in: Proceedings of ANTS 2008—6th International Workshop
on Ant Colony Optimization and Swarm Intelligence, Vol. 5217 of Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2008,
pp. 84-95.

[72] M. Khichane, P. Albert, C. Solnon, Strong combination of ant colony optimiza-
tion with constraint programming optimization, in: A. Lodi, M. Milano, P.
Toth (Eds.), Integration of Al and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems—CPAIOR 2010, Vol. 6140 of Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, Germany,
2010, pp. 232-245.

[73] M. Lombardi, M. Milano, A. Roli, A. Zanarini, Deriving information from sam-
pling and diving, in: R. Serra, R. Cucchiara (Eds.), Emergent Perspectives in
Artificial Intelligence—AI*IA 2009, Vol. 5883 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin Heidelberg, Germany, 2009, pp. 82-91.

[74] F. Focacci, F. Laburthe, A. Lodi, Local search and constraint programming, in:
Glover and Kochenberger [2], pp. 369-403.

[75] J.C. Beck, Solution-guided multi-point constructive search for job shop
scheduling, Journal of Artificial Intelligence Research 29 (2007) 49-77.

[76] J.-P. Watson, J. Beck, A hybrid constraint programming/local search approach
to the job-shop scheduling problem, in: Integration of Al and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, Vol.
5015 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany,
2008, pp. 263-277.

[77] S. Prestwich, S. Tarim, R. Rossi, B. Hnich, Evolving parameterised policies for
stochastic constraint programming, in: I. Gent (Ed.), Principles and Practice of
Constraint Programming—CP 2009, Vol. 5732 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin Heidelberg, Germany, 2009, pp. 684-691.

[78] Z. Kiziltan, A. Lodi, M. Milano, F. Parisini, CP-based local branching, in: C.
Bessiere (Ed.), Principles and Practice of Constraint Programming—CP 2007,
Vol. 4741 of Lecture Notes in Computer Science, Springer-Verlag, Berlin Hei-
delberg, Germany, 2007, pp. 847-855.

[79] M. Trick, H. Yildiz, A large neighborhood search heuristic for graph coloring,
in: P. Van Hentenryck, L. Wolsey (Eds.), Integration of Al and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems—CPAIOR
2007, Vol. 4510 of Lecture Notes in Computer Science, Springer-Verlag, Berlin
Heidelberg, Germany, 2007, pp. 346-360.

[80] M.L. Ginsberg, Dynamic backtracking, Journal of Artificial Intelligence
Research 1 (1993) 25-46.

[81] W.D. Harvey, Nonsystematic Backtracking Search, Ph.D. Thesis, CIRL, Univer-
sity of Oregon, Eugene, Oregon, 1995.

4150 C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151

[82] W.D. Harvey, M.L. Ginsberg, Limited discrepancy search, in: C.S. Mellish (Ed.),
Proceedings of IJCAI 1995—14th International Joint Conference on Artificial
Intelligence, vol. 1, Morgan Kaufmann Publishers, San Mateo, CA, 1995, pp.
607-615.

[83] M. Milano, A. Roli, On the relation between complete and incomplete search:
an informal discussion, in: N. Jussien, F. Laburthe (Eds.), Proceedings of
CP-AI-OR’02—Fourth International Workshop on Integration of Al and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, 2002, pp. 237-250.

[84] M. Dell’Amico, A. Lodi, On the integration of metaheuristic strategies in con-
straint programming, in: C. Rego, B. Alidaee (Eds.), Metaheuristic Optimiza-
tion via Memory and Evolution, Vol. 30 of Operations Research/Computer
Science Interfaces Series, Springer-Verlag, Berlin, Germany, 2002, pp.
357-371.

[85] N.]Jussien, O.Lhomme, Local search with constraint propagation and conflict-
based heuristics, Artificial Intelligence 139 (2002) 21-45.

[86] A. Schaerf, Combining local search and look-ahead for scheduling and
constraint satisfaction problems, in: M. Pollack (Ed.), Proceedings of IJCAI
1997—15th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers, San Mateo, CA, 1997, pp. 1254-1259.

[87] S. Prestwich, Combining the scalability of local search with the pruning tech-
niques of systematic search, Annals of Operations Research 115 (2002) 51-72.

[88] D.P.Bertsekas, J.N. Tsitsiklis, C. Wu, Rollout algorithms for combinatorial opti-
mization, Journal of Heuristics 3 (1997) 245-262.

[89] T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures,
Journal of Global Optimization 6 (1995) 109-133.

[90] P.S.Ow, T.E. Morton, Filtered beam search in scheduling, International Journal
of Production Research 26 (1988) 297-307.

[91] C. Blum, C. Cotta, AJ. Ferndndez,].E. Gallardo, A probabilistic beam search
algorithm for the shortest common supersequence problem, in: C. Cotta, J.I.
van Hemert (Eds.), Proceedings of EvoCOP 2007—Seventh European Con-
ference on Evolutionary Computation in Combinatorial Optimisation, Vol.
4446 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany,
2007, pp. 36-47.

[92] V. Maniezzo, Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem, INFORMS Journal on Computing
11 (4) (1999) 358-369.

[93] V. Maniezzo, A. Carbonaro, An ANTS heuristic for the frequency assignment
problem, Future Generation Computer Systems 16 (2000) 927-935.

[94] V. Maniezzo, M. Roffilli, Very strongly constrained problems: an ant colony
optimization approach, Cybernetics and Systems 39 (4) (2008) 395-424.

[95] C. Blum, Beam-ACO-hybridizing ant colony optimization with beam search:
an application to open shop scheduling, Computers and Operations Research
32(2005) 1565-1591.

[96] C. Blum, Beam-ACO for simple assembly line balancing, INFORMS Journal on
Computing 20 (4) (2008) 618-627.

[97] M. Lépez-Ibafiez, C. Blum, Beam-ACO for the travelling salesman problem
with time windows, Computers and Operations Research 37 (9) (2010)
1570-1583.

[98] M. Mastrolilli, C. Blum, On the use of different types of knowledge in
metaheuristics based on constructing solutions, Engineering Applications of
Artificial Intelligence 23 (5) (2010) 650-659.

[99] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, 1988.

[100] L.A. Wolsey, Integer Programming, Wiley-Interscience, 1998.

[101] S. Mitrovi¢-Mini¢, A.P. Punnen, Variable intensity local search, in: Maniezzo
etal. [13], pp. 245-252.

[102] M. Prandtstetter, G.R. Raidl, An integer linear programming approach and a
hybrid variable neighborhood search for the car sequencing problem, Euro-
pean Journal of Operational Research 191 (3) (2008) 1004-1022.

[103] M. Fischetti, A. Lodi, Local branching, Mathematical Programming Series B 98
(2003) 23-47.

[104] P.Hansen, N.Mladenovi¢, D. Urosevic, Variable neighborhood search and local
branching, Computers and Operations Research 33 (10) (2006) 3034-3045.

[105] E.Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods
to improve MIP solutions, Mathematical Programming Series A 102 (2005)
71-90.

[106] C. Archetti, G. Guastaroba, M.G. Speranza, An ILP-refined tabu search for the
selective arc routing problem with penalties, in: Dérner et al. [12], pp. 61-82.

[107] R. De Franceschi, M. Fischetti, P. Toth, A new ILP-based refinement heuristic
for vehicle routing problems, Mathematical Programming, Series B 105 (2)
(2006) 471-499.

[108] T. Oncan, S.N. Kabadi, K.P.N. Nair, A.P. Punnen, VLSN search algorithms for
partitioning problems using matching neighbourhoods, The Journal of the
Operational Research Society 59 (2008) 388-398.

[109] S.Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows, Transportation Science 40
(4) (2006) 455-472.

[110] S. Pirkwieser, G.R. Raidl, Variable neighborhood search coupled with ILP-
based large neighborhood searches for the (periodic) location-routing
problem, in: MJ. Blesa Aguilera, C. Blum, G.R. Raidl, A. Roli, M. Sampels (Eds.),
Proceedings of HM 2010—Seventh International Workshop on Hybrid Meta-
heuristics, Vol. 6373 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Germany, 2010, pp. 174-189.

[111] A. Nagar, S.S. Heraguy, J. Haddock, A meta-heuristic algorithm for a bi-criteria
scheduling problem, Annals of Operations Research 63 (1995) 397-414.

[112] D.L. Applegate, R.E. Bixby, V. Chvatal, W.J. Cook, On the solution of the travel-
ing salesman problem, Documenta Mathematica Extra Volume ICM 111 (1998)
645-656.

[113] D.L. Applegate, R.E. Bixby, V. Chvatal, W]. Cook, The Traveling Salesman
Problem: A Computational Study, Princeton Series in Applied Mathematics,
Princeton University Press, 2007.

[114] C. Cotta,].M. Troya, Embedding branch and bound within evolutionary algo-
rithms, Applied Intelligence 18 (2003) 137-153.

[115] A.V. Eremeev, On complexity of optimal recombination for binary represen-
tations of solutions, Evolutionary Computation 16 (1) (2008) 127-147.

[116] E.Rothberg, An evolutionary algorithm for polishing mixed integer program-
ming solutions, INFORMS Journal on Computing 19 (4) (2007) 534-541.

[117] E. Danna, E. Rothberg, C. Le Pape, Integrating mixed integer programming
and local search: a case study on job-shop scheduling problems, in: Fifth
International Workshop on Integration of Al and OR techniques in Constraint
Programming for Combinatorial Optimisation Problems (CP-AI-OR’2003),
2003, pp. 65-79.

[118] J.E. Gallardo, C. Cotta, AJ. Fernandez, On the hybridization of memetic algo-
rithms with branch-and-bound techniques, IEEE Transactions on Systems
Man, and Cybernetics—Part B 37 (1) (2007) 77-83.

[119] C.Blum, C. Cotta, AJ. Fernandez,].E. Gallardo, M. Mastrolilli, Hybridization of
metaheuristics with branch and bound derivatives, in: Blum et al. [14], pp.
85-116.

[120] P.V. Hentenryck, L. Michel, Constraint-Based Local Search, MIT Press, Cam-
bridge, MA, 2005.

[121] L. Shi, S. Olafsson, Nested partitions method for global optimization, Opera-
tions Research 48 (3) (2000) 390-407.

[122] S. Al-Shihabi, S. Olafsson, A hybrid of nested partition, binary ant system, and
linear programming for the multidimensional knapsack problem, Computers
and Operations Research 37 (2) (2010) 247-255.

[123] L Shi, S. Olafsson, Q. Chen, An optimization framework for product design,
Management Science 47 (12) (2001) 1681-1692.

[124] M. Boschetti, V. Maniezzo, Benders decomposition, Lagrangian relaxation and
metaheuristic design, Journal of Heuristics 15 (2009) 283-312.

[125] M. Boschetti, V. Maniezzo, M. Roffilli, Decomposition techniques as meta-
heuristic frameworks, in: Maniezzo et al. [13], pp. 135-158.

[126] J.E. Beasley, Lagrangian relaxation, in: Reeves [1], pp. 243-303.

[127] V. Jeet, E. Kutanoglu, Lagrangian relaxation guided problem space search
heuristic for generalized assignment problems, European Journal of Oper-
ational Research 182 (3) (2007) 1039-1056.

[128] C. Wilbaut, S. Hanafi, New convergent heuristics for 0-1 mixed integer pro-
gramming, European Journal of Operational Research 195 (1) (2009) 62-74.

[129] A.L. Soyster, B. Lev, W. Slivka, Zero-one programming with many variables
and few constraints, European Journal of Operational Research 2 (3) (1978)
195-201.

[130] S. Hanafi, C. Wilbaut, Improved convergent heuristics for the 0-1 multidi-
mensional knapsack problem, Annals of Operations Research 183 (1) (2011)
125-142.

[131] F. Glover, Inequalities and target objectives for metaheuristic search—part I:
mixed binary optimization, in: P. Siarry, Z. Michalewicz (Eds.), Advances in
Metaheuristics for Hard Optimization, Natural Computing Series, Springer-
Verlag, Berlin, Germany, 2008, pp. 439-474.

[132] G.R.Raidl, H. Feltl, An improved hybrid genetic algorithm for the generalized
assignment problem, in: H.M. Haddadd, et al. (Eds.), Proceedings of the 2003
ACM Symposium on Applied Computing, ACM Press, 2004, pp. 990-995.

[133] G.R. Raidl, An improved genetic algorithm for the multiconstrained 0-1
knapsack problem, in: D.B. Fogel, et al. (Eds.), Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation, IEEE Press, 1998, pp.
207-211.

[134] P.C. Chuy, J.E. Beasley, A genetic algorithm for the multidimensional knapsack
problem, Journal of Heuristics 4 (1998) 63-86.

[135] M. Vasquez,].-K. Hao, A hybrid approach for the 0-1 multidimensional knap-
sack problem, in: B. Nebel (Ed.), Proceedings of the 17th International Joint
Conference on Artificial Intelligence, [JCAI 2001, Morgan Kaufman, Seattle,
Washington, 2001, pp. 328-333.

[136] M. Vasquez, Y. Vimont, Improved results on the 0-1 multidimensional knap-
sack problem, European Journal of Operational Research 165 (1) (2005)
70-81.

[137] M. Haouari, J.C. Siala, A hybrid Lagrangian genetic algorithm for the prize
collecting Steiner tree problem, Computers and Operations Research 33 (5)
(2006) 1274-1288.

[138] F.Barahona, R. Anbil, The volume algorithm: producing primal solutions with
a subgradient method, Mathematical Programming, Series A 87 (3) (2000)
385-399.

[139] S. Pirkwieser, G.R. Raidl,]J. Puchinger, Combining Lagrangian decomposi-
tion with an evolutionary algorithm for the knapsack constrained maximum
spanning tree problem, in: C. Cotta,]J.I. van Hemert (Eds.), Evolutionary
Computation in Combinatorial Optimization—EvoCOP 2007, Vol. 4446 of Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2007, pp.
176-187.

[140] M. Leitner, G.R. Raidl, Lagrangian decomposition, metaheuristics, and hybrid
approaches for the design of the last mile in fiber optic networks, in: B. Aguil-
era et al. [8], pp. 158-174.

[141] H.Tamura, A. Hirahara, I. Hatono, M. Umano, An approximate solution method
for combinatorial optimisation, Transactions of the Society of Instrument and
Control Engineers 130 (1994) 329-336.

C. Blum et al. / Applied Soft Computing 11 (2011) 4135-4151 4151

[142] M. Reimann, Guiding ACO by problem relaxation: a case study on the
symmetric TSP, in: T. Bartz-Beielstein, M.]. Blesa Aguilera, C. Blum, B.
Naujoks, A. Roli, G. Rudolph, M. Sampels (Eds.), Proceedings of HM
2007—Fourth International Workshop on Hybrid Metaheuristics, Vol. 4771 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2007,
pp- 45-55.

[143] D.P. Bertsekas, Dynamic Programming and Optimal Control, 3rd Edition,
Athena Scientific, Nashua, NH, 2007.

[144] RK. Congram, C.N. Potts, S.L. van de Velde, An iterated dynasearch algo-
rithm for the single-machine total weighted tardiness scheduling problem,
INFORMS Journal on Computing 14 (1) (2002) 52-67.

[145] A. Grosso, F. Della Croce, R. Tadei, An enhanced dynasearch neighborhood for
the single-machine total weighted tardiness scheduling problem, Operations
Research Letters 32 (1) (2004) 68-72.

[146] E. Angel, E. Bampis, A multi-start dynasearch algorithm for the time depen-
dent single-machine total weighted tardiness scheduling problem, European
Journal of Operational Research 162 (1) (2005) 281-289.

[147] M. Sniedovich, S. VoR, The corridor method: a dynamic programming inspired
metaheuristic, Control and Cybernetics 35 (3) (2006) 551-578.

[148] R.E. Bellman (Ed.), Dynamic Programming, Princeton University Press, New
Jersey, USA, 1957.

[149] M. Heidari, T. Chow, P.V. Kokotovic, Discrete differential dynamic program-
ming approach to water resources systems optimization, Water Resources
Research 7 (2) (1971) 273-282.

[150] R.K.Ahuja, O.Ergun,].B. Orlin, A.P. Punnen, A survey of very large-scale neigh-
borhood search techniques, Discrete Applied Mathematics 123 (1-3) (2002)
75-102.

[151] M. Caserta, S. VoRB, M. Sniedovich, Applying the corridor method to a blocks
relocation problem, OR Spectrum, in press, doi:10.1007/s00291-009-0176-5.

[152] M. Caserta, S. Vo, A math-heuristic algorithm for the DNA sequencing
problem, in: C. Blum, R. Battiti (Eds.), Proceedings of LION 2010—4th Inter-
national Conference on Learning and Intelligent Optimization, Vol. 6073 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2010,
pp. 25-36.

[153] M.Caserta,S.VoR, A corridor method-based algorithm for the pre-marshalling
problem, in: M. Giacobini, et al. (Eds.), Proceedings of the EvoWorkshops
2009—Applications of Evolutionary Computing, Vol. 5484 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Germany, 2009, pp. 788-
797.

[154] C.Blum, M.]. Blesa, Solving the KCT problem: large-scale neighborhood search
and solution merging, in: E. Alba, C. Blum, P. Isasi, C. Ledn, J.A. Gémez (Eds.),
Optimization Techniques for Solving Complex Problems, Wiley & Sons, Hobo-
ken, NJ, 2009, pp. 407-421.

[155] B. Hu, G.R. Raidl, Effective neighborhood structures for the generalized trav-
eling salesman problem, in: J.I. van Hemert, C. Cotta (Eds.), Evolutionary
Computation in Combinatorial Optimisation—EvoCOP 2008, Vol. 4972 of Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2008, pp.
36-47.

[156] T. Dunker, G. Radons, E. Westkdamper, Combining evolutionary computation
and dynamic programming for solving a dynamic facility layout problem,
European Journal of Operational Research 165 (1) (2005) 55-69.

[157] J.Balakrishnan, C.H. Cheng, D.G. Conway, C.M. Lau, A hybrid genetic algorithm
for the dynamic plant layout problem, Production Economics 86 (2) (2003)
107-120.

[158] C. Wilbaut, S. Hanafi, A. Fréville, S. Balev, Tabu search: global intensification
using dynamic programming, Control and Cybernetics 35 (3)(2009) 579-598.

[159] S.-M. Tse, Y. Liang, K.-S. Leung, K.-H. Lee, T.S.-K. Mok, A memetic algorithm
for multiple-drug cancer chemotherapy schedule optimization, IEEE Trans-
actions on Systems, Man, and Cybernetics—Part B 37 (1) (2007) 84-91.

[160] W.-S. Juang, S.-F. Su, Multiple sequence alignment using modified dynamic
programming and particle swarm optimization, Journal of the Chinese Insti-
tute of Engineers 31 (4) (2008) 659-673.

[161] J.Bautista,]. Pereira, Adynamic programming based heuristic for the assembly
line balancing problem, European Journal of Operational Research 194 (3)
(2009) 787-794.

[162] S. Imahori, M. Yagiura, T. Ibaraki, Improved local search algorithms for the
rectangle packing problem with general spatial costs, European Journal of
Operational Research 167 (1) (2005) 48-67.

[163] J.N. Hooker, Testing heuristics: we have it all wrong, Journal of Heuristics 1
(1)(1995).

[164] C.C. McGeoch, Experimental analysis of algorithms, Notices of the American
Mathematical Society 48 (3) (2001) 304-311.

[165] P.R. Cohen, Empirical Methods for Artificial Intelligence, The MIT Press, 1995.

[166] D.S. Johnson, A theoretician’s guide to the experimental analysis of algo-
rithms, in: D.S.J.M.H. Goldwasser, C.C. McGeoch (Eds.), Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa-
tion Challenges, American Mathematical Society, Providence, RI, 2002, pp.
215-250.

[167] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective,Vol. 197
of Studies in Computational Intelligence, Springer-Verlag, Berlin, Germany,
2009.

[168] C.C. McGeoch, Toward an experimental method for algorithm simulation,
INFORMS Journal on Computing 8 (1) (1996) 1-15.

[169] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Eds.), Empirical
Methods for the Analysis of Optimization Algorithms, Springer-Verlag, Berlin,
Germany, 2009.

http://dx.doi.org/10.1007/s00291-009-0176-5

	Hybrid metaheuristics in combinatorial optimization: A survey
	Introduction
	Hybridizing metaheuristics with (meta-)heuristics
	Example 1: population-based iterated local search
	Example 2: multilevel techniques
	Literature overview

	Hybridizing metaheuristics with constraint programming
	Example 1: CP-based large neighborhood search
	Example 2: ant colony optimization and constraint programming
	Literature overview

	Hybridizing metaheuristics with tree search techniques
	Example 1: Beam-ACO
	Example 2: large neighborhood search based on mathematical programming
	Literature overview

	Hybridizing metaheuristics with problem relaxation
	Example 1: hybrid metaheuristics based on Lagrangian relaxation
	Example 2: iterative relaxation based heuristics
	Literature overview

	Hybridizing metaheuristics with dynamic programming
	Example 1: iterated dynasearch
	Example 2: corridor method based on dynamic programming
	Literature overview

	Discussion and conclusions
	Acknowledgements
	References

