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Abstract The combination of components from different algorithms is currently
one of the most successful trends in optimization. The hybridization of
metaheuristics such as ant colony optimization, evolutionary algorithms,
and variable neighborhood search with techniques from operations re-
search and artificial intelligence plays hereby an important role. The
resulting hybrid algorithms are generally labelled hybrid metaheuris-
tics. The rising of this new research field was due to the fact that the
focus of research in optimization has shifted from an algorithm-oriented
point of view to a problem-oriented point of view. In this brief survey
on hybrid metaheuristics we provide an overview on some of the most
interesting and representative developments.
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1. Introduction

The term metaheuristic was introduced to define heuristic methods
that can be applied to a wide set of different problems. In other words,
a metaheuristic can be seen as a general algorithmic framework which
can be applied to different optimization problems with relatively few
modifications to make them adapted to a specific problem. Genetic and
evolutionary algorithms, tabu search, simulated annealing, iterated local
search, and ant colony optimization, just to name a few, are typical rep-
resentatives falling under this generic term. Each of them has an individ-
ual historical background, follows certain paradigms and philosophies,
and puts one or more particular strategic concepts in the foreground. For
a detailed introduction to metaheuristics we refer the interested reader
to [25, 12].

In contrast to the early days of metaheuristic research, the last 5-10
years have produced a large number of algorithms that simply do not
fit into a single metaheuristic category. This is because these untradi-
tional approaches combine various algorithmic ideas, often originating
from several branches of artificial intelligence, operations research and
computer science in general. Such approaches are commonly referred to
as hybrid metaheuristics [10]. The lack of a precise definition of this term
is sometimes subject to criticism. In our opinion, however, the relatively
open nature of this term is rather helpful, as strict borderlines between
related fields of research are often a hindrance for creative thinking and
the exploration of new research directions.

The main motivation for the hybridization of different algorithmic
concepts has been to obtain better performing systems that exploit and
combine advantages of the individual pure strategies, that is, hybrids
are believed to benefit from synergy. In fact, choosing an adequate com-
bination of multiple algorithmic concepts is often the key for achieving
top performance in solving many hard optimization problems. However,
the task of developing a highly effective hybrid approach is not easy at
all. Nevertheless, there are several hybridization types that have proven
successful on many occasions, and they can provide some guidance.

The growing popularity of this line of research is documented by rather
recent conferences and workshops such as CPAIOR [62], Hybrid Meta-
heuristics [6], and Matheuristics [38]. Moreover, the first book specif-
ically devoted to hybrid metaheuristics has recently been published in
2008 [10]. In this brief survey, we provide an overview of hybrid meta-
heuristics by illustrating prominent and paradigmatic examples, which
range from the integration of metaheuristic techniques among them-
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selves, to the hybridization of metaheuristics with constraint and math-
ematical programming. The interested reader can find other reviews on
hybrid metaheuristics in [16, 19, 50, 10].

2. Examples and Literature Overview

In our opinion, the current body of research on hybrid metaheuristics
can be subdivided into five different categories, namely, the hybridization
of metaheuristics with (meta-)heuristics, constraint programming, tree
search methods, problem relaxations, and dynamic programming. Each
of these five categories is treated below in its own subsection. For each
category we will list representative works.

2.1 Hybridization of Metaheuristics With
(Meta-)Heuristics

The hybridization of metaheuristics with (meta-)heuristics is quite
popular, especially for what concerns the use of local search methods
inside population-based methods. Indeed, most of the successful appli-
cations of evolutionary computation and ant colony optimization make
use of local search procedures for refining the generated solutions. This
is because the major strength of population-based methods is their ex-
ploration capability. At the start of the search they generally try to
capture a global picture of the search space, and typically, rather simple
and problem-dependent operations are then iteratively applied to derive
diverse new solutions successively focusing the search on promising re-
gions of the search space. Conversely, the strength of local search meth-
ods is their rather fast intensification capability, that is, the capability of
quickly finding better solutions in the vicinity of given starting solutions.
In summary, population-based methods are good in identifying promis-
ing areas of the search space in which local search methods can then
quickly determine the best solutions. Therefore, this type of hybridiza-
tion is often very successful. In the field of evolutionary algorithms these
hybrids even carry their own name, memetic algorithms [34].

Apart from the usual above-mentioned hybridization, this category
contains, for example, so-called multi-level techniques [64, 65]. They are
heuristic frameworks with the potential of making the search process of a
metaheuristic more effective and efficient. The basic idea of a multilevel
technique is the one of coarsening a given problem instance. Then, the
problem is solved on the coarsened instance and the obtained solution
is transformed in order to obtain a solution to the original instance.
Variable fixing strategies [45, 49] are related techniques.
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Another hybrid in this first category are hyper-heuristics [13]. They
work on a higher level than classical metaheuristics, in the sense that
they do not directly operate on the search space of the problem un-
der consideration. Instead they operate on a search space consisting of
lower-level heuristics—or even metaheuristics—for the tackled problem.
Hyper-heuristics are broadly concerned with selecting the right meta-
heuristic at any situation.

Interestingly, in recent years a few examples have appeared for the
use of components from population-based methods within metaheuristics
based on local search. One of these examples concerns population-based
iterated local search [58] where iterated local search is extended from
working on a single solution to working on a population that is managed
in the style of evolution strategies. In a different example, Lozano and
Garćıa-Mart́ınez [36] advocate the use of an evolutionary algorithm as
a perturbation technique within iterated local search, while Resende et
al. [53] devise several versions of a hybrid algorithm based on GRASP
and path relinking methodologies.

An important branch of hybridization is the enhancement of meta-
heuristics with additional techniques for improving run-time, results, or
both. Montemanni and Smith [40] propose an algorithm to solve the
frequency assignment problem that is based on tabu search. Hereby,
tabu search is enhanced by heuristic manipulation, a mechanism based
on the idea that adding constraints to a problem results in a search space
reduction, which, in turn, may facilitate the solution of the problem.

2.2 Hybridization of Metaheuristics With Constraint
Programming

Constraint programming (CP) is a programming paradigm that is
build upon constraints and constraint solving [37]. CP is generally said
to be particularly effective in finding feasible solutions to highly con-
strained problems. On the other side, metaheuristics are generally very
effective in finding good-quality solutions to mildly constrained opti-
mization problems while requiring a limited amount of computational
resources. In turnm, metaheuristics are generally not very effective in
tackling highly constrained problems, while CP alone usually does not
achieve a particularily high performance in solving loosely constrained
optimization problems. Given these considerations, the combination of
metaheuristics with CP seems applicable to problems with a fairly high
number of constraints and, at the same time, a sufficiently large number
of feasible solutions [39].
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The integration of (meta)heuristics and CP dates back to the late
1990s; see, for example, the works by Pesant and Gendreau [42, 43] and
subsequent works [18, 57]. A survey on possible ways of integrating
metaheuristics and CP is provided by Focacci et al. in [23]. With a
bit of oversimplification, four main approaches for the integration of
metaheuristics and CP can be identified:

1 Metaheuristics are applied before CP, providing a valuable input,
or vice versa.

2 Metaheuristics, mainly local search methods, use CP to efficiently
explore the neighborhood of the current solution.

3 Construction-based metaheuristics use CP in order to prune the
search space.

4 CP applies a metaheuristic in order to improve a solution (i.e., a
leaf of the search tree) or a partial solution (i.e., an inner node).
Metaheuristic concepts can also be used to obtain incomplete but
efficient tree exploration strategies.

The first one of these approaches represents a rather loose hybridiza-
tion and can be seen as an instance of cooperative search [21]. The
second approach combines the advantages of a fast search space ex-
ploration by means of a metaheuristic with the efficient neighborhood
exploration performed by a systematic method. A prominent example
of such a kind of integration is large neighborhood search and related
approaches [56, 14]. The third approach has found applications espe-
cially in ant colony optimization [39, 33, 60]. Hereby, CP is used at
each solution construction step to filter the available options for the ex-
tension of the current partial solution. The fourth approach preserves
the search space exploration based on systematic search (such as tree
search), but sacrifices the exhaustive nature of the search [27, 28]. The
hybridization is usually achieved by integrating concepts developed in
the context of metaheuristics (e.g., probabilistic choices, aspiration cri-
teria, heuristic construction) into tree search methods. For example,
instead of a chronological backtracking, a backjumping based on search
history or information retrieved from local search samples can be per-
formed. Other examples of this approach can be found in [55, 47].

2.3 Hybridizing Metaheuristics with Tree Search

Optimization techniques can be characterized by their way of explor-
ing the search space. Some algorithms consider the search space of an
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optimization problem in form a of a tree, the so-called search tree, which
is generally defined by an underlying solution construction mechanism.
Each path from the root node of the search tree to one of the leafs cor-
responds to a step-by-step construction of a candidate solution. Inner
nodes of the tree are partial solutions to the given problem. The process
of moving from an inner node to one of its child nodes is called a solution
construction step, or an extension of a partial solution.

The class of tree search algorithms comprises approximate methods
such as ant colony optimization and GRASP, but also complete tech-
niques such as branch & bound and heuristic variants of complete tech-
niques such as beam search. Therefore, the hybridization of metaheuris-
tics with other tree search techniques is probably one of the most popular
hybridization approaches. One of the first works on a combination of
branch & bound with an evolutionary algorithm is the one by Nagar et
al [41]. Hereby, an incomplete execution of branch & bound is used to
guide the working of an evolutionary algorithm.

Exact tree search methods have been used quite a few times in solu-
tion merging, which is based on the idea of deriving new and hopefully
better solutions from the attributes originating from two ore more input
solutions. Applegate et al. [2, 3] were among the first to apply tree search
methods in the context of merging. In an application for the travelling
salesman problem they merge solutions and produce a (potentially) new
solution by solving the resulting reduced graph to optimality.

Similarly as constraint programming is sometimes used for searching
large neighborhoods (see Section 2.2), other tree search methods are also
utilized for this purpose. Especially branch & bound techniques based
on linear programming, including branch-and-cut, are often a promising
option when the problem at hand can be expressed by a mixed integer
programming (MIP) model. The availability of highly effective general
purpose MIP solvers, which are typically based on sophisticated branch-
and-cut frameworks but nevertheless can be relatively easily applied,
makes this approach particularly interesting in practice. In the litera-
ture, numerous successful examples exist for such approaches. Among
the more generally applicable ones is local branching [22]. A success-
ful problem-specific example for large neighborhood search by means of
solving sub-MIPs via branch-and-cut has been described by Prandtstet-
ter and Raidl for the car sequencing problem [46].

Instead of using an exact method within a metaheuristics, the liter-
ature also offers examples where incomplete versions of exact methods
are used to enhance metaheuristics. One of these examples is Beam-
ACO [7, 8], which is a hybrid algorithm that combines ant colony opti-
mization with beam search. This algorithm employs parallel and non-
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independent solution constructions at each iteration, in the style of beam
search. Another example is the hybridization of metaheuristics with
backtracking. In [29] the authors describe applications of various hy-
brid metaheuristics to problems ranging from car sequencing and graph
coloring to scheduling. For example, a tabu search algorithm for the
job shop scheduling problem is presented, combining local search with
complete enumeration as well as limited backtracking search.

The examples mentioned above are characterized by a subordinate
use of an exact method within the metaheuristic. However, the lit-
erature also offers examples where metaheuristics are used for guiding
the search process of an exact technique, or a heuristic derivate. For
example, Rothberg [54] suggests a tight integration of an evolutionary
algorithm in a MIP solver based on branch & cut. The evolutionary
algorithm is applied at regular intervals as a branch & bound tree node
heuristic. Another example concerns the works presented in [24, 11],
where the applications of beam search and a memetic algorithm are in-
tertwined. More specifically, phases of beam search and the memetic
algorithm alternate. Beam search purges its queue of open partial solu-
tions by excluding those ones whose upper bounds are worse than the
value of the best solution found by the memetic algorithm. On the other
side, beam search guides the search of the memetic algorithm by inject-
ing information about promising regions of the search space into the
population. Another example where metaheuristics may be used as a
subordinate technique is diving [17], which is a mechanism for focusing
the search process of branch & bound in an initial phase to neighbor-
hoods of promising incumbents in order to quickly identify high-quality
solutions.

2.4 Hybridization of Metaheuristics With Problem
Relaxation

Guiding metaheuristics by problem relaxation has become quite pop-
ular in recent years. A so-called relaxed problem is obtained by sim-
plifying or omitting constraints from the original problem formulation.
The hope is, first, that the relaxed problem can be efficiently solved, and
second, that the structure of an optimal solution to the relaxed problem
together with its objective function value can be used in some way for
solving the original problem. For example, the optimal solution value
of a relaxed problem can be seen as a bound for the optimal solution
value of the original problem. Therefore, it can be used in a branch &
bound algorithm for discarding parts of the search tree. An important
type of relaxation in combinatorial optimization concerns dropping the
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integrality constraints of the involved variables from a MIP formulation.
The resulting linear programming (LP) relaxation can then be solved to
optimality by efficient methods like the well-known Simplex algorithm.

One of the most obvious ways to utilize an optimal solution to the LP
relaxation of a problem at hand is to directly derive a heuristic integer
solution which is feasible for the original problem. Depending on the
problem, this can be achieved by simple rounding or more sophisticated
repairing strategies. For example, Raidl and Feltl [51] present a hy-
brid genetic algorithm for the generalized assignment problem. The LP
relaxation of the problem is solved and its solution is exploited by a ran-
domized rounding procedure to create an initial population of promising
integral solutions.

In [63], Vasquez and Hao present a two-phase approach for the multi-
dimensional 0-1 knapsack problem (MKP). This algorithm is a prime
example for a hybrid metaheuristic guided by problem relaxation. The
main idea consists in solving a number of relaxed problems obtained
by dropping the integrality constraints to optimality. This is done in
a first phase. Afterwards, in a second phase, tabu search is used to
search around the optimal solutions to the relaxed problems. Another
examples concerns the work by Puchinger and Raidl [48]. They in-
troduced relaxation guided variable neighborhood search (RGVNS). The
main algorithmic framework of RGVNS is variable neighborhood search.
However, neighborhoods are dynamically ordered according to so-called
improvement-potentials. These estimates are determined by computing
bounds on the objective function values of the optimal solutions within
each neighborhood. Such bounds are obtained by solving a relaxation
of the original problem.

A successful example for using other relaxation techniques is the hy-
brid Lagrangian GA for the prize collecting Steiner tree problem by
Haouari and Siala [26]. Hereby, the GA uses results from the previously
solved Lagrangian relexation. In particular, the original graph is reduced
by discarding edges, meaningful initial solutions are generated, and the
objective function is modified by considering reduced costs.

For the knapsack constrained maximum spanning tree problem, a sim-
ilar combination of Lagrangian decomposition and a genetic algorithm
is described in Pirkwieser et al. [44]. A combination of a Lagrangian
relaxation approach and a variable neighborhood descent metaheuristic,
which is also based on similar principles, has recently been developed for
a real-world fiber optic network design problem by Leitner and Raidl [35].

Tamura et al. [59] propose an algorithm that works by first executing
a GA for identifying a promising region of the search space. The fitness
of solutions is hereby related to Lagrangian relaxations. Afterwards, an
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exhaustive search is used to find the best solution within the identified
region.

Finally, Reimann [52] introduces an ant colony optimization algorithm
for the symmetric travelling salesman problem where an optimal solution
to the minimum spanning tree relaxation is used for biasing the search of
the artificial ants towards edges that form part of the minimum spanning
tree.

3. Hybridization of Metaheuristics With
Dynamic Programming

Dynamic programming (DP) is another example of an optimization
method from operations research and control theory that can be success-
fully integrated with metaheuristics, both in the case of constructive and
local search techniques. DP provides a method for defining an optimal
strategy that leads from an initial state to the final goal and it has been
successfully applied to many optimization and control problems [5].

Iterated dynasearch is a hybrid metaheuristic that uses DP as a neigh-
borhood exploration strategy inside iterated local search [30]. The ra-
tionale behind this integration is that in neighborhood search, the larger
the neighborhood size, the better the quality of the local optimum re-
turned (on average). Suitable neighborhoods are often of exponential
size, making it impractical to perform an explicit exhaustive lexicograf-
ical enumeration. Therefore, more computationally efficient neighbor-
hood exploration techniques are required. In some cases, DP can make
it possible to completely explore an exponential size neighborhood in
polynomial time and space [15, 1].

In [9], Blum and Blesa present the use of a DP algorithm within two
different metaheuristics for the k-cardinality tree (KCT) problem. The
general idea of their approaches is not limited to the KCT problem and
can, potentially, be used for other subset problems. Basically, the idea is
to let the metaheuristic generate objects that are bigger than solutions,
containing in general an exponential number of solutions to the problem
under consideration. DP is then used to efficiently find for each object
the best solution that it contains.

Hu and Raidl [31] use DP within an evolutionary algorithm as a mech-
anism for generating the best solution that can be obtained from an
incomplete solution. A somewhat related approach is presented in [20].
In [32], DP is used purely as a decoder for tackling the rectangle pack-
ing problem with general spatial costs, which consists in packing given
rectangles without overlap in the plane so that the maximum cost of the
rectangles is minimized.
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The following examples deal with hybridizations based on problem
decompositions. In [66], the authors propose a hybrid method that com-
bines adaptive memory, sparse DP, and reduction techniques to reduce
and explore the search space. The first step consists in the generation
of a bi-partition of the variables. The resulting small problem is solved
using the forward-phase of DP. The space defined by the remaining vari-
ables is explored using tabu search. Hereby, each partial solution is
completed with the information stored during the forward phase of DP.
The application of DP to subproblems is also proposed in [61]. The
presented local search technique called iterative dynamic programming
works by subdividing the problem into subproblems, and optimizing the
subproblems seperately by DP.

Finally, we would like to point out an interesting heuristic version
of DP known as bounded dynamic programming in which at each level
the number of states is heuristically reduced. In this way, the authors
of [4] were able to find most optimal solutions to benchmark instances
of the simple assembly line balancing problem in a reduced amount of
computation time.

4. Conclusions

Research on hybrid metaheuristics is still in its early stages. However,
we are convinced that, in the years to come, most publications on meta-
heuristic applications will be concerned with hybrids. Nevertheless, the
process of designing and implementing hybrid metaheuristics is rather
complicated and involves knowledge about a broad spectrum of algorith-
mic techniques, programming and data structures, as well as algorithm
engineering and statistics. In fact, it is hardly possible to provide guide-
lines for the successful development of hybrid metaheuristics. However,
in the process of developing a hybrid metaheuristic it is indispensible (1)
to carefully search the literature for the most successful optimization ap-
proaches for the problem at hand or for similar problems, and (2) the
study of different ways of combining the most promising features of the
identified approaches. We hope that this paper may serve as a starting
point for this purpose.
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[66] C. Wilbaut, S. Hanafi, A. Fréville, and S. Balev. Tabu search: global intensi-
fication using dynamic programming. Control and Cybernetics, 35(3):579–598,
2009.


