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Abstract
We study a variant of the geometric covering problem, namely, Disjoint Box Covering in a Rectilinear
Polygon (DBCR). Given a rectilinear polygon R with m edges and a finite set P of n points inside
R, in the DBCR problem, the objective is to find a set S of pairwise disjoint axis-aligned rectangles,
such that S covers P , each rectangle is fully contained inside the polygon R, and S has minimum
cardinality. We show that this problem is NP-hard for points in general position. Moreover, we
design an O(n logn+m logm)-time exact algorithm for the DBCR problem if the input rectilinear
polygon is a histogram.

1 Introduction

In the geometric set cover problem, the input is a range space Σ = (X,R), where X is a
universe of points in Rd and R is a family of subsets of X called ranges. The subsets in R
are defined by the intersection of X and geometric shapes such as axis-parallel rectangles,
disks, etc. The objective is to select a minimum-size subset C ⊆ R of ranges such that every
point in the universe X is covered by some range in C. The geometric set cover problem
is known to be NP-complete even for simple geometric range spaces, e.g., when R is a set
of unit disks or unit squares in R2 [16]. However, the problem is far more tractable in the
geometric domain than the classical set cover problem. For instance, while it is known that
the set cover problem is inapproximable within factor O(logn), there exist several polynomial
time approximation schemes for the geometric variant of the problem that used underlying
geometric structures to achieve better algorithmic results; see [1, 3, 12, 13].

We study a special variant of the geometric set cover problem, namely, the Disjoint Box
Covering in a Rectilinear Polygon (DBCR) problem. Given a rectilinear polygon R, possibly
with holes, and a finite set P of n points inside R, in the DBCR problem, the objective
is to find a set S of pairwise disjoint axis-aligned rectangles, such that S covers P and
each rectangle is fully contained inside R. The DBCR problem is particularly motivated
by geographically-informed text-based visualizations, such as spatial word or tag clouds.
Imagine that we are given a set of locations, the point set P , inside a geographic region,
the polygon R, with several possible text labels per location, which may refer to different
categories of P (colored points). It is important for spatial word clouds to not only capture
the frequency or weight but additionally the spatial relevance of the words (see [9]). If we
model the words as axis-parallel rectangles, then the objective is to cover P with disjoint
rectangles such that each rectangle contains only points of the same color and stays inside R.
In this work, we address this problem under the simplifying assumption that the points are
inside a rectilinear polygon and are all of same color. Without any color restrictions, one
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Figure 1 Comparing a solution to DBCR in (a) by a partitioning of the polygon in (b).

way to solve the problem is to compute a minimum rectangular partitioning of the input
polygon, which is solvable in polynomial time [18]. However, in a U-shaped polygon the
solution of the partitioning problem could already differ from the solution of the DBCR
problem (see Fig. 1). In fact, the DBCR problem is NP-hard if R is an arbitrary rectilinear
polygon (Section 2). However, if R is a histogram, i.e., a rectilinear polygon consisting of a
base line and a monotone path, we can give a polynomial-time algorithm (Section 3).

Related work. Many variants of the geometric covering problem have been investigated
over the years, e.g., (p, k)-box covering [2]; class cover problems [8], red-blue cover [5, 11, 10].
Moreover, geometric covering problems have been widely studied in various algorithmic
paradigms such as approximation algorithms (see [1, 13, 6, 14]) and parameterized algorithms
(see [4, 7]). However, most of these works do not consider the case where the output objects
must be disjoint. This makes the DBCR problem particularly unique, and none of these
algorithms can be directly applied in our context.

2 NP-completeness of DBCR

In this section, we show firstly that the DBCR problem is NP-complete. We do a reduction
similar to the one by Chan and Hu for red-blue set cover [11], using the following Lemmata.

I Lemma 2.1. ([19]) Every planar graph G = (V,E) of maximum degree at most 4 has an
orthogonal grid drawing on an O(|V |)×O(|V |) grid.

I Lemma 2.2. (Folklore) Given a graph G and an edge e in G, define a new graph G′

obtained from G by subdividing e through the addition of two new vertices. Then the size of
a minimum vertex cover of G′ is exactly the size of a minimum vertex cover of G plus 1.

I Theorem 2.3. Disjoint Box Covering in a Rectilinear Polygon is NP-hard.

Proof. We reduce from the vertex cover problem on 3-regular planar graphs, which is known
to be NP-hard by Garey and Johnson [17]. Given a 3-regular planar graph G with n vertices,
we create an orthogonal grid drawing δG by Lemma 2.1; see Figure 2a as an illustration. In
the following, we construct a new graph G′ by adding several dummy vertices in δG.

Firstly, we add a dummy vertex on each bend of δG, to create a straight-line drawing.
We call a vertex v in δG a corner vertex, if there exists a pair of perpendicular line segments
in δG that meet at v. Then, for each edge e connecting two corner vertices, we add a dummy
vertex in the middle of e. This results in the new graph G′, where each edge is incident to
at most one corner vertex. To apply Lemma 2.2, for each original edge e in G, we check
whether there is an even number of dummy vertices on e, including dummy corner vertices.
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Figure 2 The reduction on graph G = K4. (a) An orthogonal grid drawing δG of G. (b) The
dummy vertices are added in δG to the bends (red) and on the edges, both to prevent multiple
corner vertices incident to an edge (yellow), and for parity (green). (c) Cover rectangles, for black,
red, yellow and green vertices, cover all (white) points in P and are drawn on the shifted grid.

If not, we then add a dummy vertex anywhere on the edge, to ensure the vertex cover of G′
changes predictably (see Figure 2b).

To construct point set P in the DBCR instance from G′, we replace each edge in G′ by a
point. If an edge e is incident to a corner vertex v, we put a point at 1

3 of grid length from
v on e. Otherwise, we create a point in the middle of the edge. Now we shift the points
such that there are no two points on the same horizontal or vertical line. To achieve this, we
map the drawing δG′ to an orthogonal grid rotated by α. We look at each corner vertex c
in δG′ and consider each pair of orthogonal edges incident to c with lengths xc and yc. We
choose α < min

{
arctan(minc

xc

yc
)/2, arctan(minc

yc

xc
)/2

}
. For each vertex v in G′, we draw

a rectangle Bv, such that Bv is the minimum bounding box covering v and the points on
edges of v (see Figure 2c). By our choice of α these rectangles overlap only at points in P .

We say that Bv is the cover rectangle of the vertex v. For each corner vertex, we add
a margin of length 1

2ε to its cover rectangle, where ε is an infinitesimally small distance.
This ensures that the covered points are not on its boundaries and the rectangles grow by ε
both horizontally and vertically. Intuitively, there are two types of cover rectangles, small
rectangles for corner vertices and long rectangular bars otherwise. We can then make the
following observations.

I Observation 2.4. Two cover rectangles intersect if and only if its corresponding vertices
are adjacent; For each edge of G′, only the rectangles of its two incident vertices intersect
with it and the intersection contains the point on the edge.

The union of cover rectangles builds the rectilinear polygon R in our DBCR instance.

I Observation 2.5. Given an arbitrary rectangle S in R that covers a subset P ′ of point set
P , the minimum bounding box of P ′ is inside a cover rectangle.

After shifting, the points (and the corresponding cover rectangles) on a horizontal/vertical
grid line are in a monotonic order. For two points that are not covered by the same rectangle
Bv of any vertex v, there is no rectangle inside P that covers these points at the same time.

The correctness of the reduction is now straightforward. A vertex cover in G′ corresponds
to a set S of cover rectangles in R that covers all the points P . By Observation 2.4, if two
cover rectangles intersect each other, their corresponding vertices are adjacent. Due to our
construction, no two corner vertices are adjacent. Therefore, each intersection involves at
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Figure 3 The red sweep line stores the vertical segments of the histogram (in bold) and the
rectangles in the solution (in blue) at a certain y-coordinate. (a) The status is shown between events
at yi−1 and yi. (b) The point circled in green is found by querying QP at the event of hi.

least one non-corner vertex. Consider a rectangles S ∈ S whose corresponding vertex is
not a corner vertex. If the rectangle S intersects other rectangles in S, we could eliminate
the intersection by shrinking long rectangle S, while still covering all the points. After
eliminating all the intersections in S, it is a solution to the DBCR problem for point set P
in R. In the other direction, we are given a set S of disjoint rectangles inside R that cover
all the points in P . By Observation 2.5, each rectangle in S is completely inside a cover
rectangle in the polygon R. We select all the cover rectangles that contains rectangles in
S. These rectangles cover all the points and their corresponding vertices in G′ cover all the
edges in G′, thus they would build a vertex cover in G′. J

Containment in NP is straightforward for the DBCR problem, since we have to check only
whether each point in P is covered by a rectangle in S, and each rectangle in S is contained
in R. These tasks can be done efficiently using point location data structures.

3 Covering points inside histogram

We solve the DBCR problem inside a histogram, which is defined as in [15] (see Figure 3).

Histogram: Define a (vertical) histogram with m edges as a rectilinear polygon with one
horizontal edge (the base) equal in length to the sum of all other horizontal edges.

The DBCR problem in a histogram can be solved in polynomial time using a greedy
algorithm A. We assume the base of the input histogram H is located at y = 0 and extends
only upwards, ending in m

2 − 1 horizontal edges.
Algorithm A first sorts the m

2 horizontal pieces based on their y-coordinates in descending
order, resulting in queue QH . Furthermore, the points in P are sorted by their y-coordinates,
resulting in a queue QP . Using a horizontal sweep line l, an optimal solution S is constructed
starting from the top of the histogram H. A status s stored with the sweep line maintains
the x-coordinates of vertical rectangle edges in S, as well as the x-coordinates of the vertical
segments of H, at a certain y-coordinate (see Figure 3a).

As the sweep line l moves downwards, an event occurs at every horizontal segment h of
H. At an event the status must be updated, and we query QH to find the next horizontal
segment hi of H. By querying QP , we can quickly find all points between hi and the previous
horizontal segment hi−1, at y-coordinates yi and yi−1, respectively. If there are no points,
then the solution S and status s require no change. However, if there are points, we check
whether (at least) one of the points is not covered by the rectangles stored in s. If this is
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the case for some point p, then we add a new rectangle to the solution S, starting at yi−1
and spanning the whole width between the vertical segments of H neighboring p. These
vertical segments can be found by querying s using the x-coordinate of p, and walking in
both directions through s until a vertical segment is encountered. To prevent rectangles in S
from overlapping, we settle and remove any rectangles from s that would otherwise overlap
the newly added rectangle. The settled rectangles will vertically extend down to yi−1 in the
final solution S (see Figure 3b).

Finally, depending on what type of segment hi is, the status s must be updated accordingly.
The segment hi can have one of the following two types:

Segment hi is the top of a vertical spike of H. In this case, s is updated to include the
x-coordinates of the vertical segments, pointing downwards from hi.
Segment hi connects two vertical spikes of H. Status s must then be updated to no
longer include the vertical segments that point downwards to hi.

A complete solution found by algorithm A can be found in Figure 4.

I Lemma 3.1. Algorithm A finds an optimal solution for the DBCR problem, given a set P
of points inside a histogram H.

Proof. We make a case distinction on whether an optimal solution OPT that has at least two
rectangles r1, r2 horizontally next to each other without vertical histogram segments between
them. First assume there are no such rectangles, and hence can extend each rectangle left-
and rightwards until the polygon is hit, without intersecting any other rectangle. Next, we
start from the base of the polygon and extend rectangles upwards until a horizontal edge of
H is reached. Any rectangles intersected in the process shrink by moving their bottom edge
upwards, leaving no points uncovered, since they will be covered by the rectangles that are
extending upwards. The resulting solution is equivalent to a greedy solution of algorithm A.

Now assume we have an optimal solution OPT that has at least two such rectangles
r1, r2. Note that one of these rectangles may extend further upwards than the other. Assume
w.l.o.g. that r1 extends further upwards if this is the case.

Consider the greedy solution OPT ′, which instead contains rectangles r′1, r′2, such that r′1
stops at the top of r2 and r′2 covers the whole space occupied by r1, r2 horizontally. Rectangle
r′2 can also extend as far downwards as the lowest boundary of r1, r2. This cannot lead to an
intersection with the polygon boundary, because the histogram ends in a base that stretches
the whole width horizontally. Furthermore, any intersected rectangles come in from the side
or bottom, and can be safely shrunk, such that the points no longer covered by these shrunk
rectangles are now covered by r′2.

Figure 4 A complete solution for the example in Figure 3, as found by algorithm A.
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Finally, we can conclude that |OPT | = |OPT ′|, since the number of rectangles stays
equal in the transformation from OPT to OPT ′. After applying this transformation for as
long as there are two rectangles in the above horizontally neighboring position, all rectangles
correspond to the greedily chosen rectangles of algorithm A. J

Finally we show that algorithm A has polynomial running time.

I Lemma 3.2. Algorithm A runs in O(n logn+m logm) time.

Proof. The m
2 horizontal segments of H and the n points in P are separately sorted and put

in queues in O(m logm) and O(n logn) time, respectively. These queues are then queried,
but no additional elements are added, again leading to O(m logm) and O(n logn) time spent.
Finally, segments of histogram H and solution S are stored in and removed from status s.
Since histogram H has m

2 vertical segments, and for each of the m
2 horizontal segments of

H, only a single rectangle can exist in the solution, status s contains at most m
2 segments.

As status s is sorted on x-coordinates, we can use a balanced binary search tree to ensure
O(logm) update time. There are m

2 events, one for each horizontal segment, and hence
maintaining the status takes O(m logm) time in total. J

I Theorem 3.3. Given a set P of n points inside a histogram H with m edges, there exists
an algorithm that solves the DBCR problem optimally in O(n logn+m logm) time.
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