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Abstract

In this work we consider the generalized vehicle routing problem with stochastic
demands (GVRPSD). This NP-hard problem combines the clustering aspect of the
generalized vehicle routing problem with the uncertainty aspect of the vehicle rout-
ing problem with stochastic demands. We propose an integer L-shaped method
based on decomposition and branch-and-cut. The subproblem of computing the
restocking costs is based on dynamic programming. We consider the preventive re-
stocking strategy which is substantially harder than the standard restocking strat-
egy used by the majority of the published articles for stochastic vehicle routing
problems. Using this strategy the vehicle can make a return trip to the depot even
before an actual stockout occurs and therefore save travel time. The GVRPSD has
not been considered in the literature so far and this first exact solution attempt
proves to be able to solve small to medium instances.
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1 Introduction

We consider the generalized vehicle routing problem with stochastic demands
(GVRPSD) which is a combination of the well-known generalized vehicle rout-
ing problem (GVRP) and the vehicle routing problem with stochastic demands
(VRPSD). The nodes are partitioned into clusters and the actual demand of
each cluster depends on the realization of a random variable. This problem
appears, e.g., in healthcare logistics when medical supplies need to be deliv-
ered to districts with several hospitals and the distributing company does not
know beforehand how much supply is exactly needed.

Formally, the GVRPSD is defined on a complete undirected graph G =
(V,E) with node set V and edge set E. The edges e ∈ E are weighted with
distances de ≥ 0. The set of nodes is partitioned into m disjoint subsets or
clusters C = {C0, C1, . . . , Cm}, C0, . . . , Cm ⊆ V, such that C0 ∪ C1 ∪ · · · ∪
Cm = V . Node v0 ∈ V is a dedicated depot and the only node of cluster
C0. Each other cluster Cj,∀j = 1, . . . ,m has an associated demand ξj being
a random variable with expected value E[ξj] and following a known discrete
probability distribution; i.e., we know for each cluster Cj the probability pjk =
P (ξj = k) that cluster j has a demand of k ≥ 0. Furthermore, we are given
a vehicle with a limited capacity Q. As multiple visits are not considered we
can safely assume that pjk = 0, ∀j = 1, . . . ,m, ∀k > Q. The aim is to find a
route visiting exactly one node from each cluster C1, . . . , Cm delivering goods
according to the clusters’ actual demands. The current load of the vehicle
decreases each time a cluster demand is satisfied but is refilled to Q each time
it returns to the depot. The amount of how much the load gets decreased by
visiting cluster j depends on the actual realization of ξj, which becomes known
only upon arrival. Possibly, the vehicle will get empty and has to restock at
the depot before continuing the route. Such an event is called a stockout.

A common approach for solving such stochastic optimization problems is
to use a-priori routes [6] through all clusters. For handling stockouts we adopt
the preventive restocking strategy from the VRPSD [9,2] in which more ef-
ficient intentionally planned restocking trips back to the depot can often be
performed before the actual stockout occurs, e.g., if a stockout at the next
cluster is likely. However, the actual demand can still exceed the remaining
vehicle capacity. Then a restock is made before satisfying the remaining de-
mand. When using the preventive restocking strategy it is sufficient to plan
one giant tour through all clusters when the problem is not further constrained
as shown by Yang et al. for the VRPSD [9]. Therefore the problem is more
closely related to the generalized traveling salesman problem (GTSP) rather



than to the GVRP in which more routes may be necessary.

The majority of the work for the VRPSD [4,5] only consider the standard
restocking policy, in which return trips to the depot are only performed when
actual stockouts occur. The preventive restocking strategy is significantly
harder to consider and only metaheuristics have been applied so far [2,9]. In
this work we address this problem for the generalized version and use the inte-
ger L-shaped method based on a formulation for the GTSP [3] for solving the
GVRPSD exactly. This method has been introduced in [8] and is a well-known
algorithm in the field of stochastic programming. It is based on a Benders de-
composition approach in which subproblems compute the restocking costs [7]
for which optimality cuts are then iteratively added to the initially relaxed
master problem. The L-shaped method has already been successfully applied
to several stochastic optimization problems, e.g,. stochastic vehicle routing
problems [7,4,5].

Our model for the GVRPSD is presented in Section 2. Subproblems are
solved using a dynamic programming (DP) algorithm, which is described in
Section 3. The basic algorithm is improved by computing lower bounds on
the restocking costs of partial solutions yielding more general optimality cuts.
Computational results are shown in Section 4 and indicate that the method
is effective for small to medium sized GVRPSD instances.

2 Mathematical Model

To model the GVRPSD we define binary decision variables xe,∀e ∈ E, which
are set to one if edge e is used in the solution and zero otherwise. We further
use binary variables yv,∀v ∈ V to determine which nodes are visited, i.e., yv
is set to one if v is visited and zero otherwise. Finally, variable θ denotes a
lower bound on the restocking costs. In a preprocessing step a global lower
bound L of the expected restocking costs is computed as follows. We calculate

the rounded expected number of restocks E[nr] =
⌊∑m

k=1(E[ξk])

Q

⌋
and for each

pair of nodes (i, j) the costs sij = d(i,0) + d(0,j) − d(i,j) for a preventive restock
between them. Then, L is the sum of the E[nr] smallest sij values. Function
δ(S) denotes the edge-set of the cut (S, V \ S), i.e., δ(S) = {(i, j) ∈ E |
i ∈ S, j 6∈ S},∀S ⊆ V . Our model for the master problem works as follows.
Objective function (1) minimizes the sum of the total travel costs and the
additional restocking costs. Equations (2) ensure that each node which is used
in the solution has exactly two outgoing edges. Constraints (3) guarantee that
exactly one node from each cluster is visited. Eliminating subtours is done



by classical cut-set inequalities (4). They are dynamically added within a
branch-and-cut framework. The separation procedure is based on m maximum
flow computations. Inequality (5) sets the value of the lower bound of the
restocking costs to be at least the global lower bound L. Inequalities (8) are
the specific optimality cuts setting the restocking costs accordingly. Set Π
consists of all possible cluster permutations. The edge set Eπ of a cluster
permutation π ∈ Π consists of all the edges between all consecutive clusters
without cluster C0.

min
∑
e∈E

dexe + θ (1)

s.t.
∑

e∈δ({v})

xe = 2yv for v ∈ V (2)

∑
v∈Cj

yv = 1 for j = 1, . . . ,m (3)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ C, 2 ≤ |S| ≤ m− 2, C0 ∈ S (4)

θ ≥ L (5)

xe ∈ {0, 1} for e ∈ E (6)

yv ∈ {0, 1} for v ∈ V (7)

(θπ − L)

 ∑
(i,l)∈Eπ

xil − (m− 2)

 /2

 + L ≤ θ ∀π ∈ Π (8)

The value of θπ represents the recourse costs for permutation π and is com-
puted in the subproblem via a dynamic programming procedure, which is
described in the next section. This value is equal to θ for exactly the route
corresponding to the cluster permutation π, because then

∑
(i,j)∈Eπ xij = m.

In all other feasible routes at least two edge variables in Eπ are zero and
therefore the lefthand side of the inequality does not exceed L.

3 Specific and General Optimality Cuts

In this section the computation of the restocking costs using the preventive
restocking strategy is described. As mentioned before a dynamic program-
ming procedure is used to compute these additional costs exactly. A similar
algorithm has already been used for the VRPSD [9,2]. In the DP we define a
recursive function fij(q) for all q = 0, . . . , Q, j = 0, . . . ,m, i = 0, . . . , |π(j)|−1
to be the expected remaining cost of the tour after servicing the i-th node of
cluster π(j) with respect to the remaining capacity q. The auxiliary function



bj(l) returns the l-th node of cluster at position j. To compute the total cost
c∗(π) of a cluster permutation π the following DP recursion is used:

fij(q) = min{fpij(q), f
r
ij(q)}

fpij(q) = min
l=0,...,|π(j+1)|

{dbj(i),bj+1(l) +

q∑
k=0

fl,j+1(q − k)pj+1,k

+

Q∑
k=q+1

2dbj+1(l),0 + fl,j+1(q +Q− k)pj+1,k}

frij(q) = dbj(i),0 + min
l=0,...,|π(j+1)|

{d0,bj+1(l) +

Q∑
k=0

fl,j+1(Q− k)pj+1,k}

∀q = 0, . . . , Q, j = 0, . . . ,m, i = 0, . . . , |π(j)| − 1

and the boundary condition
fim(q) = dbm(i),0, ∀q = 0, . . . , Q, i = 0, . . . , |π(m)| − 1

This DP computes for each node i and each vehicle load q if it is in the expected
case more cost efficient to proceed directly to the next cluster with costs fpij(q)
or to make a preventive restock with costs f rij(q). The total cost c∗(π) is given
by f0,0(Q). When considering restocking costs the direction of the route is
important so the actual cost of an undirected route stated as permutation π is
given by c∗(π∗) = min {c∗(π), c∗(reverse(π)}, where reverse(π) represents the
reversed order of the elements in π. Let ĉ(π) be the travel costs of permutation
π from solving the model without considering the restocking costs. Then the
exact restocking costs θπ are c∗(π∗)− ĉ(π).

Each time the master problem is solved, this DP algorithm is executed
and the respective specific optimality cut (8) is added to the model if not yet
included. The procedure iterates until no further cuts are separated and thus
an optimum overall solution has been found. A weakness of these specific
optimality cuts is that they only apply to exactly one solution but in the next
section we show how to generalize these cuts in order to increase the lower
bound on the restocking costs more generally.

3.1 General Optimality Cuts

We generalize the specific optimality cuts from the last section by computing
lower bounds on the restocking costs for partial routes. Therefore, for a given
permutation π = 〈Cπ(0), Cπ(1), . . . , Cπ(m−1)〉 we consider m−2 partial segments
πh = 〈Cπ(h), Cπ(h+1), . . . , Cπ(m−1)〉, ∀h = 1, . . . ,m−2. Each segment implicitly
starts and ends at the depot and we use a slightly modified version of the DP



for computing a lower bound on the restocking costs θπh for all solutions using
this segment. For all θπh values which are larger than zero the following general
optimality cut is added to the model.

(θπh − L)

 ∑
(i,l)∈E

πh

xil − (m− h− 3)

 /2

 + L ≤ θ

Adding such a general optimality cut increases the lower bounds on the re-
stocking costs for all cluster permutations π which contain πh as partial seg-
ment. In a naive approach 2(m − 2) executions of the DP algorithm would
be needed to compute the restocking costs of all these segments. However, by
using an incremented evaluation technique we can store the values of fij(q)
and use them for the next DP computation. More specifically, we start with
the last segment πm−2 and calculate fi,m−2(q), ∀i ∈ π(m − 2), q = 0, . . . , Q.
This value is used for the next iteration where segment πh−3 is considered and
we only have to compute fi,m−3(q),∀i ∈ π(m − 3), q = 0, . . . , Q and use the
previous values of fi,m−2(q). This method saves many unnecessary computa-
tions so that we can add up to m− 2 general optimality cuts without having
to execute the whole DP algorithm each time.

4 Computational Results

The algorithm is implemented in C++ with CPLEX 12.6 and tested on a
single core of an Intel Xeon with 2.53 GHz and 3GB RAM. Our benchmark
instances1 are based on the GVRP instances by Bektaş et al. [1]. We adapted
them to the GVRPSD by assigning the original demand values to be the
expected demands and choosing randomly for each cluster if it is a low spread
or a high spread cluster. For low spread clusters the set of possible demands is
±10% of the expected value and for the high spread it is ±30%. All of these
demand values are considered to be equally likely, so we assumed a uniform
distribution over these values. Additionally, we used instances with a higher
demand variance (±50% and ±80%, respectively).

In Table 1 the integer L-shaped algorithm with only the specific optimality
cuts is compared to the version where both specific and general optimality
cuts are considered. For both configurations the final objective value obj , the
time needed in seconds t[s] and the resulting optimality gap (gap) are listed.
Additionally, the number of specific (#OS) and general (#OG) optimality
cuts are given. We observe that when only the specific optimality cuts are

1 www.ads.tuwien.ac.at/w/Research/Problem Instances



Table 1
Results of the integer L-shaped method with and without general optimality cuts.

L-shaped + OPTS L-shaped + OPTS + OPTG

Instance n m E[nr] obj t[s] gap #OS obj t[s] gap #OS #OG

A-n32-k5-C11-V2 32 11 1,39 386,909 >14400 4,2% 877 386,909 2086 0,0% 160 631

A-n33-k5-C11-V2 33 11 1,52 318,028 231 0,0% 389 318,028 84 0,0% 76 353

A-n33-k6-C11-V2 33 11 1,91 364,589 10172 0,0% 1367 364,589 658 0,0% 78 359

A-n34-k5-C12-V2 34 12 1,66 419,124 >14400 8,1% 2752 419,124 10824 0,0% 260 1467

A-n36-k5-C12-V2 36 12 1,34 399,905 >14400 12,9% 2018 399,997 >14400 9,1% 671 2882

A-n37-k5-C13-V2 37 13 1,43 359,133 1271 0,0% 903 359,133 212 0,0% 158 594

A-n38-k5-C13-V2 38 13 1,71 371,795 >14400 4,0% 2007 371,795 339 0,0% 61 408

P-n40-k5-C14-V2 40 14 1,51 214,753 2308 0,0% 1279 214,753 399 0,0% 123 748

P-n45-k5-C15-V2 45 15 1,61 239,357 >14400 7,2% 2337 239,568 >14400 3,0% 281 1910

P-n76-k4-C26-V2 76 26 1,33 310,397 >14400 5,9% 1229 310,397 >14400 6,1% 283 2269

P-n76-k5-C26-V2 76 26 1,67 310,397 >14400 5,9% 1252 310,397 >14400 6,3% 299 3484

Instances with higher demand variance

A-n32-k5-C11-V2 32 11 1,39 393,475 >14400 6,5% 1180 393,475 3845 0,0% 199 1209

A-n33-k5-C11-V2 33 11 1,52 322,048 571 0,0% 577 322,048 134 0,0% 108 605

A-n33-k6-C11-V2 33 11 1,91 366,445 9380 0,0% 1335 366,445 570 0,0% 84 519

A-n34-k5-C12-V2 34 12 1,66 427,409 >14400 9,7% 3673 427,409 >14400 2,6% 371 2705

P-n40-k5-C14-V2 40 14 1,51 215,798 2480 0,0% 1662 215,798 392 0,0% 131 1056

P-n45-k5-C15-V2 45 15 1,61 241,271 >14400 8,1% 2624 241,271 >14400 3,6% 257 2315

P-n76-k4-C26-V2 76 26 1,33 310,397 >14400 6,0% 1078 310,397 >14400 7,2% 161 1742

P-n76-k5-C26-V2 76 26 1,67 311,431 >14400 6,4% 1032 311,431 >14400 6,8% 255 3786

Instances with E[nr] > 2

A-n45-k6-C15-V3 45 15 2,09 478,219 >14400 16,8% 2369 478,219 >14400 13,3% 503 4400

A-n45-k7-C15-V3 45 15 2,06 491,539 >14400 31,7% 3498 491,739 >14400 29,0% 871 6614

A-n46-k7-C16-V3 46 16 2,08 471,716 >14400 23,3% 2626 465,624 >14400 15,7% 511 4734

A-n48-k7-C16-V3 48 16 2,13 465,343 >14400 28,7% 2361 465,35 >14400 25,8% 892 8151

A-n53-k7-C18-V3 53 18 2,09 443,873 >14400 14,6% 1977 445,802 >14400 11,8% 539 6521

A-n54-k7-C18-V3 54 18 2,19 496,364 >14400 28,8% 1961 507,513 >14400 27,9% 661 6785

A-n55-k9-C19-V3 55 19 2,75 481,531 >14400 21,9% 1662 483,997 >14400 19,2% 359 4625

A-n60-k9-C20-V3 60 20 2,8 622,404 >14400 36,6% 1726 622,404 >14400 34,6% 440 5835

Average gap 10,7% 8,2%

used only 7 out of 27 instances could be solved to optimality within the CPU
time limit of four hours. This number is increased to 11 when also general
optimality cuts are added. Also for the unsolved instances the final optimality
gap is consistently better and the number of specific optimality cuts lower
when considering general optimality cuts. We further observe that a lot of
optimality cuts were needed to solve the model, which indicates a potential to
improve this algorithm. Apparently, the lower bounds obtained by the general
optimality cuts are still too weak to be able to solve all instances in reasonable
time. We notice that the complexity of the instances does not only depend on
the number of clusters and nodes but even more on the number of expected
restocks as no instance with E[nr] > 2 could be solved to optimality.



5 Conclusions

We presented an integer L-shaped method for the GVRPSD. Neither the
GVRPSD nor the VRPSD with preventive restocking have been considered by
exact algorithms so far, so an initial attempt was made. Results showed that
this approach is effective for solving smaller instances up to about 40 nodes
and 13 clusters with E[nr] ≤ 2. Possible directions for future research are on
the one hand to increase the lower bounds of the restocking costs even further
and on the other hand to increase the global lower bound to be able to cut off
more solutions. Also, the number of DP executions is clearly a bottleneck of
this algorithm, so reducing it could also lead to a major decrease in run-time.
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