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Abstract The Probabilistic Traveling Salesman Problem (PTSP) is a
variant of the classical Traveling Salesman Problem (TSP) where each
city has a given probability requiring a visit. We aim for an a-priori
tour including every city that minimizes the expected length over all
realizations. In this paper we consider different heuristic approaches
for the PTSP. First we analyze various popular construction heuristics
for the classical TSP applied on the PTSP: nearest neighbor, farthest
insertion, nearest insertion, radial sorting and space filling curve. Then
we investigate their extensions to the PTSP: almost nearest neighbor,
probabilistic farthest insertion, probabilistic nearest insertion. To improve
the constructed solutions we use existing 2-opt and 1-shift neighborhood
structures for which exact delta evaluation formulations exist. These are
embedded within a Variable Neighborhood Descent framework into a
Variable Neighborhood Search. Computational results indicate that this
approach is competitive to already existing heuristic algorithms and able
to find good solutions in low runtime.

Keywords: probabilistic traveling salesman problem, variable neighborhood
search, construction heuristics

1 Introduction

The Probabilistic Traveling Salesman Problem (PTSP) is an NP-hard problem [6]
introduced by Jaillet [10]. It is a variant of the Traveling Salesman Problem
(TSP), where each city has an assigned probability of requiring a visit. We search
for an a-priori tour through all cities that minimizes the expected length of the
real tour, where some cities might not have to be visited. The real tour, also
called realization of the a-priori tour, then follows this a-priori tour and skips
cities which do not have to be visited. A real world application for the PTSP
would be, e.g., a postman who delivers mails on a fixed assigned route every day.
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From historical data the probability of each address requiring a visit is known.
After each delivery he checks which address he has to visit next and proceeds
accordingly.

Formally we are given a complete graph G = ⟨V, E⟩ with V being a vertex
set containing n nodes and E being an edge set containing m edges. Each
edge (i, j) ∈ E is assigned a cost dij and each node v ∈ V has a probability
pv of requiring a visit. If the probabilities pv are equal for every node, the
problem is called homogeneous and otherwise it is heterogeneous [9]. A solution
T = ⟨v1, . . . , vn⟩ is an a-priori tour, represented by a permutation of the n nodes,
where the first and last nodes are implicitly assumed to be connected. In this
paper we concentrate on the homogeneous PTSP with symmetric distances due
to comparability with other papers.

The expected costs of a tour T are defined as

c(T ) =
2n∑

i=1
p(Ri)L(Ri) (1)

where Ri is a possible realization, i.e., one possible a-posteriori tour, p(Ri) its
occurrence probability, and L(Ri) the resulting length of the tour. Since there
are O(2n) different realizations, it is not convenient to compute the objective
value in such a way. Therefore Jaillet [10] showed that the expected length can
be calculated in O(n2) time using the following closed form expression:

c(T ) =
n∑

i=1

n∑
j=i+1

dvivj pvipvj

j−1∏
k=i+1

(1 − pvk
)+

n∑
j=1

j−1∑
i=1

dvjvi
pvi

pvj

n∏
k=j+1

(1 − pvk
)

i−1∏
k=1

(1 − pvk
)

(2)

This formula represents the most general form for heterogeneous PTSPs. As we
concentrate on the homogeneous problem, we will use the following, simplified
objective function:

c(T ) = p2
n−1∑
r=1

(1 − p)r−1
n∑

i=1
dvivi+r

(3)

The PTSP is a well studied problem in the literature. Bertsimas et al. [4, 6]
contributed theoretical properties of the PTSP such as bounds and asymptotic
analyses. Bianchi et al. [7, 8] proposed metaheuristic approaches based on ant
colony optimization and local search with exact delta evaluation. Balaprakash
et al. [1, 2] analyzed sampling and estimation-based approaches. Weyland et
al. [14, 15] considered new sampling and ad-hoc approximation methods for local
search and ant colony system. Marinakis and Marinaki [11] proposed a hybrid
swarm optimization approach. The most promising results were obtained by
using not the exact objective function as stated in Eq. 3, but either a restricted
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depth approximation or a sampling approach. In contrast, our approach is based
on an efficient exact evaluation.

In Section 2 we apply several TSP construction heuristics to the PTSP,
consider Jaillet’s Almost Nearest Neighbor Heuristic [10], and introduce two new
construction heuristics derived for the PTSP: Probabilistic Farthest Insertion and
Probabilistic Nearest Insertion. In Section 3 we propose a Variable Neighborhood
Descent Framework embedded in a Variable Neighborhood Search to improve
constructed solutions. Section 4 presents experimental results and Section 5
concludes this work.

2 Construction Heuristics

For generating an initial solution for the subsequent VND / VNS we consider
several different construction heuristics. First we investigate construction heuris-
tics having already been used for the TSP and then we improve upon them by
taking also the probabilities into account.

2.1 TSP Construction Heuristics on PTSP

To construct a reasonable tour for PTSP we first investigate how well TSP
construction heuristics perform. We evaluate the following construction heuristics:

Nearest Neighbor (NN): Starting from a first node v0 ∈ V , we iteratively
append an unvisited node that is nearest to the previously inserted one. The
resulting computational complexity is in O(n2).

Nearest Insertion (NI): Starting with a simple tour T containing only one
node v0 ∈ V , we insert the nearest node to the previously inserted one at the
best fitting position. Let vj be the node to be inserted next, then we calculate
the best fitting position by determining

min
vi,vi+1∈T

(dvivj
+ dvjvi+1 − dvivi+1) (4)

The computational complexity is in O(n2).

Farthest Insertion (FI): This heuristic is similar to NI. The only difference
is that we choose the farthest node to the previously inserted one is chosen for
insertion instead of the nearest one.

Space Filling Curve (SFC): SFC was introduced by Bartholdi et al. [3]. The
heuristic constructs a Sierpiński curve over all cities and visits them as they
appear on this curve. The computational complexity is in O(n log n).
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Radial Sorting (RS): We construct a new virtual city which can be seen as
the center of mass of all cities. The cities are then sorted and visited by their
angle relative to this center. For TSP this heuristic usually yields poor results,
but for stochastic vehicle routing problems with low probabilities it can perform
really well [5]. The computational complexity is dominated by the sorting, and
thus, is in O(n log n).

2.2 Construction Heuristics for PTSP using probabilities

To take probabilities into account we adapt the first three heuristics from Sec-
tion 2.1.

Almost Nearest Neighbor Heuristic (ANN): ANN was mentioned by
Jaillet [10] in his dissertation, but it did not gain much attention until now. It
appends the city with the lowest change of expected length from the last inserted
city to the tour. The cost of inserting city vj can be computed the following way
for heterogeneous problems:

min
vj∈(V −T )

 |T |∑
i=1

pvi
pvj

dvivj

|T |∏
k=i+1

(1 − pvk
)

 (5)

For the homogeneous problem we can simplify the formula:

min
vj∈(V −T )

 |T |∑
i=1

dvivj
(1 − p)(|T |−i)

 (6)

Note that we omitted the p2 in the homogeneous formula because we try to
find a minimum and therefore scaling by p2 does not matter. The resulting
computational complexity is in O(n3) because we insert each city in the tour and
evaluate equation 6 on each position in the tour.

Probabilistic Nearest Insertion (PNI): PNI is a new heuristic derived from
NI where we insert the node nearest to the last inserted node into the tour and
evaluate the objective function on each possible position. This naive approach
results in a computational complexity of O(n4). We use Bianchi et al.’s delta
1-shift [8] local search procedure to solve this heuristic more efficiently: Bianchi
showed that 1-shift local search is possible in time O(n2) using delta evaluation.
Therefore we insert the node at the first position in the tour and then perform
one iteration of the delta 1-shift procedure. Therefore we are able to reduce the
complexity to O(n3).

Probabilistic Farthest Insertion (PFI): PFI is a new heuristic similar to
PNI. The only difference is that the farthest node to the previously inserted one
is chosen for insertion instead of the nearest one.
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3 Variable Neighborhood Search

Variable Neighborhood Descent (VND) and Variable Neighborhood Search (VNS)
were introduced by Mladenović and Hansen in 1997 [12]. VND uses the fact that
if a solution is at a local optimum in some neighborhood it is not necessarily
locally optimal in another neighborhood. We use delta 2-opt and delta 1-shift
neighborhood structures by Bianchi et al. [8] to combine them within a VND
framework because they showed that it is possible to exactly evaluate them using
delta evaluation formulations. Therefore, we compute a solution that is locally
optimal with respect to both neighborhoods.

Via a general VNS we repetitively randomize the tour by applying shaking,
and locally improving it again with VND. In the i-th shaking neighborhood we
perform 2i random shift moves. Our VNS terminates after 20 iterations without
improvement.

4 Computational Results

The algorithms were implemented in C++99 and compiled with GNU GCC 4.6.4.
As test environment we used an Intel Xeon E5649, 2.53 GHz Quad Core, running
on Ubuntu 12.04.5 LTS (Precise Pangolin). For a comparison with the literature
we use test instances from the TSPLIB [13]. Homogeneous visiting probabilities
were assumed to be p ∈ {0.1, 0.2, . . . , 0.5}.

Table 1. Results of construction heuristics.

Instance p RS t[s] SFC t[s] NN t[s] ANN t[s] FI t[s] PFI t[s] NI t[s] PNI t[s]
eil101 0.1 199.3 <1 206.5 <1 243.9 <1 243.4 <1 202.7 <1 197.4 <1 235.3 <1 197.6 <1

0.2 301.8 <1 301.8 <1 372.7 <1 367.3 <1 296.6 <1 286.9 <1 353.0 <1 285.2 <1
0.3 406.7 <1 377.3 <1 465.4 <1 447.1 <1 373.8 <1 358.3 <1 435.1 <1 350.6 <1
0.4 515.8 <1 442.2 <1 539.7 <1 506.6 <1 439.6 <1 413.4 <1 500.6 <1 417.1 <1
0.5 627.6 <1 500.8 <1 602.4 <1 610.3 <1 496.9 <1 493.8 <1 556.4 <1 471.6 <1

d198 0.1 8580.7 <1 7971.6 <1 9010.2 <1 9128.4 <1 7677.0 <1 7438.9 3 8011.3 <1 7554.6 3
0.2 12958.4 <1 10202.3 <1 11523.3 <1 10899.6 <1 9793.1 <1 9503.8 3 10259.2 <1 9637.6 3
0.3 17238.0 <1 11805.9 <1 13037.9 <1 12784.2 <1 11191.6 <1 10658.1 3 11731.5 <1 11142.8 3
0.4 21559.6 <1 13186.4 <1 14190.4 <1 13987.1 <1 12304.8 <1 12069.9 3 12902.4 <1 12009.5 3
0.5 25900.2 <1 14424.3 <1 15141.8 <1 15372.7 <1 13252.8 <1 13001.1 2 13896.9 <1 12875.3 3

att532 0.1 54706.7 <1 42508.3 <1 51691.4 <1 45218.4 3 39271.3 <1 33795.7 66 43611.1 <1 33933.0 65
0.2 99168.2 <1 56731.6 <1 67732.8 <1 58060.9 3 53879.0 <1 47245.8 64 59269.2 <1 46913.2 53
0.3 143491.0 <1 67947.3 <1 77856.9 <1 68591.5 2 64473.3 <1 56196.2 60 69679.5 <1 57738.6 62
0.4 187206.0 <1 77640.2 <1 85264.5 <1 80507.1 2 72778.1 <1 65339.4 60 77609.6 <1 66619.8 60
0.5 230028.0 <1 86270.7 <1 91162.4 <1 83988.9 2 79606.1 <1 76768.1 47 84149.3 <1 72540.6 59

rat783 0.1 5844.9 <1 3521.5 <1 5038.8 <1 4628.9 9 4174.4 <1 3339.5 224 4424.9 <1 3561.6 219
0.2 11380.1 <1 4978.1 <1 6571.1 <1 5921.0 9 5939.2 <1 4816.7 216 6027.2 <1 4985.6 205
0.3 17005.6 <1 6123.0 <1 7577.0 <1 7294.5 8 7117.3 <1 6381.3 160 7092.5 <1 6101.9 206
0.4 22648.4 <1 7103.9 <1 8360.0 <1 8227.8 8 8008.2 <1 6782.0 196 7903.5 <1 6973.7 187
0.5 28283.8 <1 7978.2 <1 9010.7 <1 8789.8 8 8729.4 <1 7736.5 192 8572.2 <1 7795.2 134

Table 1 summarizes our evaluation of the construction heuristics. Generally the
probabilistic versions generate better results than their deterministic counterparts
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Table 2. Variable Neighborhood Descent/Search comparison.

Instances pACS [7] HPSO [11] EACS [15] FI+VND FI+VNS PFI+VNS
p obj∗ t[s] obj∗ t[s] obj t[s] obj t[s] obj∗ obj t[s] obj t[s]

eil101
0.1 199.7 102 200.0 2 213.8 <1 197.4 <1 197.3 197.3 <1 197.3 <1
0.2 286.7 102 284.9 2 288.8 8 285.3 <1 283.6 283.6 8 283.6 13
0.3 353.5 102 283.7 2 358.7 5 352.0 <1 349.2 349.7 5 350.8 4
0.4 410.9 102 405.4 2 413.1 12 409.2 <1 404.7 405.6 12 404.7 1
0.5 470.7 102 455.7 2 462.9 14 459.9 <1 455.5 456.2 14 458.8 13

d198
0.1 7556.1 1011 7504.9 5 8026.1 5 7438.2 1 7436.9 7436.9 5 7436.9 34
0.2 9489.2 1011 9415.1 5 9372.7 89 9357.8 2 9312.1 9312.1 89 9313.1 78
0.3 10951.9 1011 N/M 10635.4 74 10651.8 2 10531.3 10538.9 74 10540.3 52
0.4 12047.9 1011 N/M 11621.3 126 11665.0 2 11538.7 11586.6 126 11555.7 95
0.5 12745.5 1011 12527.6 5 12556.1 90 12617.9 1 12426.5 12489.1 90 12507.9 11

att532
0.1 35179.7 2830 N/M 33663.2 3600 34533.5 50 33665.0 33685.8 2263 33683.0 2426
0.2 47531.4 2830 N/M 44653.4 3600 45867.9 47 45011.0 45179.0 2184 45148.6 2426
0.3 55865.3 2830 N/M 54008.2 2330 56150.4 49 53943.9 54111.1 2330 53846.0 2567
0.4 63308.0 2830 N/M 61455.6 1790 63973.5 38 61145.7 61500.9 1790 61175.8 1777
0.5 69671.2 2830 N/M 67538.2 1954 70431.3 33 67600.9 68285.0 1954 68298.6 3000

rat783
0.1 3368.9 6131 3616.4 70 3235.6 3600 3292.4 281 3243.1 3259.7 4752 3255.1 10043
0.2 4781.2 6131 4775.1 63 4534.0 3600 4694.4 197 4583.3 4595.5 4627 4590.4 8712
0.3 5794.0 6131 N/M 5591.1 4537 5770.1 169 5574.0 5596.2 4537 5579.4 6712
0.4 6643.6 6131 N/M 6336.3 4119 6611.1 153 6369.7 6402.7 4119 6352.3 5303
0.5 7334.1 6131 7094.9 64 6941.2 4130 7282.4 137 7022.2 7073.5 4130 7007.5 4944

N/M . . . not mentioned

but at the price of much higher runtimes. From the deterministic ones, FI performs
best, but also SFC performs well. Overall, PFI performs best but PNI is close.

Table 2 shows our Variable Neighborhood Search results compared to results
from the literature. Weyland et al. [15] only published results of their EACS for
instances att532 and rat783 with p = 0.1 and p = 0.2, and therefore, we performed
additional tests using their code and published parameters for the other instances.
For the VNS we apply FI and PFI as construction heuristic because FI offers the
best tradeoff between efficiency and runtime and PFI performs best. Therefore
we only include FI+VND, FI+VNS, and PFI+VNS in our results. In many cases
our VND yields good solutions in short time, but VND alone cannot keep up
with Weyland et al.’s EACS [15] or Marinakis’ HybPSO [11]. However, our VNS
is able to achieve new best solutions in 11 cases. We further observe that EACS
performs excellent especially on the larger instances but the VNS is typically
better on smaller instances. When comparing FI and PFI in combination with
the VNS we see that they find solutions of similar quality but for larger instances
the runtime of PFI+VNS increases more than the runtime of FI+VNS.

5 Conclusions and Future Work

In this paper the PTSP was discussed and the most important properties were
shown. We focused on five TSP construction heuristics to generate an initial
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solution, namely Radial Sorting, Farthest Insertion, Nearest Insertion, Space
Filling Curve, Nearest Neighbor, and compared them on several TSPLIB instances.
Overall, Farthest Insertion performed best, followed by Space Filling Curve. Then
we derived new construction heuristics to take probabilities into account: Almost
Nearest Neighbor, Probabilistic Nearest Insertion and Probabilistic Farthest
Insertion. They all significantly improve on their deterministic counterparts but
are much more time-consuming. To improve these solutions we introduced a
VNS framework with embedded VND based on 1-shift and 2-opt neighborhood
structures and exact delta evaluation. Results show that FI+VNS and PFI+VNS
typically yield the best solutions out of our tested configurations and they are
even able to find new best-known solutions for 11 instances.

The major reason why our VNS performs so well is the usage of efficient,
exact delta evaluation approaches for 1-shift and 2-opt originally proposed by
Bianchi et al. [8]. Future work should consider further neighborhood structures
for the PTSP for which exact delta evaluations are possible. In particular we are
currently considering Or-opt.

Acknowledgments The authors thank Dennis Weyland for providing the source
code of his EACS for better comparison.
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