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Abstract

In this work we consider the capacity and distance constrained plant location problem (CDCPLP).
This problem is a type of location and routing problem, in which a set of customers has to be assigned
cost efficiently to plants that can be opened at discrete locations. Customers are then served from
the associated plants by round-trips of plant’s vehicles. Since the capacity of the plant and the total
maximum driving distance is limited the CDCPLP is a hard combinatorial optimization problem. We
propose a genetic algorithm with an embedded local search based on an incomplete solution repre-
sentation. Computational results show that the presented algorithm is able to quickly find optimal or
near-optimal solutions and to outperform a previous state-of-the-art tabu search on many instances.

1 Introduction

Many different variants of location problems have been considered in the literature so far. This is due to
the fact that choosing appropriate locations for opening facilities or plants is one of the most important
decisions for logistic companies. In this work we consider one variant of such a problem which does not
only include the choice of locations but also the assignment of customers to them. These customers are
served by round trips from the opened plants with limited capacity, and are therefore assigned to vehicles
located at individual plants. The vehicles can make several trips a day but the number of assigned
customers is limited by the number of working hours for the drivers. This problem is called capacity and
distance constrained plant location problem (CDCPLP) and has been introduced by Albareda-Sambola
et al. [2], who also describe several applications of this problem. One example is the planning of rural
health care centers where each patient has to be assigned to exactly one such center and one vehicle.

In the following we will formally define the CDCPLP. We are given a complete bipartite graph
G = (I, J, E) where I = {1, . . . , n} is the set of customers, J = {1, . . . ,m} the set of locations
and E = I × J the set of edges. These edges are weighted with the assignment costs such that cij ,
∀i ∈ I, j ∈ J denotes the costs for assigning customer i to the location j. Each customer i ∈ I has
a demand di which has to be fulfilled by exactly one opened plant j ∈ J . Opening a plant j implies
cost fj . The total demand of the customers assigned to a plant j must not exceed the plant’s capacity
bj . Additionally, each plant can use an unlimited number of homogeneous vehicles. Each vehicle has a
maximum travel distance of l and usage costs g. The travel distance for a round trip from the plant j ∈ J
to customer i ∈ I is given by tij and the total travel distance of all customers assigned to each vehicle
must not exceed l. Customers are serviced in full round trips, i.e., the vehicle returns back to the plant
before continuing on to another customer. The aim of the problem is the following. Let Y ⊆ J be the set
of opened plants, X ⊂ I × Y the assignments for customers to plants and Kj the minimum number of
needed vehicles for plant j based on the assigned customers. Then we want to minimize the total costs∑

j∈Y fj +
∑

(i,j)∈X cij + g
∑

j∈Y Kj .
The CDCPLP can be seen as a three-staged combinatorial optimization problem (COP), where each

level is connected through the costs. When each of the levels is considered individually they all represent
a well-known classical COP: On the first level, choosing plant locations can be modeled as a facility

1This work is supported by the Austrian Science Fund (FWF) under grant P24660-N23.

Hammamet, June 7-10, 2015



id–2 MIC 2015: The XI Metaheuristics International Conference

location problem [6]. The assignment of the customers to the opened plants corresponds to an assignment
problem [15]. The last level, in which the number of vehicles is minimized is basically a bin packing
problem [7]. However, due to their strong interconnection they cannot be solved individually and a
specialized solution method has to be developed in order to be able to solve the CDCPLP efficiently.

Most of the previous work for this problem focuses on exact methods based on integer programming
(IP) but in this work we suggest a genetic algorithm with a local search for heuristically obtaining so-
lutions to larger CDCPLP instances. In Section 2 the related work is discussed. The genetic algorithm,
the chosen solution representation and its operators as well as the local search are described in Section 3.
Section 4 is dedicated to the results of comprehensive tests which are performed on a large benchmark set
and their results are presented there. Finally, conclusions are drawn in Section 5, where also a prospect
for possible future work is given.

2 Related Work

The CDCPLP was introduced by Albareda-Sambola et al. [2] who described an integer programming
formulation as well as a more advanced bilevel model in which they solved the last level as up to |J |
independent bin packing problems using integer programming techniques as well. Additionally they
proposed a nested tabu search which uses neighborhood structures on all three levels. In Section 4 we
compare our approach to this tabu search. The authors were able so exactly solve small instances and
showed that the tabu search is viable for larger instances. An approach similar to the above bilevel
model is the work by Fazel-Zarandi and Beck [9]. They use logic-based Benders decomposition in
which they combine integer programming for the master problem with constraint programming for the
subproblems. In the subproblems they also solve up to |J | bin packing problems and generate Benders
cuts. It was shown that this approach was able to solve the smaller instances much faster than the
algorithm by Albareda-Sambola. Another trial towards exactly solving the CDCPLP on larger instances
was again taken by Albareda-Sambola et al. [3] by improving their natural formulation from [2]. Several
variants were compared and their model yielding the best results used binary decision variables yjs
∀j ∈ J, s = {0, . . . , k} indicating whether a plant j is opened and uses exactly s vehicles; k is an upper
bound on the number of vehicles. Additionally, valid inequalities based on knapsack and bin packing
constraints were added to the model.

Clearly, similar problems are described in the literature more extensively. The single source capaci-
tated plant location problem (SSCPLP) [5] is a special case of the CDCPLP in which a set of customers
has to be served by exactly one opened plant. Consequently, the CDCPLP must also be NP-hard. The
difficulty lies in the choice of the plant locations and the assignment of the customers but in contrast to
the CDCPLP there are no vehicle costs and distance constraints at the plants. Several exact [5, 10] and
heuristic [1, 4] solution methods have been described in the literature so far.

A more general extensive survey of other location routing problems is given by Nagy and Salhi [14]
who described several articles until 2007. More recently, Prodhon and Prins [16] extended this survey
and included articles published until the year 2013. They noticed a growing number of publications in
the last years and classified them into ten groups.

3 Genetic Algorithm

The proposed algorithm is a steady-state genetic algorithm (GA) with a randomized greedy heuristic
for initial solution generation and an additional local search operation that is applied occasionally. As
mentioned in the introduction, throughout this section the CDCPLP is viewed as split in three levels: the
location level, the assignment level and the bin packing level. Our solution representation is solely based
on the assignment level and described in more detail in Section 3.1.

We made some natural assumptions for the structure of problem instances: First, we assume that the
cost of opening locations dominates the cost of single assignments as well as utilization costs for a single
vehicle. Second, we expect that the locations have enough capacity for multiple customers. A failure to
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meet these conditions will likely decrease our algorithms’ performance and would mean that a different
way of modeling the problem may be more appropriate. However, we think that these assumptions are
realistic for most practical scenarios. Based on these assumptions good solution candidates would then
typically be those with few opened locations with high utilization ratios. This intuition served us as a
guideline when designing the GA.

3.1 Solution Representation

In order to reduce the search space of this three-staged problem, we use an incomplete solution rep-
resentation based on the assignment level. We map each customer i ∈ I to a location j ∈ J s.t. the
solution vector A = (a1, a2, . . . , an) with ai ∈ J , ∀i = 1, . . . , n stores all customer assignments, where
ai is the location customer i is assigned to. The assignments have to satisfy the capacity and distance
constraints to be feasible solutions. In this representation the set of opened plants is stored implicitly,
the customer assignments explicitly and the assignments to vehicles not at all. Therefore, for evaluating
a solution candidate a subproblem has to be solved. This subproblem computes the number of required
vehicles for each location and is modeled as several independent bin packing problems, which is further
discussed in Section 3.6. By using this solution representation all the genetic operators and the local
search neighborhood structure act on the assignment level.

3.2 Initial Solutions

The procedure for constructing candidate solutions for the initial population is outlined in Algorithm 1.
A feasible new assignment is one that does not violate the capacity or distance constraints at that location.
A locally best assignment from customer i ∈ I to a location j ∈ J is one that minimizes the costs costij
which are defined as:

costij = cij +
tij g

l
(1)

The heuristic aims at producing solutions of the kind we discussed above: few opened locations with
high utilization. Algorithm 1 starts from a state where no locations are opened and no assignments are
set. Now, as long as there are customers that are not assigned, a previously unopened location loc, chosen
randomly, is opened. As long as the location has capacity remaining we assign an unassigned customer
c with lowest costc,loc to the location; ties are broken randomly. Once there are no unassigned customers
left the construction is complete.

3.3 Mutation

Deciding on a mutation operation for this problem involves two key considerations. First, it is easy to
make a solution infeasible by small changes. When a solution is already rather good most of its locations
will not have much free capacity left. Thus, assigning an additional customer, swapping a customer with
another one with higher demand and similar operations can easily lead to a violation of the capacity
constraints.

Mutating on the assignment level may seem the natural choice considering the solution representa-
tion, e.g., choosing a random customer i ∈ I that is assigned to some location j ∈ J and change his
assignment to a new random location j′ ∈ J \ {j}. There are, of course, various refinements that could
be applied to the selection of customer and new location. However, they all share a similar problem.
If the mutation opens a new location the new solution will likely have a worse fitness than the original
solution due to our assumption that locations are usually more expensive than assignments. If no new
location is opened by the mutation, however, our operation stays very local. In combination this results
in a mutation operation that is likely too weak to reliably escape local optima.

Another option is to mutate on the location level, i.e., changing the set of opened locations. Our
approach is based on the algorithm used for initial solution generation in Section 3.2. Let O be the set of
opened locations. Then one randomly chosen location l ∈ O is closed leaving us with a set P = O \ {l}
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Algorithm 1: Greedy solution construction

1 a = (a1, . . . , an)← empty assignment;
2 locations← J ;
3 unassigned← I;
4 while unassigned 6= ∅ do
5 select random loc ∈ locations;
6 locations← locations \{loc};
7 while true do
8 F← {i ∈ unassigned | a is feasible with ai = loc added};
9 if F = ∅ then

10 break;
11 end
12 c← i ∈ F with minimal costi,loc;
13 ac← loc;
14 unassigned← unassigned \{c};
15 end
16 end
17 return a;

of prioritized locations. Now at line 5 of Algorithm 1, instead of selecting any random location we first
randomly choose from locations in P . Once all of those have been opened the algorithm continues as in
the original version.

Computational experiments were conducted to compare the two options as well as a hybrid in which
both are applied with certain probabilities. In these experiments pure location level mutation produced
the best results, especially for larger instances. This indicates that finding a good set of opened locations
has more effect on the fitness of a solution than finding good assignments inside a fixed set of locations.

3.4 Crossover

Similar issues as discussed for mutation also occur for crossover operations. For many common crossover
approaches the operation can produce solutions where the capacity constraints are violated. An adaption
to satisfy the constraints or a post-crossover repair procedure is required to sustain feasibility in the pop-
ulation. The extent of repairs, i.e., the amount of assignments to change and new locations to open, is
hard to predict and limit.

In an attempt of compromise we chose to adapt a uniform crossover operation to respect capacities,
see Algorithm 2. The algorithm randomly iterates over the parent solutions’ assignments, adding them
one after another to the offspring which starts off empty. When both candidates of the parent solutions
would preserve the feasibility of the newly generated solution one of them is selected uniformly at ran-
dom. If only one of them preserves feasibility then that assignment is chosen. Cases where no parental
assignment can be feasible adopted are postponed.

After this first step the postponed customers are handled in the following way. For each of them
we first check if it can be assigned to one of the already opened locations. It is then assigned to a first
fitting location. If no opened location is feasible, a new random location is opened where the postponed
customer can be assigned to.

It turned out that the average number of such postponed assignments varied between only 0.2 and 1
in our preliminary experiments, depending more on the specific instance than on the parameters I and J .
Note that distance constraints do not have to be considered here: the parent solutions are assumed to be
feasible and thus their assignments already satisfy the distance constraints.
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Algorithm 2: Adapted uniform crossover
Input: Two parent solutions A, B
Output: Offspring S

1 S = (S1, . . . , Sn)← empty assignment;
2 postponed← {};
3 foreach i ∈ {1, . . . , n} do
4 canA ← is S still feasible with Si = Ai?
5 canB ← is S still feasible with Si = Bi?
6 if canA ∧ canB then
7 Si ← random uniform choice between Ai and Bi;
8 else if canA then
9 Si ← Ai;

10 else if canB then
11 Si ← Bi;
12 else
13 postponed← postponed ∪ {i};
14 end
15 end
16 for c ∈ postponed do
17 Open := set of opened locations in S;
18 assigned← false;
19 for loc ∈ Open do
20 if S still feasible with assignment Sc = loc then
21 Sc ← loc;
22 assigned← true;
23 end
24 end
25 if ¬assigned then
26 Sc ← random feasible unopened location;
27 end
28 end
29 return S;

3.5 Local Search

Since both, mutation and crossover, have the possibility to open new facilities, the purpose of local
search is to optimize the assignments when the facility locations are assumed to be fixed. Therefore, a
local search using a swap neighborhood structure on the assignment level is applied to newly generated
solutions with a probability Plocal.

Let A = (a1, . . . , aI) be the starting solution. The local search generates every feasible neighboring
solution by swapping the value of some ai ∈ A with an aj ∈ A with i 6= j. Best improvement is used as
step function, so a best neighboring solution is always accepted as incumbent. This procedure is iterated
until no further improvement is achieved.

3.6 Solution Evaluation

The used solution representation has no direct information on how many vehicles are required per plant.
To compute them, as required for the objective cost, a bin packing problem is solved for each opened
location. In our case the bins correspond to vehicles capacitated by l and the objects to be packed to the
customers with their distances ti,j to the location.

Two approaches were considered for the bin packing problems: an exact implementation as an integer
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program (IP) using CPLEX 12.6 akin to the natural formulation from [12] and a first fit decreasing
heuristic (FFD). In the latter, the objects are packed in non-increasing weight order one after another.
FFD has an asymptotic approximation guarantee of 11/9 [11].

Preliminary results indicated that the substantially higher computational effort for solving the bin
packing problem via CPLEX clearly does not pay off the slightly better results. In practice, applying the
exact computation as a polishing step to the final population proved to be more reasonable.

However, there are several more advanced other possibilities to solve bin packing problems described
in the literature, which are not considered here including exact [17] and heuristic [8, 13, 18] methods.

4 Computational experiments

For the computational tests we used the same benchmark instances as Albareda-Sambola et al. [2, 3].
These instances are extensions of those found at their homepage1 for the Single Source Capacitated
Plant Location Problem (SSCPLP). The i-th instance is called pi corresponding to the respective source
instance of the SSCPLP and the naming used in [2, 3]. The instance size is denoted as |J | × |I|. The
SSCPLP instances are extended by the missing parameters l, g, and tij ∀i ∈ I , j ∈ J and increase the
plant capacities by a factor of 1.5 (for details see [2, 3]). For instances p1 to p6 the distances tij from
customer i ∈ I to location j ∈ J are generated in two different ways, one where tij correlates to cij and
one uncorrelated variant. All other instances only use the correlated version. For the l and g parameters
different combinations are considered, as shown in Table 1.

Table 1: Parameter pairs used in instances
Label A B C D E F
l 40 40 50 50 100 100
g 50 100 80 150 150 300

All benchmarks were run on a single core of an Intel Core i5-2500K, 3.3 GHz PC. Our steady-state
GA uses tournament selection with a tournament size of 2, a population size of 120 and a 100% crossover
probability. The number of mutations per generation is a Poisson-distributed random number with mean
one. New solutions replace the worst existing solution in the population.

On all experiments the algorithm was set to terminate after 50000 generations without improvement.
As suggested in Section 3.3, pure location level mutation was used in all of the following experiments.
From preliminary results a local search probability Plocal of 10% was determined to be a robust choice
and fixed to this value. The bin packing instances in the objective function are solved using the FFD
heuristic but at termination the fitness of every individual of the final population is calculated exactly
using the IP approach.

The results for the 10 × 20 instances are shown in Table 2. The optimal reference values are taken
from the exact results in [2] and %-gaps to them are listed. Every combination of base instance p1 to p6
with every parameter pair of Table 1 is considered, resulting in 36 correlated as well as 36 uncorrelated
10×20 instances. The table gives the results grouped by the label of these pairs. To account for variance
every instance is run 20 times. The Best columns reflect the outcome with minimal objective of these 20
runs while Worst reflects the outcome with maximal objective. Average %-gap is the average gap to the
optimum over all instances of one parameter pair.

Even though exact bin packing is only used on the final population we see that a good number of
10 × 20 instances are solved optimally. The execution times for the single runs are all between 1 and
3 seconds and therefore much lower than the ones reported by Albareda-Sambola et al. [3] which range
from 15 to 70 seconds on 10 × 20 instances (on an Intel Core2 P8400 at 2.26GHz). Fewer optimally
solved instances are observed with the increase of the l parameter, i.e., with an increase in bin size.
The GA behaves slightly worse on the uncorrelated instances. We believe this may be attributed to the

1www-eio.upc.es/˜elena/sscplp/
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computation of the costi,j values defined in Section 3. While the distance is part of the calculation the
results suggest that there may be room for improvement here. In all our runs the results are within 4.3%
of the optimal value and found within 3 seconds, which shows the applicability of the GA when time is
crucial.

Table 2: Result summary for the 10x20 instances
Optimally solved Average %-gap
Best Worst Best Worst

Correlated 27/36 16/36 0.27 1.14
A 5/6 4/6 0.06 0.47
B 5/6 2/6 0.38 1.23
C 5/6 4/6 0.07 0.84
D 5/6 3/6 0.05 1.01
E 4/6 2/6 0.50 1.29
F 3/6 1/6 0.59 1.98
Uncorrelated 22/36 12/36 0.33 0.93
A 5/6 3/6 0.20 0.64
B 4/6 2/6 0.22 0.86
C 5/6 3/6 0.24 0.32
D 3/6 2/6 0.34 0.70
E 3/6 1/6 0.41 0.95
F 2/6 1/6 0.57 2.11

Table 3 compares the GAs performance with the Tabu Search (TS) from [2] on larger instances. The
results are given in %-gaps in reference to the values in the Ref column, which are the overall best (but
not necessarily optimal) solution values identified in [2]. More recent work allows for solving at least
some of these instances optimally [3, 9] but give no specific objective values, leaving us with these as
reference points. Instances p7 to p17 are of size 15× 30, p18 to p25 are 20× 40. These instances are only
considered using parameter pair E, i.e, utilization cost g of 150 and maximum travel distance l of 100.
As with the smaller instances before, every instance is run 20 times. The results of our algorithm are
shown under the GA heading. The column %-Gap shows the average gap to Ref over all 20 runs. StdDev
is the standard deviation of the percentage gap over all runs. Finally, Time is the average execution time.
The data under the Tabu Search heading is taken from [2]. The column %-Gap here also represents
the gap from the solution to Ref and Time the time of a single execution of the search. Note that TS
was executed on an Intel Pentium IV 2.4 GHz, which is a significantly weaker hardware than our setup.
Thus, the times given are not suitable for direct comparison and are included only for reference. Column
∆Gap(GA, TS) shows GapGA−GapTS , the highlighted values are those were the GA results are better.

We observe that TS is better than our average gap on 3 instances and the GA is better in 16 out of
19 instances. If we compare the best gap of all runs the TS is only better in p9 and p25. While the
direct comparison of runtimes is difficult, as noted before, the numerical results demonstrate that the GA
produces very good results in a small amount of time.

5 Conclusions and Future Work

In this work we presented a genetic algorithm for the capacity and distance constrained plant location
problem. This problem can be seen as a three-staged combinatorial optimization problem, for which we
used an incomplete solution representation. The solution evaluation is based on solving several indepen-
dent bin packing subproblems. By using a randomized greedy construction heuristic for generating initial
solutions, location-level mutation and local search we are able to outperform an existing tabu search al-
gorithm on most benchmark instances with short execution times. Compared to an exact approach on
small instances, the GA often finds optimal solutions or solutions within only a few percent of optimality.
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Table 3: Detailed results for large instances
GA Tabu Search

Instance Ref %-Gap StdDev Time(s) % Gap Time(s) ∆Gap(GA,TS)
p7 3757 -0.19 0.43 5 1.36 69 -1.55
p8 5680 0.42 1.16 6 2.11 66 -1.69
p9 2526 2.53 0.88 7 0.44 71 2.09
p10 12360 2.24 0.53 8 7.65 35 -5.41
p11 3150 -0.32 1.56 6 -1.43 54 1.11
p12 3375 -0.09 0.99 5 2.49 61 -2.58
p13 3416 2.17 1.28 6 3.16 78 -0.99
p14 4343 4.21 2.46 6 6.33 73 -2.12
p15 5265 0.65 0.68 8 0.70 38 -0.05
p16 7072 1.50 0.48 9 2.49 35 -0.99
p17 6650 -1.73 0.79 4 6.77 79 -8.50
p18 9486 3.25 1.06 18 6.26 85 -3.01
p19 11463 -0.55 0.99 15 7.48 116 -8.03
p20 13650 1.88 0.40 24 4.96 151 -3.08
p21 5146 0.91 1.44 21 2.35 160 -1.44
p22 3474 -1.18 1.53 12 10.91 165 -12.09
p23 5387 -4.83 0.77 9 18.75 172 -23.58
p24 5351 -2.19 0.82 9 6.20 171 -8.39
p25 6328 3.26 0.59 8 1.74 166 1.52

Future work will include a more elaborate solution evaluation method. The results presented in
this work showed weaknesses in terms of computation time for an exact evaluation based on integer
programming and the used greedy evaluation is not always accurate. An evaluation procedure based on
constraint programming, as done by Fazel-Zarandi and Beck [9] or a combination of exact and heuristic
techniques could benefit the algorithm a lot. Another direction of future research could be the usage of
more neighborhood structures, especially also on the location level, for the underlying local search.

References

[1] R. K. Ahuja, J. B. Orlin, S. Pallottino, M. P. Scaparra, and M. G. Scutellà. A multi-exchange heuris-
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