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Abstract Competitive facility location problems arise in the context of two non-
cooperating companies, a leader and a follower, competing for market share from
a given set of customers. We assume that the firms place a given number of fa-
cilities on locations taken from a discrete set of possible points. For this bi-level
optimization problem we consider six different customer behavior scenarios from
the literature: binary, proportional and partially binary, each combined with essen-
tial and unessential demand. The decision making for the leader and the follower
depends on these scenarios. In this work we present mixed integer linear program-
ming models for the follower problem of each scenario and use them in combination
with an evolutionary algorithm to optimize the location selection for the leader. A
complete solution archive is used to detect already visited candidate solutions and
convert them efficiently into similar, not yet considered ones. We present numerical
results of our algorithm and compare them to so far state-of-the-art approaches
from the literature. Our method shows good performance in all customer behavior
scenarios and is able to outperform previous solution procedures on many occa-
sions.

Keywords competitive facility location, evolutionary algorithm, solution archive,
bi-level optimization

1 Introduction

In competitive facility location problems (CFLPs) two decision makers, a leader
and a follower, compete for market share. They choose given numbers of facility
locations from a finite set of possible positions in order to satisfy client demands,
whereas the leader starts to place all of his facilities, then the follower places
his facilities. In our work we consider different scenarios which vary in the way
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customers satisfy their demands from the set of open facilities. This classification
is taken from Suárez-Vega et al. [24]:

Customer behavior

– Binary: The demand of each customer is fulfilled by the nearest facility only.
– Proportional: Each customer splits his demand over all open facilities pro-

portional to an attractiveness value, which depends on the distances to the
facilities.

– Partially binary: This is similar to the proportional behavior but the demand
is split only between the nearest leader and nearest follower facility, again,
proportional to an attractiveness value depending on the distance.

Demand model

– Essential demand: The customers satisfy all of their demand.
– Unessential demand: The customers do not satisfy all of their demand but only

a proportion depending on the distance to the serving facility.

Combining the three customer behaviors and the two demand models results in
six different scenarios. Since demand corresponds to the buying power of the cus-
tomers the turnover of the competing firms increases with the amount of fulfilled
demand. Therefore, in order to obtain an accurate revenue value for the leader,
the subproblem of finding an optimal set of facility locations for the follower for a
given set of leader locations has to be solved. This makes the problem a ΣP

2 -hard
bi-level optimization problem [18]. In this work we model the decision problem of
the leader who wants to maximize her turnover knowing that a follower will enter
the market subsequently under a given customer behavior scenario. We propose
mathematical models as well as a hybrid metaheuristic based on an evolution-
ary algorithm to approximately solve all variants of this problem in a practically
efficient way.

Our evolutionary algorithm (EA) searches for the best possible facility loca-
tions for the leader so that her turnover is maximized. It is assumed that the
follower will place his facilities optimally, i.e., aiming at maximizing his revenue or
minimizing the leader’s revenue. For the problem of finding the optimal locations
for the follower, mixed integer linear programming (MIP) models for different cus-
tomer behaviors are presented. These models can then be solved either exactly
using a general purpose MIP solver like CPLEX or approximated by solving their
linear programming (LP) relaxation or by a greedy algorithm. As a result, we ob-
tain a multi-level evaluation scheme which reduces the number of accurate, hence
more time-consuming, evaluations which can be applied when the LP relaxation
value of the model is good enough. The EA is further enhanced with a solution
archive which is a special data structure that stores all generated candidate so-
lutions and converts duplicate solutions into guaranteed not yet considered ones.
A local search procedure, combined with the archive into a tabu search variant,
further improves promising solutions of the EA and thus turns it into a power-
ful hybrid approach. This article extends our previous work [5] by covering all
customer behavior scenarios introduced in [24] and providing models as well as
numerical results.

In Section 2 we define the problem under the different customer behavior sce-
narios more formally. Related work is presented in Section 3, which is followed by
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a description of the mathematical models for our considered CFLPs in Section 4.
Section 5 introduces our evolutionary algorithm and its extensions. Section 6 dis-
cusses our computational results and compares our method to approaches from
the literature when possible. Finally, we draw conclusions in Section 7 and give an
outlook on further promising research questions.

2 Problem Definition

In the following we will formally define the competitive facility location problem
with different customer behavior scenarios. Given are the numbers p ≥ 1 and r ≥ 1
of facilities to be opened by the leader and follower, respectively, and a weighted
complete bipartite graph G = (I, J, E) where I = {1, . . . ,m} represents the set of
potential facility locations, J = {1, . . . , n} represents the set of customers, and E =
I×J , is the set of edges indicating corresponding assignments. Let wj > 0,∀j ∈ J ,
be the demand of each customer, which corresponds to the (maximal) turnover
to be earned by the serving facilities, and dij ≥ 0,∀(i, j) ∈ E, be the distances
between customers and potential facility locations. The goal for the leader is to
choose exactly p locations from I for opening facilities in order to maximize her
turnover under the assumption that the follower in turn chooses r locations for his
facilities optimally maximizing his turnover.

The turnover distribution of the customers differ in the six scenarios defined
before and in the folowing we will give a formal description of the turnover compu-
tation of all scenarios. The definitions for the binary essential case is taken from [6]
and for the proportional case from [5]. In the following let (X,Y ) be a candidate
solution to our competitive facility location problem, where X ⊆ I, |X| = p, is the
set of locations chosen by the leader and Y ⊆ I, |Y | = r, is the associated set of fol-
lower locations. Note that X and Y do not have to be disjunct in general. Further,
let D(j, V ) = min{dji | i ∈ V }, ∀j ∈ J, V ⊆ I be the minimum distance from
customer j to all facility locations in set V . Following Kochetov et al. [13] we define
the attractiveness of a facility location to a customer by vij =

aij
(dij+1)β

and define

analogous to the minimum distance the maximum attractiveness from customer j
to all facility locations in the set V as A(j, V ) = max{vji | i ∈ V }, ∀j ∈ J, V ⊆ I.
In this work we set β = 1 and aij = 1 ∀i ∈ I, j ∈ J . For the attractiveness one
is added to the original distances dij just to avoid numerical problems with zero
distances which might occur when considering the same locations for facilities and
customers.

In the next sections we follow the classification of the different customer be-
havior scenarios [24] and give definitions of the turnover computation of each of
these scenarios.

2.1 Binary Essential

Each customer j ∈ J chooses the closest facility, hence the owner of this closest
facility gains the complete turnover wj . The leader is preferred in case of equal
distances so the follower never places a facility at a location occupied by the
leader and therefore we can assume that X ∩ Y = ∅ for this scenario. The set
of customers which are served by one of the follower’s facilities is U f = {j ∈ J |
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D(j, Y ) < D(j,X)} and the customers served by the leader is given by U l = J \U f .
Consequently, the total turnover of the follower is pf =

∑
j∈U f wj and the total

turnover of the leader pl =
∑

j∈J wj − pf . Note that this problem is also known as
(r|p)-centroid problem [9].

2.2 Proportional Essential

Each customer j splits all of his demand over all opened facilities proportional to
their attractiveness. Let xi = 1 if i ∈ X and xi = 0 otherwise, and yi = 1 if i ∈ Y
and yi = 0 otherwise, ∀i ∈ I. Then, the turnover of the follower is

pf =
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi

and the turnover of the leader is

pl =
∑
j∈J

wj − pf .

2.3 Partially Binary Essential

Each customer j splits all of his demand over the nearest leader and the nearest
follower facility proportional to their attractiveness. Let vLj = A(j,X), i.e., the

highest attraction value from any leader facility to customer j and vFj = A(j, Y ).
Then, the turnover of the follower is

pf =
∑
j∈J

wj
vFj

vFj + vLj

and the turnover of the leader is

pl =
∑
j∈J

wj − pf .

2.4 Unessential Demand

In the unessential demand scenarios we need a function which describes how much
the demand of a customer decreases with the distance to the nearest facility. We
define this demand reduction function as f(d) = 1

(d+1)γ . Parameter γ controls the
decrease of demand, in our work we assume γ = 1. Further, we note that when
the demand is unessential

∑
j∈J

wj ≥ pl + pf , i.e., the total demand satisfied by the

leader and the follower is no longer necessarily equal to the total demand of all
customers. In the following we present the profit computation for the unessential
scenarios under the different customer choice rules:
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– Binary Unessential

pf =
∑
j∈U f

wjf(D(j, Y )) and pl =
∑
j∈U l

wjf(D(j,X))

– Proportional Unessential

pf =
∑
j∈J

wj

∑
i∈I

vijf(dij)yi∑
i∈I

vijxi +
∑
i∈I

vijyi
and

pl =
∑
j∈J

wj

∑
i∈I

vijf(dij)xi∑
i∈I

vijxi +
∑
i∈I

vijyi

– Partially Binary Unessential

pf =
∑
j∈J

wj
vFj

vFj + vLj
f(D(j, Y )) and pl =

∑
j∈J

wj
vLj

vFj + vLj
f(D(j,X))

3 Related Work

Competitive facility location problems are an old type of problem introduced by
Hotelling [11] in 1929. He considered two sellers placing one facility each on a line.
In the last years many variations were considered that differ in the way the com-
petitors can open their facilities and in the behavior of the customers. Kress and
Pesch give an overview of competitive location problems in networks in [14]. Vega
et al. [24] outline different customer choice rules of competitive facility location
problems. They consider six different scenarios of customer behavior, including
binary, partially binary, proportional as well as essential and unessential goods.
In their work the authors assume that the facilities can be placed anywhere on
the plane and give discretization results for several customer choice rules but no
concrete solution algorithms. We use the classification of these scenarios for the
models we used in this work.

Most of the articles that tackle competitive facility location problems focus on
one customer behavior scenario. However, Hakimi [10] extended the basic formu-
lation to different customer behaviors and also to unessential demand. Serra and
Colome [23] developed metaheuristics for the follower problem where the leader
is already in the market with binary, proportional and partially binary customer
choice rules and essential demand.

The literature about the binary essential customer behavior scenario is the
richest and this problem is widely known as the (discrete) (r|p)-centroid problem
which has originally been introduced by Hakimi [9]. Alekseeva et al. [1–3] present
several heuristic and exact solution approaches. Laporte and Benati [16] developed
a tabu search and Roboredo and Pessoa [20] describe a branch-and-cut algorithm.
In Section 6.1 we compare our approach to two metaheuristics by Alekseeva et
al. [2,3].

Proportional essential customer behavior is considered by Kochetov et al. [13]
who developed a matheuristic for a more general problem variant that contains
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our problem as special case. They propose a bi-level mixed integer non-linear
programming model. To solve the problem more efficiently they linearized the
follower’s problem. Our approach also uses this linearized model. The authors
suggest an alternating heuristic to solve the leader’s problem which is derived from
an alternating heuristic developed for the (r|p)-centroid problem with continuous
facility locations in [4]. In Section 6.2 we compare our approach to their algorithm.

Literature about unessential demand and partially binary customer behavior
is rare. Many papers about CFLPs mention these customer behavior scenarios [10,
24,23] but do not provide concrete algorithms. One of our contributions in this
work is to give linear models for the follower’s problem under unessential demands
and the partially binary choice rule to be able to tackle these scenarios and find
effective solution procedures.

A related work by Fernández and Hendrix [7] also considers variants of CFLPs.
They study recent insights in Huff-like competitive facility location and design
problems. In their survey article they compared three different articles [15,22,21]
describing all the same basic model. In all three papers, for each facilitiy a quality
level has to be determined similar to the design scenarios used in Kochetov [13]
and fixed costs for opening facilities incur. Küçükaydin et al. [15] and Saidani et
al. [21] assume that the competitor is already in the market and Sáiz et al. [22]
focus on finding a nash equilibrium of two competitors entering a new market and
opening only one facility each. However, this variants are not scope of the current
article.

4 Mathematical Models

In this section we present mathematical models for CFLPs with different customer
behavior scenarios. In case of binary choice we adopt the linear model from Alek-
seeva [2]. Finding linear models for the partially binary and proportional case is
not straightforward because we have to model a ratio of demand fulfilled by the
leader and the follower, respectively. In these cases we present linear transforma-
tions which are based on the transformation performed by Kochetov [13] for the
proportional essential scenario.

All models use two types of binary decision variables:

xi =

{
1 if the leader opens a facility at location i

0 else
∀i ∈ I

and

yi =

{
1 if the follower opens a facility at location i

0 else
∀i ∈ I.

4.1 Binary Essential

The following bi-level MIP model has been introduced in [2]. It uses an additional
type of binary decision variables:
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uj =

{
1 if customer j is served by the leader

0 if customer j is served by the follower
∀j ∈ J.

We define the set of facilities that allow the follower to capture customer j if
the leader uses solution x (x = (xi)i∈I):

Ij(x) = {i ∈ I | dij < min
l∈I|xl=1

dlj} ∀j ∈ J

Then we can define the upper level problem, denoted as leader’s problem, as
follows:

max
∑
j∈J

wju
∗
j (1)

s.t.
∑
i∈I

xi = p (2)

xi ∈ {0, 1} ∀i ∈ I (3)

where (u∗1, . . . , u
∗
m) is an optimal solution to the lower level problem, denoted as

follower’s problem:

max
∑
j∈J

wj(1− uj) (4)

s.t.
∑
i∈I

yi = r (5)

1− uj ≤
∑

i∈Ij(x)
yi ∀j ∈ J (6)

xi + yi ≤ 1 ∀i ∈ I (7)

uj ≥ 0 ∀j ∈ J (8)

yi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (9)

The objective function for the leader’s problem (1) maximizes the leader’s
turnover. Equation (2) ensures that the leader places exactly p facilities. The
objective function for the follower’s problem (4) maximizes the follower’s turnover.
Similarly as in the leader’s problem, (5) ensures that the follower places exactly
r facilities. Inequalities (6) together with the objective function ensure the uj
variables to be set correctly, i.e., decide for each customer j ∈ J from which
competitor he is served. Inequalities (7) guarantee that the follower does not choose
a location where the leader has already opened a facility. Note that all xi variables
are considered as constants here. Variables uj are not restricted to binary values
because in an optimal solution they will become 0 or 1 anyway.
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4.2 Proportional Essential

For the proportional essential scenario we start with a non-linear bi-level model
which is derived from Kochetov et al. [13]. The upper level problem (leader’s
problem) is:

max
∑
j∈J

wj

∑
i∈I

vijxi∑
i∈I

vijxi +
∑
i∈I

vijy∗i
(10)

s.t.
∑
i∈I

xi = p (11)

xi ∈ {0, 1} ∀i ∈ I (12)

where (y∗1 , . . . , y
∗
m) is an optimal solution to the lower level problem (follower’s

problem):

max
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi
(13)

s.t.
∑
i∈I

yi = r (14)

yi ∈ {0, 1} ∀i ∈ I (15)

The objective functions (10) and (13) maximize the sums of the fulfilled demand by
the leader and the follower, respectively, considering the splitting over the facilities
inversely proportional to their distances. Constraint (11) ensures that the leader
opens exactly p facilities and, similarly, constraint (14) guarantees that the follower
places exactly r facilities. Note that the follower in principle is allowed to open
facilities at the same locations as the leader. All of the xi variables are considered
as constants in the follower’s problem.

In order to be able to solve the follower’s problem more efficiently Kochetov
et al. [13] suggested a linear transformation of this model, which works as follows.
First, two new kinds of variables are introduced:

zj =
1∑

i∈I
vijxi +

∑
i∈I

vijyi
∀j ∈ J (16)

and

yij = wjzjvijyi ∀i ∈ I, j ∈ J. (17)

Variables yij have the intuitive meaning that they are the demand of customer
j that is supplied by the follower facility at location i and the zj variables are
basically the denominator of the fractional objective function for a fixed j. It is
obvious that if we are able to model the non-linear equation (17) in a linear way
such that equation (16) is valid we get a model that is equivalent to (13–15). This
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is realized by the following mixed integer linear program:

max
∑
j∈J

∑
i∈I

yij (18)

s.t. (14), (15) and∑
i∈I

yij + wjzj
∑
i∈I

vijxi ≤ wj ∀j ∈ J (19)

yij ≤ wjyi ∀i ∈ I, j ∈ J (20)

yij ≤ wjvijzj ≤ yij +W (1− yi) ∀i ∈ I, j ∈ J (21)

yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (22)

Objective function (18) maximizes the turnover obtained by the follower. Con-
straints (19) set the variables yij by restricting them to not exceed the total
demand of customer j minus the demand captured by the leader. The fact that a
facility location i can only get some turnover from customer j when the follower
opens a facility there is ensured by constraints (20). Finally, equations (17) are
fulfilled because of constraints (21).

Constant W is chosen large enough, so that an optimal solution to this model
satisfies equations (16), i.e., W = max

j∈J
(wj) · max

i∈I,j∈J
(vij) · max

j∈J
(zj), where

max
j∈J

(zj) ≤ max
j∈J

(1/
∑
i∈I

vijxi) because of constraints (19). Due to constraints (21)

with its W , the LP relaxation of this model unfortunately is in general relatively
weak, therefore finding an optimal follower solution by this model using a general
purpose mixed integer programming solver like CPLEX is time-consuming even for
small instances. Nevertheless, this model is still easier to solve than the non-linear
model (13–15).

4.3 Partially Binary Essential

The model for the partially binary essential scenario is similar to the model for the
proportional case. The difference is that for each customer we only have to model
the ratio of the nearest leader and the nearest follower facility, which results in
the following non-linear bi-level model:

max
∑
j∈J

wj
vLj

vLj + vF
∗

j

(23)

s.t.
∑
i∈I

xi = p (24)

vLj = max
i∈I

(vijxi) ∀j ∈ J (25)

xi ∈ {0, 1} ∀i ∈ I (26)
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where (vF
∗

1 , . . . , vF
∗

m ) is an optimal solution to the lower level problem:

max
∑
j∈J

wj
vFj

vLj + vF
∗

j

(27)

s.t.
∑
i∈I

yi = p (28)

vFj = max
i∈I

(vijyi) ∀j ∈ J (29)

yi ∈ {0, 1} ∀i ∈ I (30)

The objective functions (23) and (27) maximize the sums of the fulfilled demand by
the leader and the follower, respectively, considering the splitting over their nearest
facilities. Constraint (24) ensures that the leader opens exactly p facilities and,
similarly, constraint (28) guarantees that the follower places exactly r facilities.
The highest attraction values for each customer j, expressed by variables vLj and

vFj , ∀j ∈ J are set by the non-linear constraints (25) and (29).
Again, we propose a linear transformation of the follower model similar to the

proportional case. We introduce three new kinds of variables:

zj =
1

vLj + vFj
∀j ∈ J (31)

ŷij =

{
1 if i is the nearest follower facility to customer j

0 else

and

yij = wjzjvij ŷij ∀i ∈ I, j ∈ J. (32)

Once more, variables yij are set to the amount of demand a (possible) follower
facility at location i supplies to customer j and zj is the denominator of the objec-
tive function Note that exactly one facility satisfies a certain amount of demand
of a customer and therefore for a fixed j exactly one yij variable has a non-zero
value. The linearized model is presented next.

max
∑
j∈J

∑
i∈I

yij (33)

s.t.
∑
i∈I

yi = p (34)

∑
i∈I

yij + wjzjv
L
j ≤ wj ∀j ∈ J (35)

yij ≤ wj ŷij ∀i ∈ I, j ∈ J (36)

yij ≤ wjvijzj ≤ yij +W (1− ŷij) ∀i ∈ I, j ∈ J (37)

ŷij ≤ yi ∀i ∈ I, j ∈ J (38)∑
i∈I

ŷij = 1 ∀j ∈ J (39)

yi ≥ 0, yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (40)

ŷij ∈ {0, 1} ∀i ∈ I, j ∈ J (41)
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Objective function (33) maximizes the turnover obtained by the follower. Con-
straints (35) set the variables yij by restricting them to not exceed the total
demand of customer j minus the demand captured by the leader. The fact that
a facility location i can only get some turnover from customer j when there is
the nearest open follower facility is ensured by constraints (36). Equations (32)
are fulfilled because of constraints (37). Constraints (38) and (39) guarantee that
there is exactly one nearest follower facility to each customer and that this location
has to be chosen by the follower.

4.4 Unessential Cases

When the demand of customers is unessential, two different goals for the follower
are possible. He can either aim to minimize the leader’s profit (LMIN) or to maxi-
mize his profit (FMAX). Depending on the goal the follower might choose different
locations for his facilities. In this section we will discuss the changes to the models
introduced before that are needed to consider unessential demand.

4.5 Binary Unessential

In the LMIN scenario only a change in the objective function is needed because
the distance from each customer to the nearest leader facility is known beforehand.
The new objective function for the follower’s problem is the following:

min
∑
j∈J

wjzjf(D(j,X))

If the follower uses the FMAX strategy new variables have to be introduced to
indicate which location i hosts a follower facility that is nearer to a customer j than
any other open (leader or follower) facility. This is modelled by decision variables
ŷij which are defined similarly as before:

ŷij =


1 if i is the nearest follower facility to customer j

and nearer than all leader facilities

0 else
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The complete model for the follower problem is as follows:

max
∑
j∈J

wj

∑
i∈I

ŷijf(dij) (42)

s.t.
∑
i∈I

yi = r (43)

1− zj ≤
∑

i∈Ij(x)
yi ∀j ∈ J (44)

xi + yi ≤ 1 ∀i ∈ I (45)

ŷij ≤ yi ∀i ∈ I, ∀j ∈ J (46)

ŷij ≤ 1− zj ∀i ∈ I, ∀j ∈ J (47)∑
i∈I

ŷij ≤ 1 ∀j ∈ J (48)

zj ≥ 0 ∀j ∈ J (49)

yi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (50)

ŷij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (51)

In this model there are three new types of constraints to set the ŷij variables
correctly. Constraints (46) ensure that if one of these variables is set to one then
there must be a follower facility on this location. Furthermore, a ŷij variable is only
set to 1 iff customer j is served by the follower, which is ensured by constraints
(47). Of course, only one follower facility can be the nearest to a customer, so
constraints (48) are introduced. The change in the objective function models the
unessential demand by reducing the turnover gained by each customer by our
demand reduction function f .

4.6 Proportional Unessential

In the proportional customer behavior scenario for both LMIN and FMAX a
change in the objective function is needed and for LMIN additionally a change
of constraints (19):

LMIN: min
∑
j∈J

wjzj
∑
i∈I

vijxif(dij)

∑
i∈I

yij + wjzj
∑
i∈I

vijxi = wj ∀j ∈ J

FMAX: max
∑
j∈J

∑
i∈I

yijf(dij)



Models and Algorithms for CFLPs 13

4.7 Partially Binary Unessential

Also for the partially binary case, the objective function changes and for LMIN
the constraints (35) as well:

LMIN: min
∑
j∈J

wjzjv
L
j f(

1

vLj
− 1)

∑
i∈I

yij + wjzjv
L
j = wj ∀j ∈ J

FMAX: max
∑
j∈J

∑
i∈I

yijf(dij)

5 Evolutionary Algorithm

In this section we present an EA that aims to find the optimal solution to the
leader’s problem for each different customer behavior scenario. The algorithmic
framework is also used in [6] for binary customer behavior and in [5] for pro-
portional customer behavior, both only considered essential demand. We use an
incomplete solution representation only storing the facilities of the leader indicated
by the binary vector x = (x1, . . . , xm). For augmenting the incomplete leader solu-
tion, which can also be seen as evaluating a candidate leader solution, the follower’s
problem has to be solved. For this purpose we derived the MIP models in the last
section. As solving these MIPs exactly is time-consuming in general, a greedy eval-
uation procedure and, for the binary customer behavior, the LP relaxation of the
MIP model is used for approximating the quality of intermediate leader solution
candidates, which is different for each case. Only at the end of the EA the best ap-
proximate solution found (for the proportional and partially binary case) or each
candidate solution of the final population (for the binary case) is exactly evaluated
using the corresponding MIP to get optimal objective values.

First, we explain the greedy solution evaluations for the different customer
behavior scenarios. Then we will show a method for how to avoid exact evaluations
during the EA and still do not miss potentially good solution candidates due
to the approximation of objective values. We introduced this concept in [6] and
called it multi-level solution evaluation scheme (ML-ES). It is applicable to models
which have a reasonably good LP relaxation bound; here we apply ML-ES only for
binary customer behavior. After explaining these solution evaluation methods we
will introduce the EA with its variation operators. We further want to reduce the
time needed for the solution evaluation so we employ a complete solution archive,
which is a data structure that stores all generated candidate solutions. It efficiently
converts created duplicates into similar but not yet considered solutions to avoid
unnecessary evaluations. At the end of this chapter we show how we combine the
solution archive and local search to a tabu search and integrate it into the EA to
obtain a powerful hybrid approach.
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5.1 Greedy Solution Evaluation

The greedy evaluation procedures are structurally similiar for each customer be-
havior and they try to find a near-optimal solution to the follower’s problem in
short time. They perform by iteratively selecting a locally best possible position
for opening a facility, until all r follower facilities are placed. A currently best
possible location is determined by computing the turnover of the follower for each
possible additional location depending on the specific consumer behavior using the
corresponding functions defined in Section 2:

Binary Essential: pfBE(y) =
∑

j∈U f(y)

wj (52)

Proportional Essential: pfPE(y) =
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi
(53)

Partially Binary Essential: pfPBE(y) =
∑
j∈J

wj
vFj (y)

vFj (y) + vLj
(54)

Here, y = (y1, . . . , ym) is the partial solution vector of the follower containing
all so far opened facilities plus the candidate location. A location with the highest
turnover is chosen; ties are broken randomly. The final value obtained from this
procedure is a lower bound to the follower’s problem and therefore

∑
j∈J wj−pf(y)

is an upper bound to the objective value of the leader’s solution. For the binary
essential case we do not have to recompute the whole function each time we place
a new facility. Whenever a new facility captures facilities from the leader, they
are removed from the set of customers and therefore do no longer increase the
turnover of the follower. Then we only compute the turnover gain for each placed
facility separately and in the end take the sum. When the demand is unessential
the greedy criteria can be adapted analogously. However, the upper bound to
the leader’s problem has to be computed using the functions for the turnover
computation for the leader defined in Section 2.

5.2 Multi-Level Evaluation Scheme

As mentioned in the beginning of this section we can devise a multi-level evaluation
scheme originally introduced in [6] which exploits relationships of different solu-
tion evaluation methods to reduce the time needed for evaluation without missing
potentially new incumbent solutions. As the greedy solution evaluation procedure
is an approximation of the follower’s problem and returns a feasible solution can-
didate, the greedy evaluation yields an upper bound to the leader’s problem for a
fixed x. When solving the LP relaxation of a corresponding follower’s model from
Section 4, i.e., solve the model by omitting the integrality constraints, we get a
lower bound to the leader’s problem (again, for a fixed x). These relations can be
exploited as follows. Whenever a new solution candidate is generated its solution
value is approximated by the greedy method. When the resulting turnover of the
leader is worse than than or equal to the best turnover value of the leader ob-
tained by solving the LP relaxation so far then we do not have to evaluate this
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solution candidate more accurately because we know that it cannot be better than
our current best solution. However, when the resulting turnover of the leader is
greater than the so far best LP value, we have to evaluate it more accurately (e.g.,
by solving the LP relaxation), which is more time consuming, and update the best
solution found so far if needed.

Our algorithm benefits from the ML-ES when we are able to omit accurate
evaluations often, which is the case when the LP relaxation value of the follower’s
problem is good enough. Unfortunately, preliminary tests showed that for the
partially binary and proportional cases the LP relaxation is in general too weak and
therefore we do not use ML-ES for these customer behavior scenarios. However,
for the binary case, in over 95% of the created solution candidates we are able to
avoid the more time-consuming evaluation, which results in a faster algorithm and
a significantly better final solution quality.

5.3 Evolutionary Algorithm Framework

The EA’s initial population is created by choosing p different facility locations
uniformly at random to ensure a high diversity at the beginning. We employ
a steady-state genetic algorithm in which exactly one new candidate solution is
derived in each iteration. It always replaces the worst individual of the population.
Binary tournament selection with replacement is used to choose two candidate
solutions for recombination. Offsprings further undergo mutation.

Recombination works as follows. Suppose that two parent solutions X1 ⊂ I and
X2 ⊂ I are selected. Then an offspring X ′ of X1 and X2 is derived by adopting
all locations from S = X1 ∩X2 and adding p− |X1 ∩X2| further locations from
(X1 ∪X2) \ S chosen uniformly at random.

Mutation is based on the swap neighborhood structure, which is also known
from the p-Median problem [17]. A swap move closes a facility and re-opens it
at a different, so far unoccupied position. Our mutation applies µ random swap
moves, where µ is determined anew at each EA-iteration by a random sample from
a Poisson distribution with mean value one.

Each new candidate solution derived via recombination and mutation whose
objective value lies within a certain distance from the so far best solution value
further undergoes a local improvement procedure or a tabu search. It is based on a
local search applying the swap neighborhood structure already used for mutation.
The best improvement step function is used, so all neighbors of a solution that
are reachable via one swap move are considered and evaluated and the best one
is selected for the next iteration. This procedure terminates when no superior
neighbor can be found, i.e., a locally optimal solution has been identified.

5.4 Solution Archive

We use a solution archive that stores all generated candidate solutions in a com-
pact data structure. The archive is attached to the EA framework either after
mutation is performed or in conjunction with local search. The essential idea is
to avoid the reconsideration of already evaluated solutions by converting them
into similar, but new solutions, i.e., performing an “intelligent mutation”. This
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concept is able to boost the performance of evolutionary algorithms with complex
solution evaluations significantly, and further reduces the danger of premature
convergence. It has been successfully applied to benchmark problems with binary
solution representations, including NK landscapes and Royal Road functions [19],
the generalized minimum spanning tree problem [12], and our previous work on
the current problem [5]. Another rather theoretical property of such an archive-
enhanced EA is that in principle it is a complete optimization approach yielding a
guaranteed optimal solution in bounded time after considering all solutions of the
search space. In practice, however, such an EA usually will be terminated earlier,
still yielding only a heuristic solution.

We combine the EA and the solution archive as follows: Each time a candidate
solution is created, we check if this solution is already contained in the archive. In
case it is a duplicate it is converted on-the-fly into a not yet considered solution.
Then this new solution is inserted into the archive and transferred back to the EA,
where it is integrated into the population. For the underlying data structure we use
a trie, which is a tree data structure often applied in dictionary applications [8]
and allows inserting, searching and converting a solution to be implemented in
O(m) time, where m is the length of the solution representation, i.e., independent
of the number of solutions it contains. Such a trie has a strong relationship to
an explicitly stored branch-and-bound tree, as each node divides the search space
into two subspaces: Each trie node at level i corresponds to the i-th bit in the
solution vector and has two entries representing “0” and “1”. They either contain
a reference to a trie node on the next level, a complete-flag which indicates that all
solutions in the subtree have been visited, or an empty-flag which indicates that
none of the solutions in the subtree has been visited in the EA.

To insert a solution into the trie, we follow the solution vector and go down
the trie. If we encounter a complete-flag, we know that the solution has been
inserted before and thus is a duplicate. Otherwise when we reach the last level, we
insert a complete-flag in the corresponding entry. To convert a duplicate solution
we strive to flip a minimal number of bits in the binary vector. The decision of
which bits to be flipped is based on following the solution in the trie and take
alternative randomly selected branches that lead to unexplored subspaces. For
a detailed description of the insertion and conversion operators, we refer to our
previous work [5].

5.5 Archive-based Tabu Search

In cooperation with the solution archive the basic local improvement procedure
can be extended to a tabu search variant where the solution archive acts as tabu
list. When enumerating the swap neighborhood of a candidate solution, we check
for each neighbor solution if it has already been visited before, i.e., is contained in
the solution archive. Only so far unvisited solutions are evaluated and the best one
is selected for the next iteration, even if it is worse than the original solution; ties
are broken randomly. This process is repeated for α iterations without improving
the objective value or until there is no more unvisited neighbor solution. Note that
our approach differs from classical tabu search implementations since we do not
consider move attributes to be black-listed in a tabu list of limited length, but use
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the solution archive instead. This tabu search is applied to the most promising
solutions in the EA population.

6 Computational Results

In this section we present computational results of our algorithmic approach ap-
plied to different customer behavior scenarios and demand models. We consider
separate sets of instances for the binary and for the proportional and partially
binary case because the binary essential case has a significantly lower complexity
and we want to maintain comparability to algorithms from the literature. We used
instances generated in [6] for the binary case and instances generated as part of
our previous work [5] for the proportional and partially binary case. Both instance
sets are based on instances from the discrete problem library1 and can be found
online2. In all instances each customer location corresponds to a possible facility
location, i.e., I = J and the other properties are the following:

Binary essential and
unessential

Proportional/
partially binary essential
and unessential

Number of
locations

essential: 200, unessential: 100,
chosen randomly on an Eu-
clidean plane of size 7000× 7000

100, chosen randomly on an Eu-
clidean plane of size 100× 100

Customer
demands

chosen uniformly at random from
the set {1, . . . , 200}

chosen uniformly at random from
the set {1, . . . , 10}

r, p r = p ∈ {10, 15, 20} r ∈ {2, . . . , 5}, p ∈ {2, . . . , 10}

The parameter settings for the EA were determined in preliminary tests and
are similar for all scenarios. The population size is 100 and the EA is terminated
after 3000 iterations without improvement or after 300 seconds except for the
binary case, where we have a fixed time limit of 600 seconds. The termination
parameter α for the tabu search-based local search is set to five. Local search/tabu
search is called for each candidate solution whose objective value lies within 1%
(for the binary case 5%) of the best solution found so far. After the EA finishes,
the final best solution is evaluated exactly by solving the corresponding MIP from
Section 4 and using the best greedy solution as starting solution with CPLEX 12.5.
In preliminary tests it turned out that for the binary behavior the exact evaluation
of one candidate solution needs less than one second, so in these test cases we
evaluated the whole population after the last iteration exactly and took the best
solution candidate among them as our final solution. All tests were performed on
a single core of an Intel Xeon Quadcore with 2.54 GHz. In the next sections each
customer behavior scenario with essential demand is analyzed and discussed.

At the end of each of the following tables for essential demands we give a quick
overview over all instances on the geometric mean, the number of instances where
the corresponding configuration performed best and the number of instances where
the algorithm performed best and better than all others.

1 http://www.math.nsc.ru/AP/benchmarks/english.html
2 www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems
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6.1 Binary Essential

First we evaluate in Table 1 how our algorithm performs compared to algorithms
from the literature when the behavior of the customers is binary and the demand
is essential. Our EA uses the solution archive (SA) and the multi-level solution
evaluation scheme (ML-ES) as described in Section 5.2 and we compare it to the
tabu search approach (TSAL) by Alekseeva et al. [3] and the hybrid memetic algo-
rithm which embeds this tabu search (HMA) developed in [2]. All algorithms are
executed 30 times with a total run time of 600 seconds. The average objective val-
ues over these runs and their associated standard deviations are given in columns
obj and sd, respectively. For our EA, the median of the time needed for the best
solution is given as well in the column tbest[s].

Table 1 Results of binary customer behavior with essential demand.

TSAL HMA EA + SA + ML-ES

Instance r p obj sd obj sd obj sd tbest[s]

Code1 10 10 9545,43 35,14 9505,07 57,16 9594,00 10,37 243,10
Code2 10 10 9324,50 50,20 9217,80 58,07 9321,13 26,28 130,10
Code3 10 10 9367,07 32,45 9329,37 53,93 9374,30 28,15 227,00
Code4 10 10 8882,03 18,31 8877,13 22,02 8888,47 14,39 115,60
Code5 10 10 9227,30 48,62 9240,40 52,15 9273,10 27,45 268,20
Code6 10 10 9825,20 35,02 9808,13 39,34 9850,53 5,58 197,50
Code7 10 10 9225,70 42,60 9183,77 55,95 9270,30 20,44 222,80
Code8 10 10 9088,17 9,62 9046,43 34,70 9092,57 2,37 170,60
Code9 10 10 9009,53 3,68 8950,47 59,78 9011,40 8,76 182,90

Code10 10 10 9382,67 25,28 9365,40 46,44 9411,00 0,00 151,70

Code1 15 15 10076,73 49,31 10051,83 59,42 10095,00 37,02 297,10
Code2 15 15 9578,77 46,03 9514,93 51,54 9626,67 17,34 392,00
Code3 15 15 9355,93 18,85 9310,30 44,48 9365,97 17,19 281,90
Code4 15 15 9169,93 18,46 9116,27 68,57 9179,03 32,68 241,30
Code5 15 15 9242,57 64,44 9237,70 41,65 9252,03 42,10 320,90
Code6 15 15 10119,03 52,39 10095,73 41,17 10148,23 27,71 326,70
Code7 15 15 9556,13 39,65 9496,63 59,54 9580,30 35,03 283,90
Code8 15 15 9047,13 47,40 8987,20 41,46 9063,10 41,76 357,90
Code9 15 15 9124,70 66,93 9086,47 65,56 9168,20 23,40 335,40

Code10 15 15 9290,80 49,24 9240,83 57,79 9312,40 51,91 434,30

Code1 20 20 9837,17 53,95 9767,93 58,96 9831,97 56,35 460,50
Code2 20 20 9667,17 32,12 9602,20 38,63 9666,37 52,72 421,30
Code3 20 20 9286,17 67,10 9253,50 63,57 9296,67 70,96 426,90
Code4 20 20 9439,13 34,47 9402,23 55,74 9404,70 89,41 388,50
Code5 20 20 9498,80 38,81 9422,63 52,81 9512,10 42,91 345,90
Code6 20 20 10283,10 83,09 10210,53 59,37 10261,53 91,67 452,50
Code7 20 20 9902,20 43,20 9860,03 52,13 9943,10 33,88 361,90
Code8 20 20 9329,67 29,32 9248,07 59,96 9342,90 23,35 484,30
Code9 20 20 9438,00 17,91 9404,67 42,67 9452,57 16,55 416,80

Code10 20 20 9741,20 35,77 9683,63 50,92 9688,73 74,95 460,40

geometric mean 9456,10 9411,33 9470,05
#best results 6 0 24

#unique best res. 6 0 24

In Table 1 we can clearly see the superiority of our algorithm as we are able
to outperform TSAL on 24 instances. We also tested for statistical significance in
our previous work [6] with a larger instance set and there we showed that our
algorithm is statistically better in 38 out of 90 instances, worse in 3 instances and
equal in 17 instances. We could not observe statistically significant differences on
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the remaining 32 instances. We refer the reader to [6] for a more detailed analysis
of our computational results for the binary essential case.

6.2 Proportional Essential

For proportional customer behavior we evaluate the impact of the solution archive
on the results in Table 2 as well as the performance compared to the alternating
heuristic (AH) by Kochetov et al. [13]. Their AH is based on a starting solution
for the leader to find the optimal facility locations for the follower which are
computed using the linear MIP model for the follower. This follower solution is
subsequently chosen as leader solution and the optimal follower solution is found
again. This procedure is repeated until a solution is obtained which has already
been generated. Since the repeated exact computation of the optimal follower’s
locations is very time-consuming we modified their approach by using our greedy
algorithm instead of the MIP as described in Section 5.1 for finding the locations
for the follower. The results are based on our previous work [5] where we analyzed
following configurations:

– The EA variant where the final best solution is not evaluated with the MIP.
This means that the corresponding objective values are not exact, but only
approximate values from the greedy evaluation method.

– A modified version of the Alternating Heuristic (MAH) by Kochetov et al. [13],
where each solution candidate is approximated by our greedy algorithm instead
of evaluated exactly.

– The EA variant (EA + MIP) that does not employ the archive and utilizes the
basic local search only; the final best solution is evaluated with MIP.

– The EA variant (EA + SA + MIP) that uses the solution archive and the tabu
search as local improvement method; the final best solution is evaluated with
MIP.

In this table, again, obj stands for the average of the objective values over 30 runs
with their standard deviation in column sd. The time needed until termination
is given in column t[s]. Since MAH is a deterministic algorithm only one run is
performed.

In Table 2 the numerical values are given. Numbers in parenthesis mean that
evaluating the best solution candidate of the EA needed more than 3600 seconds
and so the objective values are determined by the greedy algorithm only. There-
fore they are only approximations and not directly comparable to exact objective
values. So in the summary of the EA configuration these values are not considered
for comparison. The best value in each row is marked bold. When some values of a
row are obtained by greedy evaluation and some other values in the same row are
exact solution qualities, only the exact values are compared to each other, e.g., in
the row with r = p = 3.

In some cases of the EA + MIP variant not all 30 runs terminated within the
time limit so only the average over the finished runs is given, e.g., the row with
r = 3 and p = 5. We observe that even for small p values of 4 and 5 we were
not able to evaluate even one solution candidate in the given time limit. Another
interesting point is that evaluating the candidate solution exactly via the MIP is
the most time-consuming part of the algorithm; for r = 3 and p = 8 it needed
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Table 2 Results of proportional customer behavior with essential demand.

EA EA + MIP MAH EA + SA + MIP

r p obj sd t[s] obj sd t[s] obj t[s] obj sd t[s]

2 2 (280,002) 0,13 106 278,671 0,15 677 277,942 667 278,736 0,00 600
2 3 (338,170) 0,31 157 336,587 0,19 684 334,233 535 337,228 0,00 625
2 4 (374,754) 0,71 154 373,455 0,48 623 373,665 503 374,425 0,00 674
2 5 (399,834) 0,50 200 398,642 0,90 493 399,208 260 401,781 0,00 505
2 6 (419,360) 0,46 241 418,779 0,67 525 419,920 275 421,091 0,15 586
2 7 (434,640) 0,62 223 434,388 0,74 394 431,803 272 436,123 0,00 440
2 8 (447,131) 0,42 202 446,710 0,46 322 446,474 158 448,192 0,18 440
2 9 (456,992) 0,45 300 456,615 0,63 419 455,788 166 458,905 0,37 529
2 10 (465,178) 0,54 300 464,620 0,53 401 463,211 173 467,055 0,16 416

3 2 (223,059) 0,18 144 (223,059) 0,18 144 (223,153) <1 (223,194) 0,00 27
3 3 (281,283) 0,31 174 (281,283) 0,31 174 276,818 5959 279,000 0,00 6397
3 4 (321,185) 0,86 201 (321,185) 0,86 201 319,427 4128 319,819 0,00 3956
3 5 (349,644) 0,54 300 347,429* 0,48 3892 349,471 3867 349,793 0,00 2703
3 6 (372,924) 0,68 300 371,900* 0,98 3896 372,760 3453 373,836 0,12 2777
3 7 (391,264) 0,65 300 390,753* 0,74 3493 391,314 2086 391,894 0,39 2658
3 8 (406,302) 0,52 300 405,907* 0,77 3124 407,623 1721 407,765 0,08 3148
3 9 (418,553) 0,37 300 418,051* 0,53 2795 419,985 1709 420,305 0,18 2424
3 10 (429,040) 0,56 300 428,357 0,53 2370 430,465 1299 431,578 0,33 2670

4 2 (183,188) 0,11 246 (183,188) 0,11 246 (183,223) <1 (183,223) 0,00 38
4 3 (238,953) 0,33 226 (238,953) 0,33 226 (239,527) <1 (239,628) 0,00 83
4 4 (279,021) 0,56 298 (279,021) 0,56 298 (280,336) <1 (280,549) 0,08 126
4 5 (310,562) 0,70 300 (310,562) 0,70 300 (313,041) <1 (313,041) 0,00 157
4 6 (335,415) 0,65 300 (335,415) 0,65 300 (337,158) <1 (337,540) 0,12 242
4 7 (355,659) 0,52 300 (355,659) 0,52 300 (356,575) <1 (358,233) 0,18 267
4 8 (372,334) 0,67 300 (372,334) 0,67 300 (374,436) <1 (375,031) 0,04 300
4 9 (386,207) 0,81 300 (386,207) 0,81 300 (387,975) <1 (389,837) 0,12 300
4 10 (398,011) 0,74 300 (398,011) 0,74 300 (400,421) 1 (401,428) 0,13 300

5 2 (156,357) 0,15 199 (156,357) 0,15 199 (156,538) <1 (156,538) 0,00 44
5 3 (207,548) 0,18 293 (207,548) 0,18 293 (207,682) <1 (208,025) 0,00 112
5 4 (247,295) 0,76 300 (247,295) 0,76 300 (244,959) <1 (248,663) 0,06 212
5 5 (278,806) 0,60 300 (278,806) 0,60 300 (279,889) <1 (281,522) 0,00 194
5 6 (304,283) 0,54 300 (304,283) 0,54 300 (305,488) <1 (307,129) 0,13 300
5 7 (325,520) 0,81 300 (325,520) 0,81 300 (327,357) <1 (328,314) 0,05 300
5 8 (343,534) 0,61 300 (343,534) 0,61 300 (345,947) <1 (346,254) 0,12 300
5 9 (358,373) 1,02 300 (358,373) 1,02 300 (360,572) <1 (362,159) 0,31 300
5 10 (371,213) 0,74 300 (371,213) 0,74 300 (374,737) 1 (374,556) 0,24 300

geo. mean (330,38) 330,06 330,55 331,67
#best res. - 0 1 35

#u. best res. - 0 1 32
∗Not all of the 30 runs completed in the time limit

over 90% of the overall time but it decreases when p increases. The run-time of
all configurations that incorporate the exact evaluation increases steadily with r
because of the growing complexity of the MIP.

On some instances MAH finds a solution in less time than our algorithms and
especially when the exact evaluation is too time consuming it is very fast. The
quality of the solutions is similar to our EA approach when we do not use the
SA, but by incorporating the solution archive we boosted the performance of our
algorithm so that the final solution quality is in all but 4 of the tested instances
better than the quality of the solutions produced by MAH and in 3 of the 4 cases
it is equal. For some of the smaller instances EA + SA + MIP has a very small
standard deviation, which underlines the robustness of our algorithm.
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Compared to binary customer behavior, the proportional scenario is much
harder to solve and we can only approximate the value of solution candidates for
instances that are only half the size.

6.3 Partially Binary Essential

In the next computational tests we analyzed the partially binary essential cus-
tomer behavior. Since there is, to the best of our knowledge, no algorithm with
numerical results described in the literature we only compare different configura-
tions of our EA. Similarly to the proportional case we compare our EA without
exact evaluation, the EA with exact evaluation in the end (EA + MIP) and the
EA with solution archive and exact evaluation (EA + SA + MIP). Table 3 shows
our numerical results, column names have the same meaning as before.

Table 3 Results of partially binary customer behavior with essential demand.

EA EA + MIP EA + SA + MIP

r p obj sd t[s] obj sd t[s] obj sd t[s]

2 2 (283,753) 0,29 26 278,450 1,15 549 278,931 0,00 529
2 3 (315,105) 0,47 33 309,243 0,49 539 310,013 0,00 515
2 4 (337,476) 1,13 32 330,013 1,24 432 332,359 0,00 376
2 5 (349,361) 0,35 38 343,743 0,46 417 345,116 0,32 444
2 6 (359,113) 0,53 36 354,270 0,76 436 357,640 0,45 437
2 7 (368,140) 0,64 40 363,248 0,70 404 366,883 2,55 412
2 8 (376,035) 0,71 33 370,994 1,18 378 376,136 2,12 382
2 9 (383,784) 0,84 47 378,761 1,91 382 385,354 1,08 316
2 10 (391,553) 1,31 44 384,370 1,72 378 388,068 0,47 303

3 2 (259,461) 0,25 38 247,791 0,34 590 247,946 0,00 606
3 3 (289,450) 0,74 42 277,505 1,26 451 279,000 0,00 432
3 4 (311,032) 1,50 43 299,228 1,47 380 302,217 0,00 354
3 5 (323,333) 0,93 39 312,901 1,92 362 313,582 0,43 362
3 6 (334,559) 0,65 42 324,425 0,88 393 325,250 0,97 386
3 7 (343,815) 0,66 49 333,255 1,39 354 335,827 1,37 348
3 8 (352,919) 0,83 57 341,766 0,91 331 347,421 2,07 344
3 9 (360,388) 1,14 72 349,304 1,94 333 356,983 2,23 320
3 10 (367,969) 1,45 64 355,705 1,97 305 363,047 1,97 348

4 2 (239,204) 0,54 58 225,354 0,57 559 225,640 0,00 560
4 3 (269,482) 0,64 52 253,806 1,15 429 255,072 0,00 410
4 4 (290,283) 1,68 45 274,913 1,94 331 279,000 0,00 330
4 5 (303,248) 1,61 51 288,922 1,95 349 291,000 0,62 330
4 6 (315,374) 0,65 56 301,074 0,58 331 303,139 0,78 343
4 7 (324,823) 0,61 83 310,542 0,83 325 315,167 0,33 298
4 8 (333,640) 0,86 78 319,463 1,15 317 327,670 0,00 302
4 9 (341,007) 0,87 80 327,074 3,05 299 335,919 0,13 318
4 10 (348,310) 1,02 97 335,461 1,64 299 343,982 0,58 304

5 2 (220,928) 0,72 58 211,955 0,94 667 212,604 0,00 626
5 3 (250,491) 0,99 52 240,746 1,07 515 242,035 0,00 427
5 4 (272,251) 2,35 45 262,368 2,43 379 265,917 0,00 365
5 5 (285,997) 1,32 51 276,552 1,71 403 278,193 0,00 401
5 6 (297,032) 0,58 56 287,690 0,77 402 290,754 0,88 400
5 7 (306,395) 0,75 83 297,093 0,92 356 301,843 0,49 340
5 8 (315,239) 0,74 78 306,201 1,21 370 314,168 0,00 340
5 9 (323,263) 0,98 80 314,983 1,40 353 323,154 0,00 364
5 10 (330,717) 2,00 99 322,066 2,12 315 330,684 0,00 311

geo. mean (316,00) 305,65 309,24
#best res. - 0 36

# u. best res. - 0 36



22 Benjamin Biesinger et al.

First, we observe that for all our tested instance we were able to evaluate the
best solution candidate exactly, even for the cases which were not possible for the
proportional customer behavior. Also, the time needed for this evaluation is much
less and at most about 10 minutes for the hardest instance (in the case of r = 5 and
p = 2). The deviation of the greedy objective value and the exact objective value
is around 3% on average which shows that our greedy solution evaluation method
is relatively accurate. In this customer behavior scenario the benefits of using a
solution archive are even more obvious than in the other scenarios as EA + SA +
MIP performed better in all our tested instances. Second, we see again that for a
fixed r the time needed for solving the model decreases with increasing p because
the solution space is getting smaller. For many of the instances we obtained a very
low standard deviation which, again, shows the robustness of our approach.

Compared to the other customer behavior scenarios the complexity of partially
binary behavior lies in between the binary and the proportional choice rule, where
binary is the easiest to solve and proportional by far the hardest. We also see that
the leader is preferred in proportional scenarios as for a fixed r and p the turnover
is higher than in the partially binary case in most of the instances but especially
for a large p and small r, i.e., when he is able to place more facilities than the
follower. For example, the turnover for the leader when r = 3 and p = 10 is in the
proportional case nearly 16% higher than when the customers use the partially
binary choice.

6.4 Unessential Demands

We performed computational tests for all customer behavior scenarios with un-
essential demands. Like in the partially binary customer behavior also for un-
essential demands there are no numerical results available in the literature. We
tested the two different follower strategies LMIN and FMAX and compared them
to each other. In the following tables in addition to the average leader objective
value (objl) over 30 runs we also present the average turnover obtained by the
follower for the corresponding best leader solution found (objf). For both values
the standard deviations are given as well (sd). Usually only a fraction of the total
demand of all customers can be satisfied when the demand is unessential and these
(average) fractions are the values in column market saturation (sat.).

The first interesting observation is that the turnover of the follower and the
market saturation in the FMAX strategy is higher than in the LMIN strategy in all
our test cases, which corresponds to our intuition. According to this observation in
the proportional and the partially binary case the turnover of the leader is always
lower when the follower uses the LMIN strategy. However, a rather surprising
result is that this is not always the case for the binary customer behavior, see
Table 4. In some of the instances with r = p = 10 and most of the instances with
r = p = 20 the leader objective value is higher for the LMIN strategy. This can
be explained by two factors: On the one hand the model for the follower is easier
to solve in the LMIN case and therefore the algorithm is able to perform more
iterations so that the leader can possibly obtain better facility locations. On the
other hand when the follower uses the LMIN strategy the leader wants to open
the facilities in such a way that it is difficult for the follower to capture facilities of



Models and Algorithms for CFLPs 23

her. In some instances this can be more easily achieved and therefore the leader’s
turnover can be higher.

Table 4 Results of binary customer behavior with unessential demand.

LMIN FMAX

Instance r p objl sd objf sd sat. objl sd objf sd sat.

Code1 10 10 1846,37 0,00 699,52 0,00 29,30% 1849,32 0,00 1539,73 0,00 39,00%
Code2 10 10 1927,16 0,00 988,90 0,00 27,72% 1929,70 0,00 1793,24 0,00 35,39%
Code3 10 10 1850,92 0,00 1164,79 0,00 32,25% 1855,38 0,01 1564,22 0,01 36,57%
Code4 10 10 1914,31 0,00 1313,22 0,00 32,51% 1918,90 0,00 1674,72 0,00 36,20%
Code5 10 10 1909,94 0,00 1189,45 0,00 30,26% 1912,81 0,00 1718,66 0,00 35,45%
Code6 10 10 1892,39 0,00 1000,04 0,00 30,39% 1898,67 0,00 1753,45 0,00 38,37%
Code7 10 10 1928,64 0,00 895,01 0,00 25,21% 1937,19 0,00 1819,43 0,00 33,54%
Code8 10 10 1889,22 0,00 995,05 0,00 30,18% 1893,17 0,00 1698,59 0,00 37,58%
Code9 10 10 1937,16 0,00 1001,99 0,00 28,27% 1943,06 0,00 1756,90 0,00 35,59%

Code10 10 10 1926,28 0,00 1165,26 0,00 30,23% 1931,94 0,00 1793,41 0,00 36,43%

Code1 15 15 2626,28 0,00 1270,15 0,00 44,84% 2630,42 0,41 2065,77 0,41 54,05%
Code2 15 15 2835,00 0,00 1148,96 0,00 37,87% 2835,93 4,31 2492,44 4,31 50,65%
Code3 15 15 2673,87 0,00 1602,77 0,00 45,73% 2675,32 5,63 2118,62 5,63 51,27%
Code4 15 15 2786,36 0,00 1576,55 0,00 43,95% 2791,15 0,00 2231,67 0,00 50,60%
Code5 15 15 2788,79 0,00 1433,94 0,00 41,23% 2790,91 3,26 2346,67 3,26 50,16%
Code6 15 15 2780,75 0,00 1635,72 0,00 46,40% 2786,19 0,26 2398,07 0,26 54,47%
Code7 15 15 2850,97 0,89 1453,86 10,88 38,44% 2857,61 4,30 2563,34 4,30 48,41%
Code8 15 15 2766,82 0,00 1429,97 0,00 43,91% 2769,97 2,24 2239,73 2,24 52,42%
Code9 15 15 2827,96 0,00 1553,82 0,00 42,15% 2832,91 1,53 2418,83 1,54 50,52%

Code10 15 15 2835,45 0,00 1686,00 0,00 44,22% 2841,64 1,69 2466,41 1,69 51,91%

Code1 20 20 3156,98 64,77 1549,71 132,88 54,17% 3153,85 51,35 2654,00 40,05 66,84%
Code2 20 20 3476,13 65,08 1813,75 212,00 50,28% 3515,71 54,99 3224,91 47,04 64,07%
Code3 20 20 3267,67 48,30 1806,11 131,34 54,26% 3227,89 64,64 2754,22 57,30 63,97%
Code4 20 20 3386,16 85,40 1985,39 132,71 54,11% 3375,96 62,21 2817,20 60,38 62,39%
Code5 20 20 3418,97 59,38 2011,84 134,34 53,02% 3402,50 60,47 2987,49 56,47 62,38%
Code6 20 20 3436,56 82,77 1807,69 152,24 55,10% 3356,40 80,46 2963,24 66,61 66,40%
Code7 20 20 3537,77 61,17 1978,53 155,31 49,26% 3548,15 63,04 3316,42 45,49 61,30%
Code8 20 20 3378,65 60,82 1714,22 133,31 53,29% 3355,12 58,21 2851,08 54,63 64,94%
Code9 20 20 3540,28 59,59 1981,12 148,48 53,11% 3494,47 51,85 3124,28 36,54 63,67%

Code10 20 20 3482,95 78,33 2137,71 134,22 54,96% 3463,84 81,00 3135,54 65,65 64,54%

The model for the follower’s problem for proportional unessential customer
behavior, especially FMAX, is still hard to solve so we again only compute greedy
values for some of the instances, denoted by parantheses in Table 5. For these
instances we do not state the market saturation and the objective values and
standard deviations of the follower because we do not have exact results. However,
compared to essential demands we were able to solve the follower’s model for more
instances and therefore get accurate results in more cases.

In Table 6 we see the results of partially binary customer behavior with un-
essential demands. The results show that for this scenario the results are very
stable because the objective values have a very low standard deviation in many
instances. The most interesting observation in this table is that, in contrast to
the essential cases, in most instances the leader objective value (and the market
saturation) is higher than in the proportional scenario. The reason for this behavior
is that in the partially binary scenario more demand is satisfied by nearer facilities
and therefore the total satisfied demand also increases.

From the results we conclude that in general the FMAX strategy is better
because significantly more demand can be satisfied and the follower increases his
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Table 5 Results of proportional customer behavior with unessential demand.

LMIN FMAX

r p objl sd objf sd sat. objl sd objf sd sat.

2 2 19,818 0,00 19,818 0,00 7,10% 30,460 0,00 29,331 0,00 10,72%
2 3 32,045 0,00 18,100 0,00 8,99% 42,091 0,00 26,735 0,00 12,33%
2 4 42,586 0,00 16,047 0,00 10,51% 52,266 0,00 25,160 0,00 13,88%
2 5 52,538 0,00 15,569 0,00 12,21% 61,266 0,00 23,528 0,00 15,20%
2 6 61,468 0,00 14,990 0,00 13,70% 70,285 0,00 22,218 0,00 16,58%
2 7 69,757 0,00 14,551 0,00 15,11% 78,613 0,00 20,634 0,00 17,79%
2 8 77,767 0,00 14,143 0,00 16,47% 85,893 0,00 19,610 0,00 18,91%
2 9 84,962 0,00 13,604 0,00 17,66% 91,963 0,00 19,118 0,00 19,91%
2 10 91,552 0,00 13,027 0,00 18,74% 98,666 0,03 18,557 0,07 21,01%

3 2 17,133 0,00 23,343 0,00 7,25% 28,049 0,00 40,476 0,00 12,28%
3 3 25,262 0,00 25,262 0,00 9,05% 39,386 0,00 38,039 0,00 13,88%
3 4 35,786 0,02 23,610 0,32 10,64% 49,724 0,03 35,434 0,03 15,26%
3 5 45,888 0,00 22,267 0,00 12,21% 59,172 0,00 33,332 0,00 16,58%
3 6 54,939 0,00 21,571 0,00 13,71% 67,564 0,00 31,682 0,00 17,79%
3 7 63,250 0,00 21,026 0,00 15,10% 74,954 0,00 29,902 0,00 18,79%
3 8 71,341 0,08 20,260 0,10 16,42% 82,241 0,00 28,839 0,00 19,91%
3 9 78,551 0,20 19,595 0,08 17,59% 89,195 0,07 28,040 0,13 21,01%
3 10 85,244 0,19 18,998 0,08 18,68% 95,494 0,39 27,384 0,21 22,02%

4 2 15,120 0,00 33,323 0,00 8,68% (26,501) 0,00 – – –
4 3 22,935 0,00 28,380 0,00 9,20% (37,586) 0,00 – – –
4 4 29,895 0,00 29,895 0,00 10,72% 47,448 0,00 45,056 0,00 16,58%
4 5 39,870 0,00 28,417 0,00 12,24% 56,606 0,00 42,641 0,00 17,79%
4 6 49,085 0,00 27,466 0,00 13,72% 64,863 0,13 40,647 0,14 18,91%
4 7 57,464 0,03 26,822 0,03 15,10% 72,384 0,03 39,126 0,16 19,98%
4 8 65,234 0,34 25,972 0,25 16,35% 79,469 0,25 37,534 0,30 20,97%
4 9 72,388 0,54 25,180 0,23 17,49% 86,197 0,53 36,634 0,27 22,01%
4 10 78,244 0,84 24,138 0,38 18,35% 91,158 1,06 35,784 0,33 22,75%

5 2 (13,856) 0,00 – – – (25,474) 0,00 – – –
5 3 20,973 0,00 35,673 0,00 10,15% (36,173) 0,00 – – –
5 4 27,804 0,00 32,685 0,00 10,84% (45,780) 0,00 – – –
5 5 34,449 0,00 34,449 0,00 12,35% (54,150) 0,00 – – –
5 6 43,715 0,01 33,071 0,02 13,76% 62,393* 0,05 49,228* 0,11 20,00%
5 7 52,077 0,13 32,331 0,17 15,13% 70,206 0,25 47,418 0,26 21,08%
5 8 59,373 0,77 31,206 0,36 16,23% 76,770 0,51 46,073 0,41 22,01%
5 9 65,956 1,14 30,357 0,30 17,26% 82,630 0,68 44,856 0,36 22,85%
5 10 70,972 2,02 29,086 0,38 17,93% 86,950 1,85 43,642 0,38 23,40%
∗Not all of the 30 runs completed in the time limit

profit, too. However, if the follower wants to lower the turnover of the leader by
all means the LMIN strategy might be useful but we could show that this is only
valid for proportional and partially binary behavior and not for binary behavior.
Compared to the essential demand cases we showed that while the complexity
of the models for the follower’s problem of the binary behavior increases, the
complexity of the other two scenarios decreases and we got accurate results for
more instances.

7 Conclusions and Future Work

In this work we presented bi-level mixed integer programming models for compet-
itive facility location problems with different customer behavior as described in
the literature. We used an evolutionary algorithm incorporating a complete solu-
tion archive for finding the best locations for the leader, which has already been
successfully applied to binary and proportional behavior in our previous work.
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Table 6 Results of partially binary customer behavior with unessential demand.

LMIN FMAX

r p objl sd objf sd sat. objl sd objf sd sat.

2 2 21,288 0,00 21,288 0,00 7,63% 34,168 0,00 31,450 0,00 11,76%
2 3 35,324 0,00 20,960 0,00 10,09% 47,015 0,00 30,165 0,00 13,83%
2 4 48,015 0,00 21,055 0,00 12,38% 59,276 0,00 29,247 0,00 15,86%
2 5 59,988 0,00 19,512 0,00 14,25% 71,004 0,00 27,864 0,00 17,72%
2 6 71,623 0,00 19,022 0,00 16,24% 82,540 0,00 27,079 0,00 19,64%
2 7 82,551 0,00 19,783 0,00 18,34% 93,484 0,00 25,939 0,00 21,40%
2 8 93,423 0,00 19,487 0,00 20,23% 103,987 0,30 25,514 0,65 23,21%
2 9 103,254 0,00 20,031 0,00 22,09% 114,234 0,00 25,246 0,00 25,00%
2 10 113,116 0,00 20,735 0,00 23,99% 122,132 1,36 24,473 0,38 26,27%

3 2 20,501 0,00 22,075 0,00 7,63% 32,744 0,00 44,798 0,00 13,90%
3 3 28,658 0,00 28,658 0,00 10,27% 45,339 0,00 43,072 0,00 15,84%
3 4 41,349 0,00 28,753 0,00 12,56% 57,582 0,00 41,117 0,00 17,69%
3 5 53,268 0,00 29,170 0,00 14,77% 69,171 0,00 39,802 0,00 19,53%
3 6 64,903 0,00 28,679 0,00 16,77% 80,790 0,00 38,398 0,00 21,36%
3 7 75,591 0,00 29,186 0,00 18,78% 91,440 0,00 37,178 0,00 23,05%
3 8 86,463 0,00 28,890 0,00 20,67% 101,820 0,00 36,985 0,00 24,88%
3 9 96,482 0,00 27,898 0,00 22,29% 111,967 0,02 36,416 0,20 26,59%
3 10 106,419 0,00 28,221 0,00 24,13% 122,981 0,31 35,902 0,04 28,47%

4 2 19,856 0,00 22,720 0,00 7,63% 31,007 0,00 57,367 0,00 15,84%
4 3 27,934 0,00 29,378 0,00 10,27% 44,102 0,00 55,005 0,00 17,76%
4 4 35,294 0,00 35,294 0,00 12,65% 56,457 0,00 53,602 0,00 19,72%
4 5 47,213 0,00 35,711 0,00 14,86% 67,858 0,00 51,352 0,00 21,36%
4 6 58,848 0,00 35,220 0,00 16,86% 79,037 0,00 49,204 0,00 22,98%
4 7 69,629 0,00 35,515 0,00 18,84% 89,714 0,00 48,228 0,00 24,72%
4 8 79,507 0,00 35,948 0,00 20,69% 100,461 0,00 47,720 0,00 26,56%
4 9 90,337 0,00 34,987 0,00 22,46% 110,602 0,03 46,858 0,16 28,22%
4 10 100,274 0,00 35,311 0,00 24,30% 120,672 0,07 46,275 0,33 29,92%

5 2 19,241 0,00 20,779 0,00 7,17% 30,831 0,00 68,490 0,00 17,80%
5 3 27,318 0,00 27,420 0,00 9,81% 43,493 0,00 66,877 0,00 19,78%
5 4 34,570 0,00 36,014 0,00 12,65% 55,232 0,00 64,410 0,00 21,44%
5 5 41,462 0,00 41,462 0,00 14,86% 66,663 0,00 61,991 0,00 23,06%
5 6 53,097 0,00 40,971 0,00 16,86% 77,940 0,00 59,831 0,00 24,69%
5 7 63,878 0,00 41,266 0,00 18,84% 88,616 0,00 58,855 0,00 26,43%
5 8 74,554 0,00 40,796 0,00 20,67% 98,942 0,03 58,530 0,12 28,22%
5 9 84,363 0,00 41,222 0,00 22,51% 109,581 0,00 57,526 0,00 29,95%
5 10 94,297 0,00 41,528 0,00 24,34% 119,869 0,00 56,054 0,00 31,53%

The solution representation is based on the leader facilities only and we used our
developed lower level MIP models as well as a greedy method for the evaluation of
candidate solutions. We showed that the model for the binary customer behavior
scenario can be solved much more easily than the others and that the propor-
tional case is by far the hardest to solve. The observation that the leader benefits
more from proportional customer behavior than from partially binary behavior is
also interesting. Even more interesting is that this changes when the demand is
unessential. For the unessential demand model binary behavior is still the easiest
and the proportional behavior still the hardest to solve but the former is getting
harder while partially binary and proportional models are getting easier.

Our tests showed that our algorithmic approach is practically effective for
CFLPs. Even for the more complex customer behavior scenarios our EA is able to
find good solutions relatively fast. We compared our algorithm with previous state-
of-the-art algorithms on the binary and proportional essential customer behavior
scenarios and were able to outperform them in many cases.
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Future research directions could be the development of a better approximation
of the leader’s objective value, e.g., by extending our greedy algorithms with a
local search. When using a more elaborate solution evaluation we have obviously
a tradeoff between accuracy and run-time. It would also be interesting to extend
our models for different customer behavior to more realistic scenarios by taking
opening costs of facilities into account to be able to maximize not only the turnover
of the leader but also the profit. We also want to study the impact of different
customer behaviors, i.e., compare the solutions obtained by the corresponding
models in a more detail. This enables us to gain insights into the impact of different
models on scenarios in practice.
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survey of metaheuristic approaches. European Journal of Operational Research 179(3),
927 – 939 (2007)

18. Noltemeier, H., Spoerhase, J., Wirth, H.C.: Multiple voting location and single voting
location on trees. European Journal of Operational Research 181(2), 654–667 (2007)

19. Raidl, G., Hu, B.: Enhancing genetic algorithms by a trie-based complete solution archive.
In: P. Cowling, P. Merz (eds.) Evolutionary Computation in Combinatorial Optimization,
Lecture Notes in Computer Science, vol. 6022, pp. 239–251. Springer Berlin Heidelberg
(2010)

20. Roboredo, M., Pessoa, A.: A branch-and-cut algorithm for the discrete (r|p)-centroid prob-
lem. European Journal of Operational Research 224(1), 101–109 (2013)

21. Saidani, N., Chu, F., Chen, H.: Competitive facility location and design with reactions of
competitors already in the market. European Journal of Operational Research 219(1),
9–17 (2012)
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