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Abstract. The leader-follower facility location problem arises in the
context of two non-cooperating companies, a leader and a follower, com-
peting for market share from a given set of customers. In our work we
assume that the firms place a given number of facilities on locations taken
from a discrete set of possible points. The customers are assumed to split
their demand inversely proportional to their distance to all opened facili-
ties. In this work we present an evolutionary algorithm with an embedded
tabu search to optimize the location selection for the leader. A complete
solution archive is used to detect already visited candidate solutions and
convert them into not yet considered ones. This avoids unnecessary time-
consuming re-evaluations, reduces premature convergence and increases
the population diversity at the same time. Results show significant ad-
vantages of our approach over an existing algorithm from the literature.

Keywords: competitive facility location, evolutionary algorithm, solu-
tion archive, bi-level optimization

1 Introduction

We consider a competitive facility location problem in which two decision makers,
a leader and a follower, compete for market share. They choose given numbers of
facility locations from a finite set of possible positions in order to satisfy clients,
whereas the leader starts by placing all of his facilities. Each customer has a
fixed demand which is assumed to be fulfilled by all opened facilities together
inversely proportional to their distance. In this respect the considered model is
for many real-world scenarios more precise than simpler leader-follower location
problems where a customer’s whole demand is assumed to be satisfied by its
closest facility only. Demands correspond to the buying power of the customers,
so the turnover of the competing firms increases with the amount of fulfilled
demand.
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We propose an evolutionary algorithm (EA) that tries to find best possible
facility locations for the leader so that his turnover is maximized with respect to
a follower who is assumed to place his facilities optimally, i.e., aiming at lowering
the leader’s revenue. Therefore, for a given set of facility locations of the leader
we have to find an optimal set of facility locations of the follower in order to
obtain an accurate revenue value the leader can achieve. This makes the problem
a bi-level optimization problem. Finding the optimal locations for the follower,
which can be seen as evaluating a candidate leader solution, unfortunately is
a time-consuming procedure so we want to avoid unnecessary computations.
Consequently, we employ a complete solution archive which is a data structure
that stores all generated candidate solutions and converts created duplicates
into guaranteed not yet considered solutions. Using this archive together with a
tabu-search for locally improving solutions within the EA, we are able to reduce
premature convergence, loss of diversity and, as already mentioned before, costly
re-evaluations of duplicates.

In Section 2 we define the problem more formally. Related work is presented
in Section 3, which is followed by a description of a mathematical model for the
leader-follower facility location problem with proportional customer behavior in
Section 4. Section 5 introduces our evolutionary algorithm and its extensions.
Section 6 discusses our computational results and compares our method to an
approach from the literature. Finally, we draw conclusions in Section 7 and give
an outlook on further promising research questions.

2 Problem Definition

In the following we will formally define the leader-follower facility location prob-
lem with proportional customer behavior. Given are the numbers r ≥ 1 and
p ≥ 1 of facilities to be opened by the leader and follower, respectively, and a
weighted complete bipartite graph G = (I, J, E) where I = {1, . . . ,m} repre-
sents the set of potential facility locations, J = {1, . . . , n} represents the set of
customers, and E = I × J , is the set of edges indicating corresponding assign-
ments. Let wj > 0,∀j ∈ J , be the demand of each customer, which corresponds
to the turnover to be earned by the serving facilities, and dij ≥ 0,∀(i, j) ∈ E,
be the distances between customers and potential facility locations. The goal for
the leader is to choose exactly p locations from I for opening facilities in order to
maximize her turnover under the assumption that the follower in turn chooses
r locations for his facilities optimally maximizing his turnover.

Each customer j splits her demand over all opened facilities. The amount
of demand that a facility fulfills is inversely proportional to its distance to the
customer. In the following we give a formal definition of a candidate solution
and the turnover computation. Let (X,Y ) be a candidate solution to our leader-
follower facility location problem, where X ⊆ I, |X| = r, is the set of locations
chosen by the leader and Y ⊆ I, |Y | = p, is the associated set of follower
locations. Furthermore, let xi = 1 if i ∈ X and xi = 0 otherwise, and yi = 1 if



i ∈ Y and yi = 0 otherwise, ∀i ∈ I. Then, the turnover of the follower is

pf =
∑
j∈J

wj

∑
i∈I

1
dij+1xi∑

i∈I

1
dij+1xi +

∑
i∈I

1
dij+1yi

and the turnover of the leader is

pl =
∑
j∈J

wj − pf .

Note that one is added to the original distances dij just to avoid numerical
problems with zero distances which might occur when considering the same
locations for facilities and customers.

3 Related Work

Competitive facility location problems are an old type of problem introduced
by Hotelling [8] in 1929. He considers two sellers placing one facility each on a
line. In the last years many variations were considered that differ in the way the
competitors can open their facilities and in the behavior of the customers. Kress
and Pesch give an overview of competitive location problems in networks in [11].

The discrete (r|p)-centroid problem is a competitive facility location problem
introduced by Hakimi [7]. In this problem two decision makers can place given
numbers of facilities on specific locations and each customer’s demand is always
fulfilled by the closest facility. Alekseeva et al. [1–3] present several heuristic and
exact solution approaches. Laporte and Benati [13] developed a tabu search and
Roboredo and Pessoa [17] describe a branch-and-cut algorithm.

The leader-follower facility location problem with proportional customer be-
havior which we consider here differs only in the way how customer demands are
satisfied. For this frequently more realistic problem variant not much previous
work exists, and unfortunately it is not trivial to extend existing approaches for
the (r|p)-centroid problem. Kochetov et al. [10] developed a matheuristic for a
more general problem variant that contains our problem as a special case. They
assume that for each location several so-called design scenarios are possible. All
of a location’s design scenarios have different fixed costs and different attractive-
ness for the customers. Both competitors have a fixed budget and must choose
the facility locations and the design scenarios for these locations in order to max-
imize their profit. In their work the customers split their demand proportionally
to the attractiveness of a facility and inversely proportional to the distance to
each facility. The authors suggest an alternating heuristic to solve this problem
which is derived from an alternating heuristic developed for the (r|p)-centroid
problem with continuous facility locations in [4]. Based on a starting solution
for the leader they find the optimal facility locations for the follower. This fol-
lower solution is subsequently chosen as leader solution and the optimal follower
solution is found again. This procedure is repeated until a solution is obtained



which has already been generated. In Section 6 we compare our approach to
their algorithm.

Vega et al. [21] give an overview on the different customer choice rules of
competitive multifacility location problems. They consider six different scenarios
of customer behavior, including binary, partially binary, proportional as well as
essential and unessential goods. The authors assume that the facilities can be
placed anywhere on the plane and give discretization results for several customer
choice rules.

Fernández and Hendrix [5] study recent insights in Huff-like competitive fa-
cility location and design problems. In their survey article they compared three
different articles [12, 20, 19] describing all the same basic model. In all three
papers, for each facilitiy a quality level has to be determined similar to the de-
sign scenarios used in Kochetov [10] and fixed costs for opening facilities incur.
Küçükaydin et al. [12] and Saidani et al. [19] assume that the competitor is al-
ready in the market and in Sáiz et al. [20] focus on finding a nash equilibrium
of two competitors entering a new market opening only one facility each.

4 Mathematical Model

We present a mathematical non-linear bi-level model for our problem which
is derived from Kochetov et al. [10]. Let vij = 1

dij+1 be the attractiveness of

location i for customer j. The upper level problem (leader’s problem) is:

max
∑
j∈J

wj

∑
i∈I

vijxi∑
i∈I

vijxi +
∑
i∈I

vijy∗i
(1)

s.t. ∑
i∈I

xi = p (2)

xi ∈ {0, 1} ∀i ∈ I (3)

where (y∗1 , . . . , y
∗
m) is an optimal solution to the lower level problem (follower’s

problem):

max
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi
(4)

s.t. ∑
i∈I

yi = r (5)

yi ∈ {0, 1} ∀i ∈ I (6)

The objective functions (1) and (4) maximize the sum of the fulfilled demand
by the leader and the follower, respectively, considering the splitting over the



facilities inversely proportional to their distances. Constraint (2) ensures that
the leader opens exactly p facilities and, similarly, constraint (5) guarantees
that the follower places exactly r facilities. Note that the follower in principle
is allowed to open facilities at the same locations as the leader. All of the xi
variables are considered constants in the follower’s problem.

In order to be able to solve the follower’s problem more efficiently Kochetov
et al. [10] suggest a linear transformation of this model, which is as follows. First,
we introduce two new kinds of variables:

zj =
1∑

i∈I
vijxi +

∑
i∈I

vijyi
∀j ∈ J (7)

and

yij = wjzjvijyi ∀i ∈ I, j ∈ J. (8)

Variables yij have the intuitive meaning that they are the demand of customer
j that is supplied by the follower facility at location i. It is obvious that if we
are able to model the non-linear equation (8) in a linear way such that equation
(7) is valid we get a model that is equivalent to (4–6). This is realized by the
following mixed integer linear program (MIP):

max
∑
j∈J

∑
i∈I

yij (9)

s.t. (5), (6) and∑
i∈I

yij + wjzj
∑
i∈I

vijxi ≤ wj ∀j ∈ J (10)

yij ≤ wjyi ∀i ∈ I, j ∈ J (11)

yij ≤ wjvijzj ≤ yij +W (1− yi) ∀i ∈ I, j ∈ J (12)

yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (13)

Objective function (9) maximizes the turnover obtained by the follower. Con-
straints (10) set the variables yij by restricting them not exceed the total demand
of customer j minus the demand captured by the leader. The fact that a facility
location i can only get some turnover from customer j when the follower opens
a facility there is ensured by constraints (11). Finally, equation (8) is fulfilled
because of constraints (12).

Constant W is chosen large enough, so that an optimal solution to this
model satisfies equations (7), i.e., W = max

j∈J
(wj) · max

i∈I,j∈J
(vij) ·max

j∈J
(zj), where

max
j∈J

(zj) ≤ max
j∈J

(1/
∑
i∈I

vijxi) because of constraints (10). Due to constraint (12)

with its W , the linear programming (LP) relaxation of this model unfortunately
is relatively weak, therefore finding an optimal solution to this model using a gen-
eral purpose mixed integer programming solver like CPLEX is time-consuming
even for small instances. Nevertheless, this model is still easier to solve than
(4–6) directly.



5 Evolutionary Algorithm

In this section we present an EA that aims to find the optimal solution to
the leader’s problem. We use an incomplete solution representation only storing
the facilities of the leader indicated by the binary vector x = (x1, . . . , xm).
For augmenting the incomplete leader solution, which can also be seen as the
evaluation of a candidate leader solution, the follower’s problem has to be solved.
As solving this problem exactly is time-consuming, a greedy evaluation procedure
is used for approximating the quality of intermediate leader solution candidates,
which is described in the next section. Only at the end of the EA the best solution
found is evaluated using the MIP of Section 4 to get an exact objective value.
After explaining the greedy solution evaluation we will introduce the EA with
its variation operators, the complete solution archive, and finally the embedded
tabu-search-based local improvement method.

5.1 Greedy Solution Evaluation

The greedy evaluation procedure tries to find a near-optimal solution to the
follower’s problem in short time. It performs by iteratively selecting a locally best
possible position for opening a facility, until all r follower facilities are placed.
A currently best possible location is determined by computing the turnover of
the follower for all possible locations using a function similar to the objective
function of the leader’s problem (4):

pf(y) =
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi
, (14)

where y = (y1, . . . ym) is the partial solution vector of the follower containing
all so far opened facilities and additionally the candidate location. Then, a lo-
cation with the highest turnover is chosen; ties are broken randomly. The value
obtained from this procedure is a lower bound to the follower’s problem and
therefore

∑
j∈J

wj − pf(y) is an upper bound to the objective value of the leader’s

solution.

5.2 Initial Population/EA Framework and Variation Operators

The EA’s initial population is created by choosing p different facility locations
uniformly at random to ensure a high diversity at the beginning. We employ a
steady-state genetic algorithm in which exactly one new candidate solution is de-
rived in each iteration. It always replaces the worst individual of the population.
Binary tournament selection with replacement is used to choose two candidate
solutions for recombination. Offsprings further undergo mutation.

Recombination works as follows. Suppose that we have two candidate solu-
tions X1 ⊂ I and X2 ⊂ I. Then an offspring X ′ of X1 and X2 is derived by



adopting all locations from S = X1 ∩ X2 and adding p − |X1 ∩ X2| further
locations from (X1 ∪X2) \ S chosen uniformly at random.

Mutation is based on the swap neighborhood structure, which is also known
from the p-Median problem [22]. A swap move closes a facility and re-opens it
at a different, so far unoccupied position. Our mutation applies µ random swap
moves, where µ is determined anew at each EA-iteration by a random sample
from a Poisson distribution with mean value one.

5.3 Solution Archive

Several methods for duplicate detection in genetic algorithms have been proposed
in the literature [18, 15, 14]. In contrast to simple hashing-based approaches,
there exist a few works where the archive is not just used to recognize dupli-
cates, but more importantly to also efficiently convert them into similar not
yet considered solutions. Such an operation can also be considered as “intelli-
gent mutation”. Yuen and Chow [23] present such an approach for continuous
optimization problems. For the application to our problem a variation of the
trie-based complete solution we proposed in [16] is most suitable. Tests on bench-
mark problems with binary solution representations, including NK landscapes
and Royal Road functions as well as the Generalized Minimum Spanning Tree
Problem [9] proved that such an archive is able to boost an EAs performance
substantially, especially when the solution evaluation is costly.

A complete solution archive is a data structure that stores all generated can-
didate solutions in a compact way. An evolutionary algorithm can benefit from
such an archive because an on-the-fly conversion of already visited solutions in-
creases diversity in the population, reduces the danger of premature convergence
and re-evaluations of already visited solutions are avoided completely. Another
rather theoretical property of such an archive-enhanced EA is that in principle
it is a complete optimization approach yielding a guaranteed optimal solution
in bounded time after considering all solutions of the search space. In practice,
however, such an EA usually will be terminated earlier, still yielding only a
heuristic solution.

For the underlying data structure we use an indexed trie, which is a tree
data structure often applied in dictionary applications [6]. For the performance
of a solution archive it is important that inserting, searching and converting
a solution can be performed efficiently. A trie is exceptionally good for this
purpose because all these operations can be implemented in O(m) time, where
m is the length of the solution representation, i.e., independent of the number
of solutions it contains. In general each trie node consists of |A| pointers to
successor nodes, indexed by the elements of A, where A is the domain of a
solution vectors elements, i.e., A = {0, 1} in our case. The maximum height of
the trie is determined by the length of the solution vector m.

We combine the EA and the solution archive as follows: Each time a candidate
solution is created, we check if this solution is already contained in the archive. In
case it is a duplicate it is converted on-the-fly into a not yet considered solution.
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Fig. 1. Solution archive with some inserted solutions on the lefthand side and a sample
conversion of (0, 0, 1, 1, 0, 0, 1) into the new solution (0, 1, 1, 1, 0, 0, 0) on the righthand
side.

Then the new solution is inserted into the archive and transferred back to the
EA, where it is integrated into the population.

Trie Operations
We now describe the problem-specific trie operations which are based on the
general methods described in [16]. For inserting a solution into the trie we start
at the root node of the trie with the first element x1 of the solution vector. On
each level i = 1, . . . ,m−1 of the trie we follow the pointer indexed by xi. At the
lowest level m−1, a special constant pointer “C”, also called complete, is stored
to finally represent the solution. Intermediate nodes are always only created
when needed and null -pointers (“/”) indicate empty subtries. Note that such a
trie also has a strong relationship to an explicitly stored branch-and-bound tree,
as each node divides the search space into two subspaces. Additionally, a subtrie
can be pruned if it contains only solutions that have already been visited, i.e., if
both of its children are complete then this node is deleted and the corresponding
entry in the parent node is set to complete. On the lefthand side of Figure 1
a sample trie for a small instance with m = 7 and p = 3 is shown. This trie
contains the solutions (0, 0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 1, 0, 0), and (0, 0, 1, 0, 1, 1, 0).
The crossed out trie node is pruned by invalidity, which is explained in the next
paragraph.

Apart from this basic insertion procedure we use some modifications for our
type of problem, exploiting the fact that exactly p variables must be set to



one in any feasible solution. First, we can stop the insertion procedure already
when encountering the p-th one by storing a “C”. All remaining elements of the
solution must be set to zero. This explains the different depths of the branches in
Figure 1. The second adjustment is that we prune the trie by cutting off subtries
containing only invalid solutions. Whenever a one is considered for a solution to
be inserted, we check if enough facilities would still fit if instead a zero would be
chosen. If this is not the case, a corresponding pointer indexed by zero is set to
complete to indicate that there are no valid solutions in that subtrie. In Figure 1
this is done at the crossed out trie node. These modifications ensure that the
trie always is as compact as possible.

The search procedure is similar to the insertion described above because we
also start at the root and follow the child nodes corresponding to the solution
vector but we are not modifying any trie node. Instead, we conclude that the
solution is contained in the trie when we encounter a complete pointer and that
the solution is new if we reach a null -pointer, respectively.

For converting a contained solution (x1, . . . , xm) into a similar but not yet
stored one we first choose a position where we will alter the solution. This is
done by first determining all feasible deviation positions i ∈ I, for which the
corresponding trie nodes at the search path do not contain complete for 1− xi.
From these possibilities, one deviation position is then selected uniformly at
random. Should no feasible deviation position exist anymore, we know that the
whole search space has been covered and we can stop the whole optimization with
the so far best solution being an optimum. In this case the whole trie has been
reduced to a single complete pointer. Otherwise, we change the element at the
deviation position from one to zero or the other way around which corresponds
to closing or opening a facility at location i, respectively. In contrast to previous
trie-based solution archives, we have to make another change at a later position
for ensuring that p variables are set to one again. There are two possible cases
depending on the pointer at the deviation position.

– If it is a null -pointer, we know that the corresponding subspace has not been
explored yet, which means that any feasible solution from this point on is a
new one. Therefore, if we have to close a facility, we choose randomly from
the set of open facilities with an index greater than i, set the corresponding
variable xi to zero, and insert the remaining solution as usual into the new
trie branch. The case when we have to open a facility is handled analogously.

– If the pointer at the deviation position points towards a successive trie node,
we go to this node and consider its pointers. If one of them is complete, we
have no choice but to follow the other one. Otherwise, we prefer the pointer
corresponding to the original solution’s variable value, i.e., we follow at level
j the pointer indexed by xj , and repeat the process until we end up in a null -
pointer. From there we proceed analogously as in the first case and apply
the remaining necessary modification(s) randomly to the remaining solution
elements. This procedure is guaranteed to terminate with a feasible solution
because there must be at least one null -pointer in each subtrie.
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Fig. 2. A randomized trie

On the righthand side of Figure 1 an example of a conversion is illustrated. Sup-
pose that the already existing solution x = (0, 0, 1, 1, 0, 0, 1) shall be converted
and inserted. Upon reaching the complete pointer, a deviation point is chosen
randomly – in this case i = 2. Since the alternative entry at 1 − x2 points to
another trie node, we follow it to the corresponding branch. There we replace
the null pointer at position one by inserting a new subtrie branch because the
element of the original solution x3 = 1. Then we close a random facility with an
index greater than 3 – in this case facility at location 7 is chosen – which results
in the new solution (0, 1, 1, 1, 0, 0, 0).

Since the conversion procedure can only change solution elements from the
deviation position on, it might induce an undesirable bias, i.e., positions with
higher indices tend to be changed more often than elements with lower indices. In
order to handle this problem, a technique called trie randomization is employed,
which was already used in [16] and is described in detail there. Instead of dividing
the search space at level i ∈ {1, . . . ,m} according to the value of element xi,
we decide randomly for each trie-node which remaining element is used for this
purpose. The elements’ index is then stored along with the trie node. Figure 2
shows an example of a randomized trie. Although this technique does not avoid
biasing completely, it is substantially reduced.

5.4 Local Improvement

Each new candidate solution derived in the EA via recombination and mutation
whose objective value lies within a certain distance from the so far best solution
value further undergoes a local improvement step. It is based on a local search
applying the swap neighborhood structure already used for mutation. The best
improvement step function is used, so all neighbors of a solution that are reach-
able via one swap move are considered and evaluated and the best one is selected
for the next iteration. This procedure terminates when no superior neighbor can
be found.

In cooperation with the solution archive this basic local improvement pro-
cedure is extended to a tabu search variant where the solution archive acts as



tabu list. When enumerating the swap neighborhood of a candidate solution,
we check for each neighbor solution if it has already been visited before, i.e., is
contained in the solution archive. Only so far unvisited solutions are evaluated
and the best one is selected for the next iteration, even if it is worse than the
original solution; ties are broken randomly. This process is repeated for α itera-
tions without improving the objective value or until there is no more unvisited
neighbor solution. Note that our approach differs from classical tabu search im-
plementations since we do not consider move attributes to be black-listed in a
tabu list of limited length but are using the solution archive instead.

6 Computational Results

In this section we present computational results of our approach and compare
them to results from the literature. We consider instances from the Discrete
Location Problems library1 which are also used by Kochetov et al. [10]. In these
instances each customer location corresponds to a possible facility location, i.e.,
I = J . There are 50 such locations and they are chosen randomly on an Euclidean
plane of size 100× 100. The demand of each customer is randomly drawn from
{1, . . . , 10} and the number of facilities to be opened is taken from {2, . . . , 5} for
the follower and {2, . . . , 10} for the leader. We further generated larger instances2

with same properties but 100 locations, i.e., m = n = 100. In total we considered
72 test instances.

The EA has a population size of 100 and has been terminated after 3000
iterations without improvement or after 300 seconds. The termination parameter
α for the tabu-search-based local search is set to five. Local search/tabu search is
called for each candidate solution whose objective value lies within 1% of the best
solution found so far. After the EA finishes, the final best solution is evaluated
exactly by solving the MIP from Section 4 and using the best greedy solution as
starting solution with CPLEX 12.5. All tests are performed on a single core of
an Intel Xeon Quadcore with 2.54 GHz.

First we evaluate the impact of the solution archive on the results in Table 1.
We compare following algorithms:

– The EA variant where the final best solution is not evaluated with the MIP.
This means that the corresponding objective values are not exact, but only
approximate values from the greedy evaluation method.

– The Alternating Heuristic (AH) by Kochetov et al. [10].

– The EA variant (EA+MIP) that does not employ the archive and utilizes
the basic local search only; the final best solution is evaluated with MIP.

– The EA variant (EA+SA+MIP) that uses the solution archive and the tabu
search as local improvement method; the final best solution is evaluated with
MIP.

1
math.nsc.ru/AP/benchmarks/Design/design_en.html

2
www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems



Table 1. Results on small instances with m = n = 50 locations. We compare the
EA before the exact evaluation (EA), the Alternating Heuristic (AH), the EA with
exact evaluation (EA+MIP) and the EA with exact evaluation and solution archive
(EA+SA+MIP).

r p EA AH EA + MIP EA + SA + MIP

obj′ sd t[s] obj t[s] obj sd t[s] obj sd t[s]

2 2 127,000 0,00 8 127,000 62 127,000 0,00 27 127,000 0,00 22
2 3 153,000 0,00 10 153,000 395 153,000 0,00 18 153,000 0,00 18
2 4 170,471 0,00 10 170,471 3172 170,471 0,00 18 170,471 0,00 18
2 5 183,338 0,00 15 (182,665) >36000 182,665 0,00 21 182,665 0,00 21
3 2 101,000 0,00 12 101,000 734 101,000 0,00 353 101,000 0,00 337
3 3 127,000 0,00 13 127,000 246 127,000 0,00 103 127,000 0,00 101
3 4 145,478 0,07 21 145,508 1458 145,478 0,07 54 145,508 0,00 49
3 5 159,717 0,00 21 159,112 9144 159,112 0,00 66 159,112 0,00 65
4 2 83,529 0,00 16 83,529 6830 83,529 0,00 3022 83,529 0,00 3018
4 3 108,492 0,00 18 108,492 2468 108,492 0,00 1265 108,492 0,00 1264
4 4 126,962 0,14 29 127,000 1004 126,962 0,14 809 127,000 0,00 795
4 5 140,850 0,03 33 140,891 5490 140,850 0,03 399 140,891 0,00 316
5 2 71,177 0,00 19 (71,177) >36000 71,177 0,00 20296 71,177 0,00 20388
5 3 95,140 0,00 22 94,888 19337 94,888 0,00 9621 94,888 0,00 9860
5 4 113,092 0,09 34 113,109 11060 113,092 0,09 6969 113,109 0,00 7022
5 5 126,983 0,04 55 127,000 9015 126,983 0,04 3020 127,000 0,00 2878

In this table we use small instances with 50 locations and customers where r
and p are chosen from {2, . . . , 5}. Mean objective values of 30 independent runs
are given in columns obj and corresponding standard deviations in columns sd.
Times until termination are listed under t[s] in seconds. For the variant where
no MIP is used, obj′ denotes approximate objective values.

We observe that although the run-time of the EA without archive is in many
cases slightly higher, on all instances the EA with archive performs better or as
good as the EA without archive. Furthermore, AH produces the same results as
our EA with solution archive but requires much more time. The low standard
deviations of the EA indicate that our approach is robust at least for small
instances. Apart from the short run-times we notice that the objective values
obtained by evaluating the best solution found by the EA using the greedy
evaluation are very close to those obtained by the exact evaluation. The run-
time of all configurations that incorporate the exact evaluation increases steadily
with r because of the quickly growing complexity of the MIP. For larger r this
evaluation is the dominant part of the algorithm, which takes more than five
hours in case of r = 5 and p = 2, while the actual EA usually terminates within
one minute. On this instance and on the instance with r = 2 and p = 5, AH
is not even able to terminate after 10 hours, therefore we show the objective
value obtained so far in parentheses. Note that the solution space of instances
with p = 2 is relatively small, so by using the solution archive we are able to
enumerate all possible solutions in the archive.

In order to get a more meaningful comparison between AH and our EA with
solution archive, we compare results on the full instance set with up to n = 100
locations in Table 2. For these tests, we use a modified AH algorithm (MAH)
which solves the follower’s problem with the greedy solution evaluation procedure



Table 2. Results on the full set of instances. We compare the modified Alternating
Heuristic (MAH) with our EA with solution archive (EA+SA).

n r p MAH EA + SA n r p MAH EA + SA

obj t[s] obj sd t[s] obj t[s] obj sd t[s]

50 2 2 127,000 19 127,000 0,00 22 100 2 2 277,942 667 278,736 0,00 600
50 2 3 153,000 9 153,000 0,00 18 100 2 3 334,233 535 337,228 0,00 625
50 2 4 170,471 8 170,471 0,00 18 100 2 4 373,665 503 374,425 0,00 674
50 2 5 182,665 7 182,665 0,00 21 100 2 5 399,208 260 401,781 0,00 505
50 2 6 191,771 7 191,771 0,00 23 100 2 6 419,920 275 421,091 0,15 586
50 2 7 198,074 5 198,073 0,00 63 100 2 7 431,803 272 436,123 0,00 440
50 2 8 203,655 5 204,277 0,00 80 100 2 8 446,474 158 448,192 0,18 440
50 2 9 207,761 5 208,698 0,00 190 100 2 9 455,788 166 458,905 0,37 529
50 2 10 211,942 4 212,743 0,00 305 100 2 10 463,211 173 467,055 0,16 416

50 3 2 101,000 322 101,000 0,00 337 100 3 2 (223,153) <1 (223,194) 0,00 27
50 3 3 127,000 87 127,000 0,00 101 100 3 3 276,818 5959 279,000 0,00 6397
50 3 4 145,508 31 145,508 0,00 49 100 3 4 319,427 4128 319,819 0,00 3956
50 3 5 158,68 49 159,112 0,00 65 100 3 5 349,471 3867 349,793 0,00 2703
50 3 6 169,767 22 169,767 0,00 58 100 3 6 372,760 3453 373,836 0,12 2777
50 3 7 178,835 20 178,835 0,00 76 100 3 7 391,314 2086 391,894 0,39 2658
50 3 8 185,516 14 185,419 0,00 139 100 3 8 407,623 1721 407,765 0,08 3148
50 3 9 191,456 11 191,371 0,00 150 100 3 9 419,985 1709 420,305 0,18 2424
50 3 10 196,442 12 196,659 0,00 198 100 3 10 430,465 1299 431,578 0,33 2670

50 4 2 83,529 2839 83,529 0,00 3018 100 4 2 (183,223) <1 (183,223) 0,00 38
50 4 3 108,492 1163 108,492 0,00 1264 100 4 3 (239,527) <1 (239,628) 0,00 83
50 4 4 127,000 716 127,000 0,00 795 100 4 4 (280,336) <1 (280,549) 0,08 126
50 4 5 140,891 256 140,891 0,00 316 100 4 5 (313,041) <1 (313,041) 0,00 157
50 4 6 152,390 199 152,660 0,00 324 100 4 6 (337,158) <1 (337,540) 0,12 242
50 4 7 162,238 138 162,443 0,00 255 100 4 7 (356,575) <1 (358,233) 0,18 267
50 4 8 170,230 99 170,230 0,00 184 100 4 8 (374,436) <1 (375,031) 0,04 300
50 4 9 176,866 80 176,735 0,00 165 100 4 9 (387,975) <1 (389,837) 0,12 300
50 4 10 182,363 54 182,458 0,00 211 100 4 10 (400,421) 1 (401,428) 0,13 300

50 5 2 71,177 19288 71,177 0,00 20388 100 5 2 (156,538) <1 (156,538) 0,00 44
50 5 3 94,888 8985 94,888 0,00 9860 100 5 3 (207,682) <1 (208,025) 0,00 112
50 5 4 113,109 6356 113,109 0,00 7022 100 5 4 (244,959) <1 (248,663) 0,06 212
50 5 5 127,000 2715 127,000 0,00 2880 100 5 5 (279,889) <1 (281,522) 0,00 194
50 5 6 138,819 1674 138,819 0,00 1875 100 5 6 (305,488) <1 (307,129) 0,13 300
50 5 7 148,715 986 147,928 0,00 1884 100 5 7 (327,357) <1 (328,314) 0,05 300
50 5 8 157,348 835 157,348 0,00 1010 100 5 8 (345,947) <1 (346,254) 0,12 300
50 5 9 164,347 612 164,347 0,00 800 100 5 9 (360,572) <1 (362,159) 0,31 300
50 5 10 170,215 322 170,515 0,00 723 100 5 10 (374,737) 1 (374,556) 0,24 300

and only evaluates the final best solution exactly via MIP in the end. This speeds
up the algorithm significantly so that it is applicable for larger instances and
the run-times become comparable. On small instances with n = 50 and p ≤ 5
we observe that this modification has no negative effects on the results of the
algorithm at all, therefore we assume that this is a viable approach. On instances
with n = 100, r ≥ 4, even this simplification is not enough since a single exact
solution evaluation using MIP does not terminate within 10 hours. Therefore we
rely on approximations again by using the greedy evaluation method for MAH
and EA and put the objective values in parentheses. In these cases MAH runs
faster than the EA but produces worse results on almost all instances. We also
observe that for small n, r and p values the standard deviations of the EA are
zero, which confirms that our approach is very robust even for larger instances.



7 Conclusions and Future Work

In this work we developed an evolutionary algorithm for the leader-follower facil-
ity location problem with proportional customer behavior incorporating a com-
plete solution archive. We used an incomplete solution representation based on
the leader facilities only and described a MIP and a greedy procedure to evaluate
a candidate solution. Both of the methods are used in our algorithm. The solu-
tion archive is able to significantly improve the results of the otherwise rather
simple EA. Furthermore, we observed the alternating heuristic of Kochetov et
al. is very time-consuming when the follower’s problem is solved exactly. The
run-time can be decreased by using the greedy procedure instead which does
not have a significant negative impact on the results. However, our EA is able to
find solutions that are equally good or even better than those of the Alternating
Heuristic for most of the instances.

Here we considered only the variant where customers split their demand
proportionally among all facilities. There exist several other variants with respect
to customer behaviors in the literature including binary and partially binary
choice. It would be interesting to examine the performance of our approach
when applied to different customer behavior. Another approach for such discrete
competitive facility location problems is to only solve the linear programming
(LP) relaxation of the follower’s problem, which results in a lower bound on the
turnover for a leader solution. When combined with a greedy evaluation, which
yields an upper bound to a leader solution, it is possible to omit some exact or
LP evaluations if the greedy value is lower than the exact or LP solution value
of the best solution found so far.
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