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(r|p)-centroid problem. We consider the competitive facility location problem
where two non-cooperating companies enter a market sequentially and com-
pete for market share. The first decision maker, called the leader, wants to
maximize his market share knowing that a follower will enter the same market.
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subproblem needs to be solved, and the overall problem therefore is a bi-level
optimization problem. This problem is X1’-hard, i.e., harder than any problem
in NP. A heuristic approach is employed which is based on a genetic algorithm
with tabu search as local improvement procedure and a complete solution
archive. The archive is used to store and convert already visited solutions in
order to avoid costly unnecessary re-evaluations. Different solution evaluation
methods are combined into an effective multi-level evaluation scheme. The al-
gorithm is tested on a well-known benchmark set as well as on larger newly
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1 Introduction

The (r|p)-centroid problem (RPCP) is a competitive facility location problem,
in which two decision makers compete for market share. They both want to
serve customers from a given market. There are several variants of this problem
which differ in the way facilities are opened, in the elasticity of the demand
and especially in the behaviour of the customers. In our work we consider a
discrete basic variant with the following assumptions:

— Facilities can be opened at a given finite set of possible positions. At one
position at most one facility can be located.

— Both competitors open facilities sequentially, i.e., the first decision maker,
called the leader, opens p facilities and is followed by the other decision
maker, the follower, who successively places all of his r facilities.

— Customer decision is based on distance solely, i.e., customers always choose
their serving facility to be the closest.

— Customers have a binary preference, i.e., they fulfill all of their demand by
choosing the nearest facility only.

Competitive facility location problems are known since the late 20s and
were first mentioned by Hotelling (1929). Hakimi (1983) introduced the name
(r|p)-centroid and also published the first complexity results for it.

An application of this problem is the entry of an entrepeneur into a new
market where she wants to keep her market share even if an opponent enters
the same market. Based on the assumption that the follower chooses his loca-
tions in an optimal way, the leader is able to take his decision into account to
determine her guaranteed market share.

The discrete (r|p)-centroid problem on not further constrained bipartite
graphs is X -hard (Noltemeier et al. 2007). In short this means that under
the assumption that the polynomial hierarchy does not collapse this problem
is substantially harder to solve than any problem in NP.

In Section 2 we give a formal problem definition. After discussing the re-
lated work in Section 3, we present different candidate solution evaluation
methods in Section 4. A novel hybrid genetic algorithm (GA), which incorpo-
rates a solution archive in order to store and transform already visited solu-
tions, as well as a local improvement component is introduced in Section 5.
Different concepts of how the local search method can benefit from the solution
archive are investigated in Section 6. An extension to the GA which intends
to lower the effort for solution evaluation by applying a multi-level strategy
is presented in Section 7. Finally, we discuss computational results and com-
pare the new method to other state-of-the-art approaches from literature in
Section 8.

2 Problem Definition

The discrete (r|p)-centroid problem is defined on a weighted complete bipartite
graph G = (I,J,E) where I = {1,...,m} represents the set of potential
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facility locations, J = {1,...,n} the set of customers, and F = I x .J is the set
of edges. Let w; > 0,Vj € J be the weight of each customer, which corresponds
to the turnover to be earned by the serving decision maker and d;;, V(¢, j) € E,
be the distances between customers and potential facility locations. The goal
for the leader is to choose exactly p locations from I in order to maximize her
turnover under the assumption that the follower in turn chooses r facilities
from different locations maximizing his turnover.

Each customer j € J chooses the closest facility, hence the owner of this
closest facility gains all of the turnover wj;; in case of equal distances the
leader is preferred. In the following we give a formal definition of a candidate
solution and the turnover computation. Let (X,Y") be a solution to the RPCP,
where X C I, |X| = p is the set of locations chosen by the leader and Y C
I\ X, |Y| = r is the associated set of follower locations. Further, let D(5,V) =
min{d;; | ¢ € V}, Vj € J,V C I be the minimum distance from customer j
to all facility locations in set V. Then the set of customers which are served
by one of the follower’s facilities is Ut = {j € J | D(5,Y) < D(j, X)} and the
customers served by the leader is given by U! = J \ Uf. The turnover of the
follower is pf = ZjeUf w; and the turnover of the leader pl = Zje] w; — ot

The problem of finding the optimal set of locations Y for the follower when
X is given is also called the (r|X,)-medianoid problem and is proven to be
NP-hard (Hakimi 1983). In this work by Hakimi he also showed that the (r|p)-
centroid problem is XF-hard. This result is strenghtened by Davydov et al.
(2013) who proved that the problem we consider here remains Y1 -hard even
for planar graphs with Euclidean distances.

3 Related Work

Competitive facility location models, to which the discrete (r|p)-centroid prob-
lem belongs, are a quite old and well-studied type of problem originally intro-
duced by Hotelling (1929). A recent review about several kinds of competitive
location models can be found in the work by Kress and Pesch (2012). They
also mention the discrete RPCP, which was originally introduced by Hakimi
(1983) along with some first complexity results.

Laporte and Benati (1994) developed a tabu search heuristic for the (r|p)-
centroid problem. They use an embedded second-level tabu search for solving
the (r|X,)-medianoid problem. The final solution quality is thus only approx-
imated as the (r|X,)-medianoid problem is not solved exactly.

Alekseeva et al. (2010) present several approaches for the discrete (r|p)-
centroid problem including an exact procedure. The first method is a hybrid
memetic algorithm (HMA) which uses a probabilistic tabu search as local
improvement procedure. It employs rather simple genetic operators and the
tabu search utilizes a probabilistic swap neighborhood structure, which is well
known from the p-median problem (Teitz and Bart 1968). A neighborhood of
this structure contains elements only with a given probability to speed up the
search. They use the linear programming relaxation of a mixed integer linear
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programming (MIP) model for the solution evaluation which will be described
here in Section 4.1. The authors observe that this approach outperforms several
simpler heuristics including an alternating heuristic originally proposed for a
continuous variant of the problem (Bhadury et al. 2003). In Alekseeva and
Kochetov (2013) results for the tabu search alone are presented which are
similar to the results of the HMA. They further describe an exact method based
on a single level binary integer program with exponentially many constraints
and variables. For solving this model they present an algorithm similar to a
column generation approach where new sets of locations for the follower are
iteratively added to the model which is then solved again. The optimal value
of this model defines an upper bound and by solving the follower’s problem
using solutions of the model a lower bound is obtained. If the bounds coincide
the optimum has been found. The HMA is applied for finding the initial family
of follower solutions. Using this method the authors are able to optimally solve
instances with up to 100 customers and p =r = 5.

Campos-Rodriguez et al. (2009) studied particle swarm optimization meth-
ods for the continuous (r|p)-centroid problem, where the facilities can be placed
anywhere on the Euclidean plane, as well as for the discrete variant (Campos-
Rodriguez et al. 2012). A jumping particle swarm optimization is used with
two swarms, one for the leader and one for the follower. The particles jump
from one solution to another in dependence of its own best position so far,
the best position of its neighborhood and the best position obtained by all
particles so far, i.e, the best global position. In the experiments this algorithm
was able to solve instances with 25 customers, p = 3 and r = 2 to optimality.

Davydov et al. (2012) describe another tabu search for the RPCP. They
use a probabilistic swap neighborhood structure similar to the one developed
by Alekseeva et al. (2010). For the solution evaluation the follower problem is
approximately solved by Lagrangian relaxation. The method is tested on the
instances from Alekseeva et al. (2010) and additionally on some non-Euclidean
instances. For many of the instances optimal solutions are obtained.

Roboredo and Pessoa (2013) developed an exact branch-and-cut algorithm
for the discrete RPCP. They use a single-level integer programming model
which is similar to the model by Alekseeva et al. (2010) but with only a poly-
nomial number of variables. It consists of exponentially many constraints, one
for each follower strategy, i.e., for each set of possible facility locations of the
follower. An important reason for the success of their method is the introduc-
tion of strengthening inequalities by lifting the exponentially many constraints.
Due to the assumption that the customers are conservative the lower bound
on the leader’s solution becomes zero if the follower chooses the same facility
location. Therefore, for each facility location an alternative location is given
which is chosen if the position has already been used by the leader. These
cuts are separated either by a greedy heuristic or by solving a mixed integer
programming model. For most of the benchmark instances the authors report
better results than Alekseeva et al. (2010), i.e., they found optimal solutions
in less time. Instances with 100 customers and up to r = p = 15 facilities
could be solved to optimality. The authors also present promising results for
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r = p = 20 but are not able to prove their optimality within the given time
limit of 10 hours.

Alekseeva and Kochetov (2013) give an overview of recent research regard-
ing the discrete (r|p)-centroid problem. They also improve their iterative exact
method by using a model with only a polynomial number of variables and by
using the strengthening inequalities introduced by Roboredo and Pessoa. This
improved iterative approach is able to find optimal solutions for instances
with up to 100 customers and r = p = 15. Especially for the instances with
r = p € {5,10} optimal solutions are found significantly faster than by the
branch-and-cut algorithm from Roboredo and Pessoa (2013).

As mentioned before there are several other variants of the problem. Ko-
chetov et al. (2013) describe an algorithm for the RPCP with fixed costs
for opening a facility and customers splitting their demand over all facilities
proportional to attraction factors. The algorithm’s principle is similar to the
alternating heuristic for the RPCP (Bhadury et al. 2003).

Ghosh and Craig (1984) work on a competitive location model for choosing
good positions for retail convenience stores. They do not specify the number
of stores to open beforehand but determine the optimal number as part of the
process and additionally assume elastic demands, i.e., the customers may not
want to fulfill their whole demand if the store is too far away. The authors
develop a heuristic enumerative search algorithm for solving this problem.

Serra and Revelle (1994) propose a heuristic approach for a variant of
the discrete RPCP which is based on repeatedly solving a maximum cap-
ture (MAXCAP) problem. The MAXCAP problem is similar to the (r|X,)-
medianoid problem with the difference that it is possible to place a facility
on one of the leader’s locations with the result that the captured demand
is equally shared between the two players. The algorithm is basically a lo-
cal search using the swap neighborhood structure and candidate solutions are
evaluated by solving the MAXCAP problem by means of integer programming
or by using a local search heuristic for larger instances.

Bhadury et al. (2003) introduce an alternating heuristic for the continuous
(r|p)-centroid problem. The approach is based on iteratively solving (r|X,)-
medianoid problems. First an initial solution for the leader is created. Then
the resulting (7|X,)-medianoid problem is solved for the follower. After fixing
the follower’s locations, a (p|X,)-medianoid problem is solved for the leader.
This process is repeated until a stopping criterion is met. The authors also
state that this method can lead to a Nash equilibrium if one exists. Alekseeva
and Kochetov (2013) adapted this procedure for the discrete case.

Drezner (1994, 1998) and Drezner et al. (2002) use a gravity model for
solving a continuous competitive facility location problem. The gravity model
assumes that customers prefer being served by facilities proportional to an
attraction factor and inversely proportional to their distances. The authors
suggest several heuristics and metaheuristics including simulated annealing
for solving the problem and compare them to each other.
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4 Solution Evaluation

We extend the problem definition of Section 2 by the following further defini-
tions which are adopted from Alekseeva and Kochetov (2013).

Definition 1 Semi-feasible Solution
The tuple (X,Y) is called a semi-feasible solution to the discrete (r|p)-
centroid problem iff X C I with |X|=p, Y C I with |Y|=r and X NY = 0.

Let p'(X,Y) be the turnover of the leader and p(X,Y’) be the turnover of
the follower where X is the set of facility locations chosen by the leader and Y
is the set of facility locations chosen by the follower. Then we define a feasible
solution and an optimal solution as follows.

Definition 2 Feasible Solution

A semi-feasible solution (X,Y™) is called a feasible solution to the discrete
(r|p)-centroid problem iff pf (X, Y*) > pf(X,Y) for each possible set of follower
locations Y.

Definition 3 Optimal Solution

A feasible solution (X*,Y™*) is called an optimal solution to the discrete
(r|p)-centroid problem iff p!(X*,Y*) > p!(X,Y) for each feasible solution
(X,Y).

It is easy to find a semi-feasible solution but already NP-hard to find a
feasible solution because an optimal follower solution has to be found and the
(r|Xp)-medianoid problem is NP-hard. This means that the solution evaluation
of an arbitrary leader solution might be quite time-consuming. For practice
there are several possibilities how to evaluate such a leader solution X. In the
next section we will examine a mathematical model for the RPCP and derive
different options.

4.1 Bi-Level MIP Formulation

The following bi-level MIP model has been introduced in Alekseeva et al.
(2009). It uses three types of binary decision variables. Variables x;,Vi € I, are
set to one if facility ¢ is opened by the leader and to zero otherwise. Variables
yi, Vi € I, are set to one iff facility i is opened by the follower. Finally, variables
zj,Vj € J, are set to one if customer j is served by the leader and set to zero
if customer j is served by the follower.

We further define the set of facilities that allow the follower to capture
customer j if the leader uses solution = (x = (x;)ic1):

Liz)={iel|d;< min dy} YjeJ
i@y ={ielld; < mn dj} vje

Then we can define the upper level problem, denoted as leader’s (or (r|p)-
centroid) problem, as follows:
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max Z w2} (1)

jed
s.t.
> ai=p (2)
iel
x; € {0,1} Viel (3)

where z* is an optimal solution to the lower level problem, denoted as follower’s
(or (r|Xp)-medianoid) problem:

max > w;(1 - ) (4)
jeJ
s.t.

dovi=r (5)

iel

l—z< Y vjeJ (6)
i€l (x)

x +y; <1 Viel (7)

2 >0 VieJ (8)

y; € {0,1} Viel Vjeld 9)

The objective function for the leader’s problem (1) maximizes the leader’s
turnover. Equation (2) ensures that the leader places exactly p facilities. The
objective function for the follower’s problem (4) maximizes the follower’s
turnover. Similarly as in the leader problem, (5) ensures that the follower
places exactly r facilities. Inequalities (6) together with the objective func-
tion ensure the z; variables to be set correctly, i.e., decide for each customer
j € J from which competitor he is served. Inequalities (7) guarantee that the
follower does not choose a location where the leader has already opened a
facility. Variables z; are not restricted to binary values because in an optimal
solution they will become 0 or 1 anyway.

For the simplicity of notation, we use in the remaining paper both, the set
notation X and Y as well as the incidence vector notation x and y, to refer to
leader and follower solutions, respectively.

4.2 Solution Evaluation Methods

In our metaheuristic approach we consider the following natural ways of eval-
uating a leader solution x; two of them use the model introduced before.
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4.2.1 Ezact evaluation

In the exact evaluation we solve the follower’s problem (4-9) exactly using a
MIP solver.

4.2.2 Linear Programming (LP) evaluation

In the LP evaluation we solve the LP relaxation of the follower’s problem. This
will in general yield not even semi-feasible solutions because of fractional values
of some variables. For intermediate solution candidates we might, however,
only be interested in an approximate objective value of a leader’s solution
for which purpose this method may be sufficient. This approximation yields a
lower bound of the real objective value of .

4.2.8 Greedy evaluation

In the greedy evaluation we use the following greedy algorithm for solving the
follower’s problem, which will yield semi-feasible solutions and therefore an
upper bound to the objective value of z. Follower facilities are placed one after
the other according to the following greedy criterion: For each facility every
possible remaining location is checked how much turnover gain its selection
would generate. The turnover gain is the sum of weights of all customers that
would so far be served by the leader but are nearer to this location than to the
nearest leader facility. Then the location with the maximum turnover gain is
always selected. This process is iterated until r locations are chosen. Ties are
broken randomly. Algorithm 1 shows a pseudocode of the greedy evaluation.

In Section 8.1 we will observe that among our evaluation algorithms LP
evaluation usually offers the best compromise in terms of speed and evaluation
precision. However, by applying the different solution evaluation methods in a
joined way within a multi-level evaluation scheme described in Section 7, we
will be able to significantly improve the performance.

5 Genetic Algorithm with Solution Archive

This section describes our genetic algorithm. The framework is a rather stan-
dard steady-state GA with an embedded local improvement. It uses simple
genetic operators, which are explained in Section 5.1. The local improvement
procedure is based on the swap neighborhood structure and is addressed in
Section 5.2. Most importantly, the GA utilizes a complete solution archive for
duplicate detection and conversion, which is detailed in Section 5.3.

We use the leader’s incidence vector x as solution representation for the
GA. The initial population is generated by choosing p locations uniformly at
random to ensure high diversity in the beginning. Then, in each GA iteration
one new solution is derived and always replaces the worst solution of the
current population. Selecting parents for crossover is performed by binary
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Algorithm 1: Greedy Solution Evaluation for the RPCP.

Input: leader solution X
Output: follower solution Y

I'=1\X; // set of possible facility locations
J'=J; // set of not already served customers
Y = 0;
for k=1,...,rdo
t* =0; // maximum turnover gain for each facility to place
foreach i € I’ do
Jserved = 0; // served customers for location i
t=0; // accumulated turnover gain for location ¢

foreach j € J' do
if dU < minlEIlZlil dlj then
t =1+ wj;
Jserved = Jserved U {]}7

if t > t* then

t* =t
it =1
J:erved = Jserved;

I'=I'\{i"}
J=J \ ‘]:erved;
L Y=Yyu{ih
return Y;

tournament selection with replacement. Mutation is applied to offsprings with
a certain probability in each iteration.

5.1 Variation Operators
We use the following variation operators within the GA:

Crossover Operator Suppose that we have two candidate solutions X' C I
and X2 C I. Then an offspring X’ of X! and X? is derived by adopting all
locations from S = X! N X? and adding p — | X! N X?| further locations from
(XU X?)\ S uniformly at random.

Mutation Operator Mutation is based on the swap neighborhood structure,
which is also known from the p-median problem (Teitz and Bart 1968). A
swap move closes a facility and re-opens it at a different, so far unoccupied
position. Our mutation applies ¢ random swap moves, where p is determined
anew at each GA-iteration by a random sample from a Poisson distribution
with mean value one.

5.2 Local Search

Each new candidate solution derived in the GA via recombination and mu-
tation whose objective value is at most a% off the so far best solution value
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further undergoes a local improvement, with « = 5 in our experiments pre-
sented here. Local search (LS) is applied with the swap neighborhood structure
already used for mutation. The best improvement step function is used, so all
neighbors of a solution that are reachable via one swap move are evaluated
and a best one is selected for the next iteration. This procedure terminates
with a local optimal solution when no superior neighbor can be found.

5.3 Solution Archive

Solution archives for evolutionary algorithms as introduced by Raidl and Hu
(2010) are data structures that efficiently store all generated solutions in or-
der to be able to detect duplicate solution when they occur. Upon detecting
a duplicate, an effective solution conversion is performed, which results in a
guaranteed not yet considered solution typically in close proximity to the orig-
inal (duplicate) solution. Especially when the solution evaluation is expensive,
which is the case for the RPCP at least when performing an exact evaluation,
costly and unnecessary re-evaluations are avoided supposedly resulting in an
overall faster optimization. Additionally, diversity is maintained in the pop-
ulation and premature convergence is reduced or avoided as well. Successful
applications of this concept on various test functions including NK landscapes
and Royal Road functions and the generalized minimum spanning tree problem
can be found in Raidl and Hu (2010) and Hu and Raidl (2012), respectively.
After each iteration of the genetic algorithm the newly created offspring is
inserted into the archive. If this solution is already contained in the archive,
the solution conversion is automatically performed and this adapted and guar-
anteed new solution is integrated in the population of the GA. The conversion
operation can therefore also be considered as “intelligent mutation”. The data
structure used for the solution archive must be carefully selected in order to
allow efficient realizations of the essential insert, look-up and conversion oper-
ations and in particular depends on the solution representation. As suggested
in Raidl and Hu (2010) a trie data structure, which is typically used for storing
a large set of strings (Gusfield 1997) like in language dictionary applications,
is particularly well suited for binary representations because all the essential
operations can be performed in O(h) time, where h is the maximum string
length. In our case for the RPCP the insertion and the conversion procedure
run both in O(m) time and almost independent of the number of created /
stored solutions. The next sections describe the trie data structure and the
specific operations of the solution archive we use for the RPCP in detail.

5.4 Trie Structure
Our trie is a binary tree 7" with maximum height m, the number of possible

facility locations. On each level I = 1,...,m of the trie there exist at most 2/~!
trie nodes. Each trie node ¢ at level [ has the same structure consisting of two
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root root

1

level 1 Z| deviation node ¢

level 2

level 3

level 4

level 5

level 6

level 7

Fig. 1 Solution archive with some inserted solutions on the lefthand side and a conversion
of (0,0,1,1,0,0,1) into the new solution (0,1,1,1,0,0,0) on the righthand side.

entries ¢g.next[0] and g.next[1]. Each entry can be either a pointer to a subtree
rooted at a successor node on level [+ 1, a null-pointer, or a complete-pointer.

Let x = (x1,..., ;) be the binary vector representing a candidate leader
solution. Then each node ¢ at level [ is related to variable x; and the entries
g.next[0] and ¢.next[1] split the solution space into two subspaces with z; = 0
and x; = 1, respectively. In both subspaces all elements from x; to x;_; are
fixed according to the path from the root to node ¢q. A null-pointer represents
a yet completely unexplored subspace, while a complete-pointer denotes that
already all solutions of the corresponding subspace have been considered. Note
that such a trie is somewhat related to an explicitly stored branch-and-bound
tree.

5.5 Insertion

Algorithm 2 shows how to insert a new candidate solution x = (z1,...,2m)
into the trie. Initially, the recursive insertion method is called with parameters
(z,1,root,0). We start at the root node at level 1 with the first element z1. At
each level [ = 1,...,m of the trie we follow the pointer indexed by x;. When
the p-th facility has been encountered, i.e., openFacs = p, at some node ¢ the
procedure stops and we set g.next[1] to complete. We further check at each
insertion of a “one” at trie node ¢ if enough facilities would still fit if instead
a zero would be chosen. If this is not the case, ¢.next[0] is set to complete
to indicate that there is no valid candidate solution in this subtrie. A set
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Algorithm 2: insert(z, [, ¢, openFacs)
Global Variable:

devpoints = 0; // Set of feasible deviation positions for conversion
Input : leader solution z, level [, node q,
int openFacs; // Number of facilities opened until level [

Output: boolean value whether or not z is already contained in the archive
alreadyContained = false;
if | < m A q # complete A openFacs < p then
if z; == 1 then
if m — 1 < p — openFacs then
| g.next[0] = complete;
openFacs = openFacs + 1;
if g.next[l — ;] # complete then
| devpoints = devpoints U {(l,p)}
if g.next[z;] == null then
| g.next[z;] = new trienode(null, null);

| alreadyContained = insert(x,l + 1, g.next[x;], openFacs);
if ¢ == complete then

| alreadyContained = true;
else if [ > m then

L q = complete;

// Pruning

else if g.next[z;] = complete A g.next[1l — x;] = complete then
| g = complete;

return alreadyContained;

of feasible deviation positions, devpoints, is computed during the insertion
and needed for the potentially following conversion. This set is cleared at the
beginning of each solution insertion and contains all trie nodes visited during
insertion where both entries are not complete. When we encounter a complete-
pointer we know that this solution is already contained in the trie and it must
be converted.

If we are finished with the insertion and the solution is not a duplicate,
we prune the trie if possible to reduce its memory consumption. Pruning
is performed by checking all trie nodes that have been visited during in-
sertion bottom up if both entries of a trie node ¢ are set to complete. If
g.next[0] = g.next[1] = complete we prune this trie node by setting the corre-
sponding entry of the preceding trie node to complete. On the left-hand side of
Figure 1 an example of a trie containing the three solutions (0,0, 1,1,0,0,1),
(0,1,0,1,1,0,0), and (0,0, 1,0,1,1,0) is given. The “C” stands for a complete-
pointer and the “/” for a null-pointer. The crossed out node at level 7 is a
demonstration of setting a “zero” entry to complete because no more feasible
solution fits in this subtrie and of the pruning that followed.

Note that no explicit look-up procedure is needed because the insertion
method sketched in Algorithm 2 integrates the functionality to check whether
or not a candidate solution is already contained.
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5.6 Conversion

Algorithm 3: convert(x, devpoints)

Input : duplicate leader solution z, feasible deviation positions devpoints
Output: converted not yet considered solution x
q = random entry from devpoints
[ = level of the trie node ¢
xr; = 1- Ty
while g.nezt[z;] # null do
if g.next[x;] == complete then
L 21 =1—2a;
if g.next[z;] == null then
| break;
q = g.next[z;];
l=1+4+1;
openFacs = number of facilities opened in x
k = p — openFacs;

if £ > 0 then

| open k facilities among z;11,...,%m randomly
else if k£ < 0 then

| close |k| facilities among x;41,. .., Zm randomly

insert(z,l,q,openFacs);
return z;

When the insertion procedure detects a solution which is already contained
in the archive, a conversion into a new solution is performed. A pseudocode of
this procedure is given in Algorithm 3. In order to modify a solution, we have
to apply at least two changes: open a facility and close another one. For the
first change, let devpoints denote the set of feasible deviation points computed
during insertion. A trie node ¢ at level [ is chosen from this set uniformly at
random. Should this set be empty, we know that the whole search space has
been covered and we can stop the optimization process with the so far best
solution being a proven optimum. Otherwise we set the [-th element of the
solution vector to 1 — z;, which corresponds to opening or closing a facility at
position I. Now we have to apply a second (inverse) change at a later position
in order to have exactly p facilities opened. We go down the subtrie level by
level using the following strategy. For each trie node ¢’ at level I’ we prefer to
follow the original solution, i.e. the pointer ¢’.next[z;]. If it is complete, we
have no choice but to use the pointer ¢’.next[1—z;/| instead (which corresponds
to adding further modifications to the solution vector). As soon as we reach
a null-pointer at a trie node ¢’ at level I’, we know that the corresponding
subspace has not been explored yet, i.e., any feasible solution from this point
on is a new one. Therefore, we apply the remaining necessary changes to get a
feasible solution. If the number of opened facilities in = exceeds p, we close the
appropriate number of facilities randomly among {x41,...,Zm}. Otherwise,
if this number is smaller than p, we open the appropriate number of facilities



14 Benjamin Biesinger et al.

level 1

level 2

level 3

level 4

2 T2
vl 5 | /]c] [e]/] [el/]

Fig. 2 Candidate solutions (0,1,1,0,0), (1,0,1,0,0), and (0,0,0,1,1) in a randomized trie,
where the variables are randomly associated with the levels.

analogously. Finally, this new solution is inserted by applying Algorithm 2
starting from trie node ¢’ at level I’.

On the righthand side of Figure 1 an example of a solution conversion is
shown. The duplicate solution = = (0,0,1,1,0,0,1) is inserted into the trie
and subsequently converted. Node ¢ on level 2 is chosen as the deviation point
for the first change and we set zo = 1, resulting in solution (0,1,1,1,0,0,1).
Since the alternative entry at g.next[1] points to another trie node, this path
is followed until a null-pointer is reached at level 3. Then we close the facility
at the randomly chosen position 7 to get the valid solution (0,1,1,1,0,0,0).

5.7 Randomization of the Trie

The above conversion procedure can only change values of solution elements
with a greater index than the level of the deviation position. This induces
an undesirable bias towards elements on positions with higher indices being
changed more likely. In order to counter this problem, a technique called trie
randomization is employed, which has first been suggested by Raidl and Hu
(2010). For each search path of the trie we use a different ordering of the
solution variables, i.e., a trie node on level [ does not necessarily correspond to
element x; of the solution vector. Instead, the index of the element related to
a trie node ¢ is chosen randomly from the indices not already used in the path
from the root to node ¢g. In our case this is achieved by additionally storing
the corresponding variable index at each trie node. Another possibility is to
compute the next index by a deterministic pseudo random function taking the
path from the root to node ¢ as input. This method saves memory but needs
more computational effort and is applied in Raidl and Hu (2010). Figure 2
shows an example of a randomized trie. Although this technique cannot avoid
biasing completely, the negative effect is substantially reduced.
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6 Local and Tabu Search with Solution Archive

There exist several options for possibly utilizing the archive not just within
the GA but also the embedded LS, based on the original swap neighborhood
structure.

6.1 Complete Neighborhood

The simplest way to perform LS is just to use the complete neighborhood
as introduced in Section 5.2 without considering the solution archive. This
method will find the best solution within the swap neighborhood but there is
no benefit from the solution archive. We have to re-evaluate already visited
solutions within the LS. However, all generated solutions during the LS are
inserted into the solution archive so that the variation operators of the GA
are still guaranteed to produce only not yet considered solution candidates.

6.2 Reduced Neighborhood

The second option is to skip already visited solutions in the neighborhood
search. After each swap it is checked if the new solution is already contained in
the solution archive. If this is the case the evaluation of this solution is skipped
and the LS continues with the next swap. Otherwise this solution is inserted
into the solution archive. The advantage of this method is that re-evaluations
of already generated solutions are completely avoided and the neighborhoods
are usually much smaller, resulting in a lower runtime. A downside is, however,
that due to the reduced neighborhoods LS may terminate with worse solutions
that are not local optimal anymore.

6.3 Conversion Neighborhood

Another possibility for a combination of the local search and the solution
archive is to perform a conversion whenever an already visited solution is
generated by the local search. This implies that the size of this neighborhood is
the same as the complete neighborhood but instead of re-evaluating duplicates,
solutions that are farther away are considered to possibly find a better solution.

6.4 Tabu Search

The fourth method we consider uses a tabu search instead of a local search
where the tabu list is realized by the solution archive. This means in particular
that the search is not stopped when a neighborhood does not contain a better
solution but a best neighbor solution that has not been visited, even when
worse than the current solution, is always accepted and the search continues.
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In this way, the algorithm might escape local optima. This strategy can be
combined with either of the latter two methods. Unlike the LS, since there
is no predefined end of the tabu search, an explicit termination criterion is
needed, e.g., a time limit or a number of iterations without improvement.
As final solution, the best one encountered during the whole tabu search is
returned.

7 Multi-Level Solution Evaluation Scheme

In this section we want to exploit several relationships between the solution
values of the different evaluation methods which are described in Section 4.
Suppose that pip (z) is the objective value of the follower’s problem obtained
by LP evaluation for a given leader solution x, p{_, . (z) is the objective value
obtained by exact (MIP-based) evaluation and pgreedy(x) is the objective value
of the follower’s problem when using the greedy evaluation. Then pip (z) is
obviously an upper bound and pfgreedy(x) a lower bound to pf_,.(z), i.e., the
following relations hold:

pgreedy (33‘) < p(fexact ({IJ) < piP (il?) (10)

Since we compute the turnover of the leader by subtracting the turnover
of the follower from the total demand for all customers, i.e.,

pre(@) = > w; — prp(x),

Jje€J

1 f
Pexact (JC) = Z Wj — Pexact (Jf),
JjeJ

1 f
Pgreedy (ZL’) = Z Wj — Pgreedy (.’t),
JjeJ

we obtain:
plLP (l’) < plexact (LL') < plgreedy (il?) (11)

7.1 Basic Multi-Level Solution Evaluation Scheme

Based on inequalities (11) we devise a multi-level solution evaluation scheme.
Suppose that pt (%) is the value of the leader’s turnover obtained by LP eval-
uation of the best solution found so far . For each generated solution candi-
date x we evaluate it using greedy evaluation yielding a maximum achievable
turnover of plgmcdy (). Then we distinguish two cases:

— p}greedy(x) < plp(#): This implies that pl (%) < pliaet(®) and therefore
x cannot be better than the so far best solution. So we do not put more
effort in evaluating = more accurately.
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- plgrccdy(x) > php(2): We do not know if pL . (7) > pliact (2) and therefore
have to evaluate x more accurately. We do this by performing a more
accurate (i.e., LP or exact) evaluation after the initial greedy evaluation
to get a better estimate of the quality of x.

Preliminary tests showed that during an average run of our algorithm we can
avoid the more accurate and thus more time-consuming solution evaluation for
over 95% of the solution candidates. Therefore it is likely that this method will
reduce the overall optimization time of our algorithm in comparison to always
performing an accurate evaluation. In Section 8.4 we will show that this multi-
level solution evalution scheme is able to improve the results significantly in
terms of running time and final solution quality.

7.2 Multi-Level Solution Evaluation Scheme and Local Search

For intermediate local search a modification of the multi-level evaluation scheme
is needed. Suppose that Z is the so far best candidate solution with an ob-
jective value of p! (%) which is obtained by LP evaluation. Furthermore let
2’ be the starting solution of the local search which has an objective value
of plp(z') < plp(#) also obtained by LP evaluation. Then we encounter a
problem if the objective value plgreedy(x) of a neighboring candidate solution
x, which initially is obtained by greedy evaluation lies between pip(l‘/ ) and
pip(2), ie.,

plLP (1'/) < p};reedy(‘r) < p}_‘P(i)

Since plgmcdy(x) is smaller than the best LP solution value found so far,
x is not evaluated more accurately. It is, however, greater than the LP solu-
tion value of the starting solution of the LS so a move toward this solution is
performed. This could lead to undesirable behavior because in fact we do not
know if solution z is superior to solution z’ and the LS would most likely per-
form moves towards a solution with a good greedy value instead of a solution
with a good LP or exact value.

To avoid this problem we compare the solution value obtained by the initial
greedy evaluation to the best LP solution value found so far in this local search
call instead of the global best LP solution value for determining whether or
not the solution shall be evaluated more accurately. This implies that in each
iteration of the local search we start with a candidate solution that is evalu-
ated using LP evaluation. This results in a local search towards the candidate
solution with the best LP value at the cost of additional LP evaluations.

8 Computational Results

In this section we present computational results of the developed methods. The
instances used in all of the tests are partly taken from the benchmark library
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of Discrete Location Problems'. They have in common that the customers
and the possible facility locations are on the same sites (I = .J), the number
of customers is n = 100 and the number of facilities to be opened is r =
p € {10,15,20}. The locations are chosen randomly on an Euclidean plane
of size 7000 x 7000. Customer demands are randomly selected from 1 to 200.
In addition we generated larger instances? with 150 and 200 customers by
using the same scheme. With a total of 10 instances per customer size and
r = p = {10,15,20}, each test set consists of 90 instances. All tests were
carried out on a single core of an Intel Xeon Quadcore with 2.53 GHz and
3GB RAM.

If not stated otherwise, in all of the following tests we used the GA configu-
ration from Section 5 with a population size of 100. Local search is performed
for a solution whose objective value is within o = 5% of the overall best
solution’s value with the reduced swap neighborhood from Section 6 and a
best improvement step function. After the algorithm terminates, the whole
population is evaluated exactly to obtain the best feasible solution of the last
population.

For all tables the following holds: Instances Codel1l to Codel011 are
the instances with n = 100 by Alekseeva et al. (2009). The other instance
names contain either 150 or 200 which stands for the number of customers.
The number right after rp corresponds to the number of facilities to place. In
the first row the name of the algorithm is listed. The second row describes
the columns, where obj stands for the average of the final leader objective
value over 30 runs, sd is the corresponding standard deviation and tpes; is
the median time needed for finding the best solution in seconds. All runs are
terminated after 600 seconds to ensure comparability. Due to space limitations
Tables 1-7 do not contain the numerical results of all of the 90 instances but
only a representative selection. The full result tables can be found online?. In
addition, the geometric mean, the number of best results and the number of
unique best results are shown over all instances.

In each of the following sections there is a second table after the main
results table. These tables display the results of pairwise Wilcoxon rank sum
tests of the different configurations with error levels of 5%. The value in the
cell at line ¢ and row j gives the number of instances for which configuration 4
yields significantly better results than configuration j. The rightmost column
lists the sums over all numbers in the corresponding rows.

8.1 Solution Evaluation

In the following tests we compare three types of solution evaluation schemes
according to Section 4: greedy evaluation, LP evaluation and exact evaluation.

1 http://math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_eng.html

2 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_
Facility_Location_Problems
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The aim of these tests is to find out which runtime/solution accuracy tradeoff
is suitable for this problem.

Table 1 shows the results. As we can see, although each greedy evaluation
is 4 to 5 times faster than the LP evaluation, the results for the greedy evalu-
ation are rather poor because the solution with the highest greedy value often
does not correspond to an optimal solution according to the exact evaluation.
In contrast, the results for evaluating solutions using the LP evaluation are si-
miliar to those obtained by using the exact evaluation. In many cases the root
LP relaxation of the follower’s problem is already integral and no branching
has to be performed, hence the similar results. Therefore, for the remaining
tests we primarily use the LP evaluation method.

Table 1 Results of different solution evaluation methods using the standard configuration.

| greedy exact

obj sd obj obj thest [s]
70,60
55,60

217.70
94,00

398,50

370,60

369,70

475,60

586,90
46,10
95,70

365,20

291,00

358,40

347,80

448,00

438,40

548,80
24,50
63,20

250,80

369,20

200,50

411,20

362,90

459,10

574,10

thest [5] ‘
130,30

thest [5] ‘

14,80

20,10
253,30
250,20
138,40
314,20
406,60
351,30
411,90

Instance ‘

Codelllw_rpl0
Codelllw_rpl5
Codelllw_rp20
Codel_150w_rpl0
Codel_150w_rpl5
Codel_150w_rp20
Codel-200w_rp10
Codel_200w_rpl5
Codel_200w_rp20
Code211w_rpl0
Code211w._rpl5 |5373,00
Code211w_rp20 5431,57
Code2_150w_rp10
Code2_150w_rpl5 | 7590,23
Code2_150w_rp20 | 7673,90
Code2_200w_rpl0
Code2_200w_rpl5 | 9274,23
Code2_200w_rp20
Code311w_rpl0
Code311lw_rpl5
Code311w_rp20
Code3-150w_rp10
Code3_150w_rpl5
Code3-150w_rp20
Code3-200w_rpl0
Code3-200w_rpl5
Code3_200w_rp20

4359,00
4547,11
4508,50
7132,20
7008,63
7070,67
9349,60
0814,13

4361,00
4596,00
4505,47
7138,37
7077,97
7198,27
9476,17
10001,40
9753,07
5310,00
5373,00
284,50| 5404,43
7247,47
7743,20
7772,13
9231,63
9539,27
9579,83
4483,00
4800,00
4892,80
7286,93
7589,00
7624,43
9300,23
9304,57
9197,97 155,51

4361,00
4596,00

4502,90
7167,43
7088,83
7198,53
9478,50

geometric mean
#best results
#unique best res.

6907,43
11
6

6995,12
53
35

6993,29
48
31

8.2 Genetic Algorithm

Now, we analyze different configurations of the GA. The GA was tested with
and without the local search and with and without the solution archive. The
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Table 2 Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
solution evaluation methods.

‘ greedy LP  exact ‘ p)

greedy — 5 5 10
LP 75 — 6 81
exact 73 4 - r

aim was to see the impact of using the different techniques on the average solu-
tion quality and speed. Table 3 shows the computational results. We can make
several interesting observations: As expected, the GA alone performs not very
well, neither regarding solution quality nor convergence speed, but its perfor-
mance is substantially improved by executing intermediate local searches. By
adding the solution archive (solA) to the pure GA we were also able to signifi-
cantly improve the results. The benefit of the local search seems to be greater
than the benefit of the solution archive because the relative difference of the
geometric mean of GA + LS and the GA is about 5% while the difference of
GA + SA and GA is only about 0.7%. Adding both, LS and solA, to the GA
clearly further improves the performance. For this combined approval not only
the solution quality is the best among the configurations but these solutions
in most of the cases are also found faster.



21

A Hybrid GA for the Discrete RPCP

08 0 g 0 'so1 9soq anbrun#
g8 IS 0T T S)[NSaI JsoqH#
Z1'‘9669 01699 017969 TL'EV99 ueoUW J1I30W00S

06'9cv  TSGGT  L6°L6T6 09°0SS  TFPET  €0°19e8 0660G  €LFLT  LE'0ST6 08799  L£'88T  €8°1608 | 0gdImQ0g €2PoD
06°18¢ PHIL L97086 00'29¢ 18°€0C  OF‘L6¥8 ot‘eee 9¢°86 £€%'6926 07‘€9¢ L2'69¢  01‘zee8 | S1d1rmQ0g €apop
00°LcC  0£‘0L £2'00€6 08GES  60°GST  £C'9988 00'68c  LT98 0%6226 0S‘€es  TP'I8T  0F%'ce88 | 0T1dI MO0z €oPoD
00'7LT £0'%e eV‘vToL 0¥'62¢ 0L'0¢ L1°90%L 08‘71¢ 62'Sh 0£‘109. 09°€¥¢ 09°0L £€€'8¢¢L | 0gdrmQgrgopopn
0S°TPT  €8'8T 00'689L 09628 TL'G6 €8'166L 0T 1ET G6'LY 00°%GGL OT'TGS  TEPCT  €L'eggl | STdIrmQgr gopoD
ov‘se 9e‘0T1 £6‘98CTL 00°¢6%  96°TL LY %00L 02°9¢1 GL69 om”mmﬁ 0€'ccs 629 L1°6L69 | 0TdTmQgTI gapoD

02°69 19°0 08‘268% 0g‘e6¥ 0LTT 196787 09°9T1T 1971 LT1°6L8Y 0L'7€S 29°sT L1°GE8Y 0gdIMITEaPOYD
og‘et 00°0 00°008% 09768 68°1¢ T I8LY 0v‘0L §8'CT 0FG8.LY 0T'eLy 6L°6T €6°GLLY GTdrmi1gepon
01‘8 00°0 00°‘e8%¥% 0z'9¢¢ 000 00‘€8%% | 0Z°'1¢ 000 00‘e8%% | 09°1¢¢€ {29 0S‘cLVY 0TdIMITgaPOD

0e'1Zy  SISTT  €8‘6LS96 08°L¥VS  €FCIT  0£'92.L8 05128 LI6TT  0£'80S6 0T‘L8S  99°6TT  L¥'9298 | 02dIm00Z copoD
00°26€  ¥6°0L L2°6€96 002G 6LFPT  LL'8LIS 0T‘cPe  TI¥'6I1T  LI'C8¥6 0€'€cs  68'6ST  €¥'6£98 | STAITMQO0T ZPPOD
0t‘oeT GGG €9°1€26 0L'62S IC'I€T  0T'LILS 08°82¢ 68°LCT  LO‘I8T16 0%'%cs POTST  LT°6098 | 0TdITMQ05 gPPOD
0S°'11% 16°0% ST‘TLLL 08°'18¢ L6°09 £€€0052 0%'80% 96°0L SHETLL 0T‘0¥%¢ 2169 LE°667L | 0gdrmQg1 gopoD

0696 0LV 0Z‘SrLL 0€'91¢ 60°99 L9°967L 00‘8¥ 1T e'e0T  €5T0LL 0%‘LES 1676 00°‘€g¥L | STdImQCI gepopD
0Lcve  €¥'eg LY LVTL 0v‘c1e  €v'er 076969 0v'eee 19°68 06622 06619 8¥'9¥ 292969 | 01dTmQg17gapoD
0%‘c8 6962 [ {0i 4] 08'9%¢ 10°L¥ €6°892¢ 01‘geT 91'eq 081969 06'99S  L¥'cg £€0°092¢ 0gdIM11gapPoD
01'€e 00°0 00‘sL€S 09°'c6¥% 1€°1¢€ S Aitd [laka €L°61 £€€'296g 06°9¥%¢ cr'se LV'6L2S GTdIrmI1gepoD
01‘8 00°0 00‘0TES oF‘eLy 60°8% €I'162¢ 02°'1¢ 000 00‘0T€S | 02128 09°Gg LV'682S 0TdIMITgaPOD

05°09% VGiLL L0°8GL6 08‘09S €T°61C  €6'9668 09°6.L¥ G8'6TT  0T'€896 00°29¢ T7'LST £€9°6688 0gdm00z"12POD
0T'L6T 8L'C6 0P‘T000T | 09°'€SS 11°42C  €9°C126 06'67¢ €9°CIT  LL'9966 00°2.LS 11°¢9Z  €¥7'6L06 G1dIm00z 19POD

0T‘e¥e 0€'20T  LT‘9L¥6 01'60S 97681  0£'9768 0L°97C 8%‘G0T  09°CT¥6 ov‘1eS 9210 0T°0188 | 0TdTMQ0Z 1PPOD
ov‘IvC  TO'6I LZT‘SBTL 0£09G  S8°GOT  £9°0869 0€L8T  69°8¢ €0°€9TL 02'0SS  T16°60T  €9°0069 | 0gdITmQGT 1oPOD

¢

00°‘€€T 6L'ce L6°LL0L 08°9%¢ €867 05°9.89 0€'671T $9'GL LV 1T0L 09°6¥%¢ 9€'€9 €1°'6g89 | STdImQgI 1opPoyD

0262 88‘CIT  LE'8ETL 0T‘06S  9.°0CT  €0°9099 OF ‘€T SL'VS LG'€9TL | 02'8€S  ¥T'€cT  €9°€0%9 | 0TdrmQgI T19poD

0560 TTIIT LY‘S0S¥ 07188 TF'IT LTP9VF 05291 TS8'ee L6'VLVY 07868 0S°LI €T TSy 0gdIMITTaPOD

0191 00°0 00°968¥% 08cI¥ €99 192881 05°8¢ G991 79841 0T‘T9%  8I‘IT L€'TLGY GTdTmMITTopPOD

0L%T 00°0 00‘19€% 09‘c0¥  SL0T 03'7eey 00‘€TT 00°¢e L6'S¥EY 0z'8ee  we'el 08°‘1€€Y 0TdIMITTOPOD

[s]7°9  ps Lqo0 7 [s]*%°92  ps lqo 7 [s]**°9  ps {90 7 [s]?*°97  ps {90 7 ouDISUT
vIos + ST + VD VIos + v ST+ VD VO 7

(V108 + §T + ¥D) UoIeSS [D0] PUR SAIDIR UOHN[OS )M YO Pue (VoS + VD)
dATYDIR UOTIN[OS YNM V) (ST + VD) UdIess [edo] YHm v (YD) wyitiose orpeusd aind a1} 1y5) 91} 10J SUOIIRINSYUOD JUSISIIP JO $HNSY € S[qeT,



22 Benjamin Biesinger et al.

Table 4 Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
configurations of the GA.

| GA GA+LS GA+solA  GA+LS+solA | X

GA - 0 0 0 0
GA + LS 85 - 84 0 169
GA + SA 56 0 - 0 56
GA + LS + SA 87 60 87 - 234

8.3 Neighborhoods of the Local Search and Tabu Search

Table 5 shows the results of using the different strategies for utilizing the solA
within LS and tabu search (TS), respectively (c.f. Section 6). As expected the
complete neighborhood strategy performed worst because of the overhead of
re-evaluating already visited solutions but on some of the smaller test instances
it is able to produce equally good results. Among all tested LS neighborhoods,
reduced neighborhood yields the best results, so it is chosen for all further
tests. While on the smaller test instances with 100 customers the conversion
and the complete neighborhood can keep up with the reduced neighborhood
in terms of mean objective value, on larger instances the performance gap in-
creases. The differences in the objective value of the conversion neighborhood
and the reduced neighborhood are small and the conversion neighborhood even
finds the best solution in less time for some instances, e.g., Codel11w_rp10 and
Code211w_rp10. However, this difference vanishes when considering larger in-
stances, where the reduced neighborhood consistently finds better solutions.
Apparently, for these instances conversion moves were too rarely able to im-
prove the starting solution. The largest improvement of the overall results
could be achieved by using a tabu search with the reduced neighborhood. In
none of our benchmark instances any other configuration was able to find
solutions with a statistical significant better mean objective value.
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Table 6 Results of Wilcoxon Rank Sum tests with error levels of 5% for the different local
search neighborhood structures and tabu search.

‘complete NB reduced NB conversion NB TS with reduced NB‘ X

complete NB — 1 0 0 1
reduced NB 31 5 0 36
conversion NB 23 3 - 0 26
TS with reduced NB 54 21 32 - 107

8.4 Multi-Level Evaluation Scheme

The computational results for testing the multi-level evaluation scheme (ML-
ES) confirms the hypothesis that it is able to speed up the algorithm signifi-
cantly. We further tested if the local search using the local best LP solution
(improved LS) as described in Section 7.2 actually improves the solution qual-
ity. Finally we investigated the tabu search approach (improved TS), which is
explained in Section 6.4 in combination with the reduced NB. For the TS we
also used the adaptation for the improved LS in a straightforward way and set
a termination criterion of five iterations without improvement.

Table 7 shows the results of these tests. We observe that the multi-level
evaluation scheme is able to improve the solution quality for some instances,
especially the larger ones with 200 customers. The largest improvement could
be made in the time needed for finding the best solution. It is in general
much lower than when using only the simple LP evaluation, e.g., for instance
Codel11w_rp10 the time could be decreased by about 90%. With the improved
local search the mean solution quality gets better in 65 of the (mostly larger)
instances, while it is equal on most of the other ones. Our best setup turned
out to be GA + solA + ML-ES + improved TS, when we switched from a local
search to a tabu search. We have a low standard deviation of the results and
achieved a better mean objective value than the local search in 47 instances.
The improvements are again mostly on the larger instances with 150 and 200
customers because, as we see in Section 8.5, we could find optimal solutions
for many of the instances with 100 customers. In total, our best configurations
of the multi-level evaluation scheme was able to produce statistically better
results in 63 out of 90 instances.
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Table 8 Results of Wilcoxon Rank Sum tests with error levels of 5% for the multi-level
evaluation scheme configurations.

GA+solA+ GA-+solA+ GA + solA + GA + solA +
LP+LS ML-ES+LS ML-ES + imp. LS ML-ES + imp. TS| ¥
GA + solA +
LP + LS - 10 0 0 10
GA + solA +
ML-ES + LS 17 - 1 2 18
GA + solA +
ML-ES + imp. LS 60 55 - 1 115
GA + solA +
ML-ES + imp. TS 63 59 29 151

8.5 Comparison to Results from the Literature

In this section we compare the results of our best configuration to the state-of-
the-art in the literature. Since the metaheuristic approaches of Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013) outperformed all previous heuristic
approaches we compare with them. For this purpose both the probabilistic
tabu search (TS_Al) (Alekseeva et al. 2010) and the hybrid memetic algorithm
(HMA) (Alekseeva and Kochetov 2013) were re-implemented in C++.

Tables 9, 10 and 11 show the results of their approaches compared to our
algorithm with n = 100, n = 150 and n = 200. It can be seen that especially
for larger instances GA + solA + ML-ES + improved TS achieves the best
results among all three tested algorithms. For the instances with 100 customers
we get better or equal results in all but one instance, although the differences
in the mean objective value is rather small. These differences become larger
when considering larger instances. On all instances with n = 200 we get better
results than the HMA and on 24 out of 30 instances we also get better mean
objective values than the T'S_Al

We observe that the time-consuming local searches in the creation of the
initial population the HMA was not able to finish the initialization within
the timelimit for some instances, so we made further tests with an increased
timelimit of 1800 seconds. The results of these tests can be found in Table 13
for n = 100 and Table 14 for n = 150 and n = 200. In Table 13 we also
show the results of the modified iterative exact method (MEM) by Alekseeva
and Kochetov (2013) and the results of the branch-and-cut by Roboredo and
Pessoa (2013). For more than 100 customers no results of exact methods are
published in the literature. From Table 13 we conclude that GA + solA + ML-
ES + improved TS is able to find optimal solutions to all but one instance,
with n = 100 but in much less time. Table 14 shows that our approach is still
superior and outperforms the HMA in most instance. The HMA can compete
with our GA on some of the instances with n = 150 and even gets better
mean objective values for 3 instances, e.g., Code5_150w_rp15. However, the
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Table 9 Comparison to results from the literature with a runtime of 600 seconds and n =
100. The Tabu Search (T'Sa;) and the Hybrid Memetic Algorithm (HMA) by Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013), respectively, compared to our best configuration
GA + solA + ML-ES + improved TS.

GA + solA +
TSa1 ‘ HMA ‘ ML-ES + improved TS

Instance ‘ obj sd ‘ obj sd ‘ obj sd  tpest[s]
Codelllw._rpl0 4361,00 0,00 | 4361,00 0,00 | 4361,00 0,00 14,70
Codelllw._rpl5 4596,00 0,00 | 4596,00 0,00 | 4596,00 0,00 16,10
Codelllw_rp20 4506,87 6,96 | 4510,60 2,03 | 4511,87 0,73 209,50
Code211w_rpl0 5310,00 0,00 5310,00 0,00 5310,00 0,00 8,10
Code211w_rpl5 5373,00 0,00 | 5373,00 0,00 | 5373,00 0,00 23,10
Code211w_rp20 5428,13 6,01 5430,67 3,40 5431,57 2,37 82,40
Code311w._rpl0 4483,00 0,00 | 4483,00 0,00 | 4483,00 0,00 8,10
Code311w._rpl5 4800,00 0,00 | 4799,77 1,28 | 4800,00 0,00 13,30
Code311w_rp20 4892,73 0,69 4892,60 0,81 4893,00 0,00 65,20
Coded11w_rpl0 4994,00 0,00 | 4994,00 0,00 | 4994,00 0,00 7,90
Coded11w._rpl5 5063,20 2,07 | 5063,80 1,10 | 5064,00 0,00 48,80
Code411w_rp20 5209,00 0,00 | 5208,93 0,25 | 5209,00 0,00 39,60
Code511w_rpl0 4906,00 0,00 | 4906,00 0,00 | 4906,00 0,00 8,90
Code511w_rpl5 5123,00 0,00 5127,00 4,07 5123,00 0,00 63,40
Code511w_rp20 5327,30 13,81 | 5329,93 7,26 | 5334,00 0,00 76,00
Code611w._rpl0 4595,00 0,00 | 4595,00 0,00 | 4595,00 0,00 17,70
Code611w_rpl5 4881,00 0,00 | 4881,00 0,00 | 4881,00 0,00 15,70
Code611w_rp20 4951,73 1,46 4951,20 2,44 4952,00 0,00 96,00
Code711w_rpl0 5586,00 0,00 | 5586,00 0,00 | 5586,00 0,00 8,70
Code711w._rpl5 5827,00 0,00 | 5826,27 4,02 | 5827,00 0,00 31,60
Code711w_rp20 5884,37 15,92 | 5892,30 2,74 | 5893,00 0,00 29,80
Code811w._rpl0 4609,00 0,00 | 4609,00 0,00 | 4609,00 0,00 21,60
Code811w_rpl5 4674,47 1,38 4674,87 0,73 4675,00 0,00 41,60
Code811w_rp20 4857,63 2,01 4854,60 6,59 4858,00 0,00 24,40
Code911w_rpl0 5302,00 0,00 | 5302,00 0,00 | 5302,00 0,00 7,50
Code911w._rpl5 5157,63 1,13 | 5156,90 2,01 | 5157,93 0,25 220,60
Code911w_rp20 5458,67 1,03 | 5457,50 1,78 | 5459,00 0,00 92,50
Codel011lw_rpl0 5003,67 7,30 5004,10 4,93 5005,00 0,00 18,20
Codel01lw._rpl5 5194.,47 2,29 5194,23 3,52 5195,00 0,00 29,20
Codel011wrp20 | 5399,00 0,00 | 5399,00 0,00 | 5399,00 0,00 60,80
geometric mean 5043,99 5044,47 5044,90

#best results 16 14 29

#unique best res. 0 1 13

differences are rather small and for n = 200 our GA is better in 28 out of 30
instances with a much lower standard deviation on most instances.

It is interesting that although we did not find the optimal solution for
instance Code511 with r = p = 15 our algorithm always terminated with
the same suboptimal solution. This is due to our solution evaluation method
because even though the optimal value of the LP relaxation and the optimal
value to the follower problem often coincide, it is not the case here. During
our runs we might have visited the optimal solution but we were not able
to identify it because we only approximated its objective value by the LP
evaluation and discarded it later.
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Table 10 Comparison to results from the literature with a runtime of 600 seconds and n =
150. The Tabu Search (T'Sa;) and the Hybrid Memetic Algorithm (HMA) by Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013), respectively, compared to our best configuration
GA + solA + ML-ES + improved TS.

GA + solA +
TS a1 ‘ HMA ‘ ML-ES + improved TS

Instance ‘ obj sd ‘ obj sd ‘ obj sd thest[s]
Codel_150w_rp10 7180,00 0,00 | 7180,00 0,00 | 7180,00 0,00 29,20
Codel_150w_rp15 7152,23 5,02 7132,60 32,10 | 7153,93 0,25 133,00
Codel_-150w_rp20 T247,77 7,45 7211,07 26,63 7247,27 7,97 241,40
Code2.150w_rp10 7321,07 23,97 7325,57 16,59 | 7337,00 0,00 242,70
Code2.150w_rpl5 7736,87 8,36 7732,87 11,63 | 7745,00 0,00 96,90
Code2-150w_rp20 7796,43 14,76 7770,07 25,08 | 7802,03 15,79 211,50
Code3_-150w_rp10 7299,00 0,00 | 7299,00 0,00 | 7299,00 0,00 35,40
Code3-150w_rpl5 7596,47 12,06 7593,07 16,98 | 7603,10 2,75 142,50
Code3_-150w_rp20 7610,47 63,78 7630,60 14,08 | 7646,87 4,32 274,00
Code4-150w_rp10 7306,17 39,97 7307,63 19,12 | 7318,00 0,00 38,30
Code4-150w_rpl5 7406,73 7,08 7392,30 18,53 | 7409,00 0,00 71,30
Code4-150w_rp20 7926,00 5,19 7917,87 10,70 | 7927,50 2,74 251,30
Code5_150w_rp10 6972,50 5,19 6968,90 8,56 6975,00 0,00 32,90
Code5-150w_rpl5 7154,77 19,25 7135,10 26,72 7139,97 26,56 214,60
Code5-150w_rp20 7322,50 6,30 7316,13 13,54 | 7326,50 3,29 227,30
Code6-150w_rp10 7047,27 7,02 7043,60 10,88 | 7050,00 0,00 36,90
Code6-150w_rpl5 7184,83 4,49 7172,50 16,84 | 7186,00 0,00 71,60
Code6-150w_rp20 7378,10 14,45 7333,67 39,97 | 7386,00 0,00 133,90
Code7-150w_rp10 6247,10 3,59 | 6248,17 2,57 6248,10 0,55 190,10
Code7-150w_rpl5 6839,60 2,19 6834,33 9,36 | 6840,00 0,00 82,90
Code7-150w_rp20 7284,37 18,24 7275,30 20,64 | 7290,83 14,02 203,10
Code8-150w_rp10 7732,00 0,00 | 7732,00 0,00 | 7732,00 0,00 28,70
Code8_150w_rpl5 7658,23 7,54 7650,80 20,36 | 7662,00 0,00 103,10
Code8-150w_rp20 7848,80 8,38 7836,40 18,38 7846,73 11,06 188,20
Code9-150w_rp10 6855,00 0,00 6853,47 5,84 | 6855,00 0,00 55,50
Code9-150w_rpl5 6881,30 5,52 6878,13 7,77 | 6883,40 0,93 148,40
Code9-150w_rp20 7177,90 19,76 7145,17 35,49 7160,40 41,30 299,90
Codel0-150w_rpl10 6715,00 0,00 6715,00 0,00 6715,00 0,00 30,20
Codel0_150w_rpl5 7009,07 13,99 7008,07 16,87 | 7014,00 0,00 104,30
Codel0-150w_rp20 7201,07 13,43 7181,53 24,32 | 7203,40 10,21 175,30
geometric mean 7260,27 7251,42 7263,31

#best results 9 5 25

#unique best res. 4 1 20
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Table 11 Comparison to results from the literature with a runtime of 600 seconds and n =
200. The Tabu Search (TS4)) and the Hybrid Memetic Algorithm (HMA) by Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013), respectively, compared to our best configuration

GA + solA + ML-ES + improved TS.

GA + solA +
TS a1 ‘ HMA ‘ ML-ES + improved TS

Instance ‘ obj sd ‘ obj sd ‘ obj sd  thest|s]
Codel_200w_rpl0 9545,43 35,14 9505,07 57,16 9594,00 10,37 243,10
Codel_200w_rpl5 10076,73 49,31 | 10051,83 59,42 | 10095,00 37,02 297,10
Codel_200w_rp20 9837,17 53,95 | 9767,93 58,96 9831,97 56,35 460,50
Code2_200w_rpl0 9324,50 50,20 9217,80 58,07 9321,13 26,28 130,10
Code2_200w_rpl5 9578,77 46,03 | 9514,93 51,54 | 9626,67 17,34 392,00
Code2-200w_rp20 9667,17 32,12 | 9602,20 38,63 9666,37 52,72 421,30
Code3_200w_rpl0 9367,07 32,45 | 9329,37 53,93 | 9374,30 28,15 227,00
Code3_200w_rpl5 9355,93 18,85 | 9310,30 44,48 | 9365,97 17,19 281,90
Code3-200w_rp20 9286,17 67,10 9253,50 63,57 9296,67 70,96 426,90
Code4_200w_rpl0 8882,03 18,31 | 8877,13 22,02 | 8888,47 14,39 115,60
Code4_200w_rpl5 9169,93 18,46 | 9116,27 68,57 | 9179,03 32,68 241,30
Code4_200w_rp20 0439,13 34,47 | 9402,23 55,74 0404,70 89,41 388,50
Code5_200w_rpl0 9227,30 48,62 9240,40 52,15 9273,10 27,45 268,20
Code5-200w_rpl5 924257 64,44 9237,70 41,65 9252,03 42,10 320,90
Code5_200w_rp20 9498,80 38,81 | 9422,63 52,81 | 9512,10 42,91 345,90
Code6_200w_rpl0 9825,20 35,02 | 9808,13 39,34 | 9850,53 5,58 197,50
Code6_200w_rpl5 10119,03 52,39 | 10095,73 41,17 | 10148,23 27,71 326,70
Code6_200w_rp20 10283,10 83,09 10210,53 59,37 10261,53 91,67 452,50
Code7-200w_rpl10 9225,70 42,60 9183,77 55,95 9270,30 20,44 222,80
Code7_200w_rpl5 9556,13 39,65 | 9496,63 59,54 | 9580,30 35,03 283,90
Code7_-200w_rp20 9902,20 43,20 | 9860,03 52,13 | 9943,10 33,88 361,90
Code8_200w_rpl0 9088,17 9,62 | 9046,43 34,70 | 9092,57 2,37 170,60
Code8_200w_rpl5 9047,13 47,40 8987,20 41,46 9063,10 41,76 357,90
Code8_200w_rp20 9329,67 29,32 9248,07 59,96 9342,90 23,35 484,30
Code9_200w_rpl0 9009,53 3,68 | 8950,47 59,78 | 9011,40 8,76 182,90
Code9_200w_rpl5 9124,70 66,93 | 9086,47 65,56 | 9168,20 23,40 335,40
Code9_200w_rp20 9438,00 17,91 | 9404,67 42,67 | 9452,57 16,55 416,80
Codel0-200w_rpl0 9382,67 25,28 9365,40 46,44 9411,00 0,00 151,70
Codel0_200w_rpl5 9290,80 49,24 | 9240,83 57,79 | 9312,40 51,91 434,30
Codel0-200w_rp20 9741,20 35,77 9683,63 50,92 9688,73 74,95 460,40
geometric mean 9456,10 9411,33 9470,05

#best results 6 0 24

#unique best res. 6 0 24

Table 12 Results of Wilcoxon Rank Sum tests with error levels of 5% for the algorithms

of the literature and the GA.

GA + solA +
TS HMA  ML-ES + improved TS X
TS - 45 3 57
HMA 4 - 1 7
GA + solA +
ML-ES + improved TS 38 56 - 123
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Table 13 Comparison of the results from instances with n = 100 of the so far best exact
methods MEM by Kochetov et al. (2013) and B&C by Roboredo and Pessoa (2013), the so
far best heuristic method (HMA) and our GA + solA + ML-ES + imp. TS with a runtime
of 1800 seconds.

GA-+solA+
B & C MEM HMA ML-ES+imp. TS
Instance ‘ ‘obj thest [s]‘ sd thest [s]‘ obj sd 0bj  sd tpess[s]

Codelllw.rpl0 |4361,00 10217,00|4361,00 3600,00|4361,00 0,00|4361,00 0,00 11,20
Codelllw_rpl5 |4596,00 9751,97|4596,00  4320,00|4596,00 0,00|4596,00 0,00 16,30
Codelllw.rp20 |4512,00 >36000[4512,00  60,00%| 4511,47 1,38|4512,00 0,00 159,40
Code211w_rpl0 |5310,00 9488,81(5310,00 2520,00(5310,00 0,00|5310,00 0,00 8,10
Code211w_rpl5 |5373,00 80956,38|5373,00 230700,00|5373,00 0,00|5373,00 0,00 18,00
Code211w.rp20 |5432,00 >36000|5432,00 11100,00% |5432,00 0,00|5432,00 0,00 75,40
Code311lw_rpl0 |4483,00 19071,28|4483,00 8760,00|4483,00 0,00|4483,00 0,00 8,20
Code31lw_rpl5 |4800,00 27707,28|4800,00 23700,00|4800,00 0,00|4800,00 0,00 18,90
Code311w_rp20 |4893,00 >36000|4893,00 14880,00%| 4892,93 0,37|4893,00 0,00 85,40
Codedllw.rpl0 |4994,00 13743,91|4994,00 1980,00|4994,00 0,00|4994,00 0,00 8,00
Codedllw.rpl5 |5064,00 84140,14|5064,00 73380,00|5064,00 0,00|5064,00 0,00 54,50
Coded1lw_rp20 |5209,00 >36000|5209,00 300,00%|5209,00 0,00|5209,00 0,00 46,80
Code511w_rpl0  |4906,00 80413,83|4906,00 23940,00|4906,00 0,00|4906,00 0,00 11,40
Code511w_rpl5 |5131,00 79099,64|5131,00 127200,00| 5130,67 1,49| 5123,00 0,00 58,20
Code511w_rp20 |5334,00 >36000|5334,00 6600,00%|5334,00 0,00|5334,00 0,00 60,90
Code61lw.rpl0 |4595,00 51583,19/4595,00 8580,00|4595,00 0,00|4595,00 0,00 21,60
Code61llw_rpl5 |4881,00 28342,66|4881,00 137580,00|4881,00 0,00|4881,00 0,00 17,20
Code611w_rp20 |4952,00 >36000|4952,00 11400,00% |4952,00 0,00|4952,00 0,00 58,10
Code711lw_rpl0 |5586,00 20352,74|5586,00 4380,00|5586,00 0,00|5586,00 0,00 9,20
Code71lw.rpl5 |5827,00 48600,45|5827,00 79200,00|5827,00 0,00|5827,00 0,00 33,80
Code71lw.rp20 |5893,00 >36000|5893,00 5820,00%|5893,00 0,00|5893,00 0,00 21,50
Code811w_rpl0 |4609,00 26807,98|4609,00 9120,00|4609,00 0,00|4609,00 0,00 18,80
Code811w_rpl5 |4675,00 115183,50|4675,00 274200,00|4675,00 0,00|4675,00 0,00 52,10
Code811w_rp20 |4858,00 >36000|4858,00 34200,00% |4858,00 0,00|4858,00 0,00 22,90
Code911w.rpl0 |5302,00 2377,90|5302,00  360,00|5302,00 0,00|5302,00 0,00 7,50
Code91lw_rpl5 |5158,00 >36000|5158,00 >36000|5158,00 0,00|5158,00 0,00 240,10
Code911w_rp20 |5459,00 >36000|5459,00 9900,00%| 5458,90 0,55|5459,00 0,00 146,20
Codel011w._rpl0 |5005,00 33765,06|5005,00 5820,00|5005,00 0,00|5005,00 0,00 15,00
Codel011lw_rpl5 |5195,00 72034,36|5195,00 >36000|5195,00 0,00/5195,00 0,00 28,20
Codel011w._rp20 |5399,00 >36000|5399,00 7800,00%|5399,00 0,00/5399,00 0,00 28,00

geometric mean 5045,18 5045,18 5045,15 5044,92
#Dbest results 30 30 26 29
#unique best res. 0 0 0 0

“time needed for finding solutions that are within 5% of the optimum, i.e., the optimality is
not proven.



31

A Hybrid GA for the Discrete RPCP

82
82
9L‘06¥6

4

14
E7'8LV6

4
LT
89°GOTL

€
9T
L£69zTL

‘sa1 9soq enbrun#
S)[nsox 1soqH#
ueau D1I1)9M09T

98°0¢  €8°CVL6
0'¢c  08‘egg6
000 00‘TI¥6
€8'T L9°C976
60T  L0‘PLI6
000 00°‘€T06
7981  LL‘S8%€6
I'lc  08‘G806
000 00‘€606
62'LT €£°CT966
000 00‘88S6
000 00°LL26
18°6¢  €8°09€0T
€06 L2°GST0T

TV'8T  €0°19L6
9z'7e  €¥'€Te6
087 169076
9Z'€T  L6°0ST6
€1°'0c 030916
70T 092106
g6'08  LL'9TE6
19°T¢  €9°6906
6% L.2606
gR'IE  €8°0€66
69T €7'0LS96
65'ce  €1°05T6
gc'oe €9'ege0t
Q8T €9°TVI0T
68‘8] LY L¥86
¥0'€c  LT'1¥S6
0L‘0¢  €9°‘9826
¥8'8C  L¥'9976
6L'€C  L6'8ST6
YOVT  €LVLI6
61°6 €L€688
68'6¢  09°7€€6
8L'TT  €9°C9¢6
G8‘0T  LG'8LE6

02dIm00g"0TPPOD
G1dImM00g 0TePOoD
01dIT M0z 0TePOD
02dIr M0z 69P0D
¢1dIr MO0z 60P0D
01dIrM00%62P0D
0gdIrmQ0g"82POD
GTdIrmQ0g"82POD
0TdIrMQ0g"89POD
0gdrmp0g™LopPoD
GTdIrMQ0g™LePoD
01dIrMQ0g™LoPoD
0gdIrmQ0g"99PoD
¢1dIrmQ0g"99pPoD
01dIrM00g"99POD
0gdIrM00g"goPoD
GTdIrMQ0g"gePoD
01dIrMQ0g"goPOD
0zdr Mmooz FopPoD
S1drmoog HoPoD
014 M0z 7oPoD
0gdIrmQ0g€ePoD
GTdIr M0z €oPoD
oTdrmp0z-gopoD
02dIrM00ggPPoD
GTdIrMQ0ggePOD
014 M0055ePOD
0zdIr M0z ToPoD
¢TdIr M0z ToPoD
01dIr M0z TPPOD

000 009024
000 007104
000 00°STLY9
18°'¢ 00°‘L8TL
190 08‘€889
000 00°GS89
000 00‘Tg84
000 00°29924
000 00'TeLL
000 00°L6TL
000 00°0%89
000 00°8%29

000 00°98€L
000 00°98TL
000 000904
18T LL.92€L
9L'GT  €6'8SGTL

000 00°9L69
000 00°8T64
000 006074
000 00‘8TEL
T6'C LY LV9L

000 00‘709%
000 006624
62‘¢ 076084
000 00‘SPLL
000 00°LE€L
1€°0 06'67TL
000 00‘PSTL
000 000814

€L €1°60TL
00‘0  00‘PTOL
00‘0 00°‘STL9
L9F  0€°G8TL
1T 0£'6889
000 00‘eS89
82T LL'0G8L
00‘0 00°‘T99L
000  00°‘TELL
9.9 LL'G6TL
000 00‘0%89
T 080929
19°9  €8'¢8¢eL
00‘0  00‘98TL
€8T L9°6¥0L
107 L8'%CEl
66'8  €I‘TITL
00‘0 00°‘SL69
18 00°LT6L
000 00‘60¥%L
00‘0 00‘S8TEL
000  00‘8¥9L
z  0¥'€09L
000 00°66ZL
9.8 06'708L
Sy'e OT'FLL
00‘0 00‘.E€8L
L¥'0  0L'6¥TL
1€°0  06°€S1L
000 00°‘08TL

0gdrmQgT-0ToPOD
GTdTmMQGI~0TPPOD
0TdIMQGT0TPPOD
0gdIrmMQGT~69POD
GTdImMQOGT~6oPOD
0TdITMQOGT~62POD
0gdImMQGT~89POD
GTdIrmMQGT~89POD
0T1dITMQGT~89POD
02drmQgT™LoPOD
GTdIrMQGT™LoPOD
0TdITMQGT™LoPOD
0gdITmQGT~99poD
GTdIrmQOGT~9opoD
01drmQG1~99pPoD
0gdImMQGT~gopoD
GTdIrmMQGT~gopPoD
0TdIMQGT~goPOD
0zdrMOgT HopoD
STdrmOgT FopoD
0TdITMQOGT™FoPOD
0gdIrmQGT~€oPoD
GTdIrmQGT~€opoD
0TdrMQGT gopoD
02drmog1-gopoD
GTdIrMQOGT~gePoD
0TdITMQGT~gPPOD
0gdIrmQOGT~1oPOD
GTdIrmQGT 1opPOD
0TdITMQGT~ToPOD

oouvgsuy || ps Lq0

ps £q0

QUDISUy

SL dwi+gH-TIN
+ VIos + vD

S dwi+gH-TIN
+ Vios + VD

VINH

'Spu029s QYT Jo dwryun & yym g1, dwr + SH-TIN
+ VIos + vy Ino pue (YINH) POYIOUW JIPSLINSY 9s9q IeJ OS 9y} JO 00Z = U PUR (GT = U [IIM S9OURISUI WOIJ S}[NsoI Yy Jo uostredwo) T S[qeL



32 Benjamin Biesinger et al.

Table 15 Results of Wilcoxon Rank Sum tests with error levels of 5% for HMA and the
GA with longer runtime.

GA + solA +
HMA ML-ES + improved TS X
HMA - 3 3
GA + solA +
ML-ES + improved TS 31 - 31

9 Conclusions

In this work we proposed a genetic algorithm for the discrete (r|p)-centroid
problem with several enhancements. First of all, a trie-based solution archive
was used to reduce the number of unnecessary solution evaluations and to over-
come premature convergence. This led to a significant efficiency gain. Another
important part of the algorithm was the embedded local improvement proce-
dure. Several ways of combining the local search with the solution archive were
investigated, and the reduced neighborhood was identified to work best in prac-
tice. Different solution evaluation methods were considered and we found an
effective way to combine them, which led to the multi-level evaluation scheme.
Finally we improved the results of our algorithm by using a tabu search for
local improvement. Extensive tests showed that the new approach significantly
outperforms previous state-of-the-art heuristic approaches and scales well to
larger instances that cannot be solved with today’s exact methods anymore.

We considered here only one variant of a competitive facility location prob-
lem. For future work it would be interesting if our approach will also succeed
when some problem parameters are changed, e.g., if the demand of the cus-
tomers is proportional to the distance to the facilities or if it is inelastic.
Additionally, we only considered Euclidean distances and further tests should
be performed on more realistic instances. Further research also includes other
applications of the solution archive, which is expected to improve the perfor-
mance of algorithms for problems that have a compact solution representation
and an expensive evaluation method. The tree structure of the solution archive
might also be exploited further, e.g., by computing bounds on partial solution
in order to cut off subspaces, that cannot contain better solutions.
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