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Abstract In this article we propose a hybrid genetic algorithm for the discrete
(r|p)-centroid problem. We consider the competitive facility location problem
where two non-cooperating companies enter a market sequentially and com-
pete for market share. The first decision maker, called the leader, wants to
maximize his market share knowing that a follower will enter the same market.
Thus, for evaluating a leader’s candidate solution, a corresponding follower’s
subproblem needs to be solved, and the overall problem therefore is a bi-level
optimization problem. This problem is ΣP

2 -hard, i.e., harder than any problem
in NP. A heuristic approach is employed which is based on a genetic algorithm
with tabu search as local improvement procedure and a complete solution
archive. The archive is used to store and convert already visited solutions in
order to avoid costly unnecessary re-evaluations. Different solution evaluation
methods are combined into an effective multi-level evaluation scheme. The al-
gorithm is tested on a well-known benchmark set as well as on larger newly
created instances. For most of the instances we are able to outperform previous
state-of-the-art heuristic approaches in solution quality and running time.
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1 Introduction

The (r|p)-centroid problem (RPCP) is a competitive facility location problem,
in which two decision makers compete for market share. They both want to
serve customers from a given market. There are several variants of this problem
which differ in the way facilities are opened, in the elasticity of the demand
and especially in the behaviour of the customers. In our work we consider a
discrete basic variant with the following assumptions:

– Facilities can be opened at a given finite set of possible positions. At one
position at most one facility can be located.

– Both competitors open facilities sequentially, i.e., the first decision maker,
called the leader, opens p facilities and is followed by the other decision
maker, the follower, who successively places all of his r facilities.

– Customer decision is based on distance solely, i.e., customers always choose
their serving facility to be the closest.

– Customers have a binary preference, i.e., they fulfill all of their demand by
choosing the nearest facility only.

Competitive facility location problems are known since the late 20s and
were first mentioned by Hotelling (1929). Hakimi (1983) introduced the name
(r|p)-centroid and also published the first complexity results for it.

An application of this problem is the entry of an entrepeneur into a new
market where she wants to keep her market share even if an opponent enters
the same market. Based on the assumption that the follower chooses his loca-
tions in an optimal way, the leader is able to take his decision into account to
determine her guaranteed market share.

The discrete (r|p)-centroid problem on not further constrained bipartite
graphs is ΣP

2 -hard (Noltemeier et al. 2007). In short this means that under
the assumption that the polynomial hierarchy does not collapse this problem
is substantially harder to solve than any problem in NP.

In Section 2 we give a formal problem definition. After discussing the re-
lated work in Section 3, we present different candidate solution evaluation
methods in Section 4. A novel hybrid genetic algorithm (GA), which incorpo-
rates a solution archive in order to store and transform already visited solu-
tions, as well as a local improvement component is introduced in Section 5.
Different concepts of how the local search method can benefit from the solution
archive are investigated in Section 6. An extension to the GA which intends
to lower the effort for solution evaluation by applying a multi-level strategy
is presented in Section 7. Finally, we discuss computational results and com-
pare the new method to other state-of-the-art approaches from literature in
Section 8.

2 Problem Definition

The discrete (r|p)-centroid problem is defined on a weighted complete bipartite
graph G = (I, J, E) where I = {1, . . . ,m} represents the set of potential
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facility locations, J = {1, . . . , n} the set of customers, and E = I×J is the set
of edges. Let wj > 0, ∀j ∈ J be the weight of each customer, which corresponds
to the turnover to be earned by the serving decision maker and dij , ∀(i, j) ∈ E,
be the distances between customers and potential facility locations. The goal
for the leader is to choose exactly p locations from I in order to maximize her
turnover under the assumption that the follower in turn chooses r facilities
from different locations maximizing his turnover.

Each customer j ∈ J chooses the closest facility, hence the owner of this
closest facility gains all of the turnover wj ; in case of equal distances the
leader is preferred. In the following we give a formal definition of a candidate
solution and the turnover computation. Let (X,Y ) be a solution to the RPCP,
where X ⊆ I, |X| = p is the set of locations chosen by the leader and Y ⊆
I \X, |Y | = r is the associated set of follower locations. Further, let D(j, V ) =
min{dji | i ∈ V }, ∀j ∈ J, V ⊆ I be the minimum distance from customer j
to all facility locations in set V . Then the set of customers which are served
by one of the follower’s facilities is U f = {j ∈ J | D(j, Y ) < D(j,X)} and the
customers served by the leader is given by U l = J \ U f . The turnover of the
follower is pf =

∑
j∈U f wj and the turnover of the leader pl =

∑
j∈J wj − pf .

The problem of finding the optimal set of locations Y for the follower when
X is given is also called the (r|Xp)-medianoid problem and is proven to be
NP-hard (Hakimi 1983). In this work by Hakimi he also showed that the (r|p)-
centroid problem is ΣP

2 -hard. This result is strenghtened by Davydov et al.
(2013) who proved that the problem we consider here remains ΣP

2 -hard even
for planar graphs with Euclidean distances.

3 Related Work

Competitive facility location models, to which the discrete (r|p)-centroid prob-
lem belongs, are a quite old and well-studied type of problem originally intro-
duced by Hotelling (1929). A recent review about several kinds of competitive
location models can be found in the work by Kress and Pesch (2012). They
also mention the discrete RPCP, which was originally introduced by Hakimi
(1983) along with some first complexity results.

Laporte and Benati (1994) developed a tabu search heuristic for the (r|p)-
centroid problem. They use an embedded second-level tabu search for solving
the (r|Xp)-medianoid problem. The final solution quality is thus only approx-
imated as the (r|Xp)-medianoid problem is not solved exactly.

Alekseeva et al. (2010) present several approaches for the discrete (r|p)-
centroid problem including an exact procedure. The first method is a hybrid
memetic algorithm (HMA) which uses a probabilistic tabu search as local
improvement procedure. It employs rather simple genetic operators and the
tabu search utilizes a probabilistic swap neighborhood structure, which is well
known from the p-median problem (Teitz and Bart 1968). A neighborhood of
this structure contains elements only with a given probability to speed up the
search. They use the linear programming relaxation of a mixed integer linear
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programming (MIP) model for the solution evaluation which will be described
here in Section 4.1. The authors observe that this approach outperforms several
simpler heuristics including an alternating heuristic originally proposed for a
continuous variant of the problem (Bhadury et al. 2003). In Alekseeva and
Kochetov (2013) results for the tabu search alone are presented which are
similar to the results of the HMA. They further describe an exact method based
on a single level binary integer program with exponentially many constraints
and variables. For solving this model they present an algorithm similar to a
column generation approach where new sets of locations for the follower are
iteratively added to the model which is then solved again. The optimal value
of this model defines an upper bound and by solving the follower’s problem
using solutions of the model a lower bound is obtained. If the bounds coincide
the optimum has been found. The HMA is applied for finding the initial family
of follower solutions. Using this method the authors are able to optimally solve
instances with up to 100 customers and p = r = 5.

Campos-Rodŕıguez et al. (2009) studied particle swarm optimization meth-
ods for the continuous (r|p)-centroid problem, where the facilities can be placed
anywhere on the Euclidean plane, as well as for the discrete variant (Campos-
Rodŕıguez et al. 2012). A jumping particle swarm optimization is used with
two swarms, one for the leader and one for the follower. The particles jump
from one solution to another in dependence of its own best position so far,
the best position of its neighborhood and the best position obtained by all
particles so far, i.e, the best global position. In the experiments this algorithm
was able to solve instances with 25 customers, p = 3 and r = 2 to optimality.

Davydov et al. (2012) describe another tabu search for the RPCP. They
use a probabilistic swap neighborhood structure similar to the one developed
by Alekseeva et al. (2010). For the solution evaluation the follower problem is
approximately solved by Lagrangian relaxation. The method is tested on the
instances from Alekseeva et al. (2010) and additionally on some non-Euclidean
instances. For many of the instances optimal solutions are obtained.

Roboredo and Pessoa (2013) developed an exact branch-and-cut algorithm
for the discrete RPCP. They use a single-level integer programming model
which is similar to the model by Alekseeva et al. (2010) but with only a poly-
nomial number of variables. It consists of exponentially many constraints, one
for each follower strategy, i.e., for each set of possible facility locations of the
follower. An important reason for the success of their method is the introduc-
tion of strengthening inequalities by lifting the exponentially many constraints.
Due to the assumption that the customers are conservative the lower bound
on the leader’s solution becomes zero if the follower chooses the same facility
location. Therefore, for each facility location an alternative location is given
which is chosen if the position has already been used by the leader. These
cuts are separated either by a greedy heuristic or by solving a mixed integer
programming model. For most of the benchmark instances the authors report
better results than Alekseeva et al. (2010), i.e., they found optimal solutions
in less time. Instances with 100 customers and up to r = p = 15 facilities
could be solved to optimality. The authors also present promising results for
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r = p = 20 but are not able to prove their optimality within the given time
limit of 10 hours.

Alekseeva and Kochetov (2013) give an overview of recent research regard-
ing the discrete (r|p)-centroid problem. They also improve their iterative exact
method by using a model with only a polynomial number of variables and by
using the strengthening inequalities introduced by Roboredo and Pessoa. This
improved iterative approach is able to find optimal solutions for instances
with up to 100 customers and r = p = 15. Especially for the instances with
r = p ∈ {5, 10} optimal solutions are found significantly faster than by the
branch-and-cut algorithm from Roboredo and Pessoa (2013).

As mentioned before there are several other variants of the problem. Ko-
chetov et al. (2013) describe an algorithm for the RPCP with fixed costs
for opening a facility and customers splitting their demand over all facilities
proportional to attraction factors. The algorithm’s principle is similar to the
alternating heuristic for the RPCP (Bhadury et al. 2003).

Ghosh and Craig (1984) work on a competitive location model for choosing
good positions for retail convenience stores. They do not specify the number
of stores to open beforehand but determine the optimal number as part of the
process and additionally assume elastic demands, i.e., the customers may not
want to fulfill their whole demand if the store is too far away. The authors
develop a heuristic enumerative search algorithm for solving this problem.

Serra and Revelle (1994) propose a heuristic approach for a variant of
the discrete RPCP which is based on repeatedly solving a maximum cap-
ture (MAXCAP) problem. The MAXCAP problem is similar to the (r|Xp)-
medianoid problem with the difference that it is possible to place a facility
on one of the leader’s locations with the result that the captured demand
is equally shared between the two players. The algorithm is basically a lo-
cal search using the swap neighborhood structure and candidate solutions are
evaluated by solving the MAXCAP problem by means of integer programming
or by using a local search heuristic for larger instances.

Bhadury et al. (2003) introduce an alternating heuristic for the continuous
(r|p)-centroid problem. The approach is based on iteratively solving (r|Xp)-
medianoid problems. First an initial solution for the leader is created. Then
the resulting (r|Xp)-medianoid problem is solved for the follower. After fixing
the follower’s locations, a (p|Xr)-medianoid problem is solved for the leader.
This process is repeated until a stopping criterion is met. The authors also
state that this method can lead to a Nash equilibrium if one exists. Alekseeva
and Kochetov (2013) adapted this procedure for the discrete case.

Drezner (1994, 1998) and Drezner et al. (2002) use a gravity model for
solving a continuous competitive facility location problem. The gravity model
assumes that customers prefer being served by facilities proportional to an
attraction factor and inversely proportional to their distances. The authors
suggest several heuristics and metaheuristics including simulated annealing
for solving the problem and compare them to each other.
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4 Solution Evaluation

We extend the problem definition of Section 2 by the following further defini-
tions which are adopted from Alekseeva and Kochetov (2013).

Definition 1 Semi-feasible Solution
The tuple (X,Y ) is called a semi-feasible solution to the discrete (r|p)-

centroid problem iff X ⊆ I with |X| = p, Y ⊆ I with |Y | = r and X ∩ Y = ∅.

Let pl(X,Y ) be the turnover of the leader and pf(X,Y ) be the turnover of
the follower where X is the set of facility locations chosen by the leader and Y
is the set of facility locations chosen by the follower. Then we define a feasible
solution and an optimal solution as follows.

Definition 2 Feasible Solution
A semi-feasible solution (X,Y ∗) is called a feasible solution to the discrete

(r|p)-centroid problem iff pf(X,Y ∗) ≥ pf(X,Y ) for each possible set of follower
locations Y .

Definition 3 Optimal Solution
A feasible solution (X∗, Y ∗) is called an optimal solution to the discrete

(r|p)-centroid problem iff pl(X∗, Y ∗) ≥ pl(X,Y ) for each feasible solution
(X,Y ).

It is easy to find a semi-feasible solution but already NP-hard to find a
feasible solution because an optimal follower solution has to be found and the
(r|Xp)-medianoid problem is NP-hard. This means that the solution evaluation
of an arbitrary leader solution might be quite time-consuming. For practice
there are several possibilities how to evaluate such a leader solution X. In the
next section we will examine a mathematical model for the RPCP and derive
different options.

4.1 Bi-Level MIP Formulation

The following bi-level MIP model has been introduced in Alekseeva et al.
(2009). It uses three types of binary decision variables. Variables xi, ∀i ∈ I, are
set to one if facility i is opened by the leader and to zero otherwise. Variables
yi, ∀i ∈ I, are set to one iff facility i is opened by the follower. Finally, variables
zj , ∀j ∈ J, are set to one if customer j is served by the leader and set to zero
if customer j is served by the follower.

We further define the set of facilities that allow the follower to capture
customer j if the leader uses solution x (x = (xi)i∈I):

Ij(x) = {i ∈ I | dij < min
l∈I|xl=1

dlj} ∀j ∈ J

Then we can define the upper level problem, denoted as leader’s (or (r|p)-
centroid) problem, as follows:
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max
x

∑
j∈J

wjz
∗
j (1)

s.t. ∑
i∈I

xi = p (2)

xi ∈ {0, 1} ∀i ∈ I (3)

where z∗ is an optimal solution to the lower level problem, denoted as follower’s
(or (r|Xp)-medianoid) problem:

max
y,z

∑
j∈J

wj(1− zj) (4)

s.t. ∑
i∈I

yi = r (5)

1− zj ≤
∑

i∈Ij(x)

yi ∀j ∈ J (6)

xi + yi ≤ 1 ∀i ∈ I (7)

zj ≥ 0 ∀j ∈ J (8)

yi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (9)

The objective function for the leader’s problem (1) maximizes the leader’s
turnover. Equation (2) ensures that the leader places exactly p facilities. The
objective function for the follower’s problem (4) maximizes the follower’s
turnover. Similarly as in the leader problem, (5) ensures that the follower
places exactly r facilities. Inequalities (6) together with the objective func-
tion ensure the zj variables to be set correctly, i.e., decide for each customer
j ∈ J from which competitor he is served. Inequalities (7) guarantee that the
follower does not choose a location where the leader has already opened a
facility. Variables zj are not restricted to binary values because in an optimal
solution they will become 0 or 1 anyway.

For the simplicity of notation, we use in the remaining paper both, the set
notation X and Y as well as the incidence vector notation x and y, to refer to
leader and follower solutions, respectively.

4.2 Solution Evaluation Methods

In our metaheuristic approach we consider the following natural ways of eval-
uating a leader solution x; two of them use the model introduced before.
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4.2.1 Exact evaluation

In the exact evaluation we solve the follower’s problem (4–9) exactly using a
MIP solver.

4.2.2 Linear Programming (LP) evaluation

In the LP evaluation we solve the LP relaxation of the follower’s problem. This
will in general yield not even semi-feasible solutions because of fractional values
of some variables. For intermediate solution candidates we might, however,
only be interested in an approximate objective value of a leader’s solution
for which purpose this method may be sufficient. This approximation yields a
lower bound of the real objective value of x.

4.2.3 Greedy evaluation

In the greedy evaluation we use the following greedy algorithm for solving the
follower’s problem, which will yield semi-feasible solutions and therefore an
upper bound to the objective value of x. Follower facilities are placed one after
the other according to the following greedy criterion: For each facility every
possible remaining location is checked how much turnover gain its selection
would generate. The turnover gain is the sum of weights of all customers that
would so far be served by the leader but are nearer to this location than to the
nearest leader facility. Then the location with the maximum turnover gain is
always selected. This process is iterated until r locations are chosen. Ties are
broken randomly. Algorithm 1 shows a pseudocode of the greedy evaluation.

In Section 8.1 we will observe that among our evaluation algorithms LP
evaluation usually offers the best compromise in terms of speed and evaluation
precision. However, by applying the different solution evaluation methods in a
joined way within a multi-level evaluation scheme described in Section 7, we
will be able to significantly improve the performance.

5 Genetic Algorithm with Solution Archive

This section describes our genetic algorithm. The framework is a rather stan-
dard steady-state GA with an embedded local improvement. It uses simple
genetic operators, which are explained in Section 5.1. The local improvement
procedure is based on the swap neighborhood structure and is addressed in
Section 5.2. Most importantly, the GA utilizes a complete solution archive for
duplicate detection and conversion, which is detailed in Section 5.3.

We use the leader’s incidence vector x as solution representation for the
GA. The initial population is generated by choosing p locations uniformly at
random to ensure high diversity in the beginning. Then, in each GA iteration
one new solution is derived and always replaces the worst solution of the
current population. Selecting parents for crossover is performed by binary
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Algorithm 1: Greedy Solution Evaluation for the RPCP.
Input: leader solution X
Output: follower solution Y
I′ = I \X; // set of possible facility locations

J ′ = J ; // set of not already served customers

Y = ∅;
for k = 1, . . . , r do

t∗ = 0; // maximum turnover gain for each facility to place

foreach i ∈ I′ do
Jserved = ∅; // served customers for location i
t = 0; // accumulated turnover gain for location i
foreach j ∈ J ′ do

if dij < minl∈I|xl=1 dlj then
t = t+ wj ;
Jserved = Jserved ∪ {j};

if t > t∗ then
t∗ = t;
i∗ = i;
J∗
served = Jserved;

I′ = I′ \ {i∗};
J ′ = J ′ \ J∗

served;
Y = Y ∪ {i∗};

return Y ;

tournament selection with replacement. Mutation is applied to offsprings with
a certain probability in each iteration.

5.1 Variation Operators

We use the following variation operators within the GA:

Crossover Operator Suppose that we have two candidate solutions X1 ⊂ I
and X2 ⊂ I. Then an offspring X ′ of X1 and X2 is derived by adopting all
locations from S = X1 ∩X2 and adding p− |X1 ∩X2| further locations from
(X1 ∪X2) \ S uniformly at random.

Mutation Operator Mutation is based on the swap neighborhood structure,
which is also known from the p-median problem (Teitz and Bart 1968). A
swap move closes a facility and re-opens it at a different, so far unoccupied
position. Our mutation applies µ random swap moves, where µ is determined
anew at each GA-iteration by a random sample from a Poisson distribution
with mean value one.

5.2 Local Search

Each new candidate solution derived in the GA via recombination and mu-
tation whose objective value is at most α% off the so far best solution value
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further undergoes a local improvement, with α = 5 in our experiments pre-
sented here. Local search (LS) is applied with the swap neighborhood structure
already used for mutation. The best improvement step function is used, so all
neighbors of a solution that are reachable via one swap move are evaluated
and a best one is selected for the next iteration. This procedure terminates
with a local optimal solution when no superior neighbor can be found.

5.3 Solution Archive

Solution archives for evolutionary algorithms as introduced by Raidl and Hu
(2010) are data structures that efficiently store all generated solutions in or-
der to be able to detect duplicate solution when they occur. Upon detecting
a duplicate, an effective solution conversion is performed, which results in a
guaranteed not yet considered solution typically in close proximity to the orig-
inal (duplicate) solution. Especially when the solution evaluation is expensive,
which is the case for the RPCP at least when performing an exact evaluation,
costly and unnecessary re-evaluations are avoided supposedly resulting in an
overall faster optimization. Additionally, diversity is maintained in the pop-
ulation and premature convergence is reduced or avoided as well. Successful
applications of this concept on various test functions including NK landscapes
and Royal Road functions and the generalized minimum spanning tree problem
can be found in Raidl and Hu (2010) and Hu and Raidl (2012), respectively.

After each iteration of the genetic algorithm the newly created offspring is
inserted into the archive. If this solution is already contained in the archive,
the solution conversion is automatically performed and this adapted and guar-
anteed new solution is integrated in the population of the GA. The conversion
operation can therefore also be considered as “intelligent mutation”. The data
structure used for the solution archive must be carefully selected in order to
allow efficient realizations of the essential insert, look-up and conversion oper-
ations and in particular depends on the solution representation. As suggested
in Raidl and Hu (2010) a trie data structure, which is typically used for storing
a large set of strings (Gusfield 1997) like in language dictionary applications,
is particularly well suited for binary representations because all the essential
operations can be performed in O(h) time, where h is the maximum string
length. In our case for the RPCP the insertion and the conversion procedure
run both in O(m) time and almost independent of the number of created /
stored solutions. The next sections describe the trie data structure and the
specific operations of the solution archive we use for the RPCP in detail.

5.4 Trie Structure

Our trie is a binary tree T with maximum height m, the number of possible
facility locations. On each level l = 1, . . . ,m of the trie there exist at most 2l−1

trie nodes. Each trie node q at level l has the same structure consisting of two
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level 1
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deviation node q

/

/

Fig. 1 Solution archive with some inserted solutions on the lefthand side and a conversion
of (0, 0, 1, 1, 0, 0, 1) into the new solution (0, 1, 1, 1, 0, 0, 0) on the righthand side.

entries q.next[0] and q.next[1]. Each entry can be either a pointer to a subtree
rooted at a successor node on level l+1, a null -pointer, or a complete-pointer.

Let x = (x1, . . . , xm) be the binary vector representing a candidate leader
solution. Then each node q at level l is related to variable xl and the entries
q.next[0] and q.next[1] split the solution space into two subspaces with xl = 0
and xl = 1, respectively. In both subspaces all elements from x1 to xl−1 are
fixed according to the path from the root to node q. A null -pointer represents
a yet completely unexplored subspace, while a complete-pointer denotes that
already all solutions of the corresponding subspace have been considered. Note
that such a trie is somewhat related to an explicitly stored branch-and-bound
tree.

5.5 Insertion

Algorithm 2 shows how to insert a new candidate solution x = (x1, . . . , xm)
into the trie. Initially, the recursive insertion method is called with parameters
(x, 1, root, 0). We start at the root node at level 1 with the first element x1. At
each level l = 1, . . . ,m of the trie we follow the pointer indexed by xl. When
the p-th facility has been encountered, i.e., openFacs = p, at some node q the
procedure stops and we set q.next[1] to complete. We further check at each
insertion of a “one” at trie node q if enough facilities would still fit if instead
a zero would be chosen. If this is not the case, q.next[0] is set to complete
to indicate that there is no valid candidate solution in this subtrie. A set
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Algorithm 2: insert(x, l, q, openFacs)

Global Variable:
devpoints = ∅; // Set of feasible deviation positions for conversion

Input : leader solution x, level l, node q,
int openFacs; // Number of facilities opened until level l

Output: boolean value whether or not x is already contained in the archive
alreadyContained = false;
if l ≤ m ∧ q 6= complete ∧ openFacs < p then

if xl == 1 then
if m− l < p− openFacs then

q.next[0] = complete;

openFacs = openFacs + 1;

if q.next[1− xl] 6= complete then
devpoints = devpoints ∪ {(l, p)}

if q.next[xl] == null then
q.next[xl] = new trienode(null, null);

alreadyContained = insert(x, l + 1, q.next[xl], openFacs);

if q == complete then
alreadyContained = true;

else if l > m then
q = complete;

// Pruning

else if q.next[xl] = complete ∧ q.next[1− xl] = complete then
q = complete;

return alreadyContained ;

of feasible deviation positions, devpoints, is computed during the insertion
and needed for the potentially following conversion. This set is cleared at the
beginning of each solution insertion and contains all trie nodes visited during
insertion where both entries are not complete. When we encounter a complete-
pointer we know that this solution is already contained in the trie and it must
be converted.

If we are finished with the insertion and the solution is not a duplicate,
we prune the trie if possible to reduce its memory consumption. Pruning
is performed by checking all trie nodes that have been visited during in-
sertion bottom up if both entries of a trie node q are set to complete. If
q.next[0] = q.next[1] = complete we prune this trie node by setting the corre-
sponding entry of the preceding trie node to complete. On the left-hand side of
Figure 1 an example of a trie containing the three solutions (0, 0, 1, 1, 0, 0, 1),
(0, 1, 0, 1, 1, 0, 0), and (0, 0, 1, 0, 1, 1, 0) is given. The “C” stands for a complete-
pointer and the “/” for a null -pointer. The crossed out node at level 7 is a
demonstration of setting a “zero” entry to complete because no more feasible
solution fits in this subtrie and of the pruning that followed.

Note that no explicit look-up procedure is needed because the insertion
method sketched in Algorithm 2 integrates the functionality to check whether
or not a candidate solution is already contained.
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5.6 Conversion

Algorithm 3: convert(x, devpoints)

Input : duplicate leader solution x, feasible deviation positions devpoints
Output: converted not yet considered solution x
q = random entry from devpoints
l = level of the trie node q
xl = 1− xl;
while q.next[xl] 6= null do

if q.next[xl] == complete then
xl = 1− xl;

if q.next[xl] == null then
break;

q = q.next [xl];
l = l+ 1;

openFacs = number of facilities opened in x
k = p− openFacs;
if k > 0 then

open k facilities among xl+1, . . . , xm randomly

else if k < 0 then
close |k| facilities among xl+1, . . . , xm randomly

insert(x,l,q,openFacs);
return x;

When the insertion procedure detects a solution which is already contained
in the archive, a conversion into a new solution is performed. A pseudocode of
this procedure is given in Algorithm 3. In order to modify a solution, we have
to apply at least two changes: open a facility and close another one. For the
first change, let devpoints denote the set of feasible deviation points computed
during insertion. A trie node q at level l is chosen from this set uniformly at
random. Should this set be empty, we know that the whole search space has
been covered and we can stop the optimization process with the so far best
solution being a proven optimum. Otherwise we set the l-th element of the
solution vector to 1− xl, which corresponds to opening or closing a facility at
position l. Now we have to apply a second (inverse) change at a later position
in order to have exactly p facilities opened. We go down the subtrie level by
level using the following strategy. For each trie node q′ at level l′ we prefer to
follow the original solution, i.e. the pointer q′.next[xl′ ]. If it is complete, we
have no choice but to use the pointer q′.next[1−xl′ ] instead (which corresponds
to adding further modifications to the solution vector). As soon as we reach
a null -pointer at a trie node q′ at level l′, we know that the corresponding
subspace has not been explored yet, i.e., any feasible solution from this point
on is a new one. Therefore, we apply the remaining necessary changes to get a
feasible solution. If the number of opened facilities in x exceeds p, we close the
appropriate number of facilities randomly among {xl′+1, . . . , xm}. Otherwise,
if this number is smaller than p, we open the appropriate number of facilities
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Fig. 2 Candidate solutions (0,1,1,0,0), (1,0,1,0,0), and (0,0,0,1,1) in a randomized trie,
where the variables are randomly associated with the levels.

analogously. Finally, this new solution is inserted by applying Algorithm 2
starting from trie node q′ at level l′.

On the righthand side of Figure 1 an example of a solution conversion is
shown. The duplicate solution x = (0, 0, 1, 1, 0, 0, 1) is inserted into the trie
and subsequently converted. Node q on level 2 is chosen as the deviation point
for the first change and we set x2 = 1, resulting in solution (0, 1, 1, 1, 0, 0, 1).
Since the alternative entry at q.next[1] points to another trie node, this path
is followed until a null -pointer is reached at level 3. Then we close the facility
at the randomly chosen position 7 to get the valid solution (0, 1, 1, 1, 0, 0, 0).

5.7 Randomization of the Trie

The above conversion procedure can only change values of solution elements
with a greater index than the level of the deviation position. This induces
an undesirable bias towards elements on positions with higher indices being
changed more likely. In order to counter this problem, a technique called trie
randomization is employed, which has first been suggested by Raidl and Hu
(2010). For each search path of the trie we use a different ordering of the
solution variables, i.e., a trie node on level l does not necessarily correspond to
element xl of the solution vector. Instead, the index of the element related to
a trie node q is chosen randomly from the indices not already used in the path
from the root to node q. In our case this is achieved by additionally storing
the corresponding variable index at each trie node. Another possibility is to
compute the next index by a deterministic pseudo random function taking the
path from the root to node q as input. This method saves memory but needs
more computational effort and is applied in Raidl and Hu (2010). Figure 2
shows an example of a randomized trie. Although this technique cannot avoid
biasing completely, the negative effect is substantially reduced.
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6 Local and Tabu Search with Solution Archive

There exist several options for possibly utilizing the archive not just within
the GA but also the embedded LS, based on the original swap neighborhood
structure.

6.1 Complete Neighborhood

The simplest way to perform LS is just to use the complete neighborhood
as introduced in Section 5.2 without considering the solution archive. This
method will find the best solution within the swap neighborhood but there is
no benefit from the solution archive. We have to re-evaluate already visited
solutions within the LS. However, all generated solutions during the LS are
inserted into the solution archive so that the variation operators of the GA
are still guaranteed to produce only not yet considered solution candidates.

6.2 Reduced Neighborhood

The second option is to skip already visited solutions in the neighborhood
search. After each swap it is checked if the new solution is already contained in
the solution archive. If this is the case the evaluation of this solution is skipped
and the LS continues with the next swap. Otherwise this solution is inserted
into the solution archive. The advantage of this method is that re-evaluations
of already generated solutions are completely avoided and the neighborhoods
are usually much smaller, resulting in a lower runtime. A downside is, however,
that due to the reduced neighborhoods LS may terminate with worse solutions
that are not local optimal anymore.

6.3 Conversion Neighborhood

Another possibility for a combination of the local search and the solution
archive is to perform a conversion whenever an already visited solution is
generated by the local search. This implies that the size of this neighborhood is
the same as the complete neighborhood but instead of re-evaluating duplicates,
solutions that are farther away are considered to possibly find a better solution.

6.4 Tabu Search

The fourth method we consider uses a tabu search instead of a local search
where the tabu list is realized by the solution archive. This means in particular
that the search is not stopped when a neighborhood does not contain a better
solution but a best neighbor solution that has not been visited, even when
worse than the current solution, is always accepted and the search continues.



16 Benjamin Biesinger et al.

In this way, the algorithm might escape local optima. This strategy can be
combined with either of the latter two methods. Unlike the LS, since there
is no predefined end of the tabu search, an explicit termination criterion is
needed, e.g., a time limit or a number of iterations without improvement.
As final solution, the best one encountered during the whole tabu search is
returned.

7 Multi-Level Solution Evaluation Scheme

In this section we want to exploit several relationships between the solution
values of the different evaluation methods which are described in Section 4.
Suppose that pfLP(x) is the objective value of the follower’s problem obtained
by LP evaluation for a given leader solution x, pfexact(x) is the objective value
obtained by exact (MIP-based) evaluation and pfgreedy(x) is the objective value

of the follower’s problem when using the greedy evaluation. Then pfLP(x) is
obviously an upper bound and pfgreedy(x) a lower bound to pfexact(x), i.e., the
following relations hold:

pfgreedy(x) ≤ pfexact(x) ≤ pfLP(x) (10)

Since we compute the turnover of the leader by subtracting the turnover
of the follower from the total demand for all customers, i.e.,

plLP(x) =
∑
j∈J

wj − pfLP(x),

plexact(x) =
∑
j∈J

wj − pfexact(x),

plgreedy(x) =
∑
j∈J

wj − pfgreedy(x),

we obtain:

plLP(x) ≤ plexact(x) ≤ plgreedy(x) (11)

7.1 Basic Multi-Level Solution Evaluation Scheme

Based on inequalities (11) we devise a multi-level solution evaluation scheme.
Suppose that plLP(x̂) is the value of the leader’s turnover obtained by LP eval-
uation of the best solution found so far x̂. For each generated solution candi-
date x we evaluate it using greedy evaluation yielding a maximum achievable
turnover of plgreedy(x). Then we distinguish two cases:

– plgreedy(x) ≤ plLP(x̂): This implies that plexact(x) ≤ plexact(x̂) and therefore
x cannot be better than the so far best solution. So we do not put more
effort in evaluating x more accurately.



A Hybrid GA for the Discrete RPCP 17

– plgreedy(x) > plLP(x̂): We do not know if plexact(x) > plexact(x̂) and therefore
have to evaluate x more accurately. We do this by performing a more
accurate (i.e., LP or exact) evaluation after the initial greedy evaluation
to get a better estimate of the quality of x.

Preliminary tests showed that during an average run of our algorithm we can
avoid the more accurate and thus more time-consuming solution evaluation for
over 95% of the solution candidates. Therefore it is likely that this method will
reduce the overall optimization time of our algorithm in comparison to always
performing an accurate evaluation. In Section 8.4 we will show that this multi-
level solution evalution scheme is able to improve the results significantly in
terms of running time and final solution quality.

7.2 Multi-Level Solution Evaluation Scheme and Local Search

For intermediate local search a modification of the multi-level evaluation scheme
is needed. Suppose that x̂ is the so far best candidate solution with an ob-
jective value of plLP(x̂) which is obtained by LP evaluation. Furthermore let
x′ be the starting solution of the local search which has an objective value
of plLP(x

′) ≤ plLP(x̂) also obtained by LP evaluation. Then we encounter a
problem if the objective value plgreedy(x) of a neighboring candidate solution

x, which initially is obtained by greedy evaluation lies between plLP(x
′) and

plLP(x̂), i.e.,

plLP(x
′) < plgreedy(x) ≤ plLP(x̂).

Since plgreedy(x) is smaller than the best LP solution value found so far,
x is not evaluated more accurately. It is, however, greater than the LP solu-
tion value of the starting solution of the LS so a move toward this solution is
performed. This could lead to undesirable behavior because in fact we do not
know if solution x is superior to solution x′ and the LS would most likely per-
form moves towards a solution with a good greedy value instead of a solution
with a good LP or exact value.

To avoid this problem we compare the solution value obtained by the initial
greedy evaluation to the best LP solution value found so far in this local search
call instead of the global best LP solution value for determining whether or
not the solution shall be evaluated more accurately. This implies that in each
iteration of the local search we start with a candidate solution that is evalu-
ated using LP evaluation. This results in a local search towards the candidate
solution with the best LP value at the cost of additional LP evaluations.

8 Computational Results

In this section we present computational results of the developed methods. The
instances used in all of the tests are partly taken from the benchmark library
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of Discrete Location Problems1. They have in common that the customers
and the possible facility locations are on the same sites (I = J), the number
of customers is n = 100 and the number of facilities to be opened is r =
p ∈ {10, 15, 20}. The locations are chosen randomly on an Euclidean plane
of size 7000× 7000. Customer demands are randomly selected from 1 to 200.
In addition we generated larger instances2 with 150 and 200 customers by
using the same scheme. With a total of 10 instances per customer size and
r = p = {10, 15, 20}, each test set consists of 90 instances. All tests were
carried out on a single core of an Intel Xeon Quadcore with 2.53 GHz and
3GB RAM.

If not stated otherwise, in all of the following tests we used the GA configu-
ration from Section 5 with a population size of 100. Local search is performed
for a solution whose objective value is within α = 5% of the overall best
solution’s value with the reduced swap neighborhood from Section 6 and a
best improvement step function. After the algorithm terminates, the whole
population is evaluated exactly to obtain the best feasible solution of the last
population.

For all tables the following holds: Instances Code111 to Code1011 are
the instances with n = 100 by Alekseeva et al. (2009). The other instance
names contain either 150 or 200 which stands for the number of customers.
The number right after rp corresponds to the number of facilities to place. In
the first row the name of the algorithm is listed. The second row describes
the columns, where obj stands for the average of the final leader objective
value over 30 runs, sd is the corresponding standard deviation and tbest is
the median time needed for finding the best solution in seconds. All runs are
terminated after 600 seconds to ensure comparability. Due to space limitations
Tables 1–7 do not contain the numerical results of all of the 90 instances but
only a representative selection. The full result tables can be found online2. In
addition, the geometric mean, the number of best results and the number of
unique best results are shown over all instances.

In each of the following sections there is a second table after the main
results table. These tables display the results of pairwise Wilcoxon rank sum
tests of the different configurations with error levels of 5%. The value in the
cell at line i and row j gives the number of instances for which configuration i
yields significantly better results than configuration j. The rightmost column
lists the sums over all numbers in the corresponding rows.

8.1 Solution Evaluation

In the following tests we compare three types of solution evaluation schemes
according to Section 4: greedy evaluation, LP evaluation and exact evaluation.

1 http://math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_eng.html
2 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_

Facility_Location_Problems
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The aim of these tests is to find out which runtime/solution accuracy tradeoff
is suitable for this problem.

Table 1 shows the results. As we can see, although each greedy evaluation
is 4 to 5 times faster than the LP evaluation, the results for the greedy evalu-
ation are rather poor because the solution with the highest greedy value often
does not correspond to an optimal solution according to the exact evaluation.
In contrast, the results for evaluating solutions using the LP evaluation are si-
miliar to those obtained by using the exact evaluation. In many cases the root
LP relaxation of the follower’s problem is already integral and no branching
has to be performed, hence the similar results. Therefore, for the remaining
tests we primarily use the LP evaluation method.

Table 1 Results of different solution evaluation methods using the standard configuration.

greedy LP exact

Instance obj sd tbest[s] obj sd tbest[s] obj sd tbest[s]

Code111w rp10 4359,00 0,00 14,80 4361,00 0,00 130,30 4361,00 0,00 70,60
Code111w rp15 4547,11 6,01 20,10 4596,00 0,00 64,10 4596,00 0,00 55,60
Code111w rp20 4508,50 6,09 253,30 4505,47 11,22 343,30 4502,90 11,26 217,70
Code1 150w rp10 7132,20 130,36 250,20 7138,37 112,88 88,60 7167,43 51,47 94,00
Code1 150w rp15 7008,63 54,17 138,40 7077,97 35,79 341,20 7088,83 43,99 398,50
Code1 150w rp20 7070,67 52,46 314,20 7198,27 19,01 380,20 7198,53 22,50 370,60
Code1 200w rp10 9349,60 69,78 406,60 9476,17 107,30 200,60 9478,50 92,39 369,70
Code1 200w rp15 9814,13 185,24 351,30 10001,40 92,78 394,40 10000,30 82,92 475,60
Code1 200w rp20 9615,13 135,94 411,90 9753,07 77,54 572,80 9697,53 85,19 586,90
Code211w rp10 5309,47 2,92 26,50 5310,00 0,00 43,50 5310,00 0,00 46,10
Code211w rp15 5373,00 0,00 97,10 5373,00 0,00 111,80 5373,00 0,00 95,70
Code211w rp20 5431,57 2,37 284,50 5404,43 29,69 291,60 5405,63 31,19 365,20
Code2 150w rp10 7181,53 52,91 332,10 7247,47 53,43 292,50 7253,30 71,29 291,00
Code2 150w rp15 7590,23 92,37 154,60 7743,20 4,70 281,40 7742,00 5,57 358,40
Code2 150w rp20 7673,90 83,24 255,00 7772,13 40,91 349,50 7755,50 46,49 347,80
Code2 200w rp10 9032,00 71,74 221,20 9231,63 75,55 249,80 9254,53 62,00 448,00
Code2 200w rp15 9274,23 153,66 312,40 9539,27 70,94 516,40 9505,43 109,72 438,40
Code2 200w rp20 9381,90 138,87 475,30 9579,83 118,18 508,00 9570,30 110,98 548,80
Code311w rp10 4392,47 42,88 17,80 4483,00 0,00 25,80 4483,00 0,00 24,50
Code311w rp15 4782,10 18,23 221,60 4800,00 0,00 73,60 4800,00 0,00 63,20
Code311w rp20 4853,47 8,76 100,50 4892,80 0,61 297,90 4892,67 0,76 250,80
Code3 150w rp10 7240,20 75,69 362,80 7286,93 16,36 310,70 7291,87 13,30 369,20
Code3 150w rp15 7499,30 44,12 161,60 7589,00 18,83 285,80 7589,27 18,01 200,50
Code3 150w rp20 7520,40 63,06 303,20 7624,43 34,03 309,10 7624,37 34,20 411,20
Code3 200w rp10 9224,03 52,98 202,70 9300,23 70,30 291,70 9287,13 74,85 362,90
Code3 200w rp15 9145,17 210,97 378,30 9304,57 71,44 386,40 9308,37 70,27 459,10
Code3 200w rp20 8902,30 210,90 468,70 9197,97 155,51 516,80 9145,73 107,33 574,10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

geometric mean 6907,43 6995,12 6993,29
#best results 11 53 48
#unique best res. 6 35 31

8.2 Genetic Algorithm

Now, we analyze different configurations of the GA. The GA was tested with
and without the local search and with and without the solution archive. The
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Table 2 Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
solution evaluation methods.

greedy LP exact Σ

greedy – 5 5 10
LP 75 – 6 81

exact 73 4 – 77

aim was to see the impact of using the different techniques on the average solu-
tion quality and speed. Table 3 shows the computational results. We can make
several interesting observations: As expected, the GA alone performs not very
well, neither regarding solution quality nor convergence speed, but its perfor-
mance is substantially improved by executing intermediate local searches. By
adding the solution archive (solA) to the pure GA we were also able to signifi-
cantly improve the results. The benefit of the local search seems to be greater
than the benefit of the solution archive because the relative difference of the
geometric mean of GA + LS and the GA is about 5% while the difference of
GA + SA and GA is only about 0.7%. Adding both, LS and solA, to the GA
clearly further improves the performance. For this combined approval not only
the solution quality is the best among the configurations but these solutions
in most of the cases are also found faster.
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Table 4 Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
configurations of the GA.

GA GA+LS GA+solA GA+LS+solA Σ

GA – 0 0 0 0
GA + LS 85 – 84 0 169
GA + SA 56 0 – 0 56

GA + LS + SA 87 60 87 – 234

8.3 Neighborhoods of the Local Search and Tabu Search

Table 5 shows the results of using the different strategies for utilizing the solA
within LS and tabu search (TS), respectively (c.f. Section 6). As expected the
complete neighborhood strategy performed worst because of the overhead of
re-evaluating already visited solutions but on some of the smaller test instances
it is able to produce equally good results. Among all tested LS neighborhoods,
reduced neighborhood yields the best results, so it is chosen for all further
tests. While on the smaller test instances with 100 customers the conversion
and the complete neighborhood can keep up with the reduced neighborhood
in terms of mean objective value, on larger instances the performance gap in-
creases. The differences in the objective value of the conversion neighborhood
and the reduced neighborhood are small and the conversion neighborhood even
finds the best solution in less time for some instances, e.g., Code111w rp10 and
Code211w rp10. However, this difference vanishes when considering larger in-
stances, where the reduced neighborhood consistently finds better solutions.
Apparently, for these instances conversion moves were too rarely able to im-
prove the starting solution. The largest improvement of the overall results
could be achieved by using a tabu search with the reduced neighborhood. In
none of our benchmark instances any other configuration was able to find
solutions with a statistical significant better mean objective value.
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Table 6 Results of Wilcoxon Rank Sum tests with error levels of 5% for the different local
search neighborhood structures and tabu search.

complete NB reduced NB conversion NB TS with reduced NB Σ

complete NB – 1 0 0 1
reduced NB 31 – 5 0 36

conversion NB 23 3 – 0 26
TS with reduced NB 54 21 32 – 107

8.4 Multi-Level Evaluation Scheme

The computational results for testing the multi-level evaluation scheme (ML-
ES) confirms the hypothesis that it is able to speed up the algorithm signifi-
cantly. We further tested if the local search using the local best LP solution
(improved LS) as described in Section 7.2 actually improves the solution qual-
ity. Finally we investigated the tabu search approach (improved TS), which is
explained in Section 6.4 in combination with the reduced NB. For the TS we
also used the adaptation for the improved LS in a straightforward way and set
a termination criterion of five iterations without improvement.

Table 7 shows the results of these tests. We observe that the multi-level
evaluation scheme is able to improve the solution quality for some instances,
especially the larger ones with 200 customers. The largest improvement could
be made in the time needed for finding the best solution. It is in general
much lower than when using only the simple LP evaluation, e.g., for instance
Code111w rp10 the time could be decreased by about 90%. With the improved
local search the mean solution quality gets better in 65 of the (mostly larger)
instances, while it is equal on most of the other ones. Our best setup turned
out to be GA + solA + ML-ES + improved TS, when we switched from a local
search to a tabu search. We have a low standard deviation of the results and
achieved a better mean objective value than the local search in 47 instances.
The improvements are again mostly on the larger instances with 150 and 200
customers because, as we see in Section 8.5, we could find optimal solutions
for many of the instances with 100 customers. In total, our best configurations
of the multi-level evaluation scheme was able to produce statistically better
results in 63 out of 90 instances.
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Table 8 Results of Wilcoxon Rank Sum tests with error levels of 5% for the multi-level
evaluation scheme configurations.

GA+solA+ GA+solA+ GA + solA + GA + solA +
LP+LS ML-ES+LS ML-ES + imp. LS ML-ES + imp. TS Σ

GA + solA +
LP + LS – 10 0 0 10

GA + solA +
ML-ES + LS 17 – 1 2 18
GA + solA +

ML-ES + imp. LS 60 55 – 1 115
GA + solA +

ML-ES + imp. TS 63 59 29 – 151

8.5 Comparison to Results from the Literature

In this section we compare the results of our best configuration to the state-of-
the-art in the literature. Since the metaheuristic approaches of Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013) outperformed all previous heuristic
approaches we compare with them. For this purpose both the probabilistic
tabu search (TS Al) (Alekseeva et al. 2010) and the hybrid memetic algorithm
(HMA) (Alekseeva and Kochetov 2013) were re-implemented in C++.

Tables 9, 10 and 11 show the results of their approaches compared to our
algorithm with n = 100, n = 150 and n = 200. It can be seen that especially
for larger instances GA + solA + ML-ES + improved TS achieves the best
results among all three tested algorithms. For the instances with 100 customers
we get better or equal results in all but one instance, although the differences
in the mean objective value is rather small. These differences become larger
when considering larger instances. On all instances with n = 200 we get better
results than the HMA and on 24 out of 30 instances we also get better mean
objective values than the TS Al.

We observe that the time-consuming local searches in the creation of the
initial population the HMA was not able to finish the initialization within
the timelimit for some instances, so we made further tests with an increased
timelimit of 1800 seconds. The results of these tests can be found in Table 13
for n = 100 and Table 14 for n = 150 and n = 200. In Table 13 we also
show the results of the modified iterative exact method (MEM) by Alekseeva
and Kochetov (2013) and the results of the branch-and-cut by Roboredo and
Pessoa (2013). For more than 100 customers no results of exact methods are
published in the literature. From Table 13 we conclude that GA + solA + ML-
ES + improved TS is able to find optimal solutions to all but one instance,
with n = 100 but in much less time. Table 14 shows that our approach is still
superior and outperforms the HMA in most instance. The HMA can compete
with our GA on some of the instances with n = 150 and even gets better
mean objective values for 3 instances, e.g., Code5 150w rp15. However, the
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Table 9 Comparison to results from the literature with a runtime of 600 seconds and n =
100. The Tabu Search (TSAl) and the Hybrid Memetic Algorithm (HMA) by Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013), respectively, compared to our best configuration
GA + solA + ML-ES + improved TS.

GA + solA +
TSAl HMA ML-ES + improved TS

Instance obj sd obj sd obj sd tbest[s]

Code111w rp10 4361,00 0,00 4361,00 0,00 4361,00 0,00 14,70
Code111w rp15 4596,00 0,00 4596,00 0,00 4596,00 0,00 16,10
Code111w rp20 4506,87 6,96 4510,60 2,03 4511,87 0,73 209,50
Code211w rp10 5310,00 0,00 5310,00 0,00 5310,00 0,00 8,10
Code211w rp15 5373,00 0,00 5373,00 0,00 5373,00 0,00 23,10
Code211w rp20 5428,13 6,01 5430,67 3,40 5431,57 2,37 82,40
Code311w rp10 4483,00 0,00 4483,00 0,00 4483,00 0,00 8,10
Code311w rp15 4800,00 0,00 4799,77 1,28 4800,00 0,00 13,30
Code311w rp20 4892,73 0,69 4892,60 0,81 4893,00 0,00 65,20
Code411w rp10 4994,00 0,00 4994,00 0,00 4994,00 0,00 7,90
Code411w rp15 5063,20 2,07 5063,80 1,10 5064,00 0,00 48,80
Code411w rp20 5209,00 0,00 5208,93 0,25 5209,00 0,00 39,60
Code511w rp10 4906,00 0,00 4906,00 0,00 4906,00 0,00 8,90
Code511w rp15 5123,00 0,00 5127,00 4,07 5123,00 0,00 63,40
Code511w rp20 5327,30 13,81 5329,93 7,26 5334,00 0,00 76,00
Code611w rp10 4595,00 0,00 4595,00 0,00 4595,00 0,00 17,70
Code611w rp15 4881,00 0,00 4881,00 0,00 4881,00 0,00 15,70
Code611w rp20 4951,73 1,46 4951,20 2,44 4952,00 0,00 96,00
Code711w rp10 5586,00 0,00 5586,00 0,00 5586,00 0,00 8,70
Code711w rp15 5827,00 0,00 5826,27 4,02 5827,00 0,00 31,60
Code711w rp20 5884,37 15,92 5892,30 2,74 5893,00 0,00 29,80
Code811w rp10 4609,00 0,00 4609,00 0,00 4609,00 0,00 21,60
Code811w rp15 4674,47 1,38 4674,87 0,73 4675,00 0,00 41,60
Code811w rp20 4857,63 2,01 4854,60 6,59 4858,00 0,00 24,40
Code911w rp10 5302,00 0,00 5302,00 0,00 5302,00 0,00 7,50
Code911w rp15 5157,63 1,13 5156,90 2,01 5157,93 0,25 220,60
Code911w rp20 5458,67 1,03 5457,50 1,78 5459,00 0,00 92,50
Code1011w rp10 5003,67 7,30 5004,10 4,93 5005,00 0,00 18,20
Code1011w rp15 5194,47 2,29 5194,23 3,52 5195,00 0,00 29,20
Code1011w rp20 5399,00 0,00 5399,00 0,00 5399,00 0,00 60,80

geometric mean 5043,99 5044,47 5044,90
#best results 16 14 29
#unique best res. 0 1 13

differences are rather small and for n = 200 our GA is better in 28 out of 30
instances with a much lower standard deviation on most instances.

It is interesting that although we did not find the optimal solution for
instance Code511 with r = p = 15 our algorithm always terminated with
the same suboptimal solution. This is due to our solution evaluation method
because even though the optimal value of the LP relaxation and the optimal
value to the follower problem often coincide, it is not the case here. During
our runs we might have visited the optimal solution but we were not able
to identify it because we only approximated its objective value by the LP
evaluation and discarded it later.
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Table 10 Comparison to results from the literature with a runtime of 600 seconds and n =
150. The Tabu Search (TSAl) and the Hybrid Memetic Algorithm (HMA) by Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013), respectively, compared to our best configuration
GA + solA + ML-ES + improved TS.

GA + solA +
TSAl HMA ML-ES + improved TS

Instance obj sd obj sd obj sd tbest[s]

Code1 150w rp10 7180,00 0,00 7180,00 0,00 7180,00 0,00 29,20
Code1 150w rp15 7152,23 5,02 7132,60 32,10 7153,93 0,25 133,00
Code1 150w rp20 7247,77 7,45 7211,07 26,63 7247,27 7,97 241,40
Code2 150w rp10 7321,07 23,97 7325,57 16,59 7337,00 0,00 242,70
Code2 150w rp15 7736,87 8,36 7732,87 11,63 7745,00 0,00 96,90
Code2 150w rp20 7796,43 14,76 7770,07 25,08 7802,03 15,79 211,50
Code3 150w rp10 7299,00 0,00 7299,00 0,00 7299,00 0,00 35,40
Code3 150w rp15 7596,47 12,06 7593,07 16,98 7603,10 2,75 142,50
Code3 150w rp20 7610,47 63,78 7630,60 14,08 7646,87 4,32 274,00
Code4 150w rp10 7306,17 39,97 7307,63 19,12 7318,00 0,00 38,30
Code4 150w rp15 7406,73 7,08 7392,30 18,53 7409,00 0,00 71,30
Code4 150w rp20 7926,00 5,19 7917,87 10,70 7927,50 2,74 251,30
Code5 150w rp10 6972,50 5,19 6968,90 8,56 6975,00 0,00 32,90
Code5 150w rp15 7154,77 19,25 7135,10 26,72 7139,97 26,56 214,60
Code5 150w rp20 7322,50 6,30 7316,13 13,54 7326,50 3,29 227,30
Code6 150w rp10 7047,27 7,02 7043,60 10,88 7050,00 0,00 36,90
Code6 150w rp15 7184,83 4,49 7172,50 16,84 7186,00 0,00 71,60
Code6 150w rp20 7378,10 14,45 7333,67 39,97 7386,00 0,00 133,90
Code7 150w rp10 6247,10 3,59 6248,17 2,57 6248,10 0,55 190,10
Code7 150w rp15 6839,60 2,19 6834,33 9,36 6840,00 0,00 82,90
Code7 150w rp20 7284,37 18,24 7275,30 20,64 7290,83 14,02 203,10
Code8 150w rp10 7732,00 0,00 7732,00 0,00 7732,00 0,00 28,70
Code8 150w rp15 7658,23 7,54 7650,80 20,36 7662,00 0,00 103,10
Code8 150w rp20 7848,80 8,38 7836,40 18,38 7846,73 11,06 188,20
Code9 150w rp10 6855,00 0,00 6853,47 5,84 6855,00 0,00 55,50
Code9 150w rp15 6881,30 5,52 6878,13 7,77 6883,40 0,93 148,40
Code9 150w rp20 7177,90 19,76 7145,17 35,49 7160,40 41,30 299,90
Code10 150w rp10 6715,00 0,00 6715,00 0,00 6715,00 0,00 30,20
Code10 150w rp15 7009,07 13,99 7008,07 16,87 7014,00 0,00 104,30
Code10 150w rp20 7201,07 13,43 7181,53 24,32 7203,40 10,21 175,30

geometric mean 7260,27 7251,42 7263,31
#best results 9 5 25
#unique best res. 4 1 20
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Table 11 Comparison to results from the literature with a runtime of 600 seconds and n =
200. The Tabu Search (TSAl) and the Hybrid Memetic Algorithm (HMA) by Alekseeva et al.
(2010) and Alekseeva and Kochetov (2013), respectively, compared to our best configuration
GA + solA + ML-ES + improved TS.

GA + solA +
TSAl HMA ML-ES + improved TS

Instance obj sd obj sd obj sd tbest[s]

Code1 200w rp10 9545,43 35,14 9505,07 57,16 9594,00 10,37 243,10
Code1 200w rp15 10076,73 49,31 10051,83 59,42 10095,00 37,02 297,10
Code1 200w rp20 9837,17 53,95 9767,93 58,96 9831,97 56,35 460,50
Code2 200w rp10 9324,50 50,20 9217,80 58,07 9321,13 26,28 130,10
Code2 200w rp15 9578,77 46,03 9514,93 51,54 9626,67 17,34 392,00
Code2 200w rp20 9667,17 32,12 9602,20 38,63 9666,37 52,72 421,30
Code3 200w rp10 9367,07 32,45 9329,37 53,93 9374,30 28,15 227,00
Code3 200w rp15 9355,93 18,85 9310,30 44,48 9365,97 17,19 281,90
Code3 200w rp20 9286,17 67,10 9253,50 63,57 9296,67 70,96 426,90
Code4 200w rp10 8882,03 18,31 8877,13 22,02 8888,47 14,39 115,60
Code4 200w rp15 9169,93 18,46 9116,27 68,57 9179,03 32,68 241,30
Code4 200w rp20 9439,13 34,47 9402,23 55,74 9404,70 89,41 388,50
Code5 200w rp10 9227,30 48,62 9240,40 52,15 9273,10 27,45 268,20
Code5 200w rp15 9242,57 64,44 9237,70 41,65 9252,03 42,10 320,90
Code5 200w rp20 9498,80 38,81 9422,63 52,81 9512,10 42,91 345,90
Code6 200w rp10 9825,20 35,02 9808,13 39,34 9850,53 5,58 197,50
Code6 200w rp15 10119,03 52,39 10095,73 41,17 10148,23 27,71 326,70
Code6 200w rp20 10283,10 83,09 10210,53 59,37 10261,53 91,67 452,50
Code7 200w rp10 9225,70 42,60 9183,77 55,95 9270,30 20,44 222,80
Code7 200w rp15 9556,13 39,65 9496,63 59,54 9580,30 35,03 283,90
Code7 200w rp20 9902,20 43,20 9860,03 52,13 9943,10 33,88 361,90
Code8 200w rp10 9088,17 9,62 9046,43 34,70 9092,57 2,37 170,60
Code8 200w rp15 9047,13 47,40 8987,20 41,46 9063,10 41,76 357,90
Code8 200w rp20 9329,67 29,32 9248,07 59,96 9342,90 23,35 484,30
Code9 200w rp10 9009,53 3,68 8950,47 59,78 9011,40 8,76 182,90
Code9 200w rp15 9124,70 66,93 9086,47 65,56 9168,20 23,40 335,40
Code9 200w rp20 9438,00 17,91 9404,67 42,67 9452,57 16,55 416,80
Code10 200w rp10 9382,67 25,28 9365,40 46,44 9411,00 0,00 151,70
Code10 200w rp15 9290,80 49,24 9240,83 57,79 9312,40 51,91 434,30
Code10 200w rp20 9741,20 35,77 9683,63 50,92 9688,73 74,95 460,40

geometric mean 9456,10 9411,33 9470,05
#best results 6 0 24
#unique best res. 6 0 24

Table 12 Results of Wilcoxon Rank Sum tests with error levels of 5% for the algorithms
of the literature and the GA.

GA + solA +
TS HMA ML-ES + improved TS Σ

TS – 45 3 57
HMA 4 – 1 7

GA + solA +
ML-ES + improved TS 38 56 – 123
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Table 13 Comparison of the results from instances with n = 100 of the so far best exact
methods MEM by Kochetov et al. (2013) and B&C by Roboredo and Pessoa (2013), the so
far best heuristic method (HMA) and our GA + solA + ML-ES + imp. TS with a runtime
of 1800 seconds.

GA+solA+
B & C MEM HMA ML-ES+imp. TS

Instance obj tbest[s] sd tbest[s] obj sd obj sd tbest[s]

Code111w rp10 4361,00 10217,00 4361,00 3600,00 4361,00 0,00 4361,00 0,00 11,20
Code111w rp15 4596,00 9751,97 4596,00 4320,00 4596,00 0,00 4596,00 0,00 16,30
Code111w rp20 4512,00 >36000 4512,00 60,00a 4511,47 1,38 4512,00 0,00 159,40
Code211w rp10 5310,00 9488,81 5310,00 2520,00 5310,00 0,00 5310,00 0,00 8,10
Code211w rp15 5373,00 80956,38 5373,00 230700,00 5373,00 0,00 5373,00 0,00 18,00
Code211w rp20 5432,00 >36000 5432,00 11100,00a 5432,00 0,00 5432,00 0,00 75,40
Code311w rp10 4483,00 19071,28 4483,00 8760,00 4483,00 0,00 4483,00 0,00 8,20
Code311w rp15 4800,00 27707,28 4800,00 23700,00 4800,00 0,00 4800,00 0,00 18,90
Code311w rp20 4893,00 >36000 4893,00 14880,00a 4892,93 0,37 4893,00 0,00 85,40
Code411w rp10 4994,00 13743,91 4994,00 1980,00 4994,00 0,00 4994,00 0,00 8,00
Code411w rp15 5064,00 84140,14 5064,00 73380,00 5064,00 0,00 5064,00 0,00 54,50
Code411w rp20 5209,00 >36000 5209,00 300,00a 5209,00 0,00 5209,00 0,00 46,80
Code511w rp10 4906,00 80413,83 4906,00 23940,00 4906,00 0,00 4906,00 0,00 11,40
Code511w rp15 5131,00 79099,64 5131,00 127200,00 5130,67 1,49 5123,00 0,00 58,20
Code511w rp20 5334,00 >36000 5334,00 6600,00a 5334,00 0,00 5334,00 0,00 60,90
Code611w rp10 4595,00 51583,19 4595,00 8580,00 4595,00 0,00 4595,00 0,00 21,60
Code611w rp15 4881,00 28342,66 4881,00 137580,00 4881,00 0,00 4881,00 0,00 17,20
Code611w rp20 4952,00 >36000 4952,00 11400,00a 4952,00 0,00 4952,00 0,00 58,10
Code711w rp10 5586,00 20352,74 5586,00 4380,00 5586,00 0,00 5586,00 0,00 9,20
Code711w rp15 5827,00 48600,45 5827,00 79200,00 5827,00 0,00 5827,00 0,00 33,80
Code711w rp20 5893,00 >36000 5893,00 5820,00a 5893,00 0,00 5893,00 0,00 21,50
Code811w rp10 4609,00 26807,98 4609,00 9120,00 4609,00 0,00 4609,00 0,00 18,80
Code811w rp15 4675,00 115183,50 4675,00 274200,00 4675,00 0,00 4675,00 0,00 52,10
Code811w rp20 4858,00 >36000 4858,00 34200,00a 4858,00 0,00 4858,00 0,00 22,90
Code911w rp10 5302,00 2377,90 5302,00 360,00 5302,00 0,00 5302,00 0,00 7,50
Code911w rp15 5158,00 >36000 5158,00 >36000 5158,00 0,00 5158,00 0,00 240,10
Code911w rp20 5459,00 >36000 5459,00 9900,00a 5458,90 0,55 5459,00 0,00 146,20
Code1011w rp10 5005,00 33765,06 5005,00 5820,00 5005,00 0,00 5005,00 0,00 15,00
Code1011w rp15 5195,00 72034,36 5195,00 >36000 5195,00 0,00 5195,00 0,00 28,20
Code1011w rp20 5399,00 >36000 5399,00 7800,00a 5399,00 0,00 5399,00 0,00 28,00

geometric mean 5045,18 5045,18 5045,15 5044,92
#best results 30 30 26 29
#unique best res. 0 0 0 0
atime needed for finding solutions that are within 5% of the optimum, i.e., the optimality is
not proven.
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Table 15 Results of Wilcoxon Rank Sum tests with error levels of 5% for HMA and the
GA with longer runtime.

GA + solA +
HMA ML-ES + improved TS Σ

HMA – 3 3
GA + solA +

ML-ES + improved TS 31 – 31

9 Conclusions

In this work we proposed a genetic algorithm for the discrete (r|p)-centroid
problem with several enhancements. First of all, a trie-based solution archive
was used to reduce the number of unnecessary solution evaluations and to over-
come premature convergence. This led to a significant efficiency gain. Another
important part of the algorithm was the embedded local improvement proce-
dure. Several ways of combining the local search with the solution archive were
investigated, and the reduced neighborhood was identified to work best in prac-
tice. Different solution evaluation methods were considered and we found an
effective way to combine them, which led to the multi-level evaluation scheme.
Finally we improved the results of our algorithm by using a tabu search for
local improvement. Extensive tests showed that the new approach significantly
outperforms previous state-of-the-art heuristic approaches and scales well to
larger instances that cannot be solved with today’s exact methods anymore.

We considered here only one variant of a competitive facility location prob-
lem. For future work it would be interesting if our approach will also succeed
when some problem parameters are changed, e.g., if the demand of the cus-
tomers is proportional to the distance to the facilities or if it is inelastic.
Additionally, we only considered Euclidean distances and further tests should
be performed on more realistic instances. Further research also includes other
applications of the solution archive, which is expected to improve the perfor-
mance of algorithms for problems that have a compact solution representation
and an expensive evaluation method. The tree structure of the solution archive
might also be exploited further, e.g., by computing bounds on partial solution
in order to cut off subspaces, that cannot contain better solutions.
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