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Abstract. In this work the concept of a trie-based complete solution
archive in combination with a genetic algorithm is applied to the Recon-
struction of Cross-Cut Shredded Text Documents (RCCSTD) problem.
This archive is able to detect and subsequently convert duplicates into
new yet unvisited solutions. Cross-cut shredded documents are docu-
ments that are cut into rectangular pieces of equal size and shape. The
reconstruction of documents can be of high interest in forensic science.
Two types of tries are compared as underlying data structure, an indexed
trie and a linked trie. Experiments indicate that the latter needs consid-
erably less memory without affecting the run-time. While the archive-
enhanced genetic algorithm yields better results for runs with a fixed
number of iterations, advantages diminish due to the additional over-
head when considering run-time.
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1 Introduction

A common weakness of most genetic algorithms is the generation of duplicate
solutions, i.e., solutions that have already been visited. As Mauldin showed in [3]
maintaining diversity in the population significantly improves the performance
of genetic algorithms. Although duplicate detection in stochastic search methods
has been studied thoroughly [8, 11], complete solution archives are a rather new
approach to fulfill this task. In addition to storing the solution, solution archives
are able to efficiently transform an already visited solution into a guaranteed new
one. This avoids duplicate solutions, hence unnecessary solution evaluations, as
well as premature convergence due to loss of diversity. Ronald has shown in [8]
that diversity loss due to duplicate solutions is a weakness of genetic algorithms.
In the same paper he introduced hash tagging for duplicate detection. Yuen and
Chow used a binary tree in [11] to store all visited solutions. Solution archives
have already been successfully applied to several benchmark problems by Raidl
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Fig. 1. A shredded document (left) and the fully reconstructed document (right).

and Hu in [7] and to the generalized minimum spanning tree problem in [2]. In
this work we will investigate this concept in combination with a genetic algorithm
for a more advanced and practical problem, the Reconstruction of Cross-Cut
Shredded Text Documents (RCCSTD) problem, which Prandtstetter proved to
be NP-complete in [5].

Document shredding is a frequently used method to obfuscate data printed on
paper, like personal or sensitive information (e.g., passwords, signatures, PINs).
The reconstruction of such data is of high interest especially in the fields of
forensic science. Figure 1 shows a sample cross-cut shredded document and its
correct reconstruction.

The RCCSTD problem is defined as follows: Let S � t1, ..., nu be the set of
shreds that belong to one document and let X � Y be its grid-shaped cutting
pattern. A shred s P S is a non-blank piece of a document. All blank shreds are
substituted by a single virtual shred V since there is no exploitable information
available on these shreds. A solution to the problem is an injective mapping
Π � S Ñ D2. In this mapping each shred s P S is assigned to exactly one position
px, yq in the Euclidean space, where x P t0, . . . , X � 1u and y P t0, . . . , Y � 1u.
The remaining positions are filled with the virtual blank shred. See Figure 2
for a schematic view of a candidate solution, where the white rectangles stand
for the virtual shred, which is allowed to be used more than once. Further, we
assume here that the document is only printed on one side and the orientation
of the shreds is already known.

As a cost function to determine if two shreds should be placed side by side
we take the metric from Schauer et al. [9] for approximately indicating this
likelihood, which is based on the gray value of the pixels along the edges of the
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Fig. 2. Schematic view of a solution to the RCCSTD problem.

shreds. If two opposite pixels of the two shreds put side by side differ in their gray
values above a certain threshold, a mismatch on this position is detected. Since
we focus in this work on the combinatorial aspect of the problem we use this
simple metric, which could be replaced by more advanced pattern recognition
techniques, e.g., [4]. The objective is to find an injective mapping such that the
weighted sum of gray-value mismatches is minimal.

Prandtstetter and Raidl developed an ant colony optimization and a variable
neighborhood search for RCCSTD in [6]. Schauer et al. described a memetic
algorithm to solve the RCCSTD problem in [9], which is modified and extended
with a solution archive in this work. A different approach for RCCSTD, which is
based on iteratively building clusters of shreds, is described by Sleit et al. in [10].
In their approach they merge two clusters that fit well together, while possibly
occurring conflicts are repaired.

The rest of the paper is organized as follows. In Section 2 the genetic algo-
rithm and its operators are described. A detailed presentation of the solution
archive is given in Section 3. Finally, the computational results are presented in
Section 4 and conclusions are drawn in Section 5.

2 Genetic Algorithm

This section gives a short overview of the genetic algorithm (GA). For a detailed
description of the operators used within the GA we refer to [9].

Solution Representation: A solution with n shreds is represented as an X�Y
matrix storing for each position the assigned shred. Note that all empty positions
are filled with the virtual shred V . This representation is used for all operators
of the GA.

Initial Population: To create an initial population the Row Building Heuristic
and the Prim-Based Heuristic are used, which were introduced by Prandtstet-
ter et al. in [6], but slightly changed to restrict the solutions to the given format.



Recombination: To exploit the two-dimensional structure of the problem stan-
dard crossover operators were adapted for RCCSTD. Preliminary tests showed
that modified versions of the 1-point crossover perform best. Instead of choosing
a splitting point in the one-dimensional case, for RCCSTD a random splitting
line is computed that cuts the solution apart. This line is drawn either horizon-
tally or vertically. In the Horizontal Block Crossover a top and a bottom block
from two different individuals are recombined to create the offspring, while the
Vertical Block Crossover recombines a left and a right block. Note that when
using these operators invalid solutions could be created. To ensure that each
shred is used exactly once, shreds that are already in the solution are replaced
by the virtual shred and in the end all missing shreds are inserted using a greedy
heuristic.

Mutation: The solution splitting of the block crossover is also performed in
the mutation operators. In this case a single solution is either cut apart horizon-
tally (Horizontal Flop Mutation) or vertically (Vertical Flop Mutation) and then
the top/bottom or the left/right parts are exchanged. The Swap Two Mutation
swaps two shreds randomly.

Selection and Replacement Strategy: We pass the best 10% of individuals
with regard to the objective value directly to the next population. The other 90%
are generated by applying the genetic operators to uniformly selected individuals
of the current population. For a detailed discussion about the selection and
generation replacement strategy we refer to [9].

3 A Solution Archive for the RCCSTD

Our primary concern in this work is the following solution archive for duplicate
detection. The underlying data structure for our solution archive is a trie, a
tree data structure commonly used for storing strings, e.g., for dictionaries in
highly compact ways as explained in [1]. Raidl et al. argue in [7] that a trie is a
very well suited data structure for solution archives in their applications because
the operations search, insertion and conversion can be performed in Oplq time,
where l is the length of the solution representation, and thus independent of the
number of already stored solutions. Therefore, tries are also used in this work.

3.1 Solution Insertion / Conversion

For inserting a solution of the GA into the trie, the solution is transformed into a
more compact one-dimensional array. This is done by adding a special character
for line breaks. Blank shreds at the end of lines and empty lines at the bottom
are skipped. At the top of Figure 3 two sample transformations are shown. In
this example the numbers correspond to actual shreds, the V stands for the
virtual shred and the ê-symbol is interpreted as a line break.

Then, this array is stored in the trie, where the i-th level of the trie corre-
sponds to the i-th entry of the solution vector. During insertion, invalid -flags
(denoted as I) are placed to avoid invalid (i.e., that are not in the given format)
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Fig. 3. Solution conversion after detecting a duplicate.

solutions to be stored in the trie. The {-symbols represent not yet explored sub-
tries, i.e., areas of the solution space that have not been visited before. After the
last element of the solution has been inserted, a complete-flag is placed at the
last trie node (denoted as C) to indicate that this solution is in the trie.

Whenever a complete-flag is visited during solution insertion, a duplicate
is detected and a conversion is performed. In Figure 3 a sample conversion is
sketched. Suppose that the solution on the top left of the figure would be inserted
twice. Eventually the complete-flag is reached and a level to deviate from the
existing solution is chosen randomly; in this example level 1 is picked. Then, a
different feasible element is chosen at this level and the remaining solution is
inserted into the trie with as few changes as possible. The converted solution
can be seen on the top right of the figure.

3.2 Adaption of the Trie Data Structure

In preliminary tests we noticed that the trie using standard arrays to realize
trie-nodes, the so-called indexed trie, needs a huge amount of memory. Hence,
in order to reduce the memory consumption we switched to a linked trie by
replacing the arrays with linked lists. This obviously saves memory especially in
the case of sparsely used nodes since the linked lists do not have to allocate space
for all possible children at the time when the node is created. A disadvantage of
the linked trie is that the worst case run-time for the search operation in a trie
node increases to Opkq for a node containing k elements.

3.3 Integration of the Solution Archive into the GA

In each iteration the solutions generated by the GA are inserted into the solution
archive after mutation. If the solution already exists then the conversion proce-



dure as described above is applied and this operation can also be considered as
intelligent mutation. The resulting new solution replaces the original solution in
the population.

4 Computational Results

We performed our tests on the benchmark instances from [9]. These instances are
based on five different text documents cut into nine different patterns ranging
from 9� 9 to 15� 15. We implemented our approach in Java 1.6 and performed
all tests on a single core of an Intel Xeon Quadcore CPU with 2.53 GHz and
70 GB RAM.

By using the indexed trie as data structure, memory consumption increased
quickly after a relatively small number of iterations. Our testing platform ran
out of memory and stopped the GA before it converged, which led to worse
results than the GA without the archive. By switching to the linked trie we are
able to drastically reduce the memory usage by about 75% without affecting
the run-time of the algorithm. Therefore, only the GA using the linked trie as
underlying data structure for the solution archive is considered in the following.

The configuration of the GA is similar to the one used in [9]. It uses both
recombination operators, see Section 2, with a probability of 50% but only the
better of the two offspring individuals created each time is transferred into the
next generation. The mutation rate is set to 15%, where each operator is applied
with 5%.

To compare the results of the GA with (column “GA-SA”) and without (col-
umn “GA-time”) the archive we performed 30 runs for each configuration and
test instance and used a run-time of 300 seconds. Additionally we performed
tests where the GA with and without the solution archive run the same number
of generation (column “GA-gen”). The results are shown in Table 1. The first
two columns refer to the cutting pattern; the number of mismatches of the orig-
inal document is given in column “orig”; in the columns “gap” and “sd” the gap
values are given, which describe the relative difference of the objective values
of the reconstructed and the original document and their associated standard
deviations. Note that due to inexactness of the cost function, these gap values
can sometimes be negative, i.e., a certain reconstruction can have a better fitness
value than the original document. To verify the statistical significance of differ-
ences in the results of the GA with and without archive, Wilcoxon signed-rank
tests with an error probability of 5% were performed as well. The outcome is
given in column “p”, where “ ” means that the algorithm on the left-hand side
performed significantly better, an “¡” indicates significantly better results for
the algorithm on the right-hand side. Whenever a cell is empty the statistical
test was not able to make a statement about significant differences.

Unfortunately, even with the improvement of using a linked trie the solution
archive could not improve the solution quality of the GA when using the same
amount of time as stopping criterion. The reason is that the solution archive
in this case is not able to fully compensate its overhead by saving the effort for



Table 1. The average percentage gaps and standard deviations of the GA with (GA-
SA) and without the solution archive over 30 runs with a run-time of 300 seconds
(GA-time) and with the same number of generations (GA-gen).

GA-time GA-SA GA-gen GA-time GA-SA GA-gen

gap/ sd gap/ sd gap/ sd gap/ sd gap/ sd gap/ sd
x y orig [%]/ [%] p [%]/ [%] p [%]/ [%] x y orig [%]/ [%] p [%]/ [%] p [%]/ [%]

in
st
a
n
c
e
p
0
1

9 9 2094 24.8/22.8 33.5/19.1 37.8/19.1

in
st
a
n
c
e
p
0
4

9 9 1104 -1.7/12.9 1.2/19.0 4.8/19.5
9 12 3142 31.9/ 3.9 31.6/ 5.3   34.1/ 4.7 9 12 1463 3.0/ 7.1 3.3/ 7.4 4.6/ 9.3
9 15 3223 34.0/ 3.8 33.4/ 6.1   36.9/ 6.3 9 15 1589 -2.8/ 7.8 -3.6/ 9.7 -1.8/ 9.0

12 9 2907 24.0/10.3 26.3/ 6.3 29.4/ 6.4 12 9 1515 39.1/ 9.0 ¡ 33.8/10.4 35.5/ 8.9
12 12 3695 35.4/ 5.9 33.7/ 5.4   38.8/ 5.0 12 12 2051 16.4/ 5.5 18.3/ 4.8 19.0/ 6.4
12 15 3825 36.8/ 5.1 35.5/ 4.5   40.5/ 5.1 12 15 2146 0.7/ 4.3 1.8/ 4.2 3.3/ 5.2
15 9 2931 32.2/14.4   38.0/ 9.9 37.0/ 7.3 15 9 1567 41.5/11.7 43.7/15.5 47.1/12.9
15 12 3732 37.8/ 5.5 37.9/ 3.1   42.0/ 4.4 15 12 1752 34.0/ 8.6 35.0/ 8.4 34.1/ 8.8
15 15 3870 42.7/ 4.0 ¡ 40.4/ 4.0   45.7/ 4.1 15 15 2026 8.3/ 5.7 9.5/ 5.7 9.5/ 5.5

in
st
a
n
c
e
p
0
2

9 9 1434 -16.0/ 8.9   -8.5/12.6 ¡ -14.7/10.7

in
st
a
n
c
e
p
0
5

9 9 690 2.2/ 3.6 ¡ 0.0/ 0.0  0.8/ 1.2
9 12 1060 21.9/13.1 23.3/10.5 22.2/12.7 9 12 888 58.1/31.4 50.1/28.7 55.4/25.1
9 15 1978 7.7/ 4.1 7.3/ 5.2   11.9/ 4.7 9 15 1623 37.7/13.9 40.7/11.3 44.8/10.4

12 9 1396 -10.0/ 8.6 -7.8/ 9.3 -7.6/ 8.9 12 9 1016 16.5/15.2 ¡ 8.3/12.4  17.5/15.8
12 12 1083 22.8/10.7   28.4/12.1 30.7/ 9.5 12 12 1325 30.9/16.5   43.1/14.8 43.5/17.8
12 15 1904 7.6/ 5.9   10.4/ 5.3 11.1/ 7.1 12 15 1986 44.0/ 7.1 43.3/ 7.3  48.5/ 9.5
15 9 1658 -1.6/ 8.1 1.8/ 7.9 5.9/11.9 15 9 1010 2.5/13.1 4.0/18.0 1.7/17.9
15 12 1503 21.3/13.5 22.6/10.6 22.0/11.7 15 12 1156 65.1/15.5 59.9/12.7  68.4/12.7
15 15 2283 15.6/ 7.6 17.1/ 5.3 20.1/ 7.2 15 15 1900 52.2/10.9 49.9/ 9.4  62.1/ 7.4

in
st
a
n
c
e
p
0
3

9 9 2486 5.2/ 9.0   11.5/10.5 11.6/ 8.4
9 12 2651 31.3/ 6.8   36.5/ 8.9 33.1/ 9.3
9 15 2551 24.8/11.4   33.9/ 9.7 ¡ 27.0/ 8.9

12 9 3075 20.2/ 4.6 20.3/ 5.6 19.0/ 5.3
12 12 3377 26.8/ 7.1 29.9/ 7.3 32.0/ 6.6
12 15 3313 31.8/ 6.0 30.0/ 6.4   35.0/ 9.1
15 9 3213 21.5/ 8.0 22.8/ 6.9 23.7/ 7.0
15 12 3278 44.0/ 6.9 ¡ 41.4/ 5.2   47.6/ 5.6
15 15 3308 37.6/ 5.7 ¡ 34.4/ 4.4   42.5/ 5.2

re-evaluating duplicate solutions. However, as can be seen in Table 1, when using
numbers of generations as stopping criterion, the GA with solution archive out-
performs the GA without the solution archive and achieved statistically better
results in 15 out of 45 instances.

5 Conclusions and Future Work

In this work we investigated a solution archive for a genetic algorithm (GA) for
the reconstruction of cross-cut shredded text documents problem. We used a
solution archive for duplicate detection and a solution conversion method was
presented such that no invalid solutions are generated. The first approach of us-
ing an indexed trie for the archive consumed a huge amount of memory. There-
fore, we proposed an alternative data structure, the linked trie, in which the
trie nodes are stored as linked lists instead of arrays. This modification reduced
memory consumption significantly without affecting the run-time in a negative
way. The solution archive was able to improve the performance of the GA when
run-time is of minor importance. The use of a linked trie was essential for this
success. However, compared to state-of-the-art algorithms our approach could



not compete because we did not use any pattern recognition technique, which
would likely improve results.

Possible future work for the RCCSTD problem should be the incorporation
of a more elaborate cost function that uses pattern recognition techniques and
to further reduce the memory overhead, e.g., by calculating bounds in order to
cut off search areas that evidently do not contain optimal solutions. We will also
investigate the concept of solution archives on other problems where we can take
considerable advantage of this extension.
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