
A Multilevel Heuristic for the
Rooted Delay-Constrained Minimum Spanning

Tree Problem

Martin Berlakovich, Mario Ruthmair, and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

berlmart@a1.net, {ruthmair|raidl}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

Abstract. The rooted delay-constrained minimum spanning tree prob-
lem is an NP-hard combinatorial optimization problem. The problem
appears in practice for example when designing a distribution network
with a guarantee of timely delivery. Another example is be a centralized
broadcasting network where the delaybound represents a quality of ser-
vice constraint. We introduce a multilevel-based construction heuristic
which uses a new measurement for the suitability of edges to create a
solution for the problem. In comparison to existing heuristics the main
intention is not to create a minimum cost spanning tree, but a solution
with a high potential for further improvement. Experimental results in-
dicate that in most cases our approach produces solutions that after local
improvement are of higher quality than those of other existing construc-
tion techniques.

1 Introduction

Transportation in all its forms is a very important part of our society, be it the
transportation of material goods or the transmittal of information. It is usually
in the interest of all participants to keep the costs of transportation as low as
possible. However, the costs are not always the only deciding factor, expenditure
of time is also important. An example would be a shipment organization with
a central storage depot providing its customers with goods within a given time-
frame, i.e. perishable products. Another example is a central broadcasting service
which is required to transmit its information to all receivers within a certain
delay boundary. These problems can be classified as network design problems.
In order to model this kind of problems the so-called rooted delay-constrained
minimum spanning tree (RDCMST) problem can be used. The task is to find a
spanning tree for a given graph where the edges have cost and delay. No path
from a specified root node to any other node may exceed a given delay bound,
and the total costs shall be a minimum.

More formally, we are given a graph G = (V,E) with a set V of vertices, a
set E of edges, a source vertex s ∈ V and a delaybound B > 0. Additionally

2

a cost function c : E → R
+ as well as a delay function d : E → R

+ assign
cost and delay values to the edges, respectively. An optimal solution comprises a
spanning tree T = (V,E′), E′ ⊆ E, having minimal costs c(T) =

∑

e∈E′ c(e) and
the delay constraints

∑

e∈P (s,v) d(e) ≤ B, ∀v ∈ V , are satisfied; P (s, v) denotes
the unique path between the source s and vertex v. It can be shown that the
RDCMST problem is NP-hard by examining a special case, the so-called hop-
constrained minimum spanning tree problem, where d(e) = 1, ∀e ∈ E. This
problem is shown to be NP-hard in [1] leading to the conclusion that the more
general RDCMST problem is NP-hard, too.

Section ?? gives an overview over existing exact and heuristic approaches for
the RDCMST problem. A new measurement of “edge quality” is introduced in
Section ?? and our heuristic which is based on this new measurement is intro-
duced in Section ??. Experimental results are shown and discussed in Section ??,
while Section ?? contains conclusions and some ideas for future work.

2 Previous Work

For the RDCMST problem, exact methods based on integer linear programming
have been explored by Leggieri et al. [4] who describe a formulation using lifted
Miller-Tucker-Zemlin inequalities. Further approaches have been examined by
Gouveia et al. in [3] based on a path formulation solved by column generation,
Lagrangian relaxation and a reformulation of the constrained shortest path sub-
problem on a layered graph. In [7] the latter approach is extended by modeling
the whole problem on a layered graph. To overcome the issue of an excessive
number of layers in case of a huge set of achievable delay values, a strategy
based on iteratively solving smaller layered graphs is presented. However, all
these methods can only solve complete graphs with about 100 nodes to proven
optimality in reasonable time.

The first heuristic approach, the so-called Prim-based heuristic, was pre-
sented in [8]. Here a construction method based on Prim’s algorithm to find a
minimum spanning tree is described. Starting at the root node the Prim-based
heuristic iteratively adds edges adjacent to the existing tree, always choosing
the edge with the lowest cost without violating the delay-constraint. The major
drawback of this method is that connecting nodes close to the root as cheap as
possible can lead to the inability to use cheap edges connecting outlying nodes
due to delay-constraints. To counter this problem a more decentralized approach
was presented in [5]. The Kruskal-based heuristic (KBH) is, as the name sug-
gests, based on Kruskal’s algorithm to find a minimum spanning tree. After
sorting the edges by ascending costs all edges are tested whether they can be
used to connect components without violating the delay-constraint. In case this
first phase results in multiple subtrees a repair algorithm is used to create a final
solution. KBH was shown to produce solutions of high quality.

Furthermore, various metaheuristics exist for the problem. In addition to a
variable neighborhood descent (VND) in [5], a general variable neighborhood
search (VNS) and an ant colony optimization were introduced in [6]. There are

3

Fig. 1. A short example graph (a) with delaybound B=5. The edge description is read
[costs, delay]. Adding the cheapest edges to the solution in (b) forces the use of very
expensive edges in (c). By also considering the delay a better solution (d) can be
created.

many recent publications dedicated to the Steiner tree variant of the RDCMST
problem. Here, only a subset of the nodes has to be reached within the given
delaybound, the other nodes can optionally be used as intermediate (Steiner)
nodes. Several metaheuristics have been applied to this variant, such as GRASP
[10], path-relinking [2], and VNS [10]. A hybrid algorithm in [11] combines scatter
search with tabu-search, VND, and path-relinking. Furthermore, preprocessing
methods are presented in [6] to reduce the size of the input graph significantly
in order to speed up the solving process.

3 Ranking Score

In the above construction heuristics the inclusion of an edge with low costs is not
necessarily cheap regarding the overall solution. If an edge with low costs but
high delay is used it can affect the further construction of the solution negatively.
The high delay can force a heuristic to use very expensive edges with low delay
in order to not violate the delay constraint. Such decisions sometimes create
weak solutions corresponding to poor local optima which even good improvement
procedures are not able to overcome. An example is given in Fig. 1.

In an attempt to estimate how promising an edge is, the ranking score is
introduced. It is more likely that an edge with comparatively low costs and low
delay is part of an optimal solution than an edge with very low costs but high
delay. The ranking score

score(e) =

(

1−
rce − 1

|E|

)

·

(

1−
rde − 1

|E|

)

(1)

describes the relative cost in relation to the delay of an edge e ∈ E in com-
parison to other edges; rce ∈ {1, . . . , |E|} and rde ∈ {1, . . . , |E|} represent the

4

cost and delay ranks of edge e obtained by sorting the edges according to costs
and delays, respectively. After normalizing the ranking and subtracting from 1
in order to ensure that lower ranks result in higher scores the partial cost and
delay scores are multiplied. The resulting ranking score score(e) ∈ [0, 1] is an
indicator for the quality of an edge e.

The ranking score can also be applied on vertices. To calculate the ranking
score of a vertex v ∈ V we sum up the ranking scores of all incident edges. That
way the ranking score of a vertex is high if high quality or a high number of
edges are connected to that vertex. For example the ranking score of an outlying
vertex with few, possibly bad, connections is lower than the ranking score of a
central vertex with many connections.

4 Ranking-Based Multilevel Heuristic (RBMH)

The previous construction heuristics referred to in Section ?? are based on adding
edges to a partial solution trying to minimize the costs in each step. However, the
delay is ignored as long as no constraint violation occurs. This can sometimes lead
to relatively poor solutions with a rather low potential for further improvement
by local search methods. This motivates a heuristic that uses the above described
ranking score to decide which edges should be part of the solution.

Our approach is based on the multilevel paradigm [9], firstly creating a hier-
archy of approximations of the original problem by recursive coarsening. After
an initial solution has been found on the coarsest level it is iteratively refined
in each level obtaining a feasible solution for the original problem in the end. In
our case the vertices are iteratively merged to components until only one com-
ponent is left. The key difference to KBH is the iterative merge process. In each
level a number of vertices, including the source vertex, is selected as so-called su-
pervertices. The remaining vertices are connected directly to these supervertices
creating multiple subtrees in each level. These subtrees are contracted to vertices
in the next level and the process continues until only the source vertex remains.
The resulting tree is a spanning tree and due to checks during the merge process
it is guaranteed that the delay-constraints are not violated.

4.1 Selecting Supervertices

In each level RBMH has to choose a number of vertices to become supervertices.
These supervertices act as root nodes to which the remaining vertices can be
connected. For a practical application, i.e. a shipment organization, this can
be compared to choosing the site of a regional distribution center and creating
a hierarchical network of transportation. The two major questions concerning
supervertices are how many vertices should become supervertices and which
vertices should be chosen.

The number of supervertices chosen during each level is determined by a user
parameter called superrate, a simple percentage. A low superrate leads to a low
number of supervertices, therefore to a high number of remaining vertices which

5

Fig. 2. An example with delaybound B = 10. shortestdelay(3) = 3, subtreedelay(4) = 5
.

have to be connected. The advantage of a low superrate is comparatively fast
coarsening since the number of levels will be low, too. However since the number
of supervertices is directly related to the number of possible connections for each
vertex the search space is smaller. A low superrate is a promising choice if the
solution is expected to be a star-like network. Whereas a higher superrate leads
to a slower coarsening since more levels can be expected. Note here that the
superrate is not directly related to the number of levels due to a mechanism en-
suring a feasible solution which will be introduced later. The obvious advantage
of a high superrate is that more and maybe better connections are available for
each non-supervertex.

The second question is which vertices should become supervertices. Here
we apply the ranking score for vertices. The vertices with the highest ranking
scores are those with either a high number of connections, thus ensuring a high
number of possibilities, or very promising connections. In case of equal ranking
scores supervertices are randomly selected making the selection process non-
deterministic.

4.2 The Merge Process

After the selection of supervertices the next step is to connect the remaining
vertices. Sorted by ascending ranking scores, the only edges considered in the
merging process are those between supervertices and other nodes. If

shortestdelay(u) + d({u, v}) + subtreedelay(v) ≤ B (2)

is satisfied for an edge {u, v} we know that its use would not violate the delay-
constraint. shortestdelay(v) represents the length of the path with the shortest
possible delay from the source to vertex v. subtreedelay(v) represents the delay
caused by the current subtree of vertex v, see Fig. 2. When checking whether
edge {3, 4} can be used we have to consider shortestdelay(3) and subtreedelay(4).
Summing up these delays plus the edge delay results in an overall delay less than
delaybound B. Therefore, this edge can be used to connect vertex 4.

However, there is no guarantee that all non-supervertices can be connected
this way. Figure 3 illustrates the problem. For a delaybound of 5 the only possible
path to connect vertex 3 is via vertex 4. In case vertex 4 is not a supervertex

6

Fig. 3. An example with delaybound B = 5. Vertex 3 can only be connected via
vertex 4.

Table 1. Comparison of Ranking- and Kruskal-based heuristics without additional im-
provement, applied on random instance sets with 500 and 1000 nodes (B: delaybound,
c: average final objective value, σ: standard deviation, t[s]: average running time in
seconds).

R500 R1000

RBMH KBH RBMH KBH

B c σ t[s] c σ t[s] c σ t[s] c σ t[s]

10 9282 415 0.35 7087 335 0.02 13288 593 1.59 10296 484 0.06

30 4817 245 1.11 3768 382 0.04 7059 253 5.12 5064 460 0.15

50 3711 161 1.94 2824 232 0.06 5513 174 8.85 3243 360 0.24

75 3142 140 3.00 2048 255 0.09 4669 133 13.86 2185 232 0.35

100 2812 153 3.99 1695 250 0.11 4180 128 19.20 1605 196 0.46

150 2802 149 4.62 1007 145 0.11 4168 126 19.30 1165 131 0.38

200 2802 149 4.44 784 124 0.10 4168 126 18.92 1080 81 0.35

there is no possibility to connect vertex 3. Therefore, a repair strategy for these
problematic vertices is required. If an instance is solvable a feasible path to
connect a vertex to the source is given by the shortest-delay-path. For each
problem vertex the immediate predecessor in the shortest-delay-path becomes
a supervertex in the current level. Additionally, a connection between the new
supervertex and a possibly already assigned predecessor is removed. This way a
new subtree is created.

After this merge process all non-supervertices are connected and a set of
subtrees with supervertices as their root remains. These subtrees are contracted
and represent the vertices in the next level, whereas only edges connecting two
supervertices are now considered anymore. This process is continued until only
the source vertex remains, corresponding to a feasible solution for the original
problem. RBMH runs in O(|E| log |E|+ |V |2) time.

5 Experimental Results

Our testing environment consists of Intel Xeon E5540 processors with 2.53 GHz
and 3 GB RAM per core. The instance sets R500 and R1000 were introduced
in [6] and contain 30 complete instances with 500 and 1000 nodes, respectively,

7

Table 2. Comparison of Ranking- and Kruskal-based heuristics with additional im-
provement (VND), applied on random instance sets with 500 and 1000 nodes (B: de-
laybound, c: average final objective value, σ: standard deviation, t[s]: average running
time in seconds).

R500 R1000

RBMH+VND KBH+VND RBMH+VND KBH+VND

B c σ t[s] c σ t[s] c σ t[s] c σ t[s]

10 4634 225 1.99 4557 205 1.45 5290 212 9.33 5171 215 7.52

30 1530 85 4.42 1554 88 4.37 1871 71 23.55 1884 55 20.04

50 1010 64 7.99 1042 56 6.22 1334 50 33.81 1373 44 32.93

75 765 33 10.90 800 37 9.44 1113 32 57.75 1146 32 51.42

100 642 28 13.64 687 44 12.75 1038 12 75.79 1070 32 62.76

150 547 11 16.71 587 36 12.25 1005 4 74.13 1022 24 57.96

200 522 6 13.55 545 27 10.90 1001 2 74.58 1008 16 37.65

and random integer edge costs and delays uniformly distributed in [1, 99]. Due
to RBMH being non-deterministic 30 runs are performed for every instance and
average results are used for comparison with KBH presented in [5].

Results without additional improvement show that in general KBH creates
much better solutions within shorter runtime. However, RBMH is not directly
intended to produce low cost spanning trees but rather use edges which have
low costs as well as low delay. Therefore, there may be a lot of improvement
potential in a solution provided by RBMH. To use this potential to obtain a
solution of higher quality we applied the VND from [5] performing a local search
switching between two neighborhood structures based on edge replacement and
component renewal, respectively. The results with this additional improvement
show that except for very low delaybounds RBMH typically provides a better
starting point for further improvement. Especially for very high delay bounds
the solutions provided by RBMH can be improved significantly. However, RBMH
results also show higher runtimes due to the algorithm’s higher complexity and
longer improvement phases.

6 Conclusions and Future Work

We introduced a ranking-based multilevel heuristic for the rooted delay-con-
strained minimum spanning tree problem. By choosing edges with comparably
low cost and low delay this construction heuristic produces solutions with a high
potential for further improvement. Experimental results indicate that these trees
are better starting points for additional local improvement resulting in general in
final trees of lower cost compared to solutions generated by the existing Kruskal-
based construction heuristic.

In future work we want to extend the approach towards an iterated multilevel
approach in which obtained solutions are recoarsened. Furthermore, we intend

8

to investigate extended variants for the ranking score formula which also use
weights to control the influence of costs versus delays to maybe provide even
better solutions. Additionally, we want to improve the multilevel heuristic by
applying some kind of local search during the refinement phase.

References

1. Dahl, G., Gouveia, L., Requejo, C.: On formulations and methods for the hop-
constrained minimum spanning tree problem. In: Handbook of Optimization in
Telecommunications, chap. 19, pp. 493–515. Springer Science + Business Media
(2006)

2. Ghaboosi, N., Haghighat, A.T.: A Path Relinking Approach for Delay-Constrained
Least-Cost Multicast Routing Problem. In: 19th IEEE International Conference on
Tools with Artificial Intelligence. pp. 383–390 (2007)

3. Gouveia, L., Paias, A., Sharma, D.: Modeling and Solving the Rooted Distance-
Constrained Minimum Spanning Tree Problem. Computers and Operations Re-
search 35(2), 600–613 (2008)

4. Leggieri, V., Haouari, M., Triki, C.: An Exact Algorithm for the Steiner Tree
Problem with Delays. Electronic Notes in Discrete Mathematics 36, 223–230 (2010)

5. Ruthmair, M., Raidl, G.R.: A Kruskal-Based Heuristic for the Rooted Delay-
Constrained Minimum Spanning Tree Problem. In: Moreno-Dı́az, R., Pichler, F.,
Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 713–720.
Springer (2009)

6. Ruthmair, M., Raidl, G.R.: Variable Neighborhood Search and Ant Colony Op-
timization for the Rooted Delay-Constrained Minimum Spanning Tree Problem.
In: Schaefer, R., et al. (eds.) PPSN XI, Part II. LNCS, vol. 6239, pp. 391–400.
Springer (2010)

7. Ruthmair, M., Raidl, G.R.: A Layered Graph Model and an Adaptive Layers
Framework to Solve Delay-Constrained Minimum Tree Problems. In: Fifteenth
Conference on Integer Programming and Combinatorial Optimization (IPCO XV)
(2011), accepted

8. Salama, H.F., Reeves, D.S., Viniotis, Y.: An Efficient Delay-Constrained Minimum
Spanning Tree Heuristic. In: Proceedings of the 5th International Conference on
Computer Communications and Networks (1996)

9. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. An-
nals of Operations Research 131(1), 325–372 (2004)

10. Xu, Y., Qu, R.: A GRASP approach for the Delay-constrained Multicast rout-
ing problem. In: Proceedings of the 4th Multidisplinary International Scheduling
Conference (MISTA4). pp. 93–104. Dublin, Ireland (2009)

11. Xu, Y., Qu, R.: A hybrid scatter search meta-heuristic for delay-constrained mul-
ticast routing problems. Applied Intelligence pp. 1–13 (2010)

