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Kurzfassung

Diese Arbeit beschäftigt sich mit dem Constrained Longest Common Subsequence (CLCS)
Problem, welches eingeführt wurde, um die Ähnlichkeit verschiedener biologischer Se-
quenzen zu messen. Dabei wird für eine gegebene Menge von beliebigen Strings die
längste gemeinsame Teilfolge an Zeichen gesucht, welche selbst wiederum einen bestimm-
ten gegebenen String als Teilfolge enthält. Es handelt sich um eine Variante des gut
untersuchten Longest Common Subsequence (LCS) Problems. Verschiedene Algorithmen
sind bekannt um das CLCS Problem für genau zwei Strings (2–CLCS) zu lösen, das
allgemeine m–CLCS Problem mit einer beliebigen Menge von Strings wurde bisher jedoch
nur näherungsweise mit einem Approximationsverfahren gelöst. Das m–CLCS Problem
kann in der Biologie der Identifikation von Molekülgruppen dienen, deren Moleküle eine
Gemeinsamkeit in Form einer bestimmten vorhandenen Teilstruktur aufweisen.

In dieser Arbeit werden mehrere neue Methoden vorgestellt um das m–CLCS Problem
effektiv zu lösen. Wir präsentieren eine heuristische Beam Search in der Form eines
generellen Suchframeworks sowie einen exakten A∗-Algorithmus. Außerdem wird eine
Greedy Heuristic vorgestellt, die es ermöglicht, Lösungen von akzeptabler Qualität in
kurzer Zeit zu finden.

Die Ergebnisse unserer Tests zeigen, dass unsere A∗-Suche, geführt von bekannten Upper
Bounds des LCS Problems, signifikant schneller im Lösen von 2–CLCS Instanzen als
bisherige Algorithmen ist. Beim m–CLCS Problem mit mehreren Strings konnten von
der A∗-Suche kleine bis mittelgroße Instanzen gelöst werden. Für jene Instanzen, die
von A∗ nicht gelöst werden können, schlagen wir den Einsatz von Beam Search vor. Zur
Führung der Beam Search haben sich eine auf Wahrscheinlichkeitstheorie basierenden
Heuristik, sowie eine Heuristik zur Berechnung der erwarteten Länge als besonders effektiv
erwiesen. Diese Beam Search Konfigurationen konnten bei fast allen von der A∗-Suche
exakt gelösten Instanzen ebenfalls optimale Lösungen finden und waren dabei signifikant
schneller als die A∗-Suche. Das vorgestellte Suchframework kann fernerhin auf einfache
Art für weitere Varianten des CLCS Problems adaptiert werden, beispielsweise für das
(k,m)–CLCS Problem, bei dem eine beliebige Anzahl k ∈ N an Strings als notwendige
Teilfolge der Lösung spezifiziert wird.
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Abstract

In this thesis we are studying the constrained longest common subsequence (CLCS)
problem that has been introduced as a specific measure of similarity of biological sequences.
It extends the well-studied problem of finding a longest common subsequence (LCS) of a
given set of strings by an additional pattern string that is required to be a subsequence of
the LCS. There are several algorithms introduced in the literature dealing with the CLCS
problem with exactly two input strings (2–CLCS), but the general m–CLCS problem
with an arbitrary set of strings has not yet been approached except by one approximation
algorithm. The m–CLCS problem may find its application in biology for discovering
molecular clusters composed of molecules that all share a common structural pattern.

In this work we propose several new approaches to effectively solve the m–CLCS problem.
We present a heuristic beam search in shape of a general search framework as well as
an exact A∗ search algorithm. Moreover, a greedy heuristic to find CLCS solutions of
reasonable quality within short time is proposed.

Our experimental evaluation has proven that our A∗ search guided by a tight upper
bound calculation is significantly faster than current state-of-the-art algorithms in finding
proven optimal solutions on various 2–CLCS problem instances. Moreover, for the general
m–CLCS problem, our A∗ approach was able to solve small to medium instances to
proven optimality within the allowed time and memory limit. For those instances where
A∗ cannot prove optimality, we propose a heuristic beam search. Two beam search
configurations, one guided by a probability based heuristic and another one guided by
an expected-length calculation heuristic, specially adapted for the m–CLCS problem,
have been shown as particularly efficient. They deliver solutions that almost all reach
the quality of the optimal solutions proven by A∗ search within significantly less time.
Moreover, the proposed search framework provides a solid basis for extensions towards
more general variants of the CLCS problem like the (k,m)–CLCS problem, where instead
of one, we are given an arbitrary number of k ∈ N pattern strings constraining the LCS.
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CHAPTER 1
Introduction

Strings are objects commonly used for modeling DNA or RNA molecules. Finding similari-
ties between molecular structures plays an important role in understanding biological
processes that relate to the molecular structures. Such similarities can be properly
expressed by the length of subsequences common for a given set of input strings. A
subsequence of string s is any sequence of characters obtained by deleting zero or more
characters from s. In particular, a widely used measure of similarity is provided by the
longest common subsequence (LCS) problem [51] which is a well-known discrete optimiza-
tion problem: given an arbitrary set of strings, we seek for a longest possible subsequence
that is common for all input strings. The LCS problem has many applications not only
in molecular biology [44] but also in data compression [60], pattern recognition, file
plagiarism check, text editing [47] and others.

There are many well-studied variants of the LCS problem that have arisen from practice.
Prominent examples include the repetition-free longest common subsequence (RFLCS)
problem [2], the longest arc-preserving common subsequence (LAPCS) problem [45], and
the longest common palindromic subsequence (LCPS) problem [18]. In this project we are
interested in solving the constrained longest common subsequence (CLCS) problem [63, 3]:
given two input strings s1, s2, and a pattern P , we seek for an LCS between the two
input strings that has also string P as its subsequence. Figure 1.1 illustrates the problem
with a small example. A possible application scenario of the CLCS problem concerns
the identification of homology between two biological sequences which have a specific or
putative structure in common [63]. Studying genomes of various species has shown that
some segments are constrained in the lineage. It is estimated that roughly 8% of the
human genome consists of sequences that are conserved in other eutherian mammals [58].
A higher proportion of sequences conserved reflects a lower divergence between species. In
general, the length of a CLCS can be used as similarity measurement for molecules while
taking a common specific segment that arises from some structural properties into account.
A concrete example is described in [16]. It deals with the comparison of seven RNase
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1. Introduction

sequences so that the three active-site residues, HKH, form part of the solution1. This
pattern is responsible, in essence, for the main functionality of the RNase molecules such
as catalyzing the degradation of RNA sequences. Furthermore, constrained sequences
find application also in other areas, as for instance, in communication or magnetic
recording [17].

Figure 1.1: Example of a small CLCS problem instance with input strings s1 = accdbcca,
s2 = abdbaccb, and pattern string P = da. The string adba is the longest common
subsequence of s1 and s2 that has P as its subsequence. Thus, it is a CLCS for this
instance.

The classical CLCS problem can be solved efficiently by applying a Dynamic Programming
approach [22, 15]. It was shown that the problem is a special case of the constrained
sequence alignment (CSA) problem [15]. Aligning multiple sequences simultaneously
finds application in many areas, e.g. in studying gene regulation or inferring evolutionary
relationship of genes or proteins [12]. Therefore, it is clearly important to consider also a
general variant of the CLCS problem with more than two strings in input [33] (m–CLCS),
which is NP–hard. To the best of our knowledge, no work has been proposed in the
literature for solving the m–CLCS problem except one existing linear time approximation
algorithm developed by Gotthilf et al. [33].

1.1 Aim of this Work

Our primary goal with this research project is to effectively solve the m-CLCS problem.
A literature review shows that for the related m-LCS problem, exact solving methods are
quite restricted, only applicable for instances up to a certain size whereas middle-to-large
instances are dealt via approximation or heuristic search. Beam search is considered
as state-of-the-art for heuristic solving. Thus, to tackle the m-CLCS problem, an A∗
search is developed to provide an exact solving method and a beam search framework is
created to approach large instances heuristically. Various heuristics and upper bounds
are derived to evaluate nodes and guide the search process. The performances of the

1National Center of Biotechnology Information database, at http://www.ncbi.nlm.nih.gov.
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1.2. Structure of this Work

developed algorithms are compared to the proposed (approximate) method from the
literature.

Since the 2–CLCS problem is well–studied in the literature where many specialized exact
approaches are proposed, we also compare our A∗ to some of them. As it turns out, no
comprehensive comparison on instances of larger size has been made so far between current
state-of-the-art approaches for the 2–CLCS problem. Thus, by conducting our exhaustive
experimental studies on various artificial benchmarks as well as on a benchmark suite
from the CLCS literature containing real biological sequences, we aim to provide more
insights on that matter.

1.2 Structure of this Work
In this chapter we gave a problem description, an introduction to the problem’s context
and expressed the primary goals of this work. The remaining chapters are organized as
follows. In Chapter 2 we start with an overview of the existing literature related to the
CLCS–problem. Chapter 3 provides an overview of discrete optimization and describes
the methodologies used in this thesis. In Chapter 4 we introduce preprocessing structures
and propose a greedy heuristic procedure to quickly derive CLCS solutions of reasonable
quality. In Chapter 5 the search framework for the m–CLCS problem is defined. The
state graph is derived and various upper bound estimators and heuristics to evaluate
CLCS subproblems are presented. In Chapter 6 a general beam search framework for
the m–CLCS problem is derived and in Chapter 7 an A∗ search is proposed. Chapter 8
describes the main ideas of the algorithms from the literature used in our comparisons
where also an ILP model for the 2–CLCS problem is proposed. Experimental studies for
both, the classical 2–CLCS problem and the general m–CLCS problem, are presented by
Chapter 9. In Chapter 10, conclusions and some directions for future work are outlined.

1.3 Preliminaries
Let us introduce essential terms and notations commonly used in this thesis. A string or
sequence is composed of a finite amount of characters over an alphabet Σ. The length of
a string s is denoted by |s|. The j-th letter of a string s is referred by s[j], j = 1, . . . , |s|,
and if j > |s| then s[j] = ε, where ε denotes the empty string. Let s1 · s2 denote the
concatenation obtained by appending string s2 to the end of string s1. By s[j, j′], j ≤ j′,
we denote the continuous subsequence of s starting at position j and ending at position j′;
if j > j′, then s[j, j′] = ε. Furthermore, we say, a subsequence of string s is any sequence
of characters obtained by deleting zero or more characters from s. Finally, let |s|c be the
number of occurrences of letter c ∈ Σ in string s.

We formally define the m–CLCS problem as follows. We are given a set S = {s1, . . . , sm}
of m ∈ N non-empty input strings over Σ, and a so–called pattern string P over Σ.
Henceforth, we refer to a CLCS problem instance by I = (S, P,Σ) and denote the
maximum length of the strings in S by n. The m–CLCS problem asks for a string s that

3



1. Introduction

is a subsequence of every input string and contains P as a subsequence. Such a string
s is called a valid solution of I. Moreover, if s is of maximal length (w.r.t. all possible
valid solutions of I), it is called an optimal solution or, simply, CLCS.
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CHAPTER 2
Related Work

Most of the work related to the CLCS problem only considers two input strings. In
order to efficiently solve the CLCS problem with more than two strings, it makes sense
to explore state-of-the-art approaches that are applied in solving the well-studied, basic
LCS problem. This is done in the following section. Afterwards, a literature overview for
the CLCS problem is given.

2.1 LCS Problem: Literature Overview
The problem of finding a LCS of two input strings is polynomially solved by means of
dynamic programming (DP) [34]. The DP-based algorithm proposed from Masek and
Paterson [52] runs in O(n2/ logn) time where n is the length of the input strings. For
an arbitrary number of input strings, the problem was shown to be NP-hard [51, 1].
Various techniques are applied to solve the LCS problem to optimality, they include
more advanced dynamic programming methods [37, 30], integer programming [8] and
tree search [38, 28]. The first tree search method from Hsu and Du [38] systemically
enumerates solutions for the LCS problem. Later, Easton and Singireddy [28] proposed a
more efficient approach that applies new branching techniques and reduces the search
space by eliminating branches that were proven to not contain an optimal solution.
Finally, an algorithm based on A∗ search was proposed by Wang et al. [67]. Due to the
complexity of the problem, exact algorithms become impractical for instances of large
size. Thus, approximation or heuristic algorithms are applied to obtain good non-optimal
solutions in reasonable time.

The first approximation proposed for the LCS problem was the Long Run (LR) algo-
rithm [14, 43]. Its provided solutions are sequences composed of only one single letter
and are within a factor of alphabet size |Σ| of the optimal solution. Other approximation
algorithms without the restriction to a single letter have been proposed later, including
the Expansion algorithm by Bonizzoni et al. [10], the Best–Next for Maximal Available
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2. Related Work

Symbols (BNMAS) and Enhanced Long Run (ELR) by Huang et al. [39]. Just like the
LR algorithm, they all guarantee |Σ|-Approximation, but they typically provide a better
quality of solutions.

Heuristic approaches usually don’t provide any performance guarantees but are often able
to yield near-optimal solutions in affordable time. Easton and Singireddy [29] showed
that their Time Horizon Specialized Branching Heuristics (THSB), which is based on
a large neighborhood search, obtained better results than both, LR and Expansion
algorithm. Shyu and Tsai [59] presented an Ant Colony Optimization (ACO) algorithm
resulting in better solution qualities than BNMAS and Expansion algorithm. Blum et
al. [7] then proposed a beam search (BS) approach on the LCS problem. The algorithm
performs an incomplete tree search and was shown to dominate both THSB and ACO
algorithm in terms of solution quality, establishing a new state-of-the-art for the LCS
problem. Subsequently, many further approaches incorporating BS were introduced,
e.g., [6, 49, 54, 61]. Tabataba and Mousavi presented a BS algorithm guided by a novel
probabilistic heuristic [54] and a specific mechanism of reducing suboptimal solutions.
The same authors extended their approach by proposing a hyper-heuristic algorithm (HH–
BS) incorporated within a beam search [61]. The HH–BS was able to improve the results
on all five benchmark sets used in [7]. Most recently, a heuristic estimating the expected
length of an LCS was proposed by Djukanovic et al. [25]. In their experiments, BS guided
by the novel heuristic steered the search better towards more promising regions. The
results obtained were on many instance sets significantly better than previous approaches
from literature.

2.2 CLCS Problem: Literature Overview
The classical CLCS problem with two input strings s1 and s2 and a pattern string P
was initially introduced by Tsai [63] where the first algorithm to solve the problem by
dynamic programming in O(|s1|2 · |s2|2 · |P |) time was given. It was not of practical
relevance due to its high complexity. Many efficient algorithms have been proposed since
then, we give a short overview below and explain the most important ones with more
details in Chapter 8.

An improvement over the algorithm from Tsai was first achieved by Chin et al. [15],
creating a simple DP recursive relation to compute a CLCS, requiring only O(|s1|·|s2|·|P |)
time and space. Arslan and Eğecioğlu [3] proposed another DP-based algorithm to solve
the CLCS problem within the same time complexity. While their approach requires more
space than the algorithm of Chin et al., they also provided a procedure to solve a variant
of the CLCS problem where the goal is to find an LCS for s1, s2 and a sequence whose
edit distance from pattern P is less than a positive integer that is given in advance.

The first sparse approach was developed by Deorowicz [21]; it solves the CLCS problem in
O(|P | · (|s1| ·L+R) + |s2|) time where L is the length of an LCS between s1 and s2 and R
is the number of pairs of matching positions between s1 and s2. Later on, an improvement
of the algorithm to further reduce computations that don’t contribute to a final CLCS
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2.2. CLCS Problem: Literature Overview

was introduced by Deorowicz and Obstoj [22]. Iliopoulos and Rahman [42] proposed
another sparse algorithm to solve the CLCS problem in O(|P | · R · log log |s1| + |s2|)
time. To achieve such a time complexity, they utilize a BoundedHeap data structure [11]
realized by means of Van Emde Boas (vEB) trees [65]. Moreover, an algorithm based on a
finite automata designed to solve the CLCS problem for degenerate strings was proposed
by Iliopoulos et al. [41]. Most recently, an algorithm especially suited for input strings
that are highly similar was presented by Hung et al. [40]. It runs in O(|P | ·L · (|s1| −L))
time where L denotes the length of a CLCS. According to the authors, their approach
was able to outperform other algorithms for the classical CLCS problem. Since they
only performed experiments on a rather limited benchmark sets where |Σ| = 256 was
fixed, it remains to check the algorithm’s performance on wider classes of benchmark sets.
For this purpose, we generate such benchmark sets in the course of our computational
studies.

To the best of our knowledge, the approximation algorithm by Gotthilf et al. [33] is the
only existing work towards solving the general m–CLCS problem with arbitrary number
of input strings m. The algorithm is based on the idea that pattern string P obviously
must be a part of any CLCS solution. For each letter of the pattern string, possible
mappings in the strings s1, s2, . . . , sm are assigned. The algorithm then examines the
intermediate strings resulting from taking the part in between first and last mapping
for each two adjacent letters in the pattern string. An LCS is approximated for these
intermediate strings by checking which repetition of a letter yields the largest length.
The pattern string with the approximated LCS inserted between the two corresponding
letters clearly represents a feasible solution for the CLCS problem. The best found
approximated CLCS solution is returned in the end. The algorithm provenly runs in
linear time and yields an approximation factor of

√
lmin · |Σ|, where lmin is the length of

the shortest input string and |Σ| is alphabet size.

7





CHAPTER 3
Methodology

In this chapter we provide theoretical foundations and basic concepts upon which our
algorithms are based. The literature usually distinguishes between two distinct categories
of optimization problems. In continuous optimization problems, the goal is find a set
of real numbers or even functions, while in discrete optimization problems (also called
combinatorial problems), the possibilities are limited to a finite set (discrete points) [57].
In this work, we only focus on the latter. We first formalize the idea of an optimization
problem, provide basic terminology and then introduce concepts for solving such a
problem.

We mainly follow the definition from Papadimitriou and Steiglitz [57] and introduce an
instance of an optimization problem as a pair (F, c), where search space F is any set,
the domain of feasible elements (feasible solutions), and c is the cost function defining a
mapping c : F −→ R. The goal is to find an element f ∈ F for which

c(f) ≤ c(f ′), for all f ′ ∈ F.

Such an element f presents a globally optimal solution to the given instance and is
henceforth simply called optimal solution. Note that while an element f ∈ F that
minimizes c(f) is searched, any maximization problem can trivially be converted to
a minimization problem by multiplying its cost function by minus one. Hence, the
concepts presented in this chapter can be applied to both minimization and maximization
problems.

A distinction needs to be made between problem and instance of a problem: an optimiza-
tion problem is defined as a set of instances [57]. In this way, a problem describes an
issue in a general form while an instance is provided with specific input data and asks
for a concrete solution.

A naive procedure for solving optimization problems can be constructed as follows.
Enumerate all feasible solutions f ∈ F , check on each the value for c(f) and remember

9



3. Methodology

the best solution. This works in principle, however, most interesting problems will have
instances with such a large set of feasible solutions so that enumerating all of them will
not be a viable option. In order to avoid full enumeration, we require a way of proving
optimality without checking every single feasible solution. A basic method for doing so
is known from integer programming (cf. [68]) and can be provided by the bounds of
the instance. For an instance (F, c) of a minimization problem with optimal solution f∗,
a value p ∈ R is called a primal bound (upper bound) iff c(f∗) ≤ p. Straightforwardly,
a value d ∈ R is called a dual bound (lower bound) iff c(f∗) ≥ d. When we can find a
primal bound p and dual bound d such that p = d = c(f), f ∈ F then f is provenly an
optimal solution. Every feasible solution f ∈ F provides a primal bound. Dual bounds
on the other hand, can be obtained by heuristics. Note that in context of a maximization
problem, the primal bound is a lower bound and the dual bound is an upper bound.

An optimization problem may be solved by an exact method or a heuristic method. Exact
methods guarantee optimality on found solutions, but their application might not always
be feasible. Heuristic methods (also called approximate methods) compute solutions in
affordable time but are not guaranteed to find an optimal solution.

3.1 Branch-and-Bound
A common exact method for solving optimization problems is branch-and-bound (B&B),
which is a technique of intelligently enumerating feasible solutions by making use of
upper bounds / lower bounds. Its basic idea was already discussed about 60 years ago in
the context of mathematical programming [48]. It applies the principle of the divide and
conquer technique by breaking down the original problem into smaller subproblems. The
B&B procedure builds a decision tree where each node represents a set of solutions. It
goes through the search space by continuously performing the two main operations of
(1) branching and (2) bounding. Branching splits a set of solutions, represented by a node,
into multiple mutually exclusive subsets. Each of the subsets is then represented by a
new child node. Bounding refers to the bounds that are used to prove optimality without
the need to look at all feasible solutions. A global upper bound is maintained by always
storing the so far best solution value. Before the branching of a node is performed, a lower
bound is calculated for that node. If this lower bound is less than the global upper bound,
then the node can’t contain an optimal solution for the original (undivided) problem
instance. Hence, it does not need to be considered anymore and its set of solutions can
be discarded.

The B&B procedure will yield an optimal solution if it is allowed to run until all feasible
solutions are either checked or discarded. In practice though, it makes sense to consider
the case that the procedure might need to be terminated earlier and return the best
found solution in such a case. A pseudocode of a B&B implementation for a minimization
problem is provided in Algorithm 3.1.

A second way to eliminate nodes from the decision tree, apart from comparing its lower
bound to the global upper bound, can be established by testing dominance relations. If
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3.1. Branch-and-Bound

Algorithm 3.1 Branch-and-Bound (w.r.t. minimization)
1: Input: a problem instance (F,c)
2: Output: an optimal solution vbest
3: Initialize: U ←∞, set of active nodes A = {F}
4: while A 6= ∅ do
5: choose a node v ∈ A for branching
6: remove v from A
7: if lower bound of v < U then
8: split v into subsets v1, . . . , vk
9: for each vi ∈ {v1, . . . , vk} do

10: if vi is a complete solution then
11: if c(vi) < U then
12: U ← c(vi)
13: vbest ← vi
14: end if
15: else
16: add vi to A
17: end if
18: end for
19: end if
20: end while
21: return vbest

the best descendant of a node v1 is at least as good as the best descendant of v2, then
we say v1 dominates v2, and v2 can be discarded [57]. The existence of such relations as
well as procedures for efficiently checking them depends on the individual problem.

Several decisions need to be made when implementing B&B for a specific optimization
problem. First, there is the question on how the branching should be done, i.e., how the
set of feasible solutions will be split into smaller sets. Also, the selection mechanism to
decide which node is chosen for branching can have a big impact on the performance.
Choices include first-in-first-out, last-in-first-out, lowest bound, or a priority system
based on some problem-specific criteria. Furthermore, a lower bound calculation has
to be devised and possibilities for dominance testing should be checked. Since there
is no generally valid strategy, available options need to be evaluated for each problem
individually.

In order to solve the LCS problem, Easton and Singireddy [28] applied the concept of
B&B as follows. The root node of the search space corresponds to a partial solution with
empty string ε. Then, branches are consecutively generated by creating a child node for
each possible letter by appending the letter to the partial solution of its parent node.
This way, each node represents the set of solutions that start with the node’s partial
solution. For each node, an upper bound is calculated from the length of its partial
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Algorithm 3.2 Dynamic Programming for the LCS Problem
1: Input: strings s1 and s2
2: Output: matrix M with results for all stages
3: Initialize: M [i, 0]← 0, ∀i = 0, . . . , |s1| and M [0, j]← 0, ∀j = 0, . . . , |s2|
4: for i← 1 to |s1| do
5: for j ← 1 to |s2| do
6: if s1[i] = s2[j] then
7: M [i, j]←M [i− 1, j − 1] + 1
8: else
9: M [i, j]← max{M [i, j − 1],M [i− 1, j]}

10: end if
11: end for
12: end for
13: return M

solution and the maximal number of letters that could potentially be further appended.
If a node’s upper bounds is smaller than the length of the so far best solution, it is
discarded. We won’t go into the details of the upper bound calculation here but refer to
Section 5.2 where we present common upper bounds for the LCS problem.

3.2 Dynamic Programming

Similar to B&B, Dynamic Programming (DP) also breaks a problem into smaller parts
and obtains a solution by solving these parts. For DP, this process is done in a specific
manner. The main idea is to break a problem recursively into smaller stages in a way that
the results of each stage can be computed from intermediate results of a previous stage.
Intermediate results are stored in a table whereby performing the same computation
more than once is avoided. Thus, DP can be particularly effective for problems where
different solutions are often composed of identical partial solutions. More details and
typical methods of DP can be found in [19].

To give a simple example of DP, we present in Algorithm 3.2 a procedure described by
Wagner and Fischer [66] for calculating the length of an LCS of two strings s1 and s2.
A two-dimensional matrix M is computed such that for any 0 ≤ i ≤ |s1|, 0 ≤ j ≤ |s2|,
entry M [i, j] corresponds to the length of an LCS of s1[1, i] and s2[1, j]. Observe that
after initialization of the border cases, the algorithm starts from index 1 and calculates
each further value from a previous column/row. Finally, the length of an LCS of s1 and
s2 can be found in M [|s1|, |s2|].

12
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Algorithm 3.3 General A∗ Search
1: Input: a weighted graph G = (V,A), a start node s, a goal node t
2: Output: a smallest-cost path from s to t
3: Initialize: open list Q← {s}
4: while Q 6= ∅ do
5: remove node v with minimal f(v) = g(v) + h(v) from Q
6: if v = t then
7: return path derived by following pred(v)
8: else
9: for each successor v′ of v do

10: costnew ← g(v) + c(v, v′)
11: if v′ reached for first time ∨ costnew < g(v′) then
12: pred(v′) ← v
13: g(v′)← costnew
14: put v′ in Q // insert if v′ reached for first time, update otherwise
15: end if
16: end for
17: end if
18: end while
19: return no path from s to t exists

3.3 A∗ Search
We make use of A∗ search in order to minimize the amount of solutions that we need
to visit to find a proven optimal solution. In this section we describe the principles of
the algorithm that was originally developed by Hart et al. [35] to find a smallest-cost
path from a start node to a goal node in a weighted graph G = (V,A). It works in a
best-first-search manner, i.e., the most promising nodes are always considered first. In
order to rank the nodes, A∗ search makes use of an evaluation function f(v) = g(v)+h(v),
for v ∈ V (G), where g(v) denotes the cost of a so-far best path from the start node to v,
and h(v) is the estimated cost of an optimal path from v to a goal node.

A∗ search maintains a list of open nodes, i.e., nodes whose successors have not been
explored yet, and stores a set of all nodes encountered during the search. The search
procedure begins with only the start node in the open list. Then, at each step, the node
v that minimizes function f(v) is taken from the open list. This node is then expanded
by considering all possible successor nodes as follows. A successor node v′ is updated
if it has been seen before and a better path from start node to v′ has been discovered.
If it is the first time that successor node v′ is reached, then it is added to the open list.
Unless terminated early (e.g. due to limited time or memory resources), A∗ search stops
once it selects a goal node for expansion. A pseudocode of an implementation of an A∗
search is provided in Algorithm 3.3.

In order to guarantee, that a path found from A∗ search is indeed a smallest-cost
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path, h(v) is required to be admissible, meaning h(v) ≤ h∗(v), ∀v ∈ V (G), where h∗(v)
denotes the cost of the real smallest-cost path from v to a goal node. Moreover, if
c(v, v′) + h(v′) ≥ h(v), ∀(v, v′) ∈ A(G), where c(v, v′) denotes the cost from v to v′,
then h(v) satisfies the consistency assumption and is called monotonic. A∗ search with
monotonic h(v) never needs to re-expand an already expanded node. It was shown that
the number of node expansions required to find a proven optimal path by A∗ search with
monotonic h(v) is minimal among all (possible) search algorithms that use the same
heuristic information and tie-breaking criterion [20].

3.4 Heuristic Methods

Many optimization problems from practice are of complex nature and too difficult to
be solved by exact methods within an acceptable amount of time or memory. Not all
applications require an optimal solution though, finding a “reasonably good” solution
might often be sufficient. To this end, heuristic methods are applied. In this section,
we present two basic heuristic methods, namely constructive heuristics and local search,
and then give an introduction about metaheuristics. The following review of heuristic
methods is based on Blum and Raidl [9] and Talbi [62].

Constructive Heuristics

A constructive heuristic starts from an empty (partial) solution and iteratively adds
parts until the solution is complete. Parts that are once added to the solution are usually
never replaced or removed, i.e., all decisions made in course of the procedure are final. A
prominent variant of constructive heuristics are greedy heuristics. At each construction
step, they evaluate all available options to extend the current partial solution and then
choose the one that seems best from a local point of view. A well-known greedy heuristic
for the LCS problem is the so-called Best–Next heuristic [39]. It starts with an empty
solution string and adds at each step the most promising letter until no more letters can
be added.

Local Search

Local search is a heuristic method that does not start from scratch but is given some
initial solution with the goal to improve it. To this end, solutions from a so called
neighborhood are explored. A neighborhood is established for an instance (F, c) of an
optimization problem by assigning each solution f ∈ F a set of neighbors N(f) ⊆ F . A
neighbor f ′ ∈ N(f) is typically generated by applying a specified set of changes – known
as move – to the current solution f .

A local search replaces at each step its current solution with a better solution from
a neighborhood until no improvement is possible to find. Different strategies exist
for selecting a neighbor. The simplest way is called first improvement where the first
neighbor that improves the current solution is selected in a deterministic way. In the best
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improvement strategy, all possible moves are tried and the best found solution is selected.
In random selection strategy, the solution is chosen by random from all neighbors that
improve the current solution.

Metaheuristics

Metaheuristics provide problem-independent approximate methods for optimization
problems. Usually, they are applying at least one of the presented basic heuristic
methods and incorporate other ideas in form of some higher-level framework. Many
such heuristics exist, well-known algorithms include Variable Neighborhood Search [53],
Tabu Search [31], Simulated Annealing [46], Ant Colony Optimization (see [5, 27]) and
Evolutionary Algorithms (see [4]). Since our heuristic approach for the m–CLCS problem
is based on Beam Search, we will introduce this method in detail and refer the interested
reader for more information about other metaheuristics to the cited articles or to Blum
and Raidl [9] and Talbi [62].

Beam search (BS) can be described as a heuristic derivative of B&B. It is known for
its application in the context of scheduling problems (see, e.g., [56, 64]), but it is not
restricted to any specific domain. The classic BS procedure performs a heuristic tree
search where the search space is traversed in a limited breadth-first-search (BFS) manner.
At each level of the search tree, only the most promising β nodes (w.r.t. some evaluation
function) are kept for further expanding while all remaining ones are discarded; the so
called beam width β is a parameter of the algorithm and needs to be chosen carefully.
Searching with small β risks cutting off branches that might contain good solutions while
searching with large β can require a lot of computation effort. Note that BS becomes a
pure greedy construction procedure when β = 1 and BS becomes a full BFS when β is
large enough to keep all nodes.
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CHAPTER 4
A Fast Heuristic for the m–CLCS

Problem

Before we establish our main search framework, we introduce essential preprocessing
structures and propose a greedy construction heuristic to quickly derive CLCS solutions
of reasonable quality.

4.1 Preprocessing Structures

In order to avoid performing identical computation steps over and over, commonly needed
information is computed only once at the beginning and stored for the rest of the process.
More specifically, our search framework makes use of the following two data structures
established during preprocessing:

• Succ[i, j, c] data structure stores for each string si, 1 ≤ i ≤ m, for each position
1 ≤ j ≤ |si| and for each letter c ∈ Σ the minimal (left-most) position x such that
x ≥ j ∧ si[x] = c. If no such position exists, we set Succ[i, j, c] := |si|+ 1.

• Embed[i, u] data structure stores for each string si, 1 ≤ i ≤ m and for each
position 1 ≤ u ≤ |P | the maximal (right-most) position of si such that P [u, |P |] is
a subsequence of si[x, |si|]. If no such position exists, we set Embed[i, u] := −1.

The Succ data structure is derived in O(m · n · |Σ|) time by a procedure presented in
Algorithm 4.1. The Embed data structure is derived in O(m · |P |) time, see Algorithm 4.2.
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Algorithm 4.1 Deriving Succ data structure
1: Input: alphabet Σ, S = {s1, · · · , sm}
2: Output: Succ data structure
3: Initialize: Succ as empty structure
4: for i← 1 to m do // scan through the input strings
5: len← |si|
6: for each c ∈ Σ do
7: Succ[i, len, a]← |si|+ 1 // initialize values for last position
8: end for
9: Succ[i, len, si[len]]← len

10: for j ← (len− 1) to 1 do // scan string in reverse way
11: for each c ∈ Σ do
12: if si[j] = a then
13: Succ[i, j, a]← j
14: else
15: Succ[i, j, a]← Succ[i, j + 1, a]
16: end if
17: end for
18: end for
19: end for
20: return Succ

Algorithm 4.2 Deriving Embed data structure
1: Input: S = {s1, . . . , sm}, pattern string P
2: Output: Embed data structure
3: Initialize: Embed[i, u]← −1 for all i = 1, . . . ,m, u = 1, . . . , |P |
4: for i← 1 to m do // scan through the input strings
5: u← |P |
6: for j ← |si| to 1 do // scan string in reverse way
7: if si[j] = P [u] then
8: Embed[i, u]← j
9: u← u− 1

10: if u < 1 then
11: break
12: end if
13: end if
14: end for
15: end for
16: return Embed
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4.2 Greedy Heuristic for the m–CLCS Problem
With this section we aim to provide a very fast mechanism for constructing adequate
CLCS solutions. To this end, we develop a greedy heuristic for the m–CLCS problem
that incorporates the idea of the Best–Next heuristic presented in [39] in context of the
m–LCS problem. The basic principle is straightforward: the algorithm starts with an
empty string and builds a solution, appending at each construction step the letter that
seems most promising at the moment. The procedure stops once no more letters can be
added.

Our greedy heuristic for the m–CLCS problem is presented in Algorithm 4.3. The
procedure starts by setting up the position vector pL = (pL

1 , . . . , p
L
m) ∈ Nm, referring

to the respective pieces of input strings that are relevant to further extend the current
greedy solution. We initialize pL := (1, . . . , 1) which means that the whole input strings
are considered. Moreover, value u := 0 which keeps track of the progress of fulfilling the
constraint, and solution s := ε are initialized. Then, at each step, the set of letters Σfeas
that can feasibly extend current greedy solution s (by appending one character to the end
of s) is determined, ensuring that a final outcome will contain pattern P as subsequence.
In more detail, set Σfeas is obtained efficiently by using Succ and Embed structures, a
pseudocode is provided in Algorithm 4.4. Afterwards, every extension possibility, each
given by one of the letters from Σfeas, is evaluated by a greedy criterion. The letter that
yields the lowest greedy value, denoted by c∗, is then appended to s. Moreover, when
extending the current solution, a new subproblem relevant for further extensions of the
current greedy solution is determined by updating the position vector pL w.r.t. letter c∗
(see line 11 in Algorithm 4.3). Further, value u, which is required to correctly compute
Σfeas, is increased by one if c∗ = P [u+ 1] holds. The steps of the procedure are repeated
until eventually Σfeas = ∅, returning a final greedy solution s.

A greedy criterion to evaluate feasible letters c ∈ Σfeas used to extend the current greedy
solution is given by

g(pL, u; c) = pen(u, c) +
m∑
i=1

Succ[i, pL
i , c]− pL

i + 1
|si| − pL

i + 1
, c ∈ Σfeas, where

pen(u, c) = 1
|P | − u+ IP [u+1]=c

, and c∗ ←− arg minc∈Σfeasg(pL, u; c). (4.1)

As remarked above, those letters with smaller g–values are preferred. Note that the sum
in (4.1) evaluates the amount of characters that are skipped (in relation to remaining
lengths) from further search when current greedy solution s is extended by a letter c. It
is already used in the context of the m–LCS problem and its greedy criterion. In addition
to it, a penalty value pen(u, c) contributes to the sum (note that IP [u+1]=c returns 1 if
P [u+ 1] = c is fulfilled, or 0 otherwise) giving a priority to the letter that matches the
next position of pattern P that is not yet included into the current solution s. Hence, we
intent more towards an increase of value u. The penalty value is constructed in a way
that including pattern P into solution s as soon as possible is slightly preferred from the
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start and continually more priority is given to it when approaching to the end of the
procedure where it remains to embed a shorter suffix of P into s.

Algorithm 4.3 Greedy Procedure for the m-CLCS Problem
1: Input: a problem instance (S = {s1, . . . , sm}, P,Σ)
2: Output: a heuristic solution s
3: pL

i ← 1, i = 1, . . . ,m
4: u← 0
5: s← ε
6: Σfeas ← Feasible(pL, u)
7: while Σfeas 6= ∅ do
8: c∗ ← arg minc∈Σfeas{g(pL, u; c) | c ∈ Σfeas)}
9: s← s · c∗

10: for i← 1 to m do
11: pL

i ← Succ[i, pL
i , c
∗] + 1

12: end for
13: if P [u+ 1] = c∗ then
14: u← u+ 1 // consider next letter in P
15: end if
16: Σfeas ← Feasible(pL, u)
17: end while
18: return s
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Algorithm 4.4 Feasible Procedure
1: Input: a problem instance (S = {s1, . . . , sm}, P,Σ), position vector pL, length u
2: Output: set of feasible letters Σfeas
3: Initialize: Σfeas ← ∅
4: for each c ∈ Σ do
5: pu ← u
6: if c = P [u] then // a strong match
7: pu ← u+ 1
8: end if
9: feasible← true;

10: for i← 1 to m do // scan through the input strings
11: if Succ[i, pL

i , c] > |si| ∨ (pu 6= |P | ∧ Succ[i, pL
i , c] > Embed[i, pu + 1]) then

12: feasible← false;
13: break
14: end if
15: end for
16: if feasible then
17: add c to Σfeas
18: end if
19: end for
20: return Σfeas
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CHAPTER 5
Search Space for the m–CLCS

Problem

In order to set up a general search framework for the m–CLCS problem, we first construct
the search space of the problem. We first derive the state graph for the m–CLCS problem
in Section 5.1. This state graph builds the foundation for later presented advanced search
techniques. Our beam search framework (Chapter 6) and our A∗ search (Chapter 7) both
operate on the state graph defined in this chapter.

An important part of any informed search algorithm is an efficient heuristic that evaluates
nodes and guides the search process. Thus, we derive several heuristic estimators to
assess how promising is to deal with a certain m–CLCS subproblem represented by a
node v from the state graph. In Section 5.2 we present upper bounds for the length of
the CLCS. These bounds are admissible and monotonic, so that they can be utilized in
the A∗ search. Afterwards, three novel heuristics, inspired by functions that work well in
the context of the LCS problem, are proposed for the m–CLCS problem to guide our
beam search. More specifically, we present a probability-based heuristic in Section 5.3, a
heuristic that estimates the length of a CLCS in Section 5.4, and a heuristic that prefers
nodes with larger remaining substrings in Section 5.5.

5.1 State Graph Definition
The state graph for the 2–CLCS problem has been proposed in our report [23]. In essence,
we follow the descriptions in the paper and introduce the state graph for the general
m–CLCS problem as follows.

Remember that I = (S, P,Σ) denotes considered problem instance. Let s be a string over
Σ that is a subsequence of all strings from S. Moreover, let pL

i be the position in si such
that si[1, pL

i − 1] is the minimal string among all strings from {si[1, x] | x = 1, . . . , pL
i − 1}
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that contains s as a subsequence (i = 1, . . . ,m). We say that pL = (pL
1 , . . . , p

L
m) is

the position vector induced by s. Note that, in this way, s induces a subproblem
I[pL] = {si[pL

i , |si|] | i = 1, . . . ,m}, because it can only be extended by potentially adding
letters that appear in all the remaining parts of the input strings. In this context, let prefix
P [1, k′] of pattern string P be the maximal string among all strings P [1, x], x = 1, . . . , |P |
such that P [1, k′] is a subsequence of s. We then say that s is a valid (partial) solution
iff P [k′ + 1, |P |] is a subsequence of all the strings in subproblem I[pL].

The state graph G = (V,A) of our beam search and A∗ search is a directed acyclic graph,
which—at any moment—is created on the fly by our algorithms. Each node v ∈ V (G)
stores a triple (pL,v, lv, uv), where pL,v is a position vector that induces subproblem
I[pL,v] = {si[pL,v

i , |si|] | i = 1, . . . ,m}, lv is the length of the currently best known valid
partial solution that induces pL,v, and uv is the length of the longest prefix string of
pattern string P that is contained as a subsequence in the best known partial solution
that induces node v. Moreover, there is an arc a = (v, v′) ∈ A with label c(a) ∈ Σ
between two nodes v = (pL,v, lv, uv) and v′ = (pL,v′ , lv

′
, uv

′) iff

• lv = lv
′ + 1 and

• Subproblem I[pL,v′ ] is induced by the partial solution that is obtained by appending
letter c(a) to the partial solution that induces v.

As remarked already above, we are only interested in meaningful partial solutions, and
our search algorithms builds the state graph on the fly. In particular, for extending
a node v, the outgoing arcs—that is, the letters that may be used to extend partial
solutions that induce node v—are determined as follows. First of all, those letters must
appear in all strings from I[pL,v]; we call this subset of the alphabet feasible letters. In
order to find the position of the first (left-most) appearance of each feasible letter in
the strings from I[pL,v] we make use of a successor data structure determined during
preprocessing that allows to retrieve each position in constant time. This position of
first appearance of a feasible letter c in string si[pL,v

i , |si|] is retrieved from Succ[i, pL,v
i , c]

for all i = 1, . . . ,m. Moreover, a feasible letter should not be taken for extending v
in case it is dominated by another feasible letter: We say that a letter c is dominated
by a letter c′ 6= c iff Succ[i, pL,v

i , c] ≥ Succ[i, pL,v
i , c′] for all i = 1, . . . ,m. Note that a

dominated letter cannot lead to a better solution than when taking the letter by which it
is dominated instead.

Henceforth, we denote the set of feasible and non-dominated letters for extending a node
v by Σnd

v ⊆ Σ. However, in order to generate only extensions of v that correspond to
feasible partial solutions, we additionally have to filter out those extensions that lead
to subproblems whose strings do not contain the remaining part of P as a subsequence.
These cases are encountered by utilizing Embed data structure that is built during
preprocessing, see Section 4.1. More specifically, if uv 6= |P |, we check for each letter
c ∈ Σnd

v if c 6= P [uv + 1] and Succ[i, pL,v
i , c] > Embed[i, uv + 1]. If that is the case, then

letter c cannot be used for extending a partial solution represented by v and consequently
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it is omitted from Σnd
v . An extension v′ = (pL,v′ , lv

′
, uv

′) is generated for each remaining
letter c ∈ Σnd

v , where pv′i = Succ[i, pvi , c] + 1 for i = 1, . . . ,m, lv′ = lv + 1 and uv′ = uv + 1
in case c = P [uv + 1], respectively uv′ = uv otherwise.

The root node of the state graph is defined by r = (pL,r = (1, . . . , 1)︸ ︷︷ ︸
m times

, lr = 0, ur = 0). Any

node whose partial solution cannot be further extended, i.e., the node has no outgoing
arcs, is called complete node. A longest path from the root node to a complete node of
the state graph represents an optimal solution of the CLCS problem.

((1,1),0,0)

((2,3),1,0) ((3,2),1,1)

((3,4),2,1)

((6,5),3,1)((4,6),3,1)

((7,9),4,2)((6,8),4,1)

((8,7),3,2)

((9,9),4,3)

((7,9),5,2)

((9,10),6,3)

((9,10),5,3)

((4,6),2,1) ((6,4),2,1)((7,3),2,2)

((7,9),3,2)

((9,10),4,3)

((6,8),3,1)
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Figure 5.1: Example showing the full state graph for the problem instance (S = {s1 =
bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a,b,c,d}). Marked by light-gray
color, there are four complete nodes representing non-extensible solutions. The optimal
solution is s = bcacbb of length 6 that corresponds to the node v = (pL,v = (9, 10), lv =
6, uv = 3). The longest path that corresponds to the optimal solution is displayed in
blue.

An example showing the full state graph for a given problem instance (S = {s1 =
bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a,b,c,d}) is shown in Figure 5.1.
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The root node, for example, can only be extended by letters b and c, because letters a
and d are dominated by the other two letters. Furthermore, note that node ((6, 5), 3, 1)
(induced by partial solution bcc) can only be extended by letter b. Even though letter d
is not dominated by letter b, adding letter d can only lead to infeasible solutions, because
any possible solution starting with bccd will have no pattern P = cbb as a subsequence.
Finally, the sequence of arc labels on the longest path is bcacbb, which is therefore the
(unique) optimal solution to this example problem instance.

5.2 Upper Bounds
Observe that the solutions for a CLCS problem instance with an empty pattern string
P = ε are equivalent to the solutions of an LCS problem instance with the same input
strings. Moreover, pattern string P only restricts available solutions, i.e., by adding a
pattern string P , the length of an solution can decrease but never increase. Thus, the
upper bounds developed for LCS subproblems [25] are also valid upper bounds for CLCS
subproblems. We present here two reasonably tight, efficiently calculable functions that
are known in the literature for the LCS problem.

The upper bound proposed by Blum et al. [7] determines for each letter an upper limit on
the number of its occurrences in any optimal solution. Summing up these values for all
letters from Σ, a valid upper bound on the length of the optimal solution is obtained by

UB1(v) =
∑
a∈Σ

min
i=1,...,m

{|si[ pL,v
i , |si| ] |a} (5.1)

The bound is efficiently calculated in O(m · |Σ|) time by making use of the intelligent
data structures, see more details in [26].

A DP–based upper bound, was introduced by Wang et al. [67]. It makes use of the DP re-
cursion for the LCS problem for all pairs of input strings {si, si+1}, i = 1, . . . ,m−1. More
in detail, for Si = {si, si+1}, a scoring matrix Mi (i = 1, . . . ,m−1) is generated on the ba-
sis of a DP–recursion for the classical LCS problem whose entryM [x, y], x = 1, . . . , |si|+1,
y = 1, . . . , |si+1|+ 1 corresponds to the length of LCS({si[x, |si|], si+1[y, |si+1|]}). Thus,
this results in an upper bound

UB2(v) = min
i=1,...,m−1

Mi[pL,v
i , pL,v

i+1]. (5.2)

Neglecting the preprocessing step for generating the scoring matrices, this bound can be
efficiently calculated in O(m) time.

The combination of both presented functions gives an even tighter upper bound for the
LCS problem by

UB(v) = min{UB1(v),UB2(v)}. (5.3)

A tightening of upper bounds could be done for the CLCS–problem by utilizing a Dynamic
Programming approach by Chin et al. [15] (we also refer to the approach by Deorowicz
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5.3. Probability–Based Heuristic

and Obstoj [22], where sparsity is exploited). For each two input strings si, sj ∈ S, i 6= j,
a scoring matrix Mij [x, y, z], 1 ≤ x ≤ |s1|, 1 ≤ y ≤ |s2|, 1 ≤ z ≤ |P |, can be generated;
an entry Mij [x, y, z] stores the longest common subsequence of si[x, |si|] and sj [y, |sj |]
containing P [z, |P |] as its subsequence.

Preprocessing all the scoring matrices Mij for 1 ≤ i ≤ j ≤ m, is a resource consuming
step (the number of such different matrices is trivially bounded by O(m2)), therefore
we set j := i+ 1 (each two consecutive strings here considered) and we preprocess only
matrices Mi = Mi,i+1, i = 1, . . . ,m− 1. Then, by following the derivation of UB2 for the
LCS problem [67], the scoring matrices Mi for the CLCS problem are derived and, in
that way, an upper bound is generated by

UBCLCS(v) = min
i=1,...,m−1

Mi[pL,v
i , pL,v

i+1, u
v]. (5.4)

In details, the DP recursion which constructs a scoring matrix Mi[x, y, z] of dimension
(|si|+ 1)× (|si+1|+ 1)× (|P |+ 1), for each i ∈ {1, . . . ,m−1} is determined by considering
different cases that can occur when determining the value of Mi[x, y, z]:

• If si[x] = si+1[y] = P [z] (a strong matching appears), then the value is equal to
1 +Mi[x+ 1, y + 1, z + 1];

• If si[x] = si+1[y], but P [z] 6= si[x]∨P [z] 6= si+1[y] (a weak matching appears), then
it is equal to 1 +Mi[x+ 1, y + 1, z];

• If si[x] 6= si+1[y], then it is equal to max{Mi[x+ 1, y, z],Mi[x, y + 1, z]}.

The initialization is done by setting:

Mi(x, |si+1|+ 1, |P |+ 1) = Mi(|si|+ 1, y, |P |+ 1) = 0 ∧ (5.5)
Mi(x, |si+1|+ 1, z) = Mi(|si|+ 1, y, z) = −∞, (5.6)

for x = 1, . . . , |si|+ 1, y = 1, . . . , |si+1|+ 1, and z = 1, . . . , |P |. Unluckily, even though
those structures establish straightforwardly a stronger upper bound than UB2, our
memory limit was not enough to keep them all in the memory for performing all our
experiments by utilizing UBCLCS(·) bound; simply, it was applicable only for small
instances (with up to n = 100, see more about the practical use of this structures
in Section 9. Therefore, their practical application is restricted and, thus, they are
interesting more from a theoretical point of view.

5.3 Probability–Based Heuristic
Mousavi and Tabatabar [54] derived a DP recursion which determines the probability
that any string s of length p is a subsequence of a random string s1 of length q. In this
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context, a random string means that the characters in s1 are uniformly distributed. Let
us denote the relation to be a subsequence by ≺subs.. The probability that s ≺subs. s1 can
be expressed by a DP matrix P subs(p, q), 0 ≤ p ≤ |s|, 0 ≤ q ≤ |s1|.

Under the given assumptions, the probability that random string s of length p is a
common subsequence of all input strings from S is approximated by means of the P subs(·)
DP table by

H(r) = Prob(s ≺subs. S) =
m∏
i=1

Prob(s ≺subs. si) =
m∏
i=1

P subs(p, |si|).

Choosing a proper value for p plays a crucial role in obtaining high-quality solutions.
This value is heuristically determined once at each level of a BS run, i.e., once for each
corresponding extension set (denoted by Vext, see Chapter 6). In order to obtain a proper
value for p in the context of the CLCS problem, we first determine

pmin := min
v∈Vext

(|P | − uv) . (5.7)

Note that the characters of P [pmin + 1, |P |] are common extensions of any partial solution
that relates to a subproblem of node v ∈ Vext. Thus, we set up the value of p by

p = pmin + min
v∈Vext

mini=1,...,m
{
|si| − pL,v

i + 1
}
− pmin

|Σ|

 . (5.8)

In detail, at some moment, the characters P [pmin + 1], . . . , P [|P |] will be encountered
as the labels of any path through node v ∈ Vext towards a complete node. As these
extensions are realized sooner or later, the probabilities that they occur as extensions
of the partial solutions of node v ∈ Vext are equal to 1. Therefore, the safe extensions
will contribute by pmin units to the value of p. We justify the use of the second sum
in equation (5.8) (heuristically) by the fact that the length of a CLCS gets smaller by
increasing the alphabet size and gets larger as the minimal length among the lengths of
the input string in I[pL,v] gets larger. We emphasize that there still might be room for
improving the choice of p. If p = 0, we set p = 1 in order to break ties. Thus, each node
v ∈ Vext has been evaluated by

H(v) =
m∏
i=1

P subs(p, |si| − pL,v
i + 1), (5.9)

where p is determined by (5.8), supposing independence between input strings. The
matrix P subs of probabilities is computed in preprocessing. Note that when setting
|P | = uv = 0, the H–heuristic developed for the LCS problem [54] is covered by (5.9).
Those nodes with a larger H–value are preferred among others.

28



5.4. Expected Length Calculation Heuristic on Random Strings

5.4 Expected Length Calculation Heuristic on Random
Strings

In this section we extend the state-of-the-art expected length calculation heuristic on
random strings for the LCS problem [25] towards the CLCS problem. The model is
established again on random input strings and random pattern P . In order to avoid
unnecessary repetitions in the derivation of the heuristic, we build upon the findings
of [25]. From there, it is known that

E[Y ] =
lmin∑
k=1

E[Yk] (5.10)

holds, where Y is a random variable denoting the length of an LCS, Yk a binary random
variable denoting that there is an LCS with a length of at least k and E(·) is denoting the
expectation. In the case of the CLCS problem, a similar formula can be derived by linking
corresponding Y and Yk variables, such that Yk is a binary random variable denoting
that there is an LCS with a length of at least k having pattern P as a subsequence. If
we assume the existence of at least one feasible solution (i.e., pattern P is a subsequence
of every input string), we get

E[Y ] = |P |+
lmin∑

k=|P |+1
E[Yk].

For k ≥ |P |, let Tk be the set of all subsequences of length k over alphabet Σ; there are
|Σ|k such subsequences. For each x ∈ Tk, we assign an event Evx: x is a subsequence
of S having P as its subsequence (obviously, it must be |x| ≥ |P |). As it was assumed
in the case of the LCS problem, independence among events Evx and Evy, for any
x 6= y, x, y ∈ Tk is assumed. Probability that string s ∈ Tk is a subsequence of all input
strings from S is equal to ∏m

i=1 P
subs(k = |s|, |si|). Further, the probability that random

pattern P is a subsequence of string s is equal to P subs(|P |, k), assuming

• that the distribution of the characters in s is uniform, and

• independence between the probabilities that events s ≺subs. si (∀i = 1, . . . ,m) and
P ≺subs. s occur.

From there, it follows that the probability that s is a common subsequence of all strings
from S that has pattern P as a subsequence is equal to P clcs(s, S) = P subs(|P |, k) ·∏m
i=1 P

subs(k, |si|).
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5. Search Space for the m–CLCS Problem

Note that, under our assumptions, Prob{P ≺subs. y} = Prob{P ≺subs. x} := P subs(|P |, k),
for any sample x, y ∈ Tk. Then, it follows that

E[Yk] = 1−

∏
s∈Tk

1− P clcs(s, S)


= 1−

(
1−

(
m∏
i=1

P subs(k, |si|)
)
· P subs(|P |, k)

)|Σ|k
, (5.11)

applying the assumed independence between the particular events and the definition of
the complement of an event. Summarizing the facts from formula 5.10 and formula 5.11,
the expected length calculation heuristic for a CLCS is approximated for any v ∈ V by

EXCLCS(v) = |P | − uv + (lmin − (|P | − uv + 1) + 1)−
lmin∑

k=|P |−uv+1

(
1−

(
m∏
i=1

P subs(k, |si| − pL,v
i + 1)

)
· P subs(|P | − uv, k)

)|Σ|k
=

= lmin −
lmin∑

k=|P |−uv+1

(
1−

(
m∏
i=1

P subs(k, |si| − pL,v
i + 1)

)
· P subs(|P | − uv, k)

)|Σ|k
(5.12)

Note that formula 5.12 covers also the case for LCS problem, i.e, when P = ε, for which
P subs(|P | − uv, k) = 1 holds.

Since |Σ|k might be a huge number, even non-storable within common double floating-
point arithmetic, we make use of the power decomposition to deal with the issue. In
details, each power can be decomposed as follows

(1− x)|Σ|k =


(
. . . (1− x)|Σ|k

′
. . .

)|Σ|k′
︸ ︷︷ ︸

b k
k′ c


|Σ|(k mod k′)

, (5.13)

for each x ∈ R. We set k′ = 25 in our implementation.
To calculate (5.12), we need O(m · n) time, but this we speed up since it is not necessary
to calculate each Ek = E[Yk], k = |P |, . . . , lmin, but just relevant ones that belong to the
interval (ε, 1 − ε). This is because most of the Ek values are nearly 0 or 1. We make
use of the divide-and-conquer technique exploiting the fact that the sequence {Ek}k
is decreasing and all the values of its items are in [0, 1] to detect the relevant interval
(ε, 1− ε) and calculate only those Ek which belong to the interval and in that way speed
up the calculation of (5.12). We emphasize that the same scheme has been used in [25]
for the LCS problem. Therefore, EXCLCS is calculated in expected runtime O(m logn).
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Additionally, an instability in calculation may occur when determining (1 − x)α for a
minor value of x and huge α due to cancellation effects in the classical floating point
arithmetic. We solved the issue by using following transformation. To ease the derivation,
let x = P subs(k, |si|) ·

∏m
i=1 P

subs(k, |si|) and α = |Σ|k. When x is supposed to be small,
i.e. in our implementation it means when x ≤ 10−10, we handle the case in the following
different ways. Numerically, unstable cases occur when x is small and α is huge. We
make use of the expression log(1− x)/x which is well approximated by the Taylor series
as −1− x

2 + o(x) when x close to 0, i.e.,

(1− x)α = expαx·
log (1−x)

x ≈ expαx(−1−x
2 ) . (5.14)

Calculation of α · x can be still be numerically unstable to calculate (since one product is
small while the other is large). Therefore, we may rewrite

α · x = explogα·x = expk log |Σ|+log x, (5.15)

If k log |Σ|+ log x large, the result of (5.14) will be negligible small. Our implementation
checks if k log |Σ| + log x > 300, in which case (1 − x)α < exp (−300), and therefore,
zero is returned. Otherwise, α̃ := αx(−1 − x

2 ) is determined. If α̃ is close to zero, i.e.
α̃ < 10−15 in our implementation, we may again use the Taylor expansion of exponential
function to get

(1− x)α = expα̃ ≈ 1 + α̃. (5.16)

For remaining cases, we consider α̃ to be reasonably large such that expα̃ can be calculated
in a numerically stable way and return this value as an approximate result of the (1−x)α.
Thus, whenever x ≤ 10−10, we get that

(1− x)α =


0, k · log |Σ|+ log (x) > 300
1 + α̃, k · log |Σ|+ log (x) ≤ 300 ∧ α̃ < 10−15

expα̃, otherwise.

5.5 Pattern Ratio Heuristic
For each node v, we may use the following heuristic

R(v) = mini=1,...,m(|si| − pL,v
i + 1)

|P | − uv + 1 . (5.17)

Note that a similar function was used in the context of the LCS problem in [69] and
is here extended towards the m–CLCS problem. The use of the pattern ratio heuristic
can be justified by the following two facts. First, the larger the length of the minimal
(remaining) string in I[pL,v] is, the longer is the expected CLCS. Second, the larger the
suffix string of P that remains to fulfill is, the shorter is the expected CLCS. Nodes with
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higher values are preferred over those with lower ones. Note that the use of (5.17) could
introduce many ties among nodes. To break them, we introduce a well-known k-norm
rule by

||v||kk =
m∑
i=1

(
|si| − pL,v

i + 1
|P | − uv + 1

)k
, k > 0,

and always preferring those nodes with higher || · ||k values. A value of k ∈ R+ is
considered as a parameter of the algorithm. We set up k = 2 (the euclidean distance
norm) in our experiments.
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CHAPTER 6
Beam Search for the m–CLCS

Problem

Beam search (BS) is a heuristic method to approach combinatorial optimization problems.
It is well-known for its application in the context of scheduling problems (see, e.g., [56, 64])
but it is widely used to many other fields. Blum et al. [7] was the first who applied BS
to solve the LCS problem. Later, due to the effectiveness which the BS heuristic showed,
many others followed their approach utilizing BS in order to solve larger LCS instances
heuristically, e.g., [54, 25].

6.1 General Beam Search Framework

In order to set up BS for the m–CLCS problem, we derive the state graph (node
structure, complete nodes and arcs) as explained in Section 5.1. Furthermore, a function
for evaluating the nodes is required. In the interest of being able to easily change the
method of evaluation so that various configurations can be tested, we define the heuristic
function h as a parameter of the algorithm. A general framework for using BS for the
LCS problem is presented in [25], the pseudocode of an adapted version of the General
BS framework in the context of the CLCS problem is shown by Algorithm 6.1.

The algorithm works on a set of nodes which is called beam, henceforth labelled by B.
At the start, the beam is initialized with only the root node, representing an empty
subsequence. At each iteration of the BS, procedure ExtendAndEvaluate(B, h, β, kext)
expands all nodes from B, generating an extension set Vext. At most bβkextc new nodes
are kept, which are determined by ranking the nodes according to a greedy criterion g(v, a)
(see equation (4.1)). If kext =∞, this step is skipped. The heuristic h is consequently
used to evaluate all nodes; the choices for h are discussed in Chapter 5. If any node
from the extension set is a complete node with a larger length lv than any found solution
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Algorithm 6.1 Beam Search for m–CLCS Problem
1: Input: a problem instance (S = {s1, . . . , sm}, P,Σ), h: heuristic function, ubprune:

upper bound function, β: beam width, kbest: parameter to check dominance, kext ≥ 1:
parameter to make pre-reduction of the beam size

2: Output: a feasible CLCS solution sclcs
3: create root node r ← ((1, ..., 1), 0, 0)
4: B ← {r}
5: sclcs ← ε
6: while B 6= ∅ do
7: Vext ← ExtendAndEvaluate(B, h, β, kext)
8: update sclcs if a complete node v with a new largest lv value reached
9: Vext ← Prune(Vext, ubprune) // optional

10: Vext ← Filter(Vext, kbest) // optional
11: B ← Reduce(Vext, β)
12: end while
13: return sclcs

so far, a new incumbent solution has been found, which is stored in sclcs. Procedure
Prune(Vext, ubprune) removes all nodes whose upper bound value is lower or equal than the
length of the best found solution so far; note that ubprune must be a valid upper bound.
To make pruning even at early iterations of BS possible, an initial solution is obtained
as the outcome of the Greedy method, executed before the BS procedure. Procedure
Filter(Vext, kbest) checks if there are nodes from Vext that are dominated by other nodes.
We say that a node v dominates another node v′ of same length iff pL,v

i ≤ pL,v′
i , for all

i = 1, . . . ,m ∧ uv ≥ uv′ . This presents an extension of the domination relation introduced
by Blum et al. [7] in the context of the LCS problem. Dominated nodes cannot lead to
better solutions than the nodes by which they are dominated, hence, they are removed.
As it can be a time-demanding task to examine all pairs of nodes, the domination is
checked for each node v ∈ Vext only against the best kbest nodes (with respect to their
heuristic values). The last step of each iteration of a BS run is Reduce(Vext, β), where
the best β nodes are selected w.r.t. heuristic h to generate the new beam for the next
iteration. We repeat the same steps until beam B is empty.

6.2 A Working Example of Beam Search

To illustrate the workings of BS, we revisit the earlier introduced example instance
(S = {s1 = bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a,b,c,d}) for which the
full state graph was already presented in Figure 5.1. The state graph generated by a run
of BS with β = 2, h(v) = lv + UB(v), pruning disabled and filtering with kbest =∞ on
the above instance is given in Figure 6.1. In the first extension step, two child nodes of
the root node are created. Since β = 2, both are kept and expanded again in the next
iteration resulting in four nodes at level 2 of the search tree. Both the nodes ((4, 6), 2, 1)
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and ((6, 4), 2, 1) are dominated by node ((3, 4), 2, 1) and are therefore dropped out from
further search. Subsequently, three nodes are created at iteration 3. To reduce the beam
to a size of two, the node ((8, 7), 3, 2) is dropped since its value from heuristic h(v) is
the lowest among the three nodes at this iteration. Then the BS continues expanding
nodes from the beam. The first complete node is found at iteration 5, but the search is
not yet finished. The best solution is finally found in iteration 6 when discovering node
((9, 10), 6, 3). Since there is no more nodes left in the beam to expand, the BS stops.

BS Steps

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

((1,1),0,0) h(v) = 6

((2,3),1,0)h(v) = 6 ((3,2),1,1) h(v) = 5

((3,4),2,1)h(v) = 6

((6,5),3,1) h(v) = 5((4,6),3,1)h(v) = 6

((7,9),4,2) h(v) = 5((6,8),4,1)h(v) = 6

((8,7),3,2)

h(v) = 4

((7,9),5,2)h(v) = 6

((9,10),6,3)h(v) = 6

((9,10),5,3) h(v) = 5

((4,6),2,1)

h(v) = 5

((6,4),2,1)

h(v) = 4

((7,3),2,2)

h(v) = 4

b c

c

ca

b

b

c

b

b

a cb

d

Figure 6.1: The example above shows the state graph generated by a run of BS (β = 2,
h(v) = lv +UB(v), kbest =∞, no pruning) for the instance (S = {s1 = bcaacbdba, s2 =
cbccadcbbd}, P = cbb,Σ = {a,b,c,d}). The nodes filled by light-gray color are
complete nodes of the state graph. Next to each node the value of the respective node
from heuristic h(v) = lv + UB(v) is displayed. The best found solution (which here is
also an optimal solution) obtained by BS is s = bcacbb of length 6, and it corresponds
to the complete node ((9, 10), 6, 3). The longest path that corresponds to that solution is
displayed in blue.
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CHAPTER 7
A∗ Search for the m–CLCS

Problem

A∗ is a well-known informed search algorithm that originated from the field of pathfind-
ing [35]. It is a graph traversal search, formulated for weighted graphs. It has been
successfully applied to solve the LCS problem and its variants [24, 67] up to completeness.
The basic principles of A∗ search were already described in Chapter 3, and we here set
up an A∗ search to solve the m-CLCS problem.

7.1 A∗ Search Algorithm

Our A∗ search for the m–CLCS problem works on the state graph (node structure,
complete nodes and arcs) described in Section 5.1. In order to set up the search, it
remains to derive an evaluation function f(v) = g(v) + h(v). We use g(v) := lv and an
upper bound on the length of the CLCS for h(v); possible candidates for this purpose
were proposed in Section 5.2, for the majority of our experiments we use h(v) := UB(v),
v ∈ V (G).

For the remaining part of this section, we mainly follow the description of our A∗
search that has been provided in our report [23]. In order for the search process to be
efficient, our implementation maintains two data structures: (1) a hash-map N storing all
nodes that were encountered during the search, and (2) an open list Q ⊆ N containing
all not yet expanded/treated nodes. More specifically, N is implemented as a nested
data structure of sorted (linked) lists within a hash map. The position vector pL,v

of a node v = (pL,v, lv, uv) is mapped to a list storing pairs (lv, uv). This structure
allows for an efficient membership check, i.e., whether or not a node that represents
subproblem a I[pL,v] was already encountered during the search, and a quick retrieval of
the respective nodes. Note that storing multiple nodes presenting one subproblem I[pL,v]
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might occur, as the following short example demonstrates: Consider the problem instance
with input strings s1 = bacxmnob, s2 = abcxmbno, s3 = acbxbmno, and pattern
string P = b. The A∗ search might, at some time, encounter node v1 = ((4, 4, 4), 2, 1)
induced by partial solution bx, and—at some other time—it might encounter another
node v2 = ((4, 4, 4), 3, 0) induced by partial solution acx. Even though the path from
the root node to node v1 is shorter than the path to node v2, the former still leads
to a better solution in the end (bxmno in comparison to acxb). As the information
which of the nodes leads to an optimal solution is not known beforehand, both nodes
are stored. Finally, the open list Q is realized by a priority queue with priority values
π(v) = lv +UB(v), for all v ∈ V . In case of ties, nodes with larger lv-values are preferred.
In the case of further ties, nodes with larger uv-values are preferred.

The search starts by inserting the root node of the state graph into N and Q. Then,
at each iteration, a node v with highest priority is retrieved from Q and expanded
by considering all successor nodes for c ∈ Σnd

v ). If such an extensions leads to a new
state, the corresponding node, denoted by vext, is added to N and Q. Otherwise, vext
is compared to the nodes from set Nrel ⊆ N containing those nodes that represent the
same subproblem I[pL,v]. Dominated nodes are identified in this way and dropped from
the search process, i.e., the dominated nodes are removed from N and Q. If node vext is
dominated by one of the nodes from Nrel, it can simply be discarded. Otherwise, it is
added to N and Q. In this context, given v1, v2 ∈ Nrel we say that v1 dominates v2 iff
lv1 ≥ lv2 ∧ uv1 ≥ uv2 . We would like to emphasize that detecting the domination in Nrel
was, on average, slightly faster when the elements of the lists were sorted in decreasing
order of their uv-values. Therefore, we used this ordering in our implementation.

As the upper bound function UB() is admissible—that is, it never underestimates the
length of an optimal solution—A∗ search yields an optimal solution whenever the node
selected for expansion is a complete node [35]. Moreover, note that UB() also is monotonic,
which means that the upper bound of any child node never overestimates the upper
bound of its parent node. This implies that no re-expansion of already expanded nodes
become necessary [35]. In general, A∗ search is known to be optimal in terms of the
number of node expansions required to prove optimality w.r.t. the upper bound and the
tie–breaking criterion used. A pseudocode of our A∗ search implementation for the CLCS
problem is provided in Algorithm 7.1.

7.2 A Working Example of A∗ Search

To illustrate an example of A∗ search, the state graph generated by performing an A∗
search on an instance (S = {s1 = bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ =
{a,b,c,d}) is given in Figure 7.1. In the first expansion step, two child nodes of the root
node are created. The next node for expansion is node ((2, 3), 1, 0) since it has a higher
priority value than node ((3, 2), 1, 1). The search then continues always expanding the
non-expanded node with the highest priority value. Once node ((9, 10), 6, 3) is selected
for expansion and detected to be a complete node, the search stops and the final solution
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Algorithm 7.1 A∗ Search for the m–CLCS Problem
1: Input: a problem instance (S = {s1, . . . , sm}, P,Σ)
2: Output: an optimal CLCS solution
3: Initialize: an empty hash-map N and priority queue Q
4: create root node r ← ((1, ..., 1), 0, 0) and add it to N and Q
5: while Q 6= ∅ do
6: pop node v with highest priority from Q
7: determine Σnd

v for node v
8: if Σnd

v = ∅ then // a complete node has been reached
9: return solution derived through path from root r to node v

10: else
11: for each c ∈ Σnd

v do
12: generate node vext by appending c to the partial solution of node v
13: retrieve set Nrel ⊆ N presenting the subproblem I[pL,vext ]
14: insert← true
15: for each vrel ∈ Nrel do
16: if lvrel ≥ lvext ∧ uvrel ≥ uvext then
17: insert← false
18: break // domination condition is fulfilled
19: end if
20: if lvext ≥ lvrel ∧ uvext ≥ uvrel then
21: remove vrel from N and Q
22: end if
23: end for
24: if insert then // a new state generated
25: add vext to N and Q
26: end if
27: end for
28: end if
29: end while
30: return no feasible solution exists

is derived through the arc labels on the path from root node to node ((9, 10), 6, 3). Note
that the two nodes ((6, 5), 3, 1) and ((3, 2), 1, 1) remain in the priority queue until the
end and get never expanded. Note that about half of the overall states of the full state
graph are not even visited by A∗ which might give us an insight into the efficiency of the
search.
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((1,1),0,0) π(v) = 6

((2,3),1,0)π(v) = 6 ((3,2),1,1) π(v) = 5

((3,4),2,1)π(v) = 6

((6,5),3,1)

π(v) = 5

((4,6),3,1)

π(v) = 6

((7,9),4,2)((6,8),4,1)π(v) = 6

((8,7),3,2)

((9,9),4,3)

((7,9),5,2)π(v) = 6

((9,10),6,3)π(v) = 6

((9,10),5,3)

((4,6),2,1) ((6,4),2,1)((7,3),2,2)

((7,9),3,2)

((9,10),4,3)

((6,8),3,1)
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c
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b

b
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bd
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Figure 7.1: The above is an example given, showing the full state graph generated for the
instance (S = {s1 = bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a,b,c,d}). The
states created by the run of A∗ search are drawn solid, while the other (not reached) states
are dashed and transparent. Displayed next to each node expanded by A∗ search is an
priority value of the respective node, i.e., π(v) = lv + UB(v). After 6 node expansions, a
proven optimal solution s = bcacbb is discovered by the A∗ algorithm, and it corresponds
to the complete node ((9, 10), 6, 3). The longest path that corresponds to the optimal
solution is displayed in blue.
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CHAPTER 8
Algorithms for the Classical

2–CLCS Problem

In this chapter we describe the most relevant DP-based algorithms from literature for
the classical 2–CLCS problem [63] with two input strings s1 and s2 and a pattern string
P . Moreover, in Section 8.6 a model to solve the 2–CLCS Problem with integer linear
programming (ILP) is formulated. We are not aware of any ILP model proposed for the
2–CLCS problem so far, so from computational point-of-view it is interesting to check
efficiency of the general-purpose state-of-the-art solvers, such as Cplex solver, on this
problem. Computational studies are then performed for all of the described algorithms
and our A∗ approach in Chapter 9.

8.1 Algorithm by Chin et al.
The approach of Chin et al. [15] uses of a three-dimensional matrix M to calculate the
CLCS. In detail, for any 0 ≤ i ≤ |s1|, 0 ≤ j ≤ |s2|, 0 ≤ k ≤ |P |, the length of an optimal
solution for the CLCS subproblem of s1[1, i] and s2[1, j] with respect to P [1, k] is stored
at M(i, j, k). Matrix M is defined by the following DP recursive relation:

M(i, j, k) =



1 +M(i− 1, j − 1, k − 1), if i, j, k > 0 ∧
∧ s1[i] = s2[j] = P [k]

1 +M(i− 1, j − 1, k), if i, j > 0, s1[i] = s2[j] ∧
∧ (k = 0 ∨ s1[i] 6= P [k])

max{M(i− 1, j, k),M(i, j − 1, k)}, if i, j > 0 ∧ s1[i] 6= s2[j]

(8.1)

with boundary conditions M(i, 0, 0) = 0, M(0, j, 0) = 0, M(i, 0, k) = −∞, M(0, j, k) =
−∞ for i = 0, ..., |s1|, j = 0, ..., |s2| and k = 1, ..., |P |. The solution string for any sub-
problem can be constructed by backtracking the computation path from its corresponding
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8. Algorithms for the Classical 2–CLCS Problem

matrix cell M(i, j, k) to M(0, 0, 0) and at each step prepending the letter s1[i] if the
value was computed from M(i− 1, j − 1, k) or M(i− 1, j − 1, k− 1). The time and space
complexity of the algorithm of Chin et al. is O(|s1| · |s2| · |P |).

8.2 Algorithm by Arslan and Eğecioğlu
Another algorithm to solve the classical 2–CLCS problem in O(|s1| · |s2| · |P |) time was
proposed by Arslan and Eğecioğlu [3]. Their method calculates the optimal length of
CLCS subproblems in a similar way as the approach of Chin et al., but it is based on
multiple three-dimensional matrices defined as follows:

M(i, j, k) = max{M ′(i, j, k),M(i, j − 1, k),M(i− 1, j, k)} (8.2)

with
M ′(i, j, k) = max{M ′′(i, j, k),M ′′′(i, j, k)} (8.3)

and

M ′′(i, j, k) =


1 +M ′′(i− 1, j − 1, k − 1), if (s1[i] = s2[j] = P [k]) ∧

(k = 1 ∨ (k > 1 ∧
∧ M(i− 1, j − 1, k − 1) > 0))

0, otherwise

(8.4)

M ′′′(i, j, k) =


1 +M ′′′(i− 1, j − 1, k), if (s1[i] = s2[j]) ∧

(k = 0 ∨M(i− 1, j − 1, k) > 0)
0, otherwise

(8.5)

and boundary conditions M(i, 0, k) = 0, M(0, j, k) = 0 for i = 0, ..., |s1|, j = 0, ..., |s2|
and k = 0, ..., |P |. To obtain not only the length but also an actual CLCS, one needs
keep track of the current solution string along with the calculations. A specialty of
the proposed algorithm is that it can easily be adapted to solve a variant of the CLCS
problem where the objective is to find an LCS for s1, s2 and a sequence, whose edit
distance from pattern P is less than a positive integer that is given in advance.

8.3 Algorithm by Deorowicz
The algorithm developed by Deorowicz [21] was the first sparse approach, i.e., it is only
calculating some and (usually) not all partial solutions. It solves the 2–CLCS problem in
O(|P | · (|s1| · L+R) + |s2|) time where L is the length of LCS between s1 and s2 and R
is the number of pairs of matching positions between s1 and s2. In detail, the matrix
of computation is processed for each level k = 0, . . . , |P | in a row-wise manner and an
ordered list is maintained to store for each rank (representing the assumed length of a
CLCS) the lowest possible column number. Furthermore, a two-dimensional matrix T
is used to store computed values of the current and previous level. For each row i and
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column j, s.t. s1[i] = s2[j], a partial solution is computed. If s1[i] = s2[j] 6= P [k], then
the value for the match at (i, j) is calculated from the highest rank in the list with a
column number lower than j. Otherwise if s1[i] = s2[j] = P [k], the value is calculated
from matrix T . When for some rank a lower column number than previously known is
found, the corresponding list entry is updated (or created if none is there) and the new
information is cascaded to all following list entries. On completion, the highest rank in
the list corresponds to the length of a CLCS. The algorithm is especially suited for a
larger alphabet Σ.

Improvements of the algorithm were later proposed by Deorowicz and Obstoj [22]. They
introduce so called external–entry points (EEP) [36], initially proposed for the pairwise
sequence alignment problem, with the purpose of omitting those cells in computation
that do not contribute to optimal CLCS solutions. We did our best to re-implement those
improvements but were not successful due to lack of information and open questions
concerning the integration of EEP into their approach. The both authors were contacted,
but they have never replied to our queries.

8.4 Algorithm by Iliopoulos and Rahman
Iliopoulos and Rahman [42] proposed another sparse algorithm to solve the 2–CLCS
problem in O(|P | ·R · log log |s1|+ |s2|) time where R is the number of pairs of matching
positions between s1 and s2. They modified the dynamic programming formulation of
Arslan and Eğecioğlu and developed the following:

M(i, j, k) = max{M ′(i, j, k),M ′′(i, j, k),M(i, j − 1, k),M(i− 1, j, k)} (8.6)

with
V1 = max

1≤li<i,1≤lj<j,s1[li]=s2[lj ]
{M(li, lj , k − 1)} (8.7)

M ′(i, j, k) =
{

1 + V1, if (s1[i] = s2[j] = P [k]) ∧ (k = 1 ∨ (k > 1 ∧ V1 > 0))
0, otherwise

(8.8)

V2 = max
1≤li<i,1≤lj<j,s1[li]=s2[lj ]

{M(li, lj , k)} (8.9)

M ′′(i, j, k) =


1, if (s1[i] = s2[j]) ∧ (i = 1 ∨ j = 1)
1 + V2, if (s1[i] = s2[j]) ∧ (k = 0 ∨ V2 > 0)
0, otherwise.

(8.10)

In the algorithm of Iliopoulos and Rahman, only matrix values where s1[i] = s2[j] are
calculated. Some extra variables are used to keep track of the current solution string. To
retrieve the values of V1 and V2, a BoundedHeap data structure [11] realized by means
of Van Emde Boas (vEB) trees [65] is used. In this way, updating and finding values in
the heap can be done in O(log logn) amortized time where n is the maximum number of
keys supported by the BoundedHeap data structure.
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8.5 Algorithm by Hung et al.
Very recently, Hung et al. [40] presented an algorithm that solves the 2–CLCS problem
in O(|P | · L · (|s1| − L)) time where L denotes the length of a CLCS and |s1| ≤ |s2|.
Hence, the approach is especially suited for input strings that are highly similar. It was
developed on the basis of the diagonal concept for the LCS problem by Nakatsu et al. [55].
The algorithm builds a table D of dimension |P | × L. Every cell Di,l of the table stores
a set of triples. Hereby, each triple (i′, j, k) ∈ Di,l, i′ ≤ i refers to a common subsequence
of length l for s1[1, i′] and s2[1, j] with respect to P [1, |P | − k]. The elements belonging
to Di,l are generated by extending all the partial solutions from Di−1,l−1 and further
adding all triples of Di−1,l. Subsequently, a domination check is performed to filter out
those triples that are dominated by another triple within the same table cell. When a
triple (i′, j, 0) ∈ Di,l is encountered and there is no other (i′′, j′′, 0) ∈ Di,l, i′ 6= i′′ and
j 6= j′′, it implies that a CLCS of s1[1, i′], s2[1, j] with respect to P is of length l. Finally,
the largest such found l over the course of the computations represents the length of a
CLCS of the problem instance.

8.6 An ILP model for the 2–CLCS Problem
We are not aware of any previous approaches that uses integer programming techniques
to solve the 2–CLCS problem. In order to check efficiency in course of our experimental
studies, we formulate an ILP model as follows by extending the ILP model proposed for
the LCS problem [8]. We say that (i, j) is a weak matching iff s1[i] = s2[j], 1 ≤ i ≤ |s1| and
1 ≤ j ≤ |s2|. Similarly, we say that (i, j, k) is a strong matching iff s1[i] = s2[j] = P [k],
1 ≤ k ≤ |P |. For each weak matching (i, j) we assign a binary variable zij ; the set of
such variables is denoted by Z. Similarly, for each strong match, a binary variable wijk
is assigned; the set of all such variables is denoted by W . Two different variables zij
and zkl from Z are in conflict iff (i ≥ j and k > l) ∨ (i > k and j ≤ l) holds. Similarly,
we say that two different variables wijk, wpqr ∈W are in conflict iff (zij and zpq are in
conflict) ∨ (k = r)∨ (if i > p then k ≤ r∨ if i < p then k ≥ r) holds. An ILP model for
the 2–CLCS problem is then stated as follows:

max
∑
z∈Z

z (8.11)

s.t.

zij + zkl ≤ 1 for all zij , zkl ∈ Z, zij 6= zkl, in conflict (8.12)
wijk + wpqr ≤ 1 for all wijk, wpqr ∈W,wijk 6= wpqr, in conflict (8.13)∑
w∈W

w = |P | (8.14)

wijk ≤ zij for all i = 1, . . . , |s1|, j = 1, . . . , |s2|, k = 1, . . . , |P | (8.15)
zij , wpqr ∈ {0, 1} for all zij ∈ Z,wpqr ∈W. (8.16)
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Constraint (8.14) ensures that pattern string P is satisfied, i.e., exactly |P | strong
matchings are there in a feasible solution. By constraint (8.15) a relation between the
strong matches and weak matches (i.e., the corresponding variables) is established. More
precisely, we force that strong matches included into a solution are at the same time
weak matches, i.e., ∀i, j, k if wijk = 1 then zij = 1. Constants (8.12)–(8.13) ensure that
neither of two variables from Z or W that are in conflict are turned on (i.e., 6= 0) at
the same time (the relation of “being subsequence” is kept). Note that when P = ε, the
above model yields the ILP model for the basic LCS problem [8]. However, this model
does not scale well to the general m–CLCS problem since the number of constraints in
the model grows exponentially in instance size and, therefore, this model will only fit to
solve the 2–CLCS problem.
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CHAPTER 9
Experimental Studies

In this chapter we describe the exhaustive experimental studies of the devised concepts.
We start with the execution environment and implementation details in Section 9.1 and
the used benchmark instances in Section 9.2. In Section 9.3, we study the performance of
our A∗ search on the well-studied 2–CLCS problem and compare it to the performance of
the existing state-of-the-art algorithms from literature specialized in solving this problem.
Finally, in Section 9.4, we present computational results obtained from our A∗ search,
greedy heuristic and a several beam search configurations for the m–CLCS problem.

9.1 Setup and Implementation Details

All algorithms were implemented in C++ and the experiments were conducted in single-
threaded mode on a machine with an Intel Xeon E5–2640 processor with 2.40 GHz and
a memory limit of 32 GB. The maximum computation time allowed for each run was
limited to 15 minutes, i.e., 900 seconds. All the implementations were compiled using
the C++ compiler GCC 7.4 with the highest available optimization level (-O4 flag has
been turned on). The ILP model described in Section 8.6 was executed by Cplex 12.7
in single-threaded execution.

We aimed to re-implement all algorithms from literature the way they were described in
their original articles as the respective code could not been obtained. In a few cases, due
to a lack of sufficient details, we had to make our own specific implementation decisions.
In particular, this was the case for the approach of Iliopoulos and Rahman [42]. The
bounded heap data structure used in the algorithm has to be initialized for different indices,
and it remains unclear how this has originally been done. In our implementation we
create a new bounded heap for a new index by copying all the contents from the bounded
heap of a previous index. This is the most time-demanding part of the algorithm, which
is in particular noticed in the context of instances with large values of n.
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We emphasize that in general, we did our best to achieve efficient re-implementations of
the approaches from literature for the experimental comparison.

9.2 Benchmark Instances

For each combination of the number of input stringsm ∈ {10, 50, 100}, the length of strings
n ∈ {100, 500, 1000}, the alphabet size |Σ| ∈ {4, 20} and the ratio between the length of
the pattern string and the length of the largest input strings p′ = |P |

n ∈
{

1
50 ,

1
20 ,

1
10 ,

1
4 ,

1
2

}
,

10 instances are randomly generated, which gives 900 instances in total1. Each of instance
sets is generated w.r.t. the following procedure. First, a pattern string P is generated
uniformly-at-random (each character from Σ has equal probability to be chosen as i-th
character of P ). Further, we generate m input strings of equal length n by randomly
generating different |P | positions for each si and then setting up the characters of P at
those positions. Remaining characters of each string si are filled in by choosing letters
uniformly-at-random over alphabet Σ. This procedure ensures that at least one feasible
CLCS solution exists to any of the generated instances.

We also apply the procedure as described above to generate the benchmark set for the
2–CLCS problem such that for each combination of the alphabet size |Σ| ∈ {4, 12, 20} and
the length of input strings n ∈ {100, 500, 1000, 2000}, we generate 10 instances, which
gives us 600 instances in total. In addition to these artificially generated instances, we
further use a benchmark suite from [22] that contains strings representing real-world
biological sequences2. This benchmark set is henceforth called Real. Its data sets are
taken from the experiments on the constrained multiple sequence alignment problem
presented in [50] and [16]. Each possible pair of sequences within a data set together with
some assumed constraint sequence build an instance for the 2–CLCS problem. Properties
of the data sets are shown in Table 9.1. Overall, benchmark set Real consists of 121
problem instances.

Table 9.1: Data sets in the real data benchmark suite from [22].

data set number of
sequences

sequence length
(min, med, max)

|Σ| origin

ds0 7 (111, 124, 134) 20 [16]
ds1 6 (124, 149, 185) 20 [16]
ds2 6 (131, 142, 160) 20 [16]
ds3 5 (189, 277, 327) 20 [16]
ds4 6 (98, 114, 123) 20 [50]

1The instances for the m–CLCS problem are available at https://www.ac.tuwien.ac.at/
files/resources/instances/m-clcs.zip

2The instances for the 2–CLCS problem are available at https://www.ac.tuwien.ac.at/files/
resources/instances/clcs/2d-clcs.zip
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9.3. Computational Results for the 2–CLCS Problem

9.3 Computational Results for the 2–CLCS Problem
In this section we analyze the performances of our exact algorithms and the approaches
from literature. We compare

• A∗ search presented in Chapter 7,

• the ILP model proposed in Section 8.6, and

• several state-of-the-art algorithms from literature, specialized for solving the 2–
CLCS problem, as listed below:

– Algorithm by Chin et al. [15], labeled by Chin;
– Algorithm by Deorowicz [21], labeled by Deo;
– Algorithm by Arslan and Eğecioğlu [3], labeled by AE;
– Algorithm by Iliopoulos and Rahman [42], labeled by IR;
– Algorithm by Hung et al. [40], labeled by Hung.

A short description of these 2–CLCS algorithms has been given in Chapter 8.

We present results and observations from our report [23], as well as additional data and
findings from experiments on the instances of large size (n = 2000) and experiments with
our ILP approach. Tables 9.2–9.7 show the runtimes for each re-implemented algorithm
from literature as well as our A∗ search and our ILP approach in seconds averaged over
each group of instances. Results for the artificial instance sets are subdivided into five
different subclasses w.r.t. the value of p′, which determines the length of pattern string P .
Concerning benchmark suite Real, the average running times refer to all those instances
that belong to the respective data set in combination with a pattern P , cf. Table 9.7.
For each instance group (line), the lowest runtimes among the competing algorithms
are shown in bold font. The first two columns present the properties of the instance
group, while the third column |s| lists the average length of the optimal solutions for the
respective problem instances. The following columns are reserved to report the average
running times of Chin, Deo, AE, IR, Hung, our A∗ algorithm and of our ILP approach,
respectively.

The following observations can be drawn from these results:

• The small instances (where n = 100) are easy to solve and all competitors require
only a fraction of a second for doing so; only for the ILP approach more computation
time is needed and it fails to solve any of the instances with n = 100 and |Σ| = 4 or
n ≥ 500. The first of the other algorithms that starts losing efficiency with growing
input string length is IR. Already starting with n = 500, the computation times
start to grow significantly in comparison to the other approaches. This might be
due to our design decision concerning the issue with the BoundHeap data structure,
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as mentioned before. However, this is most likely due to the complexity of the
utilized data structure.

• Algorithm Chin clearly outperforms Deo for small alphabet size |Σ|. With growing
|Σ|, as already noticed in earlier studies [21], Deo becomes more efficient. In fact,
the two approaches perform similarly for |Σ| = 20. The advantages of Deo over
Chin are noticed in particular for higher p′; see Table 9.5.

• Algorithm Hung generally performs better than Deo and Chin. This confirms
the conclusions from the computational study in Hung et al. [40].

• With increasing p′ and thus an increasing length of P , all approaches degrade in
their performance, except for A∗ and Hung, which still remain highly efficient.

• Only A∗, Chin and Hung are able to solve all of the largest instances (where
n = 2000) within the given time and memory limit.

• A general conclusion for the artificial benchmark set is that A∗ search is in most
cases about one to two orders of magnitude faster than Hung, which is overall the
second-best approach.

• Concerning the results for benchmark set Real (see Table 9.7), we can conclude
that all algorithms only require short times as the input strings are rather short.
Nevertheless we can also see here that the A∗ search is almost consistently fastest.

• Figure 9.1 shows the influence of the instance length on the algorithms’ runtimes
for |Σ| = 4 and |Σ| = 20. Note that IR and ILP are not included here since they
were obviously the slowest among the competitors. It can be noticed that the
performance of A∗ is the only one that does not degrade much with increasing n.

• Figure 9.2 shows the influence of the length of P on the algorithms’ runtimes for
n = 500 and n = 1000 (in log-scale). It can be noticed again that A∗ does not
suffer much from an increase of the length of P . This also holds for Hung but not
the other competitors, whose performance degrade with increasing |P |.

Finally, we also compare the amount of work done by the algorithms in order to reach
the optimal solutions. In the case of A∗, this amount of work is measured by the number
of generated nodes of the state graph. In the case of Deo, this refers to the number of
different keys (i, j, k) generated during the algorithm execution. Finally, in the case of
Hung, this is measured by the amount of newly generated nodes in each Di,l (which
corresponds to the amount of non-dominated extensions of the nodes from Di−1,l−1). Let
us call this measure the amount of created nodes for all three algorithms. This measure
is shown in log-scale in Figure 9.3 for the instances with n = 500. The x-axis of these
graphics varies over different ratios p′ = |P |

n . The curve denoted by Max (see legends) is
the theoretical upper bound on the number of created nodes, which is |s1| × |s2| × |P | for
an instance ({s1, s2}, P,Σ). The graphics clearly show that A∗ creates the fewest nodes
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in comparison to the other approaches. The difference becomes larger with an increasing
length of P , which correlates with an increase in the similarity between the input strings.
For those instances with strongly related input strings, the upper bound UB used in
the A∗ search is usually tighter, which results in fewer node expansions. The amount of
created nodes in A∗ decreases with an increasing length of P after some point, because
the search space becomes more restricted; see Figure 9.3 and |Σ| = 4 from p′ ≥ 1

4 onward
and |Σ| = 20 from p′ ≥ 1

20 onward.

Table 9.2: Instances with p′ = |P |
n = 1

50 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A* ILP

4 100 60.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 -
4 500 319.3 < 0.1 0.1 0.2 6.5 0.1 < 0.1 -
4 1000 646.3 0.2 1 1.3 86.4 0.5 < 0.1 -
4 2000 1295.9 2.7 3.9 10.2 890.6 3.6 0.2 -

12 100 40.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1 42.0
12 500 216.0 < 0.1 0.1 0.2 2.9 0.2 < 0.1 -
12 1000 435.5 0.3 0.5 1.4 39.4 1 0.1 -
12 2000 876.4 2.6 3.3 10.2 453.8 7.6 0.2 -
20 100 33.5 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 6.4
20 500 175.7 < 0.1 0.1 0.2 2.2 0.2 < 0.1 -
20 1000 355.4 0.3 0.5 1.4 26.6 1.1 < 0.1 -
20 2000 714.9 2.6 3 9.2 247.2 7.8 0.1 -

Table 9.3: Instances with p′ = |P |
n = 1

20 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A* ILP

4 100 61.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 -
4 500 323.0 0.1 0.5 0.4 15.7 0.2 < 0.1 -
4 1000 645.9 0.9 1.8 3.4 215.5 1.2 0.1 -
4 2000 1299.8 7 9.8 28.9 - 11.4 0.1 -

12 100 41.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1 88.7
12 500 215.3 0.1 0.2 0.4 5.3 0.3 < 0.1 -
12 1000 437.0 0.9 1.1 3.4 69.2 2.2 0.2 -
12 2000 876.4 6.2 8.2 33.1 593.6 20.4 0.2 -
20 100 32.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 11.7
20 500 170.9 0.1 0.2 0.3 3.3 0.2 < 0.1 -
20 1000 348.4 1 1.1 3.5 40.6 1.7 0.2 -
20 2000 696.1 6.7 7.6 30.1 387.1 14.6 0.9 -

Table 9.4: Instances with p′ = |P |
n = 1

10 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A* ILP

4 100 62.6 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 -
4 500 320.9 0.3 0.6 0.9 26.8 0.4 < 0.1 -
4 1000 646.4 1.8 3.5 9.2 331.2 3.3 < 0.1 -
4 2000 1300.0 14.6 20.2 185.5 - 26 0.1 -

12 100 40.5 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1 172.1
12 500 207.1 0.2 0.3 0.9 7.3 0.3 < 0.1 -
12 1000 419.0 2.1 2.2 8.3 91.1 2.7 0.2 -
12 2000 839.1 14.6 15.9 211 775.1 19.3 0.4 -
20 100 31.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 12.3
20 500 157.4 0.2 0.3 0.9 5.3 0.2 < 0.1 -
20 1000 317.9 1.8 2.1 8.4 68.1 2 < 0.1 -
20 2000 636.9 14.7 14 209.6 626 15.7 0.2 -
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Figure 9.1: Computation times for 2–CLCS problem with p′ = 1
20 .
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Figure 9.2: Computation times for 2–CLCS problem with |Σ| = 20.
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Figure 9.3: Average amount of created nodes for 2–CLCS problem with n = 500.
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Table 9.5: Instances with p′ = |P |
n = 1

4 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A* ILP

4 100 63.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 -
4 500 320.1 0.6 1.4 2.7 34.8 0.5 < 0.1 -
4 1000 642.5 5 6.6 113.6 436.6 4.5 0.1 -
4 2000 1281.6 90.3 - - - 28.4 0.6 -

12 100 39.9 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1 463.11

12 500 203.0 0.6 0.7 3 18.7 0.3 < 0.1 -
12 1000 413.2 5.3 5.7 112 213.2 3.2 < 0.1 -
12 2000 818.7 100.8 - - - 23.1 0.1 -
20 100 35.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 40.0
20 500 175.5 0.6 0.6 3.3 14.4 0.3 < 0.1 -
20 1000 351.1 5.2 5.9 105.4 154.8 1.8 0.1 -
20 2000 704.1 81.3 - - - 17.3 0.1 -

1 9 out of 10 instances solved to optimality

Table 9.6: Instances with p′ = |P |
n = 1

2 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A* ILP

4 100 63.9 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 -
4 500 325.5 1.4 1.5 22.5 60.6 0.4 < 0.1 -
4 1000 652.5 19.1 12.6 336.5 739.4 3.6 < 0.1 -
4 2000 1307.3 548.4 - - - 27.2 0.1 -

12 100 54.6 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 884.71

12 500 276.5 1.4 1.4 23.9 34.2 0.2 < 0.1 -
12 1000 544.3 17.8 11.3 347.5 362.2 2.4 0.1 -
12 2000 1093.6 597.6 - - - 15.3 0.1 -
20 100 53.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1 152.8
20 500 264.9 1.2 1.3 21.5 30.6 0.2 < 0.1 -
20 1000 524.5 18.8 11.1 341 278.8 1.5 0.1 -
20 2000 1055.5 558.2 - - - 12 0.1 -

1 Only 1 out of 10 instances solved to optimality

Table 9.7: Instances from benchmark set Real: Average runtimes in seconds.

data set P |s| Chin Deo AE IR Hung A* ILP

ds0 HKH 60.62 0.012 0.015 0.012 0.026 0.017 0.011 33.94
ds1 HKH 64.00 0.012 0.017 0.013 0.032 0.019 0.015 332.05
ds1 HKSH 63.93 0.011 0.021 0.017 0.033 0.017 0.011 311.31
ds1 HKSTH 63.87 0.016 0.022 0.019 0.043 0.024 0.012 287.76
ds2 HKSH 79.60 0.015 0.020 0.016 0.030 0.052 0.012 93.60
ds2 HKSTH 77.87 0.013 0.018 0.016 0.030 0.051 0.013 157.26
ds3 HKH 103.90 0.018 0.026 0.019 0.138 0.188 0.014 834.19
ds4 DGGG 43.87 0.012 0.022 0.014 0.023 0.049 0.012 36.62

9.4 Computational Results for the m–CLCS Problem

In this section, we discuss the results of our computational studies for the general m–
CLCS problem. All experiments were conducted with the benchmark instances presented
in Section 9.2. Since BS takes several configuration parameters, which affect outcome
and computation time, finding a proper setting is an important task. To this end, we first
did preliminary experiments on BS with various parameter settings before we conducted
our main studies.
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9.4.1 Comparison between different Beam Search Configurations

In this series of experiments, we evaluate the performance of different beam search
configurations and study the impact of beam width β and the filtering parameter kbest
on solution quality and computation time. We compare four beam search configurations:

• BS guided by upper bound UB presented in formula 5.3 – henceforth labeled by
BS-Ub,

• the configuration of BS guided by the probability heuristicH presented in Section 5.3
– henceforth labeled by BS-Prob,

• the configuration whose search is guided by an expected length calculation according
to formula 5.12) – henceforth labeled by BS-Ex,

• the configuration of BS guided by the pattern ratio heuristic R presented in
Section 5.5 – henceforth labeled by BS-Pat.

First, each of the configurations was executed with the following values of the beam size
β ∈ {1, 10, 100, 1000, 2000, 5000}, fixed kbest = 100, kext = ∞ and Prune(·) procedure
was active (set up in this way was the results of some preliminary runs) on all 900
instances. Figure 9.4 presents the solution quality and computation time averaged
over all instances. To study the effects of filtering, each of the BS configurations was
then executed for kbest ∈ {0, 10, 50, 100, 200} (kbest = 0 means no filtering at all), fixed
β = 2000, kext =∞ and Prune(·) procedure was active. Figure 9.5 presents the solution
quality and computation time averaged over all 900 instances. We made the following
observations on these results:

• As we might expect, the larger beam width β, the higher is the average solution
quality on cost of longer computation time. For β ≤ 100, all four BS configurations
are executed within a few seconds. For larger β, BS-Prob and BS-Ub are processed
significantly faster than BS-Ex and BS-Pat. This is because these configurations
utilize heuristics that are very quickly computed.

• Overall, BS-Ex and BS-Prob clearly perform significantly better than the other
two compared BS configurations, regardless of which parameter setting for β and
kbest is considered. We emphasize that BS-Ex with β = 2000 and β = 5000 deliver
statistically equal solutions qualities; however, the latter needs much more time for
its execution.
The average solution quality from BS-Ex even with just β = 100 is higher than
the average solution quality of BS-Ub with β = 5000. The ranking of the BS
configurations w.r.t. their average solution quality also stays the same for any β
and kbest: from best to worst performing configuration concerning solution qualities,
the ranking is as follows: BS-Ex, BS-Prob, BS-Ub and BS-Pat.
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Figure 9.4: Results of BS with kbest = 100 and varying β.
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Figure 9.5: Results of BS with β = 2000 and varying kbest.

• An increase of parameter kbest leads to only slightly better results while computation
times rise rather quickly. This is because the Filter() procedure takes for its
execution almost quadratic time in terms of the number of nodes in Vext when kbest
is high. The largest difference in terms of solution qualities can be spotted between
kbest = 0, i.e. no filtering, and kbest = 10. In time-sensitive applications, filtering
with only small kbest can, therefore, present a good trade-off between quality of the
results and computation time.

9.4.2 The Comprehensive Numerical Results

We compare the results of

• the Approximation algorithm from [33], henceforth labeled by Approx,

• the Greedy heuristic for the CLCS presented in Section 4.2, henceforth labeled by
Greedy, and
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• the four beam search configurations: BS-Ub, BS-Prob, BS-EX and BS-Pat.

From the last paragraph, where the results of several different configurations for β and
kbest executed, we decided to use the following settings for each of the four configurations
of beam search: β = 2000, kbest = 100, whereas Prune(·) procedure is always included
(initial solution is obtained as the outcome of Greedy algorithm) and kext =∞, i.e., no
pre-reduction of the extension set Vext is performed. Moreover, the results produced by
A∗ from Section 7 are used here to show the solutions qualities of optimal values (if any)
and the efficiency of the heuristic search.

The numerical results are presented in Tables 9.8– 9.12. These results are divided into
different groups w.r.t. different values for ratio p′. For each of the algorithms we present
the solution quality and times averaged over 10 instances from the corresponding group.
The best results obtained among the competitor algorithms are shown in bold font. The
first three columns present the properties of the instance set, the next three blocks are
reserved to report the results of Approx, Greedy, and BS algorithm, respectively.
The block which presents the BS results is additionally subdivided into four blocks,
reporting the results of the four different BS configurations: BS-Ub, BS-Prob, BS-EX
and BS-Pat, respectively. The last block consists of two columns reporting the number
of the instances solved to optimality by means of the A∗ search and the corresponding
average computation time required to reach the optimum, respectively.3 A mark “–”
was used for the avg. time for those cases where none of the instances was solved to
optimality. If all of the 10 instances of a group were solved to optimality, an asterisk is
used to mark that the result of an algorithm reaches the optimal value.

From the numerical results, we made the following observations:

• For p′ ≤ 1
20 , BS-Ex delivers in most cases significantly better results than the other

BS configurations, Greedy and Approx algorithm. Involving a higher beam width
β for each of the BS configurations pays off at the cost of longer computation time.
BS-Ex loses its efficiency when the length of P becomes larger. That is mainly due
to the fact that the larger the length of pattern P , the higher the similarity between
input strings (supposing that P is a substring of each of the input strings), i.e.,
these strings become highly dependent. With a higher dependency, the guidance
of EX becomes weaker. Note that this behaviour was already noticed in previous
work [25].

• BS-Pat is inferior to the other three BS configurations in terms of solution quality
on almost all instances. It seems that Pattern Ratio Heuristic suffers from a large
amount of ties occurred in the search.

3For those instances with n = 100, we also incorporate an A∗ with h(v) function compound as
the minimum of UB1 and UBCLCS , but only one additional instance was solved to optimality and no
significant change in the runtimes.
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• The results of BS-Ub are comparable with the results of BS-Ex only when |P |/n
and n are both small. It is because UB is well–performing and especially tight for
smaller instances.

• BS-Prob gains terrain over BS-Ex when the length of P gets larger and |Σ| gets
smaller. For example, if p′ = 1

4 and |Σ| = 4, BS-Prob delivers better results than
the other competitors.

• When p′ is large (p′ ≥ 1
4), the differences between solution quality obtained by

BS and Greedy or Approx algorithms is small. That is mainly because a long
pattern P yields a restricted search space. Thus, the instances become easier to
solve.

• The number of instances solved to optimality increases as the ratio between |P |
and n increases. Also note that all the instances with p′ = |P |

n = 1
2 are solved to

proven optimality. On this subset of instances, most of the competitor algorithms
produce results in a quality that is nearly the optimum. Concerning the ease of
solving, the next are the instances with p′ = 1

4 where A∗ could solve 131 out of 200
instances to proven optimum. Note that when |Σ| = 20 and p′ is large

(
p′ ≥ 1

4

)
,

the search space is highly restricted so that the only feasible solution found was
string P , which is, by that, the proven optimum.

• Concerning runtimes of the algorithms, both Approx and Greedy algorithms
run in a fraction of second while BS takes more time due to additional procedures
executed and significantly larger amount of node expansions involved. Interestingly,
due to restriction in the search space, the runtimes of all the algorithms decrease
when the ratio between |P | and n increases.

• On those instances where a proven optimal solution is found by the A∗ algorithm, we
compare the qualities of the heuristic solutions obtained by our heuristic approaches
with the quality of the proven optimum values. Figure 9.7 shows for each heuristic
algorithm the avg. percentage of the obtained solution qualities in comparison to
the optimal solution quality (reached by the A∗), averaged over the set of all solved
instances that are grouped by different value of p′ (displayed by x-axis). Figure 9.6
shows for each algorithm the proportion of the instances solved to optimality by
A∗ that could also reach the quality of the optimal solutions by the respective
algorithm. It can be noticed that BS delivers strong results, BS-Prob, BS-Ub
and BS-Ex configurations reach at least 98% of the optimum quality on those
instances where optimality could be proven. In overall, BS-Prob and BS-Ex are
performing best. The heuristic solutions obtained by BS-Prob coincide to the
(quality of) optimal solution for all but one case (an instance out of the 10 from the
set m = 10, n = 500, |Σ| = 20, p′ = 1

20) where A∗ successfully proves optimality.
For p′ ∈

{
1
50 ,

1
20 ,

1
10

}
and |Σ| = 4, Greedy and Approx do not deliver any optimal

solution, the superiority of BS is clearly noticeable.
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Figure 9.6: Percentage of instances solved to optimality.
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Figure 9.7: Average fraction (in percent) of the length of heuristic solutions with respect
to the length of the A∗ solutions.
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Table 9.8: Instances with p′ = |P |
n = 1

50 .

Approx Greedy BS-Ub BS-Prob BS-Ex BS-Pat A∗

|Σ| m n |s| t |s| t |s| t |s| t |s| t |s| t # t

4 10 100 20.9 < 0.1 28.4 < 0.1 34.2 22.9 34.3 20 34.3 20.8 33.8 26.2 7 290.4
4 10 500 117.8 < 0.1 159.6 < 0.1 180.4 149.1 183.6 157.3 184.8 143.2 177.7 174.7 0 -
4 10 1000 239.2 0.1 327.6 0.1 363.5 284.7 372.4 372.3 376.3 434.2 354.7 428.2 0 -
4 50 100 17.4 < 0.1 20.3 < 0.1 24.1 15.5 24.2 12.1 24.2 16.7 24 22 0 -
4 50 500 109.3 0.1 125.3 0.1 137.3 106 140.4 138.1 141.8 131.8 136.3 147.2 0 -
4 50 1000 228.9 0.5 263.6 0.5 279.8 257.9 288.7 231.1 290.4 340.0 277.2 251.7 0 -
4 100 100 17.0 < 0.1 18.9 < 0.1 21.9 16.1 21.9 16.3 21.9 14 21.6 19.4 0 -
4 100 500 108.1 0.2 118.5 0.2 128.4 135 131 118.2 132.0 115.2 127.6 160.2 0 -
4 100 1000 225.1 0.9 248.7 0.8 262.4 287.6 270.5 236.6 272.1 329.9 261.6 282 0 -

20 10 100 4.3 < 0.1 6.2 < 0.1 ∗7.9 0.1 ∗7.9 0.1 ∗7.9 0.1 ∗7.9 0.1 10 < 0.1
20 10 500 23.8 < 0.1 40.7 < 0.1 48.9 104.5 49.7 137 50.4 183.8 41.9 221.7 0 -
20 10 1000 48.9 0.1 82.5 0.1 97.7 246.8 102.0 280.7 104.9 344.3 85.6 551.4 0 -
20 50 100 2.8 < 0.1 ∗3.1 < 0.1 ∗3.1 < 0.1 ∗3.1 < 0.1 ∗3.1 < 0.1 ∗3.1 < 0.1 10 < 0.1
20 50 500 20.0 0.1 24 0.1 28.3 49 28.8 46.8 28.8 100.3 26 135.5 0 -
20 50 1000 42.6 0.5 53.7 0.5 59.6 152.5 61.4 158.1 62.3 245.4 55.1 211.2 0 -
20 100 100 2.3 < 0.1 ∗2.4 < 0.1 ∗2.4 < 0.1 ∗2.4 < 0.1 ∗2.4 < 0.1 ∗2.4 < 0.1 10 < 0.1
20 100 500 18.5 0.3 22 0.3 24.7 60.9 25.2 62.6 25.0 118.5 22.8 82.7 0 -
20 100 1000 41.1 1 49 0.8 52.8 166.2 54.7 188.6 55.0 334.8 50 342.7 0 -

Table 9.9: Instances with p′ = |P |
n = 1

20 .

Approx Greedy BS-Ub BS-Prob BS-Ex BS-Pat A∗

|Σ| m n |s| t |s| t |s| t |s| t |s| t |s| t # t

4 10 100 21.4 < 0.1 30.4 < 0.1 34.5 19.2 34.5 16.8 34.5 21.7 33.4 25.6 3 332.8
4 10 500 119.7 < 0.1 159.6 < 0.1 181.7 130.1 184.2 163.7 185.1 179.8 173.3 192.1 0 -
4 10 1000 244.4 0.1 328.3 0.1 365.7 288.5 372.7 346.7 374.1 339.2 343.8 391 0 -
4 50 100 18.7 < 0.1 21.6 < 0.1 24.3 11.5 24.7 13.3 24.9 15.1 24 19.8 0 -
4 50 500 111.1 0.1 126.8 0.1 137.9 98.5 141.2 109.4 142.2 115.4 134.2 162.8 0 -
4 50 1000 232.7 0.5 265.9 0.4 281 226.4 290.1 267.6 291.3 289.4 273 366.4 0 -
4 100 100 17.6 < 0.1 18.4 < 0.1 22.3 11.6 22.4 9.6 22.5 13.60 21.9 19.7 0 -
4 100 500 109.4 0.2 117.6 0.2 128.9 101.2 131.9 86.2 132.4 119.3 126.6 156 0 -
4 100 1000 227.5 0.8 250.3 1 263.7 244.2 272.0 218.1 273.0 232.2 259.2 301.8 0 -

20 10 100 6 < 0.1 7.1 < 0.1 ∗7.3 < 0.1 ∗7.3 < 0.1 ∗7.3 < 0.1 ∗7.3 < 0.1 10 < 0.1
20 10 500 30.2 < 0.1 40.2 < 0.1 46.6 16.9 47.0 17.5 46.3 60.0 44.7 57 10 332.1
20 10 1000 56.6 0.1 81.2 0.1 95.7 37.9 97.8 45.5 95.4 185.4 87.9 146.3 0 -
20 50 100 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 10 < 0.1
20 50 500 26.9 0.1 28.2 0.2 ∗29.9 1.8 ∗29.9 1.7 ∗29.9 1.3 ∗29.9 1.5 10 1.2
20 50 1000 53.1 0.5 58.1 0.5 62.4 17.6 62.7 17 62.5 8.6 60.4 34.4 0 -
20 100 100 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 ∗5.0 < 0.1 10 < 0.1
20 100 500 26.1 0.2 26.4 0.3 ∗27.3 0.3 ∗27.3 0.2 ∗27.3 0.3 ∗27.3 0.3 10 0.3
20 100 1000 52 1 54.8 0.9 57.2 14 ∗57.3 13.6 ∗57.3 9.4 56.4 17.7 10 86.0
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Table 9.10: Instances with p′ = |P |
n = 1

10 .

Approx Greedy BS-Ub BS-Prob BS-Ex BS-Pat A∗

|Σ| m n |s| t |s| t |s| t |s| t |s| t |s| t # t

4 10 100 22.9 < 0.1 30.1 < 0.1 34.6 14.4 34.6 17.4 34.3 20.4 32.1 23 8 269.1
4 10 500 121.4 < 0.1 163.2 < 0.1 182.2 97.6 185.0 137 184.8 143.2 165.9 193.9 0 -
4 10 1000 245.5 0.1 328.7 0.1 365 212 375.8 240.5 376.3 434.8 330.4 391.7 0 -
4 50 100 19.8 < 0.1 22 < 0.1 24.9 10.1 25.0 11.2 24.3 19.6 23.5 19.9 0 -
4 50 500 114.2 0.1 129.5 0.1 138.7 102.4 142.9 99.6 141.8 131.8 131.2 145.9 0 -
4 50 1000 233.5 0.4 266.7 0.4 279.6 199 289.2 200.6 290.4 340.0 266 351.7 0 -
4 100 100 18.9 < 0.1 20.4 < 0.1 23.0 8.8 23.0 8.7 21.9 17.0 21.5 19.3 3 265.1
4 100 500 111.3 0.2 121.8 0.2 129.2 63.2 133.3 78.5 132.0 115.6 124.3 163.8 0 -
4 100 1000 230.3 0.9 253.1 0.8 262.3 122.7 270.9 183.3 272.1 329.9 255.2 316.3 0 -

20 10 100 ∗10.2 < 0.1 10.1 < 0.1 ∗10.2 < 0.1 ∗10.2 < 0.1 ∗10.2 < 0.1 ∗10.2 < 0.1 10 < 0.1
20 10 500 51 < 0.1 52.5 < 0.1 ∗53.1 < 0.1 ∗53.1 < 0.1 ∗53.1 < 0.1 ∗53.1 < 0.1 10 < 0.1
20 10 1000 101 0.1 103.9 0.1 ∗105.4 0.1 ∗105.4 0.1 ∗105.4 0.1 ∗105.4 0.1 10 0.1
20 50 100 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 10 < 0.1
20 50 500 ∗50.0 0.1 ∗50.0 0.2 ∗50.0 0.1 ∗50.0 0.1 ∗50.0 0.1 ∗50.0 0.1 10 0.2
20 50 1000 ∗100.0 0.5 ∗100.0 0.4 ∗100.0 0.5 ∗100.0 0.5 ∗100.0 0.5 ∗100.0 0.4 10 0.5
20 100 100 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 ∗10.0 < 0.1 10 < 0.1
20 100 500 ∗50.0 0.3 ∗50.0 0.3 ∗50.0 0.3 ∗50.0 0.3 ∗50.0 0.3 ∗50.0 0.2 10 0.3
20 100 1000 ∗100.0 1 ∗100.0 1.1 ∗100.0 0.8 ∗100.0 0.8 ∗100.0 1.1 ∗100.0 1 10 0.9

Table 9.11: Instances with p′ = |P |
n = 1

4 .

Approx Greedy BS-Ub BS-Prob BS-Ex BS-Pat A∗

|Σ| m n |s| t |s| t |s| t |s| t |s| t |s| t # t

4 10 100 28.6 < 0.1 32.3 < 0.1 ∗34.5 1.1 ∗34.5 0.9 ∗34.5 1.0 ∗34.5 1.5 10 0.2
4 10 500 134.3 < 0.1 159.8 < 0.1 179.3 45.6 182.4 48.8 181.1 98.0 168.6 97 1 660.8
4 10 1000 264.7 0.1 317.2 0.1 350.3 76.8 361.7 108 361.4 249.4 330.8 220.2 0 -
4 50 100 26.4 < 0.1 26.9 < 0.1 ∗27.5 < 0.1 ∗27.5 < 0.1 ∗27.5 < 0.1 ∗27.5 < 0.1 10 < 0.1
4 50 500 130.1 0.1 139.5 0.1 146.2 33.6 148.3 28 146.3 19.9 142.7 55.9 0 -
4 50 1000 257.4 0.5 277.3 0.5 291.9 73.6 296.4 63.6 289.5 41.1 284.2 107.6 0 -
4 100 100 25.9 < 0.1 26.2 < 0.1 ∗26.5 < 0.1 ∗26.5 < 0.1 ∗26.5 < 0.1 ∗26.5 < 0.1 10 < 0.1
4 100 500 128.9 0.2 135.8 0.2 140.4 24.6 140.8 34.8 140.3 17.4 137.3 45.9 0 -
4 100 1000 256.4 0.8 270.7 0.7 279.7 56.4 282.5 73.4 279.0 40.4 273.3 122 0 -

20 10 100 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 10 < 0.1
20 10 500 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 ∗125.0 < 0.1 10 < 0.1
20 10 1000 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1
20 50 100 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 10 < 0.1
20 50 500 ∗125.0 0.1 ∗125.0 0.1 ∗125.0 0.2 ∗125.0 0.2 ∗125.0 0.1 ∗125.0 0.1 10 0.1
20 50 1000 ∗250.0 0.5 ∗250.0 0.4 ∗250.0 0.4 ∗250.0 0.5 ∗250.0 0.5 ∗250.0 0.5 10 0.5
20 100 100 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 ∗25.0 < 0.1 10 < 0.1
20 100 500 ∗125.0 0.3 ∗125.0 0.3 ∗125.0 0.3 ∗125.0 0.3 ∗125.0 0.2 ∗125.0 0.2 10 0.3
20 100 1000 ∗250.0 1 ∗250.0 1 ∗250.0 1.1 ∗250.0 1.1 ∗250.0 0.8 ∗250.0 1.1 10 1.0
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9.4. Computational Results for the m–CLCS Problem

Table 9.12: Instances with p′ = |P |
n = 1

2 .

Approx Greedy BS-Ub BS-Prob BS-Ex BS-Pat A∗

|Σ| m n |s| t |s| t |s| t |s| t |s| t |s| t # t

4 10 100 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 10 < 0.1
4 10 500 250.1 < 0.1 ∗250.6 < 0.1 ∗250.6 < 0.1 ∗250.6 < 0.1 ∗250.6 0.1 ∗250.6 < 0.1 10 < 0.1
4 10 1000 500.1 0.1 501.5 0.1 ∗501.7 0.1 ∗501.7 0.1 ∗501.7 0.1 ∗501.7 0.1 10 0.1
4 50 100 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 10 < 0.1
4 50 500 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1
4 50 1000 ∗500.0 0.4 ∗500.0 0.4 ∗500.0 0.5 ∗500.0 0.3 ∗500.0 0.5 ∗500.0 0.3 10 0.5
4 100 100 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 10 < 0.1
4 100 500 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 10 0.2
4 100 1000 ∗500.0 1 ∗500.0 0.9 ∗500.0 1 ∗500.0 0.8 ∗500.0 1 ∗500.0 0.8 10 0.8

20 10 100 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 10 < 0.1
20 10 500 ∗250.0 < 0.1 ∗250.0 < 0.1 ∗250.0 < 0.1 ∗250.0 0.1 ∗250.0 < 0.1 ∗250.0 < 0.1 10 < 0.1
20 10 1000 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 ∗500.0 0.1 10 0.1
20 50 100 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 10 < 0.1
20 50 500 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1
20 50 1000 ∗500.0 0.5 ∗500.0 0.5 ∗500.0 0.4 ∗500.0 0.4 ∗500.0 0.5 ∗500.0 0.4 10 0.5
20 100 100 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 ∗50.0 < 0.1 10 < 0.1
20 100 500 ∗250.0 0.2 ∗250.0 0.3 ∗250.0 0.3 ∗250.0 0.2 ∗250.0 0.2 ∗250.0 0.2 10 0.3
20 100 1000 ∗500.0 1 ∗500.0 0.8 ∗500.0 0.7 ∗500.0 0.8 ∗500.0 1 ∗500.0 1.1 10 0.7
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CHAPTER 10
Conclusions and Future Work

In this thesis we considered the variant of the CLCS problem with an arbitrary number
of input strings, which is NP–hard. A general search framework was presented to tackle
the problem from where we derived various methods: a greedy heuristic to quickly find
solutions of reasonable quality, a heuristic search presented by a general beam search
framework, and an exact search established by means of an A∗ algorithm.

Concerning the exact solving, the A∗ search utilizing the known upper bounds for the
LCS problem was able to solve more than a half of our instances generated for the
m–CLCS problem to proven optimality. Moreover, all the 2–CLCS problem instances, the
randomly generated ones and the instances from practice, were solved within a fraction of
a second. A∗ search was compared to other algorithms from literature, specially developed
for the classical 2–CLCS problem. The effectivity of the A∗ search was demonstrated
by an exhaustive experimental evaluation, where we showed that the runtimes of our
A∗ approach are about one to two orders of magnitude shorter than those of the best
competitor algorithm. Moreover, it was shown that the A∗ search scales particularly well,
its performance does not degrade much with an increase of the instance size, which is
not the case for the other competitors.

Concerning heuristic solvers, the developed greedy heuristic was able to quickly construct
a solution for each of our instances. In most cases, it took less than a second and yielded
a significantly better solution quality than the outcome of the known approximation
method from literature. In order to produce high-quality solutions, we developed the
general BS framework. By extending promising heuristics for the LCS problem, three
new heuristic estimators were proposed for the m–CLCS problem. The computational
studies showed, that both our expected-length calculation heuristic (EXCLCS) and the
probability–based heuristic (H) provide effective guidance. Moreover, the beam search
configuration guided by heuristic H showed its effectiveness by reaching optimal solutions
for almost all those benchmarks where A∗ search was able to prove optimality.
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10. Conclusions and Future Work

Overall, we conclude that the developed search framework composed of greedy heuristic,
beam search and A∗ search provides effective methods for solving the m–CLCS problem
and could be used as set of tools to detect similarities and relations between arbitrary
large molecular structures that appear in bioinformatics.

For future work, our search framework could be easily adapted to solve related variants
of the LCS problem. For example, the restricted LCS (RLCS) problem [32, 13] which
requires that a given pattern string is not part of the solution, could be dealt with
algorithms similar to those proposed in this thesis. Also more general variants of the
m–CLCS problem where an arbitrary number k of pattern strings are given in input –
labeled by (k,m)–CLCS problem – could be solved by means of the derived m–CLCS
search framework, with only a few minor adaptions required. Moreover, the presented A∗
search could be extended to an anytime algorithm so that while running an exact search,
high-quality heuristic solutions are obtained along the way. As a result, A∗ search could
provide solutions even when proving optimality is not feasible (e.g. due to limited time
or memory resources). Concerning heuristics, we found a very effective search guidance
for the m–CLCS problem. Still, it might be worth experimenting with other heuristics.
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