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Abstract

The central topic of this thesis are criteria and tests which reveal whether a
given clustered graph allows an embedding in the plane for which no edges
and clusters intersect.

Together with their definition in 1996, a notion of planarity was presented
for clustered graphs, as well as an algorithm which tests this planarity for
a given clustered graph in linear time. The algorithm however expects each
cluster to be connected. For general clustered graphs, no efficient algorithm
is yet known, neither is the computational complexity of the problem.

This work presents algorithms which extend the class of clustered graphs
for which planarity can be tested in polynomial time.

A second part considers a weak form of planarity, and shows that a poly-
nomial time test for this form also yields a polynomial time test for the
classical definition.

Furthermore, an attempt is made, by means of a characterization of the
weak realizability problem in terms of forbidden subgraphs, to gain a similar
characterization of the weak form of cluster planarity.
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Zusammenfassung

Das zentrale Thema dieser Diplomarbeit sind Kriterien und Tests, die angeben,
ob es für bestimmte Clustergraphen Einbettungen in die Ebene gibt, für die
sich keine Kanten und Cluster überschneiden.

Zugleich mit der Einführung des Begriffs des Clustergraphen im Jahr
1996 wurde eine Definition von Planarität für Clustergraphen vorgestellt,
sowie ein Algorithmus, der für einen gegebenen Clustergraphen in linearer
Zeit prüft, ob er planar ist. Dieser Algorithmus setzt jedoch voraus, daß die
einzelnen Cluster zusammenhängend sind. Für allgemeine Clustergraphen
ist derzeit weder ein effizienter Algorithmus zur Durchführung eines solchen
Tests bekannt, noch, welche Komplexität das Problem hat.

Die vorliegende Arbeit präsentiert Algorithmen, die die Klasse der Clus-
tergraphen, für die Planarität in polynomieller Zeit testbar ist, um neue
Typen erweitert.

In einem zweiten Teil wird ein abgeschwächter Planaritätsbegriff für Clus-
tergraphen untersucht, und gezeigt, daß ein polynomieller Planaritätstest für
diesen auch einen für den klassischen Planaritätsbegriff liefert.

Weiters wird versucht, mithilfe einer Charakterisierung des “Weak Realiz-
ability Problem” anhand von verbotenen Teilgraphen auch den abgeschwächten
Clusterplanaritäts-Begriff durch eine solche Formulierung zu charakterisieren.
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Chapter 1

Motivation

Graph drawing is a rather young branch of mathematics. Brought on by
increasing availability of computers, it has become interesting to study how
large graphs can be visualized, manually or automatically, respecting criteria
of aesthetics and readability.

Graphs themselves are structures studied for a much longer time, which
allow to model relationships between objects, and to analyze these relation-
ships in a formal way. Graphs are used to investigate problems in a variety
of areas, as different as:

• Social sciences

• Computer sciences (information retrieval, knowlegde bases, workflows)

• Electrical engineering (VLSI design)

• Natural sciences (geographic information systems)

• Construction (cabling, piping)

• ...

Basically, a graph consists of nodes and edges joining nodes. By reducing a
real-life problem to this abstract model, tools developed generally for graphs
can be applied to answer questions to the actual problem (e.g. an algorithm
finding the shortest path from one node to another can find the cheapest way
to fly from one city to another).

As much as graphs can be used to analyze the structure of given real-life
problems, they can also be used to visualize these problems, in order to reveal
properties otherwise not immediately evident to the human eye.
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CHAPTER 1. MOTIVATION

One of the standard visualizations of graphs draws nodes as points in the
plane, and edges as lines joining the points. Several criteria influence the
readability of such a drawing, such as:

• size of the drawing

• proportions

• number of line crossings

• number of bends in the lines

In some cases, the real-life problem even consists of checking certain draw-
ing properties: For VLSI design, a circuit can be manufactured as a one-layer
plate only if the graph constructed from its electronical elements and the
paths joining them can be drawn without any edge-crossings. Such a graph
drawing without any edge-crossing is called planar. Correspondingly, a graph
which has such a drawing is also called planar.

The central topic of this work is a special kind of planarity defined on
an extension of the traditional graph model, called clustered graphs: This
extension allows to additionally group nodes together in clusters, which are
usually visualized by drawing them inside some closed region, possibly with
a border around it.

Assigning nodes to a cluster could e.g. be used to convey that certain
persons in a social relation map belong to a specific group, that certain
computers are located in the same building, that airports are in the same
country or belong to the same company, or that some electronic elements
should be placed next or near to each other.

Therefore, the question whether a certain clustered graph is cluster planar
can influence its readability, or even decide whether an electronic circuit
can or cannot be printed on a one-sided plate, respecting certain proximity
constraints.

Some algorithms have been devised to test cluster planarity, however,
they only apply to a restricted set of graphs. Even more, it has not yet
been established whether a polynomial time algorithm exists, or whether the
problem is NP-hard for arbitrary clustered graphs.

This work tries to take some new approaches to the topic, both in terms of
a characterization of cluster planar graphs, and in providing cluster planarity
test algorithms for a wider range of graphs.
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Chapter 2

Preliminaries

2.1 General

In graph theory, unfortunately there are some terms which are not consis-
tently defined in literature (examples include whether “graphs” are simple,
directed, of whether embeddings are implicitly required to be planar, or even
what a subgraph is meant to be). Therefore, this chapter shall state what
definitions were used in this work, and also define other terms used in the
following.

Let P2(S) denote the set of all 2-element subsets of S. An element of
P2(S) representing {s1, s2} with s1, s2 ∈ S is denoted by 〈s1, s2〉 or 〈s2, s1〉.

2.2 Graphs

Definition 2.2.1. An undirected graph G = (V,E) is a pair of sets V and E
with E ⊆ P2(V ). The elements of V are called the nodes or vertices of G, or
V (G), and the elements of E the edges of G, or E(G). An undirected graph
is called finite if both V and E are finite.

Note that by this definition there is at most one edge for any two nodes
(which other authors would refer to as simple undirected graphs), and that
there cannot be edges joining a node to itself (often called self-loops).

In this work, unless stated otherwise, all mentions of “graph” pertain to
finite undirected graphs according to the above definition.

Definition 2.2.2. In a graph G = (V,E) a node v ∈ V is called incident
with an edge e ∈ E if e = 〈v, w〉 for some w ∈ V . Two nodes v1, v2 are called
adjacent if 〈v1, v2〉 ∈ E, and two edges e1, e2 are called adjacent if they are
incident with a common v ∈ V . The set of all edges incident with a node v
is denoted by inc(v).
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CHAPTER 2. PRELIMINARIES

Figure 2.1: A graph G, a subgraph S of G, and G[{2, 4, 5, 7}]

Definition 2.2.3. A graph S = (V ′, E ′) is a subgraph of a graph G, denoted
S ⊆ G, if V ′ ⊆ V , and E ′ ⊆ E(G) ∩ P2(V

′). G[V ′] is the graph G restricted
to V ′, G[V ′] = (V ′, E ∩ P2(V

′)), and G \X := G[V (G) \ V (X)]. A cut edge
of a subgraph S of G is an edge 〈x, y〉 with x ∈ S, y ∈ G \ S.

Definition 2.2.4. A path is a graph W = (V,E) with V = {x0, x1, . . . , xk},
k > 0, and E = {〈x0, x1〉, . . . , 〈xk−1, xk〉}. x0 and xk are called the endpoints
of W . A path from x to y is a path with endpoints x and y, and a X-path
is a path for which exactly its endpoints are in X, W ∩X = {x0, xk}.

Definition 2.2.5. A cycle is a graph C = (V,E) with V = {x0, x1, . . . , xk},
k > 0, and E = {〈x0, x1〉, . . . , 〈xk−1, xk〉, 〈xk, x0〉}.

Figure 2.2: In this ordering: A path, a cycle, a tree, and a rooted tree.

Definition 2.2.6. A graph G = (V,E) is called connected if for any nodes
v1, v2 ∈ V, v1 6= v2, there is a path in G from v1 to v2. G is called k-connected
if |V (G)| > k and G \ X is connected for all X ⊆ G with |V (X)| < k. A
2-connected graph is also called biconnected, and a 3-connected graph also
triconnected. The maximal connected subgraphs of a graph are called its
components, and the maximal biconnected subgraphs its blocks.

Definition 2.2.7. A tree T is a connected graph which does not contain a
cycle (is acyclic). The nodes incident with at most one edge are called leaves,
the others interior nodes of T . A rooted tree is a tree in which one node is
designated root of the tree. In a rooted tree, all edges are interpreted to be
directed, leading away from the root.
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CHAPTER 2. PRELIMINARIES

2.3 Plane Graphs

A region O of R2 is an open subset of R2. A closed region R is a region
together with its border, R = O ∪ ∂O. A (closed) region X is called simple
if for any x, y ∈ X, x and y can be connected by a polyline in X.

Definition 2.3.1. Let e = P (v1, v2) denote a polyline in R2 from v1 to v2,
and eo the interior of the polyline. G = (V,E) with V ⊆ R2, |V | = n ∈ N,
E ⊆ {P (v1, v2)|v1, v2 ∈ V, v1 6= v2} is called a plane graph if

1. ∀e1, e2 ∈ E, e1 6= e2 : {ve1
1 , v

e1
2 } 6= {ve2

1 , v
e2
2 }

2. ∀e1, e2 ∈ E, e1 6= e2 : eo
1 ∩ e2 = ∅

The elements of V are called nodes and the elements of E edges of the plane
graph G. The maximal simple regions of R2 \ G are called the faces of G,
F (G). Edges and nodes are called incident with a face if they are contained
in its border.

Each plane graph G immediately gives rise to a graph G by identifying
nodes and edges in G and G, allowing to use graph definitions and properties
(such as incidence, adjacence, paths, connectivity, ...) also for plane graphs.

Definition 2.3.2. Let Sn denote the n-dimensional unit sphere, and π : S2\
{(0, 0, 1)} 7→ R2 a fixed homeomorphism from the 2-dimensional unit sphere
with a “hole” to the plane. Plane graphs G1 = (V1, E1) and G2 = (V2, E2)
are called topologically equivalent if there exists an isomorphism σ : G1 7→ G2

which respects the incidences of nodes and edges, and a homeomorphism φ
on S2 such that π ◦ φ ◦ π−1 induces σ on G1.

This definition formalizes the most evident form of equivalence, allowing
arbitrary homeomorphisms to be performed against a plane graph without
leaving the equivalence class. Moreover, choosing another face as the outer
face does not change the equivalence class either, due to the construction via
S2.

Definition 2.3.3. Plane graphs G1 = (V1, E1) and G2 = (V1, E1) with faces
F1 rsp. F2 are called combinatorially equivalent if there exists an isomorphism
σ : (V1, E1, F1) 7→ (V2, E2, F2) which respects not only incidences of nodes
with edges, but also of nodes and edges with faces.

Lemma 2.3.4. If two plane graphs G1,G2 are topologically equivalent, they
are combinatorially equivalent.
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CHAPTER 2. PRELIMINARIES

Figure 2.3: Equivalent plane graphs. For the third example, the two plane
graphs are obtained from the drawing on S2 by choosing {2, 3, 4, 5} rsp.
{3, 4, 6} as the outer face.

Lemma 2.3.5. If two 2-connected plane graphs G1,G2 are combinatorially
equivalent, they are topologically equivalent. 2-connected plane graphs which
are combinatorially equivalent, are called equivalent.

Figure 2.4: Plane graphs which are combinatorially equivalent, but not topo-
logically equivalent.

2.4 Embeddings, Drawings

The canonical way to construct a plane graph from a graph is to map nodes
to points, and edges to polylines connecting these points. Such a mapping
is called an embedding of the graph, and the representation a drawing of the
graph. However, such an embedding does not necessarily yield a plane graph:
while condition 1) for a plane graph is trivially fulfilled by any drawing,
condition 2) is not. So whether a drawing is a plane graph depends on
whether eo

1 ∩ e2 = ∅ for all e1 6= e2 ∈ E, i.e. whether there are no edge
crossings.

A drawing for which this condition holds is called planar, as well as the
embedding creating it. Correspondingly, a graph is called planar if it has a
planar embedding.

12



CHAPTER 2. PRELIMINARIES

Definition 2.4.1. A combinatorial embedding E = (V,E, ω) of a graph G =
(V,E) is a graph together with an ordering of edges around each node, ω(v) ∈
Sym∗(inc(v)) (with Sym∗(X) denoting the permutation group of set X in
which a given element is fixed). A combinatorial embedding E of a graph G
is called planar if there is a planar drawing of G which is consistent with the
orderings given in ω(E).

1: 〈1, 2〉
2: 〈2, 1〉, 〈2, 3〉, 〈2, 5〉, 〈2, 8〉
3: 〈3, 5〉, 〈3, 2〉, 〈3, 4〉
4: 〈4, 3〉
5: 〈5, 3〉, 〈5, 6〉, 〈5, 7〉, 〈5, 8〉, 〈5, 2〉
6: 〈6, 5〉
7: 〈7, 5〉
8: 〈8, 5〉, 〈8, 2〉

Figure 2.5: A combinatorial embedding. For each node, the ordering of the
incident edges is fixed.

Let the set of combinatorial embeddings of G be called Ē(G), and let
−E denote the combinatorial embedding obtained from E by reversing the
ordering of the edges around each v ∈ V (G).

Lemma 2.4.2. For connected graphs, there exists a bijection between the
topological equivalence classes of planar drawings of a graph G and the set
{

{E ,−E}| E ∈ Ē
}

, such that the planar drawings are consistent with either
E or −E .

Each homeomorphism φ in the definition of topological equivalence either
keeps the ordering of edges around each node the same, or reverses it for all
nodes.

Lemma 2.4.3. If a graph G is 3-connected, all its planar combinatorial
embeddings are equivalent.

Figure 2.6: The left figure shows the only embedding (but for equivalence)
allowed by its underlying triconnected graph. The figures on the right show
two non-equivalent embeddings of a biconnected graph.
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CHAPTER 2. PRELIMINARIES

2.5 Minors

When testing a graph for certain properties, one would often like to know
which “part” or “substructure” of the graph is responsible for a certain prop-
erty. While the usual definition of a “part” is the one of a subgraph, for some
properties other definitions of “substructures” of a graph have proven valu-
able.

Definition 2.5.1. If in a graph X, some edges 〈x1, x2〉 are replaced by a
path from x1 to x2, and the inners of the paths have no nodes in common
with the other paths or X, the resulting graph G is called a subdivision of
X, or G = TX. For any Y ⊇ G, X is called a topological minor of Y . The
nodes in G corresponding to nodes in X are called the branch vertices of G.

Figure 2.7: X, G, and Y where G = TX, and X is a topological minor of Y .

Definition 2.5.2. If G = (V,E) is a graph, P = {V1, V2, ..., Vn} a partition
of V for which G[Vi] is connected for each i, and X = (P,E ′) is a graph with
E ′ = {〈Vi, Vj〉|i 6= j, ∃v1 ∈ Vi, v2 ∈ Vj : 〈v1, v2〉 ∈ E}, then G is called an MX
(or G = MX), and the Vi are called the branch sets of G. For any Y ⊇ G,
X is called a minor of Y .

Figure 2.8: X, G, and Y where G = MX, and X is a minor of Y .

Lemma 2.5.3. G is an MX if and only if X is obtained from G by succes-
sively contracting edges.

Lemma 2.5.4. If G = TX, then G = MX. Therefore any topological minor
of Y is also a minor of Y .

14



CHAPTER 2. PRELIMINARIES

Lemma 2.5.5. Being a minor is a partial order on the set of finite graphs.
The same holds for being a topological minor.

Therefore, if A is a (topological) minor of B, and B is a (topological)
minor of C, then A is also a (topological) minor of C. Moreover, if A is
a (topological) minor of B, and B is a (topological) minor of A, A = B.
Every graph is a (topological) minor of itself, and any subgraph A of B is a
(topological) minor of B.
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Chapter 3

Graph Extensions for

Clustering

3.1 Overview

Even though the classical graph model is already powerful, for some appli-
cations it does not suffice to consider relations between two objects, but to
additionally store the information that a group of nodes belongs together or
shares some common property.

To model such information, various extensions to the classical graph
model have been created, with different aims and different possibilities.

3.2 Hypergraphs

Hypergraphs [Ber73] allow to assign more than two nodes to an edge, thereby
allowing arbitrary connections between several nodes. Based on this model,
more general ones such as higraphs [Har88] have been designed. While suit-
able for a wide range of problems, they are also hard to draw automatically.

3.3 Compound Graphs

In [MS93], an extension to graphs was introduced which allows to add hier-
archical information, by designating some nodes to be “included” in others.

Definition 3.3.1. A compound graph is a triple D = (V,E, I) such that
Da = (V,E) is a graph and Dc = (V, I) is a directed graph. The elements of
E are called adjacency edges, those of I inclusion edges.

16



CHAPTER 3. GRAPH EXTENSIONS FOR CLUSTERING

Usually, it is also expected thatDc contains no cycles, so that interpreting
〈v, w〉 ∈ I as an inclusion relation makes sense.

Figure 3.1: A hypergraph, and a compound graph.

3.4 Clustered Graphs

Clustered graphs have been introduced in [Feng96]: in addition to a classical
graph, a clustered graph contains entities called clusters which contain nodes
and possibly other clusters. This delivers a hierarchical structure on top
of the original graph, which is most easily associated with the principle of
proximity of objects: putting nodes inside a cluster can convey that these
objects should be placed next to each other, preferably inside some box.

As opposed to higraphs, efficient drawing algorithms are available for
some classes of clustered graphs, [Feng96], [Dah98].

Formal definition of clustered graphs:

Definition 3.4.1. Let (G, T ) be called a clustered graph with G a graph,
and T a rooted tree with leaves V (G). Each non-leaf element ν of T defines
a cluster Cν consisting of all leaves having ν as ancestor.

A clustered graph can be seen as a special case of a compound graph,
where Dc is a rooted tree, and adjacency edges are only incident to leaves.
The V in the definition of the clustered graph is the set of leaves of Dc.

In addition to the definition of clustered graphs, [Feng96] also introduces
a definition of cluster planarity for clustered graphs:

Definition 3.4.2. A clustered graph (G, T ) is called c-planar if G can be
drawn in the plane such that for each cluster C, there exists a simple closed
region GC ⊆ R2 such that all v ∈ C and all e ∈ P2(C) are contained in GC ,
each cut edge of C crosses the border of GC exactly once, and all v ∈ G \ C
and e ∈ P2(G \ C) are contained in R2 \ GC .

17



CHAPTER 3. GRAPH EXTENSIONS FOR CLUSTERING

This definition matches the picture of all contents of a cluster (and noth-
ing else) being drawn inside some border.

Definition 3.4.3. A clustered graph (G, T ) is called c-connected if G[Cν ] is
connected for all ν ∈ T .

Figure 3.2: Examples of clustered graphs (straight lines are edges, other
curves cluster borders). The rightmost one is not c-planar.

Figure 3.3: Examples of a c-connected and a non-c-connected clustered
graph.
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Previous Results
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Chapter 4

Planarity Tests

Since this work aims at investigating the (cluster) planarity of clustered
graphs, some algorithms or criteria which test planarity on classical graphs
shall be presented. Attempts to extend them to clustered graphs will be
made in the following chapters.

4.1 Basic Criteria

Lemma 4.1.1. A graph is planar if and only if its blocks are planar.

If a graph is split into its maximal biconnected subgraphs, then for each
block B, B is connected to G \ B by at most one edge, e. Therefore, any
planar drawings of B and G\B can be combined to generate a planar drawing
of G. In the case of e present, the outer faces of each drawing should first be
chosen such that the corresponding endpoint of e is on the outer face.

Let a plane graph G be called triangular if each face of G is incident with
exactly 3 nodes of G.

Lemma 4.1.2. Each triangular plane graph has exactly 3n− 6 edges.

This follows directly from Euler’s Polyeder Formula, which states that
for a connected plane graph G with n ≥ 1 nodes, m edges and l faces,
n−m+ l = 2. Observing that for a triangular graph, 2m = 3l, delivers the
result.

Corollary 4.1.3. A plane graph with n ≥ 3 nodes has at most 3n− 6 edges.

20



CHAPTER 4. PLANARITY TESTS

Figure 4.1: On the left: A graph is planar if and only if its blocks Bi are
planar. On the right: A graph and a triangular graph which contains it.

4.2 Kuratowski’s Theorem

In 1930, Kuratowski established the central characterization of planar graphs
in [Kur30] by means of the Kuratowski graphs: K5 is the complete graph
with 5 nodes (all 5 nodes are connected pairwise), and K3,3 is the complete
bipartite graph on 6 nodes (two groups of three nodes each, where exactly
every two nodes from different groups are connected).

Theorem 4.2.1. (Kuratowski’s Theorem) A graph G is planar if and only
if neither K5 nor K3,3 is a minor of G. Equivalently, a graph G is planar if
and only if neither K5 nor K3,3 is a topological minor of G.

While Kuratowski’s theorem gives a very comprehensible criterion for
planarity, it is not easy to use for testing planarity of large graphs, since the
number of minors of a graph grows exponentially.

However, it is indirectly used in most other planarity testing algorithms,
since the result of such an algorithm is usually either a combinatorial em-
bedding (which can be verified to be planar by drawing it), or pointing out
a minor of the graph which is a Kuratowski graph.

Figure 4.2: The Kuratowski subgraphs, K5 and K3,3.
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4.3 Linear Time Planarity Tests

Starting in the 1970s, several planarity tests with linear running time have
been developed. They all share that their speed is bought by complexity,
which makes it tedious to prove their correctness, and to implement them cor-
rectly. They also share that they are usually defined on 2-connected graphs,
since the general result can be obtained using Lemma 4.1.1.

The first one, presented in 1974, is that of Hopcroft and Tarjan [HT74],
which is based on a depth first search on the graph, first creating a spanning
tree for the graph, and then trying to embed the other edges .

Some corrections to the algorithm were published in [Deo76] in 1976, and
several other papers deal with making the algorithm more accessible and
easier to understand (e.g. [Mut96], [MM96]).

In 1976, Booth and Lueker in [BL76] presented a linear variant of a pla-
narity test designed in 1967 by Lempel, Even and Cederbaum [LEC67], us-
ing a datastructure called PQ-trees which had been introduced to solve the
consecutive ones problem efficiently. In short, a PQ-tree can represent all
possible orderings of nodes on the outer face of a (sub)graph, and can be
efficiently manipulated to respect the planarity constraints imposed by ad-
ditional nodes. The algorithm will be explained in slightly more detail in
chapter 4.4, since it will serve as a basis for the c-planarity test extension
presented in this work.

Also for this algorithm, additional papers were needed for clarification,
most of all how it should be used to yield an actual planar embedding of the
graph. This was presented by Chiba et al in [CNA85].

For quite a long time, these two were basically the only linear time pla-
narity tests available, with the exception of the algorithm by Fraysseix and
Rosenstiehl [FR82] added in 1982, until only recently new algorithms were
published: The algorithm of Boyer and Myrvold [BM99] and that of Shih
and Hsu [SH99], which both claim to be simpler than the “classical” ones.

4.4 PQ-Tree Planarity Test

The planarity test presented in [BL76] makes use of a data structure called
PQ-trees. A PQ-tree can be used to store all permutations of a set in which
certain subsets are contiguous, and to add such constraints efficiently.

This is achieved by the following structure: A PQ-tree T on a set S is a
directed rooted tree made of P-nodes, Q-nodes and leaves. The P-nodes and
Q-nodes have ordered lists of children. The leaves are exactly the elements of
S, and a drawing of T has all leaves horizontally aligned at the bottom, the
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root at the top, the children of P-nodes and Q-nodes ordered according to
their lists, and no line crossings. Each such drawing corresponds to exactly
one ordering of S, called a frontier of T .

The special properties of the PQ-tree are now obtained by allowing the
following operations: The children of a P-node (which is drawn as a circle)
can be arbitrarily permuted; the list of children of a Q-node (which is drawn
as a rectangle) can be mirrored.

The orderings of leaves obtained from all drawings of a PQ-tree after
such operations give the set of consistent permutations of S for T , denoted
CONSISTENT(T ). [BL76] describes an operation T ′ = REDUCE(T,X),
which yields a new PQ-tree T ′ for which the consistent permutations are
reduced to those in which all elements of X ⊆ S are consecutive. This
operation works by detecting certain patterns in the tree, and replacing them
with corresponding templates. While this operation is tedious and error-
prone to implement, it is very efficient.

There are two special PQ-trees: the universal tree, consisting of a sin-
gle P-node with all leaves as children (not imposing any restrictions on the
set of permutations, CONSISTENT(T ) = 2S), and the empty tree, with
CONSISTENT(T ) = ∅.

→

Figure 4.3: A pattern used in the PQ-tree REDUCE operation. On the right,
the universal PQ-tree on the set {a, b, c, d, e, f, g}.

Figure 4.4: PQ-tree obtained by reducing by the sets
{a, b}, {c, d, e}, {e, f}, {a, d}. Any front of this PQ-tree will have all
elements of each set consecutive, and the permutations represented by these
fronts are the only ones with this property.
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The planarity test using PQ-trees now basically tries to draw the graph as
a PQ-tree: each node represents some subgraph, with mandatory orderings
of edges imposed by Q-nodes. It works by starting with a one-node subgraph,
and extending it by repeatedly adding vertices until all of G is covered (called
a vertex addition approach).

First, a numbering o : V 7→ {1, . . . , |V |} of the nodes of G is retrieved,
such that each node is connected to nodes preceding it and to nodes following
it (with the exception of the first and the last node, which are required
to be connected by an edge). Such a numbering is called an st-numbering
(s := v1, t := v|V |), and it can always be constructed for biconnected graphs
G, in linear time (for general graphs G, the PQ-tree planarity test is done
on the blocks of G, with Lemma 4.1.1 yielding the overall result).

Now, subgraphs of G are considered, constructed by vertex addition ac-
cording to the st-numbering: The first graph is made of s and the edges
incident with it (but the one connecting it with t). This is represented by a
P -node with edges to leaves labeled with the names of the nodes adjacent to
s.

In each of the following steps, the next node i according to the st-
numbering is considered: the PQ-tree is manipulated such that all leaves
with label i (representing edges leading to this node) are always adjacent in
all permutations allowed by the PQ-tree (if there were another leaf j in be-
tween, the drawing could not be planar, since the corresponding edge would
have to go “through” vi or one of the edges incident with it, since it leads to
a vj with j > i). When this is done, all these leaves are replaced by a single
P-node for vi and all edges leading from vi to later nodes according to the
st-numbering.

If at any time, it is not possible to perform the step (i.e., the empty tree
is reported when trying to make leaves consecutive), the graph is nonplanar;
if the final node t is reached, it is planar.
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Figure 4.5: In each step, the PQ-tree holds the information which parts of
the already laid out subgraph can still be mirrored or permuted, i.e. it stores
all the planar embeddings of the subgraph. To obtain a planar embedding
of this subgraph together with the next node (16 in this example), all edges
leading to it must be consecutive (otherwise there would be an edge crossing).
Therefore a REDUCE operation is performed on the PQ-tree to allow only
such frontiers. If this yields the empty PQ-tree, the graph is nonplanar.
Otherwise, all such edges are replaced by a P-node and all edges leading
from the current node to later nodes, and the process advances to the next
node.
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Chapter 5

c-Planarity Tests

5.1 Overview

Many of the planarity tests presented in chapter 4 are not easily extendable
to clustered graphs. The main reason is that for clustered graphs, there are
two independent relations (incidence between nodes and edges; assignment
to clusters) with very different properties and behaviour.

This rules out any arguments based solely on node/edge/. . . counts, and
also makes a characterization in terms of forbidden subgraphs hard. How-
ever, the PQ-tree algorithm shown in chapter 4.4 lends itself to extension to
clustered graphs, as shown in [Feng96]. The algorithm presented there works
for c-connected clustered graphs, and has a linear running time. Some details
are given in the following, since it is the basis for the extended c-planarity
test presented in chapter 9.

In the last years, cluster planarity testing has again received some atten-
tion, and Gutwenger et al. presented an algorithm using SPQR-trees which
can handle some cases of non-connected clusters in polynomial time [GJ02].

Also in 2002, Jünger, Leipert and Percan established that every planar
clustered graph which is completely connected (meaning that for every cluster
also its complement is connected) is c-planar [JLP02], a result which was also
published in 2003 by Cornelsen and Wagner in [CW03].

In the year 2004, a polynomial time algorithm was presented by Cortese,
Battista et al. to test cluster planarity on clustered graphs for which the un-
derlying graph is a cycle (and therefore typically non-c-connected), [CBPP04].

All these results show that there has been interest and investigation in
the field of cluster planarity for non-c-connected clustered graphs; a general
result, whether there is a polynomial time algorithm for all clustered graphs,
however, has not yet been obtained.
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5.2 Feng’s Algorithm

This c-planarity test was presented in [Feng96] along with the definition of
clustered graphs. The main criterion upon which the test relies reads as
follows:

Theorem 5.2.1. A c-connected clustered graph C = (G, T ) is c-planar if
and only if G is planar, and there exists a planar drawing of G, such that
for each node ν of T , all the vertices and edges of G \Cν are in the external
face of the drawing of Cν.

The test is done recursively using a depth-first search in the tree T of
a clustered graph (G, T ). Starting with the “smallest” clusters, a planarity
test is performed for each cluster ν, with the additional restriction, that all
nodes connected to G \ Cν must border a common face of Cν .

This restriction is enforced by connecting all such nodes to a new node
vo representing G \ Cν , via so-called “virtual nodes” vi (representing the
cut-edges of Cν). The PQ planarity test is invoked with some vi as s, and
t = vo the last node to be considered. By stopping the PQ planarity test
immediately before the reduce step for vo (the REDUCE step for vo will
trivially always be successful), a PQ-tree is obtained which holds all possible
permutations of the vi around vo for which a planar embedding of Cν is
possible.

(Actually, the algorithm contracts vo and one of the vi, and uses the other
vertex connected to vi as s, but this doesn’t change the result.)

If the planarity test fails, this means that there is no planar embedding of
the cluster Cν with all nodes connected to the outside adjacent to the same
face. In this case, G is not c-planar by theorem 5.2.1.

If the planarity test succeeds, the obtained PQ-tree can be used to con-
struct a representant graph C ′ν in which all the nodes connected to G \ Cν

always are on the same face, and which allows the same orderings during a
round-trip along the border of the face as given by the PQ-tree. These are
exactly the orderings that allow a planar embedding of Cν with G \ Cν in a
single face of Cν .

The representant graph is built from “wheel graphs” and paths joining
them: every Q-node is replaced by a wheel graph, with each anchor of a tree
edge represented by a node on the rim of the wheel, each one joined to its two
neighbours, and all joined to an additional node, called axis. Every P-node
is replaced by a single node.

All embeddings of this representant graph have all nodes connected to
some vi on a single face, without constraints from cluster structure, only
using adjacency, and allows exactly the same ordering of the cut edges of Cν
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as Cν together with the cluster condition. So replacing Cν by C ′ν doesn’t
change the (cluster) planarity of G, and eliminates one cluster constraint.

The overall algorithmic complexity of this c-planarity testing algorithm
is O(n · |T |). A corresponding embedding algorithm was also presented in
the same work, with a running time of O(n2). This was improved to a linear
running time by Dahlhaus in 1998, [Dah98].

Figure 5.1: Representant node vo for G \ Cν , and virtual nodes vi around
Cν . The second figure shows some sample PQ tree reflecting the possible
ordering of the virtual nodes around vo, and the third one the corresponding
representant graph made of wheel graphs.
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New Results
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Chapter 6

Introduction

Although there are fast algorithms for checking c-planarity for c-connected
clustered graphs, and since recently, also for “almost c-connected” clustered
graphs [GJ02], no such algorithm has yet been presented for arbitrary clus-
tered graphs.

Moreover, when considering clustered graphs with non-connected clus-
ters, the constraints demanded by c-planarity seem too restrictive for certain
purposes (e.g. why not have “holes” in the drawing of a cluster for some
topological map?).

This work now tries to find c-planarity testing algorithms which work
for a wider range of graphs, and to investigate other forms of planarity for
clustered graphs.

Chapter 7 presents such an alternative form of planarity, c*-planarity,
and shows its relation to c-planarity. Chapter 8 tries to establish a charac-
terization of c*-planar graphs in terms of forbidden subgraphs, and in chapter
8.2 includes some results on forbidden subgraphs for graphs in which at most
given edges may intersect, which could be interesting on their own.

Chapter 9 once again deals with the “classical” c-planarity (as specified
in definition 3.4.2), and presents algorithms for c-planarity testing for some
special cases of non-connected clusters.
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Chapter 7

An Alternative Concept of

Cluster Planarity

This chapter presents an alternative form of cluster planarity, which poses less
restrictive constraints than c-planarity, but has the property that the problem
of testing a graph for c-planarity can be transformed into the problem of
testing this alternative form of cluster planarity.

7.1 Definition of c*-Planarity

Definition 7.1.1. Let a clustered graph (G, T ) be called c*-planar if for
each cluster C, there exists a set of edges EC such that G∪

⋃

C E
C is planar,

and C ∪ EC is connected.

Figure 7.1: A graph which is c*-planar, but not c-planar.

See figure 7.1 for an example of a c*-planar graph. This form of planarity
suffices to create comprehensible charts of computer networks or social re-
lation maps; clearly, every planar clustered graph with connected clusters is
c*-planar.
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7.2 Relation to c-Planarity

The following theorems expose a relation between c-planarity and c*-planarity,
which allows to use any c*-planarity test also for testing c-planarity.

(A similar result has independently been obtained by Jünger, Leipert and
Percan in [JLP02], and by Cornelsen and Wagner in [CW03], from a slightly
different point of view, the latter stating that a planar completely connected
clustered graph is c-planar. Their papers however do not investigate whether
it is possible to make a non-c-connected clustered graph completely connected
while preserving planarity.)

Lemma 7.2.1. For a graph G, if C ⊆ G is connected and G\C is connected,
then in any planar drawing of G, G \ C is contained in a single face of C.

Proof. If there exists a planar drawing of G, and G \ C is contained
in more than one face of C, then there must exist an edge e ∈ E(G \ C)
connecting these parts, and thereby crossing an edge in E(C), contradicting
the planarity of the drawing.

Theorem 7.2.2. Let (G, T ) be a clustered graph, let r denote the root of T ,
and p(ν) the parent of a node ν ∈ T ; let L(ν) denote the set of leaves which
are direct children of ν, and L̄(ν) the set of leaves which are descendents of
ν.

Let each edge 〈x1, x2〉 ∈ E(G) have p(x1) = p(x2) ∨ p(x1) = p(p(x2)) ∨
p(p(x1)) = p(x2) (i.e., no edge crosses more than one cluster border). Fur-
ther, let L̄(ν) be connected to G \ L̄(ν) for all ν ∈ T \ {r}, and S connected
to G \ S for all components S of L(ν), ν ∈ T .

Let T ′ denote the tree obtained from T by replacing, for each ν which
has non-leaf children, all leaf children by a cluster lν which has exactly these
leaves as children. (G, T ) is c-planar if and only if (G, T ′) is c*-planar.

Proof. “⇐”: If (G, T ′) is c*-planar, there exist sets Eν′
of edges which

make ν ′ connected for all ν ′ ∈ T ′, and a planar embedding of (G′, T ′) with
G′ = G ∪

⋃

ν′∈T ′ Eν′
. Specifically, lν and therefore L(ν) is made connected

for each ν ∈ T . Furthermore, L(ν) is adjacent to each L(µ) with p(µ) = ν,
and is adjacent to L(p(ν)). It needs to be shown that each ν ∈ T can be
drawn in a simple closed region. This is definitely true for ν = r, therefore
consider ν with p(ν) = νp. G

′ \ L(νp) has the components νi with p(νi) = νp

and G′ \ L̄(νp) (if not empty), and each of these components is adjacent to
L(νp). Therefore ν and G′ \ ν are connected for each ν, and according to
Lemma 7.2.1, G′ \ ν is contained in a single face of ν in any planar drawing
of G′.
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Figure 7.2: All edges cross at most one cluster border. Therefore, all con-
nections from νi to G \ νi go to L(ν). Since G is c*planar, for each νi, L(νi)
and therefore νi and G \ νi are made connected by adding Eν . This shows
that G \ νi can be drawn in one face of νi, proving that G is c-planar.

“⇒”: Consider the plane graph made of a cluster planar drawing of G,
including cluster borders drawn around each cluster, E(G) ∪

⋃

ν ∂ν. For a
given ν, first ignore all edges which have at least one endpoint in L(ν). This
gives a single face (not necessarily simple) which contains L(ν), since no edge
is allowed to cross more than one cluster border. Now add edges step by step.
Every time a new edge divides a face (necessarily into two), the two new faces
share a common x ∈ L(ν).

Therefore, after all edges are added, a set of faces F̄ = (fi)i is obtained, in
which any subset S ⊆ F̄ shares a common x with F̄ \ S. Hence, connecting
all x ∈ L(ν) ∩ ∂fi for all fi ∈ F̄ (e.g. to a new node xfi

) makes L(ν)
connected, and preserves planarity (adding a star into a face does not need
any crossings), fulfilling the requirements for c*-planarity (see figure 7.3).

Corollary 7.2.3. For a clustered graph (G, T ), any c*-planarity test can be
used to test c-planarity.

Proof. The assumptions on (G, T ) made in Theorem 7.2.2 can be over-
come: If a clustered graph (G, T ) does not have all edges cross at most one
cluster border, i.e. p(x1) 6= p(x2) ∧ p(x1) 6= p(p(x2)) ∧ p(p(x1)) 6= p(x2), in-
serting nodes belonging to the clusters on the path in T from p(x1) to p(x2),
in this order, creates a graph (G′, T ′) which is c-planar if and only if (G, T )
is: If (G, T ) is c-planar, consider any c-planar drawing of (G, T ) including
cluster borders, and insert nodes at the crossings of edges with the cluster
borders. The graph stays connected and is a (G′, T ′) as described above. On
the other hand, if (G′, T ′) is c-planar, consider a c-planar drawing of (G′, T ′),
and replace the inserted nodes by a single edge again. The conditions on
the new edges imposed by c-planarity are fulfilled: they have endpoints in
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Figure 7.3: Inserting the edges incident with L(ν) one by one shows that all
x ∈ L(ν) can be connected without disrupting planarity.

different clusters, and cross each cluster border at most once (since at most
one node was inserted for each cluster, due to choosing a path in T ).

If L̄(ν) is not connected to G \ L̄(ν), any c-planar embedding of G[L̄(ν)]
can be used together with a c-planar embedding of G[G \ L̄(ν)] to yield a
c-planar embedding of (G, T ). The same is valid for a component S of L(ν)
not connected to G \ S. So in both cases, the proof of Theorem 7.2.2 can be
applied to the subproblems, yielding the result for G.
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Chapter 8

Forbidden Subgraphs for

c*-Planarity

8.1 Overview

Any test algorithm for c*-planarity needs to be able to indicate that a given
graph is c*-planar or not c*-planar. The more explicit the indication, the
easier the algorithm or an implementation of it can be verified.

So the wish-list for such an algorithm would first contain an embedding
option for the algorithm, by which the result “is c*-planar” can be verified.
The next item on the list would be a possibility to verify a negative result,
such as pointing out a rather small or simple substructure of the graph which
is known to be non-c*planar. In other words, a criterion in terms of forbidden
subgraphs (this would also help in finding partitions of a graph, where the
graph is c*-planar only if the subgraphs indicated by the partition are).

Such a criterion, however, is not yet known for neither c-planarity nor c*-
planarity. This chapter takes aim at finding one; as of now, the full statement
of the general characterization presented remains a conjecture, since some
links in the proofs are not yet established. Parts of it (one direction of the
criterion) however are proven, and even if the conjecture turns out wrong,
the ideas used could eventually lead to a correct criterion.

Moreover, the results in section 8.2, preparing tools for the characteriza-
tion of c*-planarity, could be interesting on their own.

The proofs of the individual theorems are rather technical and lengthy,
since dealing with forbidden subgraphs and the Kuratowski graphs often
requires case differentiation of many individual situations (at least, no higher-
level arguments presented themselves to give relief...). An effort was taken
to illustrate the proofs as far as possible.
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8.2 Planarity with Allowed Crossings

This chapter investigates graphs which allow an embedding in which at most
some given edge pairs may intersect. This property is also known as weak
realizability, and its algorithmic complexity has been explored in [Kra98].

In this work, the focus is on a characterization of weak realizability in
terms of forbidden subgraphs, which shall yield a tool for the characterization
of c*planar graphs.

For a graph G and edges e1, e2 ∈ E(G), let G⊗{e1, e2} denote the graph
obtained from G by “crossing” e1 and e2, i.e. by adding a node vS and
replacing e1 = 〈x1, x2〉 by e11 = 〈x1, vS〉 and e12 = 〈vS, x2〉, and e2 = 〈y1, y2〉
by e21 = 〈y1, vS〉 and e22 = 〈vS, y2〉.

Furthermore, for a sequence of edge pairs S = (s1, s2, ..., sn), and Sj =
(s1, ..., sj) for 0 ≤ j ≤ n, let G ⊗ S := ((G ⊗ s1) ⊗ s2)... ⊗ sn, with sj ∈
P2(E(G ⊗ Sj−1)). By setting ψ(e) = e if e ∈ E(G), and ψ(elm) = ψ(el) in
each crossing operation, ψ(e) is defined as the original edge in G of which e
is a part of. Let ψ({e1, e2}) := {ψ(e1), ψ(e2)}.

A sequence S is said to be consistent with a set R ⊆ P2(E(G)) if ∀sj ∈
S : ψ(sj) ∈ R, and ψ is injective on S.

Definition 8.2.1. For R ⊆ P2(E(G)), let a graph G be called R-planar if G
can be drawn in the plane without any edge intersections but between edge
pairs listed in R, with at most one intersection per pair.

Remark 8.2.2. G is R-planar if and only if for some S consistent with R,
G⊗ S is planar.

For X = TY , i.e. X a subdivision of Y , and an edge e of X, let φ(e) ∈
E(Y ) denote the edge in Y whose subdivision in X contains e. Likewise,
for a node x of X which is not a branch vertex of X, let φ(x) denote the
edge in Y whose subdivision in X contains x. For branch vertices, φ(x)
is the node corresponding to x in Y . A d-edge (subdivision edge) ē is the
concatenation of all e ∈ X which have the same φ(e): ē(ey) =

⋃

φ−1(ey); let
Ē(X) := {ē|ē =

⋃

φ−1(ey), ey ∈ E(Y )}. Let φ(ē) = φ(e) for arbitrary e ∈ ē.
The endpoints of a d-edge ē are the nodes in ē which are incident with only
one e ∈ ē. Two d-edges ē1, ē2 are called adjacent if φ(ē1), φ(ē2) are.

When using φ or ē, if Y is not explicitly named, it is always assumed to
be the graph obtained from X by contracting every two edges connected to
a common node of degree 2 to a single edge.

Let K5
s denote the graph obtained from K5 by splitting one of the vertices

x of degree 4 into two vertices x1, x2 joined by a new edge 〈x1, x2〉, which both
have degree 3 (see figure 8.1), and let K5∗ denote the class of graphs obtained
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fromK5 by splitting zero or more vertices in this way (clearly, K5, K5
s ∈ K5∗).

For any Y ∈ K5∗, let SP (Y ) be defined as the set of all edges added by the
splitting operations. For X = TY , SP (X) := {ē ∈ Ē(X)|φ(ē) ∈ SP (Y )}.
For all other graphs, SP (X) = ∅.

Two edges e1, e2 ∈ Y are called s-adjacent if e1 = e2, are adjacent to
one another, or are both adjacent to a common s ∈ SP (Y ). Accordingly,
ē1, ē2 ∈ Ē(X) are s-adjacent if φ(ē1), φ(ē2) are.

Every Y ∈ K5∗ is a TK3,3 or TK5, since it is a MK5, and therefore
nonplanar. X shall be called a TK5∗ if it is a TY for any Y ∈ K5∗.

Theorem 8.2.3. G is {e1, e2}-planar if and only if there exists no X ⊆ G
such that X = TK5, TK3,3 or TK5

s with e1 /∈ X ∨ e2 /∈ X ∨ ē(e1) s-adjacent
to ē(e2).

Remark 8.2.4. A TK3,3 or TK5
s in which ē(e1) and ē(e2) are not s-adjacent,

does not necessarily prove that G is non-{e1, e2}-planar, see figure 8.2.

Proof of Theorem 8.2.3. “⇒”: Let G′ := G ⊗ {e1, e2} with node vs and
edges elm added by the crossing operation. If an X with the given properties
exists, it clearly makes G nonplanar. Moreover, it also gives rise to an X ′

which makes G′ nonplanar: If e1 /∈ X ∧ e2 /∈ X, then X ⊆ G′ and X can
be used as X ′. If e1 ∈ X ∧ e2 /∈ X, then X ′ is obtained by replacing e1 by
(vS, {e11, e12}); similar for e1 /∈ X ∧ e2 ∈ X. If both are in X, then in case
they are on the same d-edge ē, X ′ can be constructed by joining the two
nodes nearest to the endpoints of ē via vS (see figure 8.3). If they are on
different adjacent d-edges ē1, ē2 (joined in vB), then in the case ofX = TK3,3,
X ′ = TK3,3 is obtained by replacing vB by vS as a branch vertex (see figure
8.4); in the case of X = TK5, X ′ = TK5∗ is obtained according to figure
8.5. When X is a TK5

s , the same arguments can be used in case ē1 and ē2
are adjacent (yielding a TK5∗); if they are separated by s̄ ∈ SP (X), then a
TK5 is obtained by the operation depicted in figure 8.6.

In all cases X ′ ⊆ G′ is not planar, and according to Remark 8.2.2, G is
not {e1, e2}-planar.

“⇐”: Now it needs to be shown that if G is not {e1, e2}-planar, such an
X exists. According to Remark 8.2.2, there must exist X ⊆ G,X = TK3,3

or TK5 and X ′ ⊆ G′, X ′ = TK3,3 or TK5. If for X, e1 /∈ X ∨ e2 /∈ X ∨ ē(e1)
adjacent to ē(e2), the result is shown. Likewise, for vS /∈ X ′, X ′ ⊆ G and
has the properties to be shown. Therefore, in the following assume that
e1 ∈ X ∧ e2 ∈ X ∧ ē(e1) not adjacent to ē(e2), and that vS ∈ X ′. The result
will be shown by starting with Y ⊆ G′, Y = X ⊗ {e1, e2} and then showing
that any existing X ′ leads to a Z ⊆ G,Z = TK3,3 or TK5∗ which has the
properties demanded by the theorem.
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Figure 8.1: Left figure: K5
s (contains a TK3,3 consisting of only the solid

lines), SP (X) = {〈1a, 1b〉}; right figure: a K5∗, SP (X) = {〈1a, 1b〉, 〈4a, 4b〉}.

Figure 8.2: For X = TK5 with nonadjacent edges ē(e1), ē(e2), a {e1, e2}-
planar embedding can be constructed as shown on the right (obtained from
the left figure by moving nodes 1 and 3).

Figure 8.3: e1 and e2 are on the same edge, X ′ is obtained by replacing the
path from a to b in G by the one through vS in G′.
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Figure 8.4: X = TK3,3, e1 and e2 are on adjacent edges. X ′ is constructed
by replacing vB by vS as a branch node.

Figure 8.5: X = TK5, e1 and e2 are on adjacent edges. The graph created
by the construction is a TK5∗, and contains a TK3,3 (only the solid lines in
the graph on the right).

Figure 8.6: X = TK5
s , ē(e1) and ē(e2) are separated by s̄ ∈ SP (X). Per-

forming the crossing operation and deleting s̄ results in a K5.
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1. First, consider X = TK5 (figure 8.7). Since φ(Y ) is 3-connected, this
is the only planar embedding (but for choosing the outer face) of Y . If
G contains an X-path W from a to b such that a and b are not on the
border of a common face f of Y , then (G \ {ei})∪W already contains
a Z = TK3,3 or TK5 for i = 1 or i = 2 which therefore meets the
conditions:

(a) a, b both are branch vertices of X. This implies that (a, b) = (1, 5)
or (a, b) = (2, 4). In each of these cases, Z can be obtained from
X by replacing either ē(e1) or ē(e2) by W (see figure 8.8).

(b) a is a branch vertex of X, b from the interior of a d-edge ē. This
implies that b lies on one of the four d-edges of Y adjacent to the
one vertex x of Y with φ(x) not adjacent to φ(a). In the case that
a = 3, construct Z as in figure 8.8, otherwise as in figure 8.9.

(c) a and b are from the interior of d-edges ēa and ēb. If both a and
b lie on some ē(eij), then i must be the same for both, and j
different. Therefore Z can be constructed by replacing the (a, b)-
path through ei by W , see figure 8.10. Otherwise, let a lie on some
edge ē but ē(eij). Set a′ to an endpoint of ē which is not on the
border of a face f of Y adjacent to b (this is always possible, since
if both endpoints have a face in common with b, b and a would
share a common face, or the dual graph of Y would have a cycle
of length 3). By contracting a and a′, the previous case is created
for a minor G1 of G resp. G′

1 of G′. Since this yields a Z which is
contained in G1 \ {ei}, this Z also delivers the wanted result for
G (figure 8.10).

If G does not contain such an X-path, then each component of G′ \ Y
falls in one of the following categories (let attY (S) denote the points of
attachment of S in Y ):

• Ā = {A | |attY (A)| > 1, ∃ē : attY (A) ⊆ ē}

• B̄ = {B | |attY (B)| > 1, B /∈ Ā}

• C̄ = {C | |attY (C)| = 1}

• D̄ = {D | attY (D) = ∅}

Since a graph is planar if and only if all its blocks are planar, and
since we assumed that there is no X ′ with vS 6∈ X ′, C̄ and D̄ can be
omitted for further considerations, as well as all blocks of G′[Y ∪ B̄]
and G′[Y ∪ Ā] which do not contain elements of Y .

40



CHAPTER 8. FORBIDDEN SUBGRAPHS FOR C*-PLANARITY

Figure 8.7: X and Y for the case X = TK5.

Figure 8.8: On the left: Case 1a; on the right: Case 1b, a = 3. Y contains a
TK3,3 with the needed properties (consisting of only the solid lines).

Figure 8.9: Case 1b, a 6= 3. In the first three cases, X contains a TK3,3, in
the last a TK5 with the needed properties.
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Since two d-edges of Y border at most one common face, each B can
only be embedded in a single face of X, denoted f(B). Therefore
G′[Y ∪ B] is planar if and only if G′[∂f(B) ∪ B] is planar. If ∂f(B)
does not contain any eij , any Z = TK3,3 or TK5, Z ⊆ G′[∂f(B) ∪ B]
fulfills the requirements. If not, then it contains exactly two eij , and
G′[∂f(B)∪B] is a minor of the graph obtained from G′[∂f(B)∪B] by
replacing each eij by a path in G to a common branch vertex of X not
contained in ∂f (see figure 8.11). In this graph, any subdivision Z of
K5 or K3,3 has e1 and e2 on the same d-edge, therefore Z fulfills the
requirements.

So let assume that G′[Y ∪ B] is planar for all B. With B̄(f) :=
{B|f(B) = f}, G′[Y ∪ B̄] is planar if and only if for all f , G′[Y ∪ B̄(f)]
is planar (since φ(Y ) is 3-connected). So if G′[Y ∪ B̄(f)] is nonplanar,
this is due to B̄(f) not “fitting” into a single face of ∂f . Then, however,
U := G[∂f ∪ B̄(f)] ∪ (vf , {〈vf , x〉|x branch vertex of ∂f}) also is not
planar (φ(U \ B̄(f)) is 3-connected, and therefore forces B̄(f) into a
single face). If vS /∈ ∂f , vf can be chosen arbitrarily from the remain-
ing two branch vertices of X, and a subdivision of U is contained in
G \ {e1, e2} (see figure 8.12). If vS ∈ ∂f , choose the branch vertex of
X not adjacent to vS as vf . Further create U ′ by replacing the two eij

by a path through the corresponding ei and the remaining two branch
vertices of X. Since the induced plane graph does not change (U ′\B(f)
to U \ B(f)), this does not change planarity. So U ′ is nonplanar, and
U ′ ⊆ G. Moreover, since any d-edge that contains either e1 or e2 must
contain a fixed branch vertex (node 1 in figure 8.13), they must be on
adjacent d-edges of any Z = TK5 or TK3,3 ⊆ U ′. So in both cases, the
requirements are met (figure 8.13).

Finally let assume that G′[Y ∪ B̄] is planar. In order for G′ to be
nonplanar, it must be impossible to fit the Ā(ē) into the faces bounded
by Y and the B̄(f1),B̄(f2) on the both sides of an edge ē of Y adjacent
to the faces f1, f2 . This is equivalent to U := G′[Ā(ē) ∪ B̄(ē) ∪ ∂f1 ∪
∂f2∪〈vē1, vē2〉] being nonplanar, with B̄(ē) := {B|attY (B)∩ ē 6= ∅, B ∈
B̄(f1) ∪ B̄(f2)}, and vēk being the two branch vertices of ∂f1 and ∂f2

not adjacent to ē, since φ(U ∩ Y ) is 3-connected. See figure 8.14. (If
B̄(ē) = ∅, it suffices to see that ē always joins exactly 2 different faces.
If B̄(ē) 6= ∅, then for a single path W in a B joining ē and Y \ ē,
φ(G′[∂f1 ∪ ∂f2 ∪W ]) is 3-connected, and therefore only allows a single
planar embedding.)

In case that none of f1, f2 borders vS the vēk can be connected via the
fifth branch vertex. In the case that vS borders one of the faces (i.e.
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Figure 8.10: Case 1c. Construction for a and b both on ē(eij) on the left, for
at least one not on ē(eij) on the right.

Figure 8.11: G′[Y ∪B] is nonplanar for some B, and eij ⊆ ∂f(B). Replacing
the eij by paths to 1 (e2 via 2) yields an X ⊆ G with e1 on the same d-edge
as e2.

Figure 8.12: If vS 6∈ ∂f , U is a minor of G \ {e1, e2}.
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Figure 8.13: U ′ can be obtained from Y by removing some edges when vS ∈
∂f .

Figure 8.14: planarity checking for Ā(ē) ∪ B̄(ē).
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vS = vēk), form U ′ by replacing the vS and the three eij by one of the
remaining two branch vertices of X and the corresponding paths in X,
see figure 8.15. Whenever both ei are contained in a Z ⊆ U,Z = TK5

or TK3,3, they are always on the same or adjacent d-edges.

In the case that vS is one of the endpoints of ē, and ei0j0 ∈ ē, construct
U ′ by replacing ei0j0 and vS and the two other eij by ei0 and paths in
X to the fourth branch vertex x of X with φ(x) adjacent to φ(vS). In
this case, U contains at most one ei, and is nonplanar by construction
(figure 8.16).

2. Now, consider X = TK3,3 (figure 8.17). If G contains an X-path W
from a to b such that a and b are not on the border of a common face
f of Y , then (G \ {ei})∪W already contains a Z = TK3,3 or TK5∗ for
i = 1 or i = 2 which meets the conditions:

(a) a, b both are branch vertices of Y . This implies that (a, b) = (5, 3)
or (a, b) = (2, 6). So W can be used as a replacement for e1 or e2
to yield a Z as needed.

(b) a is a branch vertex of X, b is from the interior of a d-edge ē. Z
can be constructed as shown in figure 8.18.

(c) a and b lie on the interior of d-edges ēa resp. ēb. At least one of
the endpoints of ēa, ēb which is not adjacent to a face adjacent to
the other d-edge is different from vS. Let this be one of ēa, and
denote it by a′. Contracting Y by (a, a′) yields the previous case
for a minor Y ′ of G′. Any resulting Z also shows the result for G
(because it is contained in a minor of either G \ {ei} or of a graph
in which the ei must always be on adjacent d-edges for any Z).

If G does not contain such an X-path, the same process is performed as
for X = TK5 up to the case of G′[Y ∪B] being nonplanar for some B.
So let assume that G′[Y ∪B] is planar for all B, and that G′[Y ∪ B̄(f)]
is nonplanar for some f .

For this to happen, there must be some components B1, B2 crossing
one another, i.e. when assigning numbers to the attachment points of
B̄(f) in the order they occur during a round trip along ∂f , there must
be some n11 < n21 < n12 < n22 with xn1j

attached to B1 and xn2j

attached to B2. Moreover, for at least one i, the nij can be chosen so
that f is the only face shared by xni1

and xni2
. The graph constructed

by adding edges eB1 = 〈xn11 , xn12〉 and eB2 = 〈xn21 , xn22〉 is a minor of
G′ (resp. of G, when adding to X).
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Figure 8.15: Ā(ē) in case vS = vei
.

Figure 8.16: Ā(ē) in case vS ∈ ē.

Figure 8.17: X and Y for K3,3.
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For each of the faces of Y , this yields a Z as required: For the 4-node
faces adjacent to vS, a Z can be constructed according to figure 8.19,
for the 3-node faces (adjacent to vS) according to figure 8.20, and for
the 4-node faces not adjacent to vS, according to figures 8.21, 8.22, and
8.23. In all cases either at least one of the ei /∈ Z or e1 and e2 are on
s-adjacent d-edges of Z.

It remains to consider the case G′[Y ∪ B̄] planar. Use the same con-
struction as for TK5. For each ē it suffices to find a subgraph U of
G in which every B incident with ē can only be placed in a single
face of U , and ēo borders exactly two faces of U . Therefore whenever
G′[Y ∪ B̄(ē)∪ Ā(ē)] is nonplanar, so is U ′ = U ∪ B̄(ē)∪ Ā(ē). See figure
8.24 for the construction of U when ē joins a face f with vS 6∈ ∂f with
another, and figure 8.25 for the construction of U when ē joins two
faces f1, f2 with vS ∈ ∂f1 ∧ vS ∈ ∂f2.

Summing up, all possibilities to render G′ nonplanar result in a Z with
the properties required by the theorem. �

Corollary 8.2.5. G is {e1, e2}-planar if and only if there exists no X ⊆ G
such that X = TK3,3 or TK5∗ with e1 /∈ X ∨ e2 /∈ X ∨ ē(e1) s-adjacent to
ē(e2).

Proof. The existence of an appropriate X for a non-{e1, e2}-planar G
follows from the above theorem, since a TK5 and a TK5

s both are TK5∗.
For the other direction, it suffices to observe that for X = TK5∗ with ē(e1)
s-adjacent to ē(e2), X ⊗ {e1, e2} is also a TK5∗: for ē(e1) = ē(e2) and ē(e1)
adjacent to ē(e2), the proof is the same as for TK5 resp. TK3,3, and for ē(e1)
and ē(e2) separated by s̄ ∈ SP (X) see figure 8.26.

Conjecture 8.2.6. G is R-planar if and only if there exists no X ⊆ G such
that X = TK3,3 or X = TK5∗, and e1 /∈ X ∨ e2 /∈ X ∨ ē(e1) s-adjacent to
ē(e2) for all {e1, e2} ∈ R.
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Figure 8.18: If a = 1 and b ∈ 〈2, vS〉, a TK3,3 where e1 and e2 are on
adjacent d-edges can be constructed by removing the edge 〈1, 6〉 and taking
b as branch point instead of 6. b ∈ 〈3, vS〉 and cases with a = 4 can be handled
analogously for symmetry reasons. The other figures show a = 5, b ∈ 〈3, vS〉
resp. a = 5, b ∈ 〈3, 4〉 resp. a = 5, b ∈ 〈6, 3〉. Here e1 can be removed while
still preserving a K3,3, yielding an appropriate Z. The remaining cases are
obtained by symmetry.

Figure 8.19: 4-node face with vS ∈ ∂f : Let the branch vertex on ∂f not
adjacent to vS be called o. If o is one of the xnij

or an xnij
lies on a d-edge

adjacent to o, then set Z := X ∪ {eB1 , eB2} \ {el|xni2−j
/∈ ē(el)} (if multiple

xnij
are on d-edges adjacent to o, choose one “nearest” to o). In case both

el were removed, Z is a TK3,3 with e1, e2 /∈ Z. Otherwise, φ(Z \ {eBi
}) is

3-connected, eB2−i
connects two nodes which are not adjacent to a common

face, and therefore Z is nonplanar with el ∈ Z for only one l. If no xnij
is

adjacent to o, Z = TK3,3 is obtained according to the figure on the right,
and has e1 and e2 on adjacent d-edges.
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Figure 8.20: 3-node face with vS ∈ ∂f : By removing the edge 〈1, 6〉 from X,
a graph U with 3-connected φ(U) is obtained; in U , every pair of edges has a
single face which they both border. Therefore, U ′ = U ∪ {eBj

} is nonplanar.
Moreover, any Z contained in U ′ has ē(e1) and ē(e2) adjacent.

Figure 8.21: 4-node face with vS /∈ ∂f , and ∃eBi
with xnij

on the interiors
of different d-edges. By adding eBi

and removing at least one el0 , a graph
Z = X ∪ {eB1 , eB2} \ {el0} with 3-connected φ(Z) is obtained, for which the
xn2−ij

do not share a common face. Therefore Z is nonplanar and contains
only one el.

Figure 8.22: 4-node face with vS /∈ ∂f , and ∄eBi
with an xnij

on the interior
of a d-edge. Z = X ∪ {eB1 , eB2} is a K5

s in which ē1 and ē2 are separated by
s̄ ∈ SP (X), i.e. s-adjacent.
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Figure 8.23: 4-node face with vS /∈ ∂f , and ∃eBi
with one xnij

on the interior
of a d-edge, and the other a branch point of X. By adding eBi

and removing
at least one el, a graph Z = X ∪ {eB1 , eB2} \ {ek} with 3-connected φ(Z) is
obtained, for which the xn2−ij

do not share a common face. Therefore Z is
nonplanar for appropriate k and contains only one el.

Figure 8.24: Construction of U for the cases involving an f (wlog f1) which
has not got vS on its border. If also vS 6∈ ∂f2, set U = ∂f1 ∪ ∂f2 ∪ ē(ei)
with arbitrary i. The other cases are shown in the figure: on the left side
f2 a 4-node face adjacent to f1 and vS: (1,5,3,4) is 3-connected, therefore
there is only one possible embedding (but for choosing the outer face). All
B connected to ē can only be placed in a single face, and ēo borders exactly
two faces. U contains only one of the ei. On the right hand side, the case of
f2 being the 3-node face adjacent to f1: U fulfills the requirements, and e1
and e2 always are on adjacent d-edges for any Z found in U ′.
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Figure 8.25: Construction of U for the case of ē joining two f adjacent to
vS. Let assume ē = (5, vS). φ(U) is 3-connected, and therefore U allows only
one embedding, each B attached to ē can only be placed in one face, and the
faces on both sides of ē are different. Moreover, each U only contains one ei,
thereby fulfilling the requirements.

Figure 8.26: When crossing e1, e2 in X = TK5∗ for which ē(e1), ē(e2) are
separated by s̄ ∈ SP (X), an X ′ can be obtained which has a node of degree
4 instead of the two endpoints of s̄ by removing s̄.
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8.3 Graphs with a Single Cluster

The results from chapter 8.2 can now be used to give a characterization of
c*-planar graphs in terms of forbidden subgraphs.

In the following, let G be a clustered graph containing a single cluster
C, let Ki denote the components of C, and K̄ the set of all Ki. Wlog let
each node in G \C adjacent to C have degree 2, and call these nodes virtual
nodes. The set of virtual nodes adjacent to a set S is denoted by H(S). Set
EC := E(C ∪ {v|v ∈ H(C)}).

Theorem 8.3.1. G is c*-planar if and only if

Ĝ := G ∪ ({vC},
⋃

K∈K̄

{〈vC , v
K
r 〉|vK

r ∈ K arbitrarily chosen})

is R-planar with R =
⋃

K∈K̄,e∈EC

{

{〈vC , v
K
r 〉, e}

}

.

Proof. “⇒”: Create a straight-line planar drawing of G∪EC (a straight-
line planar drawing is possible for any planar graph). Choose an arbitrary
node v1 ∈ C, and add a node vC into a face adjacent to v1, and the edge
〈vC , v1〉. Choose a vK

r for eachK, and for each of these determine the shortest
path p(K) from vC to vK

r in C. This shall be done in a consistent way, i.e.
whenever a node v occurs in a path: p(Ki) = (vC = v0, v1, ..., vj, v, ..., vn =
vKi

r ), its predecessors shall be the same (i.e., (vC , v1, ..., vj) shall precede it in
any path). Obviously, any node occurs at most once in a single path. Sorted
by decreasing path length |p(K)|, add a line lK an ǫ to the left or right of
p(K) for each K, so that it crosses no other lKi . This is always possible since
⋃

K∈K̄ p(K) is a tree, and none of the intermediary nodes v1, ..., vn−1 is an
endpoint of any previous lKi. The ordering of the lKi around vC is determined

by the ordering of v
Ki1
j and v

Ki2
j around v

Ki1
j−1 for every Ki1, Ki2 ∈ K̄, where

j is the first index for which the vKi

j are different. By removing EC and
inserting nodes at the crossings of lK and e ∈ EC , a G ⊗ S as required is
obtained.

“⇐”: If Ĝ is R-planar for the R given in the theorem, then there exists
a GS = (Ĝ⊗ {e1, 〈vC , v

K
r 〉}) ⊗ . . . with a set of intersection nodes xj added

by the crossing operations such that GS is planar. Contracting vC and an
intersection node x0 adjacent to it, and then contracting every intersection
node with a node v(x) of G next to it yields a graph G′S. G′S is planar
since it is a minor of GS, G ⊆ G′S, and it also makes C connected (in
GS, every component of C was connected to vC , hence every component
of C is connected to v(x0) via zero or more other nodes of C). Therefore,

52



CHAPTER 8. FORBIDDEN SUBGRAPHS FOR C*-PLANARITY

G′S \ (G \C) \E(C) can be used for EC in the sense of Definition 7.1.1. See
figure 8.27. �

Definition 8.3.2. Let GK(C) := (G\C)∪({vC}∪{vK |K ∈ K̄}, {〈vK , v〉|v ∈
H(K), K ∈ K̄} ∪ {〈vC , vK〉|K ∈ K̄}). A clustered graph G with a single
cluster C is called pseudo-c*-planar if

a) G is planar,

b) GC := (G \ C) ∪ ({vO}, {〈vO, v〉|v ∈ H(C)}) is planar, and

c) GK := (G \C)∪GK(C) contains no X = TK3,3 or X = TK5∗ with vC

not a branch vertex of X, and vC 6∈ X or ē(e) s-adjacent to ē(vC) for
all e incident with a vK .

See figure 8.28 for an example of G,GC, GK .

Remark 8.3.3. The three conditions in Definition 8.3.2 are independent.

Proof. For each one of the conditions a),b),c), there exists a graph which
violates only this condition, but not the two others. See figure 8.29.

Theorem 8.3.4. If a graph G with a single cluster C is c*-planar, it is
pseudo-c*-planar.

Proof. Let assume G is not pseudo-c*-planar. If a) is violated (and
therefore G not planar), then G is clearly not c*-planar. If b) is violated,
it suffices to see that GC is a minor of G ∪ EC for any EC (since C ∪ EC

is connected, it can be contracted to a single node which delivers a graph
isomorphic to GC), and therefore G ∪EC is nonplanar for any EC .

For a violation of c) (GK contains an X with the listed properties), con-
sider for each given EC the graph X ′ ⊆ G ∪ EC created from X by finding
nodes in K for each vK (for X = TK3,3, one node can always be found in
K; for X = TK5, it may be needed to choose two nodes in K as the two
parts of a “split” node of a TK5∗). If vC 6∈ X, then X ′ ⊆ G, and therefore
G ∪ EC is nonplanar for any EC . Otherwise, with b1, b2 being the branch
vertices of X incident with ē(vC), all vK ∈ X are either one of b1, b2, on the
inners of d-edges s-adjacent to those, or branch vertices separated from bi by
s̄i ∈ SP (X). Let Si :=

{

vK |vK ∈ X, vK s-adjacent to vC inX \{〈vC, b2−i〉}
}

,
and S ′

i the set of corresponding nodes in X ′. X∩{vK |K ∈ K̄} = S1∪S2. Re-
placing the d-edge containing vC by any path joining S ′

1 with S ′
2 results again

in a TK3,3 or TK5∗. Finding such a path is always possible: EC connects

all K,K ∈ K̄, so there is a tree TEC

of connections between the K,K ∈ K̄
through EC , and it only needs to be provided that on the path between the
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Figure 8.27: G′S contains a subdivision of G, and G′S \ (G \C) is connected.

Figure 8.28: Corresponding G, GC , GK from Theorem 8.3.1.

Figure 8.29: From left to right, only 3a, only 3b, and only 3c is violated by
the shown non-c*-planar graphs.
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chosen K1 and K2 there is no other K ∈ S1 ∪ S2. This can be achieved
by choosing K1 and K2 “nearest” to each other in TEC

(i.e. with no other
K ∈ S1 ∪ S2 in between), see figure 8.30. Choosing x1 from the correspond-
ing nodes in K1 and x2 from the corresponding nodes in K2, and creating
connections from x1, x2 to the endpoints of EC in each K yields the wanted
path. Therefore for each EC , a TK3,3 or TK5∗ is contained in G ∪ EC , as
required.

Figure 8.30: In the graph on the left, the thick lines are a part of X ′, the
dashed lines are those in EC . A TEC

is shown in the middle, with the
elements of S1 shown as rectangles, and of S2 as circles. As candidates either
(K2, K4) or (K2, K5) can be chosen. On the right, see the final graph created
by replacing the d-edge through vC by a path through EC .

Theorem 8.3.5. If Conjecture 8.2.6 holds, then if a graph G with a single
cluster C is pseudo-c*-planar, it is also c*-planar.

Proof. If G is not c*-planar, then according to Theorem 8.3.1 there exist Ĝ
and R, Ĝ not R-planar. By conjecture 8.2.6 there exists X ⊆ Ĝ,X = TK3,3

or X = TK5∗ in which for each edge pair (〈vC , v
K
r 〉, e) in R with e ∈ E(C)

and K ∈ K̄, only one is contained in X, or they are s-adjacent. Now if
vC 6∈ X, then X ⊆ G, and a) is violated.

Otherwise, if vC is a branch vertex of X, then in case of TK3,3 or a vC

with degree 4, no other branch vertex of X may lie in C; contracting the
d-edges starting in vC to single edges delivers a non-planar minor of GC ,
thereby violating b). In case vC is a node of degree 3 in a TK5∗, additionally
contract by s connecting vC with its corresponding node of degree 3 to get
the same result.

Lastly, if vC ∈ X and vC is not a branch vertex ofX, then no e ∈ E(C) can
lie on an edge not s-adjacent to ē(vC). Let a “path through K” denote a path
(w0, w1, . . . , wn−1, wn) with w0, wn ∈ G \ C, and wj ∈ K ∀j = 1, . . . , n − 1.
In order to have c) violated, it only needs to be shown that there exists such
an X in which there is at most one disjoint path through each component
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K of C, so that the paths can be contracted to single edges, and K ∩X to
a single node without changing planarity, yielding a graph isomorphic to a
subgraph of GK . Such an X will be constructed iteratively by the following
process: Let assume that for X there exists a component K of C with two
disjoint paths W1, W2 of X through K. Moreover, let assume that they
can be connected by a path in K which does not contain other nodes of X
(this can always be assumed, since K is connected). In each step, the total
number of disjoint paths through the Ki is decreased by at least one, or a
X is obtained which violates b). Therefore the iteration terminates, and
delivers the result as required. Iteration step:

1. If W1,W2 lie on the same d-edge of X, construct the next X by con-
necting W1 and W2 by a path in K and removing the “loop” (see figure
8.31).

2. If W1,W2 lie on different d-edges k̄1, k̄2 of X on opposite sides of vC ,
an X can be constructed which does not contain vC (see figure 8.32),
and therefore violates b). In this case, the iteration can be aborted.

3. If W1,W2 lie on different d-edges k̄1, k̄2 of X on the same side of vC ,
the next X is obtained according to figure 8.33.

Therefore, in all cases it is possible to construct an X as required. �

Corollary 8.3.6. If Conjecture 8.2.6 holds, then a graph G with a single
cluster C with two components is c*-planar if and only if G is planar and
(G \ C) ∪GK(C) is planar.

Proof. “⇒”: Assume G is c*-planar. By Theorem 8.3.4, G is planar.
Moreover, GK contains no X = TK3,3 or X = TK5∗ with vC not a branch
vertex of X, and vC 6∈ X or ē(e) s-adjacent to ē(vC) for all e incident with a

Figure 8.31: K contains two disjoint paths on the same d-edge of X.
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Figure 8.32: K contains two disjoint paths which lie on d-edges on opposite
sides of ē(vC). Let x1, x2 denote the branch vertices on either side of ē(vC),
and w1, w2 the endpoints of the path W (w1, w2) connecting the two paths
in K, and consider wj for j = 1, 2. If wj is adjacent to vC , xj stays branch
vertex; if wj is the branch vertex separated from vC by s̄ ∈ SP (X), xj is not
a branch vertex anymore, but wj becomes a node of degree 4. Otherwise,
wj becomes a new branch vertex, either replacing xj , or as partner of the
split degree-4-node xj . In all cases, a part of ē(vC) containing vC can be
eliminated while still keeping an X = TK3,3 or X = TK5∗; this shows that
b) is violated.

Figure 8.33: K contains two disjoint paths which lie on d-edges on the same
side of ē(vC). By adding W (w1, w2), a new X is obtained which has one
disjoint path less; moreover, all edges which were s-adjacent to ē(vC), still
are, and the newly added edges in K also are.

57



CHAPTER 8. FORBIDDEN SUBGRAPHS FOR C*-PLANARITY

vK . However, GK can also contain no other X = TK3,3 or X = TK5∗, since
vC has degree 2 (and therefore cannot be a branch vertex of X), and since
all edges incident with a vK are adjacent to the one containing vC if vC ∈ X
(there are only two vK in X: vK1 , vK2, and vC is connected to only these two
nodes).

“⇐”: Consider that G is planar and (G\C)∪GK(C) is planar; condition
a) of pseudo-c*-planarity is trivially fulfilled. GK contains no TK3,3 or TK5

at all, therefore c) also holds. Lastly, GC is a minor ofGK , and must therefore
be planar. �
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8.4 Graphs with Multiple Clusters on One

Level

The results from the last chapter are now extended to graphs with multiple
clusters on a single level (i.e. no cluster may have nonempty intersection with
another).

In the following, let G be a clustered graph containing clusters C̄ =
{Ci|i = 0..n}, and let K̄(Ci) denote the components of Ci. Wlog let each
node in G \ Ci adjacent to Ci have degree 2, and call these nodes virtual
nodes. The set of virtual nodes adjacent to a set S is denoted by H(S). Set
ECi

:= E(Ci ∪ {v|v ∈ H(Ci)}).

Theorem 8.4.1. G is c*-planar if and only if

Ĝ := G ∪
⋃

C∈C̄

({vC},
⋃

K∈K̄(C)

{〈vC , v
K
r 〉|vK

r ∈ K arbitrarily chosen})

is R-planar with R =
⋃

C∈C̄

⋃

K∈K̄(C),e∈EC

{

{〈vC , v
K
r 〉, e}

}

.

Proof. Perform the steps given in the proof of Theorem 8.3.1 for each
cluster C ∈ C̄.

Definition 8.4.2. Define replacements for G[Ci] ∪ ECi
as follows:

F0(Ci) := G[Ci] ∪ ECi

F1(Ci) := ({vCi

O }, {〈vCi

O , v〉|v ∈ H(Ci)}

F2(Ci) := GK(Ci)

Further, let L(G) denote the set of graphs L obtained from G by replacing
G[Ci] ∪ECi

by one of the Fj(Ci) for all clusters Ci, i.e.

L(G) :=
⋃

δ∈[0,1,2]C̄

{(G \
⋃

Ci∈C̄

Ci) ∪
⋃

Ci∈C̄

Fδ(Ci)(Ci)
}

A graph G with clusters C̄ on one level is called pseudo-c*-planar if for all
L ∈ L, L does not contain a X = TK3,3 or X = TK5∗ with vCi

C not a branch
vertex of X, and vCi

C 6∈ X or ē(e) s-adjacent to ē(vCi

C ) for all e incident with
a vCi

K , for all Ci ∈ C̄.
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Theorem 8.4.3. If a graph G with clusters C̄ on one level is c*-planar, it
is pseudo-c*-planar.

Proof. Basically the proof can be done by performing the steps as in the
proof of theorem 8.3.4 for each C ∈ C̄. This yields the result that for any
set Ē := {EC |C ∈ C̄} making all C connected, G∪ Ē is nonplanar, showing
that G is not c*-planar.

However, a different construction has to be used instead of the one shown
in figure 8.30 for a violation of condition c) of pseudo-c*-planarity with vC ∈
X, since applying the construction given there for one cluster can destroy
the adjacency constraints for another cluster (see figure 8.34).

In case constraint c) of pseudo-c*-planarity is violated with vC ∈ X,
X ∩C can contain at most one (possibly split) branch vertex of X, together
with parts of d-edges adjacent to it. Denote by X ′ the graph obtained from
X by inserting into each d-edge between x1 ∈ C and x2 ∈ X \ C a node p,
and denote by X ′

1 the component of X ′ \ C which contains more than two
branch vertices. X ′

1 is a K3,3 or K5∗ with one branch vertex missing between
{p|p ∈ X ′

1}. Therefore, in order to prove G ∪ EC nonplanar, it suffices to
have all p ∈ X ′

1 connected in (G ∪ EC) \X ′
1. This is always possible, since

all p are adjacent to C, and C ∪EC is connected.
This construction can be used iteratively for several clusters, since in

each step, all d-edges of X \ C which were s-adjacent before, are s-adjacent
afterwards (or have been eliminated - specifically the parts of d-edges inX\C
between two nodes of C).

Figure 8.34: If in C2, the path through EC has to be chosen via node b
instead of node 4, then for C1, the d-edge between nodes 1 and b is not any
more s-adjacent to the d-edge containing vC1 . The alternative construction
eliminates the “loop” through X \ C2.
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Conjecture 8.4.4. If a clustered graph G with clusters C̄ on one level is
pseudo-c*-planar, it is c*-planar.

The attempts to prove this conjecture not only rely on Conjecture 8.2.6,
but face additional difficulties, since the proof of Theorem 8.3.5 cannot be
trivially extended to the case of multiple clusters: When performing the
iteration steps to eliminate multiple disjoint paths through a component of
a cluster C1, it can happen that nodes of another cluster C2 are not adjacent
to one another after the iteration step. To illustrate this, see figure 8.35.

So in order to extend the proof of Theorem 8.3.5, it must be ensured that
there is always at least one possibility to perform an iteration step which
does not break the requirements on X.

Corollary 8.4.5. If Conjecture 8.4.4 holds, then a graph G with clusters C̄
on one level, with at most two components per cluster, is c*-planar if and
only if every graph obtained from G by replacing zero or more clusters C by
GK(C) is planar.

Proof. Apply the proof of Corollary 8.3.6 for each C.

Corollary 8.4.6. If Conjecture 8.4.4 holds, then a graph G with clusters
C̄ on one level, with at most two components per cluster, can be tested for
c*-planarity in O(n · 2c) steps, where n is the number of nodes of G, and c
the number of non-connected clusters of G.

Proof. For a connected cluster C, the checks for graphs U which contain
GK(C) instead of C are not needed, since U is a minor of (U \GK(C)) ∪C,
and must therefore be planar if (U \GK(C))∪C is. Performing each planarity
test is linear in the number of nodes.
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Figure 8.35: If C1 is processed first, the graph resulting from inserting 〈a, b〉
and deleting one of the paths joining node 4 and C1 has an edge not adjacent
to that containing vC through either C2 or C3. Therefore the conditions
maintained throughout the proof of Theorem 8.3.5 are violated. However,
if C2 is replaced by vC2

O , an X as required is obtained immediately; so what
needs to be shown is whether there is always a step which leads to a valid
next X.
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Chapter 9

c-Planarity Tests for

Non-Connected Clusters

9.1 Overview

This chapter presents a polynomial-time algorithm for testing of c-planarity
in the sense of definition 3.4.2 for some special cases of non-connected clus-
ters, along with the construction of an embedding for these graphs.

Whereas [GJ02] extended the class of graphs which can be tested in poly-
nomial time to that of “almost c-connected” clustered graphs, this algorithm
considers some clustered graphs in which the layout would be rather evident
for the human eye, but which are not handled by the traditional planarity
test or embedding algorithms.

The algorithm works on clustered graphs for which the non-connected
clusters are connected to rather rigid (as to how they can be embedded)
structures of the rest of the graph: It requires that the nodes of G \ C to
which a non-connected cluster C is connected, are contained in a biconnected
component of G \ C, or that there are at most two such nodes.

9.2 Challenges for General c-Planarity Tests

When trying to cope with non-connected clusters, several problems arise:

• The algorithm in [Feng96] works by replacing each cluster C by a rep-
resentant graph C ′, for which all planar embeddings have all points
corresponding to attachment points of G\C in C bordering a common
face of C ′ (called the “outer face”). The representant graph is made
of wheel graphs, in which every face but one is bordered by exactly 3
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nodes, and the axis is not adjacent to any x ∈ G\C. Together with the
fact that C ′ is connected, this construction ensures, that for any planar
embedding for which parts of G \ C ′ are in a face of C ′ different from
the outer face, there is also an embedding where G \C ′ is contained in
the outer face of C ′, i.e. an embedding, where C ′ is contained within
a simple closed region. Now, if the cluster C is not connected, the
construction yields an unconnected representant graph C ′. Replacing
C by this representant graph only ensures that each connected compo-
nent of the cluster will fit into a single simple closed region, but not
that the same holds for the cluster as a whole. Moreover, the set of
permutations of virtual nodes around a non-connected cluster allowing
planar embeddings can not be represented by a single PQ tree.

• It does not suffice to check for each cluster C, whether it is possible to
find embeddings G such that the components of C are “connected” via
faces, i.e., that for each partition of the components of C into C1 and
C2, there is at least one face F with K1 ∈ C1 and K2 ∈ C2 bordering
F . This condition is only sufficient if there is e.g. only one unconnected
cluster. In the case of more unconnected clusters, it is possible that a
face is “needed” by more than one cluster, and possibly in a way that
the clusters resp. edges added to connect the clusters have to intersect.

• When trying to stack the components of C around some representant
graph of G \ C, the representant usually only conveys the restrictions
imposed by the graph structure or the cluster structure of G \ C, but
not both; therefore, choosing from some stacking order allowed by the
representant might not be valid (in the special cases presented below,
this problem is met by requiring that the graph structure already im-
poses very strong restrictions which cannot be narrowed further by the
cluster structure without making the graph non-cluster-planar).

9.3 Clusters with Biconnected Attachment

Let an attachment point of A in B be defined as a node b ∈ B which is
adjacent to at least one node a in A, and let A(C) denote the set of all
attachment points of C in G \C. A cluster C is defined to have biconnected
attachment if A(C) is contained in a biconnected component of G \ C.

The algorithm presented in this chapter extends the c-planarity test in
[Feng96] to non-connected clusters with biconnected attachment.
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9.3.1 Outline of the Algorithm

Let S(C) denote the cut-edges of C, i.e. the edges having one endpoint in
C and one in G \ C. Further, let G′ denote the graph obtained from G by
replacing each e = 〈x, r〉, e ∈ S(C) by a so called virtual node ve (ve 6∈ C)
and two edges 〈x, ve〉, 〈ve, r〉 connecting ve to the original endpoints of e. Let
H be the set of all virtual nodes.

Clearly, each planar embedding of G′ corresponds to exactly one planar
embedding of G. The planar embeddings of G′ in which C can be drawn
within a simple closed region are exactly those obtained from a planar em-
bedding E(G′ \ C) for which all ve ∈ H border the same face, and a planar
embedding E(C ∪ H) for which all ve ∈ H border the same face, and the
ordering of the virtual nodes ve around C and around G \ C is the same.

Now let O(U, T ) denote the set of orderings of the elements of T around
U assigned by the individual embeddings of U ∪ T in which all elements of
T are on a single face of E(U). G′ has a planar embedding with C contained
within a simple closed region if and only if O(C,H) ∩ O(G \ C,H) 6= ∅.
Therefore, the result is not changed if C is replaced by any other graph C ′

for which O(C,H) ∩ O(G \ C,H) = O(C ′, H) ∩ O(G \ C ′, H).
The algorithm tries to find a connected representant graph C ′ for each

non-connected cluster C, such that O(C,H) ∩ O(G \ C,H) = O(C ′, H) ∩
O(G\C ′, H). For all cases where it can be constructed, the planarity testing
algorithm presented in [Feng96] can be immediately applied by replacing the
representant graph generation step by the construction for non-connected
clusters. If it cannot be constructed, G is not c-planar.

9.3.2 Step 1: Obtain a Representant for G′ \ C

For a biconnected graph B and nodes S ⊆ B, the ordering of S around
each common face is the same. If virtual nodes H are attached to S, and
each virtual node is also connected to a new common node vC , the possible
orderings of H around vC (and, equivalently, around B) can be obtained
by performing a PQ tree planarity test on the graph K = (V (B ∪ H) ∪
{vc}, E(B∪H)∪{〈vc, ve〉|ve ∈ H}) with s = ve arbitrary and t = vc, stopping
just before the reduce step for vc.

An example is shown in figures 9.1, 9.2, 9.3; figure 9.4 shows the represen-
tant graph for the PQ-tree obtained as described in [Feng96], which allows
the same orderings of the virtual nodes as the original graph.

If applied to G′ \ C, a connected graph representing O(G′ \ C,H) is
obtained. This graph is made up of a single wheel R ∪ {xR} (xR being the
axis) and the virtual nodes H each connected to one r ∈ R by a single edge.
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The elements of R are labeled r1, . . . , rn, starting with an arbitrary element
of R, and proceeding along the circle formed by R. Let R̂ := R ∪ {xR},
h(Kj , rl) := {ve|e = 〈y, rl〉 ∧ y ∈ Kj}, h(Kj) :=

⋃

rl∈R h(Kj , rl), h(rl) :=
⋃

Kj⊆C h(Kj , rl). Further, let AR(Kj) := {rl|h(Kj, rl) 6= ∅}.

9.3.3 Step 2: Find Possible Ordering of H around C

First, for each component Kj of C, a planarity test is performed on Kj ∪

h(Kj)∪R̂. If such a test fails, G is not c-planar. Otherwise, select an ordering
πj ∈ O(Kj, h(Kj)) as obtained from the planarity test, and let πrl

j refer to
πj restricted to the virtual nodes connected to rl.

These πj must now be combined to yield a π ∈ O(C,H). First, see that it
suffices to consider orderings in which h(Kj, rl) is consecutive within π for all
j, l: If there is a planar embedding in which virtual nodes from h(Km, rl) are
“between” two from h(Kj , rl), then all virtual nodes from h(Km) must appear
between those two (otherwise there would be a crossing). So AR(Km) = {rl},
and there also exists a planar embedding in which h(Km, rl) is not between
the two virtual nodes from h(Kj, rl) (one could e.g. regard the embedding
where all v ∈ h(Km, rl) are consecutive at the end of the ordering of h(rl); in
this embedding, they won’t appear anywhere “between” other virtual nodes
belonging to the same Kr).

So what is left to do is to find a “stacking order” of the Kj around

R̂ which does not introduce any crossings rsp. show that there is no such
stacking order. This is done using the following process:

For each rl, define lists down(rl) and up(rl), and sep(rl), initially empty.
Let lmin(Kj) := min{l|rl ∈ AR(Kj)} and lmax(Kj) := max{l|rl ∈ AR(Kj)}.

Then, for all Kj with |AR(Kj)| = 1, AR(Kj) = {r
Kj

l }, append πrl

j to
up(rl), and mark Kj. Define the operation AssignOrdering(lower, upper)
as follows:

• Determine the setM of yet unmarked componentsKj with l = lmin(Kj)
minimal in [lower, upper), and with u = lmax(Kj) maximal among
these. Since all Kj with |AR(Kj)| = 1 are already processed, u > l.

• If M = ∅, return.

• If u > upper then the graph is not c-planar, abort (see figure 9.5).

• If |M | = 1, then use this single component for the following operations,
else:

– If at least two Kj ∈ M have |AR(Kj)| ≥ 3, then the graph is not
c-planar, abort (see figure 9.6).
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Figure 9.1: B ∪H .

Figure 9.2: K = B ∪H ∪ {vc}.

Figure 9.3: PQ-tree for K with s = ve1 and t = vc.

67



CHAPTER 9. C-PLANARITY TESTS FOR NON-CONNECTED
CLUSTERS

– If only one Kj ∈ M has |AR(Kj)| ≥ 3, then the only possibility
to obtain a c-planar embedding is to stack Kj inside all other
components Kr ∈ M . Therefore, choose any Kr ∈ M with r 6= j
for the following operations (figure 9.7).

– Else all Kj ∈ M have |AR(Kj)| = 2. These components can be

stacked in any order around R̂, so choose any of these components
for the following operations.

• Let Kj be the component chosen above. Append πrl

j to up(rl), prepend
πru

j to down(ru), and for all r ∈ AR(Kj) \ {rl, ru}, set sep(r) = πr
j .

• Mark the component.

• Define n1, ..., n|AR(Kj)| as the indices of the elements of AR(Kj) in as-
cending order (with rn1 = lmin(Kj), rn|AR(Kj )|

= lmax(Kj)). Invoke

AssignOrdering(ni, ni+1) for all i = 1, . . . , |AR(Kj)| − 1.

Invoking AssignOrdering(1, n) returns either that the graph is not c-
planar, or it returns all components marked, and down, up, sep filled. In
this case, the ordering π ∈ O(C,H) of the virtual nodes can be obtained by
concatenating the lists up(rl), sep(rl), down(rl)) for each rl, 1 ≤ l ≤ n in this
order.

9.3.4 Step 3: Connected Representant Graph for C

Since a unique ordering of the virtual nodes adjacent to R around R is now
known, a wheel graph can be constructed by forming a cycle from the virtual
nodes (in the order given by π) and an axis. The virtual nodes must be
connected to the nodes to which they were connected in G′, i.e., to x ∈ G\C
for all ve with e = 〈y, x〉.

9.3.5 Step 4: Construct an Embedding

An embedding for a c-planar graph can be constructed in the same way as in
[Feng96], only now the embeddings for the representant graphs constructed
by the above algorithm must be replaced by embeddings of the original clus-
ters.

The steps performed in the construction already give the information
necessary: The planarity tests done for subgraphs corresponding to the com-
ponents give planar embeddings for each component and the virtual nodes
connecting it to R. These embeddings have to be assembled in the stacking
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r4

r1

r2

r3xRC

ve1 ve2

ve6ve7

ve3

ve5

ve4

Figure 9.4: Representant graph R for PQ-tree.

r1

r2

r3

r4

r5

K1

K2

xRC

Figure 9.5: AssignOrdering invoked with lower = 1, upper = 3, M = {K2}.
lmax(K2) = 5 > upper, no planar embedding possible.
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r1

r2

r3

r4

r5K1

K2

xRC

Figure 9.6: AssignOrdering invoked with lower = 1, upper = 5. More than
one Kj ∈M has |AR(Kj)| > 2, no planar embedding possible.

r1

r2

r3

r4

r5
K2

K1

K3

xRC

Figure 9.7: AssignOrdering invoked with lower = 1, upper = 5. Only K3

has |AR(Kj)| > 2, must be stacked inside the others. The ordering of K1

and K2 is irrelevant.
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order determined, which yields a planar embedding of C together with its
virtual nodes.

By contracting the virtual nodes into the nodes of G \ C, an embedding
of the original graph G is obtained.

9.3.6 Alternative Construction of an Embedding

If an embedding is to be created, the existing algorithms can more easily
be employed if some edges are inserted into G which make C connected
while preserving planarity. These can be removed again after creating the
embedding. So instead of steps 3 and 4, the following procedure can be
applied to obtain a connected C ′ = C ∪EC :

• Set vprev = undefined

• ∀rl ∈ R̂ sorted by l: Let π(rl) denote the set of virtual nodes connected
to rl, in the order determined by π as obtained in step 2, and let
vl
1, ..., v

l
ml denote the elements of π(rl), in this order.

– move to next rl if π(rl) = ∅

– insert an edge 〈vprev, v
l
1〉 into EC if vprev is defined

– ∀j = 1, ..., ml − 1 : insert an edge 〈vl
j , v

l
j+1〉 into EC

– set vprev = vl
ml

By this construction, C ′ = C ∪ H is connected in G′ ∪ EC , and G′ is
c-planar with cluster C ′. Therefore, the standard algorithm can be applied
to C ′ and G′, and any drawing created for it can be transformed into a c-
planar drawing of G and C by deleting the edges from EC and contracting
the ve ∈ H with one of their endpoints.

9.3.7 Complexity

It takes O(|AR(Kj)| · log |AR(Kj)|) steps to sort the virtual nodes belonging
to each component, and O(|K̄| · log |K̄|) steps to sort the components by
lmin, lmax, and |AR(Kj)|. AssignOrdering performs actions other than de-
termining M once for every Kj ; it is additionally called at most |R| times.
Since |AR(Kj)|, |K̄| and |R| are bounded by |H| = |S(C)|, the running time
of finding a connected representant for C is bounded by O(|S(C)|·log |S(C)|).

With n = |V (G)|, m = |E(G)|, c = |{C|C non-connected cluster ofG}|,
the overall complexity of the c-planarity testing algorithm from [Feng96]
extended to non-connected clusters with biconnected attachment is therefore
bounded by O(n2 + c ·m · logm).
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CLUSTERS

9.4 Clusters with |A(C)| ≤ 2

If a cluster C has only one or two attachment points in G \ C, the same
process as for clusters with biconnected attachment can be used to create a
connected representant graph.

This is possible since the ordering of R around C is completely determined
(for ≤ 2 elements, there is only one).

72



Chapter 10

Conclusion

The initial rather ambitious aim of this work was to find out the compu-
tational complexity of cluster planarity testing. While this aim was not
reached, at least some steps were taken in this direction. Part of the results
however depend on conjecture 8.2.6 to prove true:

• A new notion of cluster planarity has been introduced, which can de-
liver readable drawings while being less restrictive. Moreover, tests for
this property yield tests for the classical definition.

• A characterization of c*planarity in terms of forbidden subgraphs has
been established (depends on conjecture 8.2.6). This characterization
could be employed to identify subgraphs of a clustered graph which
can be tested individually to yield an overall result (in the same way
as for basic graphs, planarity is equivalent to planarity of its blocks).
Further, if proven, it could help devising new tests, by exposing what
makes a graph non-cluster-planar.

• An algorithm polynomial in the number of vertices, and exponential
in the number of nonconnected clusters has been given for clustered
graphs with at most two components per cluster.

• An algorithm polynomial in the number of vertices and clusters has
been given for clustered graphs in which each non-connected cluster
has biconnected attachment, or is connected to at most two vertices.

• A litte off-topic, a characterization of weak realizability has been estab-
lished (depends on conjecture 8.2.6). This could be useful also in other
areas of graph theory, probably most in those related to planarity.
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CHAPTER 10. CONCLUSION

Additionally, during research for this work, many attempts were done to
reduce NP-complete problems to cluster-planarity tests, however, none of
the constructions proved suitable.

So even though some results have been achieved (and the class of graphs
that can be tested for cluster planarity efficiently has been extended), the
initial question remains open. Moreover, for a part of the results, a proof
needs completion, so what remains to be done after this work is even more
than there was in the first place:

• Prove conjecture 8.2.6.

• Reveal the computational complexity of cluster planarity testing, either
by giving efficient algorithms for all clustered graphs, or by showing e.g.
NP-hardness.
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