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RNA Structural Alignment by Means of
Lagrangian Relaxation

This thesis deals with an important topic in computational molecular bi-
ology: structurally correct alignments of RNA sequences. Compared to
DNA sequences where sequence information is normally sufficient for ad-
equate alignments, the structural aspects of RNA have to be taken into
account when dealing with RNA sequences: structure of RNA sequences
tends to remain conserved throughout evolution.

By adapting an algorithm for the similar task of aligning proteins, a new
algorithm based on Lagrangian relaxation is described that aligns two
RNA sequences without restricting the secondary structure. Previous dy-
namic programming approaches are able to deal only with pseudoknot-
free structures.

The comparison of the new method with previous ones shows that the
new algorithm yields – in general – better structural alignment scores and
requires less resources in terms of memory and CPU usage.





Strukturelle RNA-Alignments mittels
Lagrange Relaxierung

Thema dieser Diplomarbeit ist ein wichtiges Gebiet der computational mo-
lecular biology: das Berechnen strukturell richtiger Alignments von RNA-
Sequenzen. Im Gegensatz zu DNA ist bei RNA die sekundäre Struktur von
enormer Bedeutung, da diese im Lauf der Evolution konserviert wird. Sie
muss daher bei Alignments ebenfalls beachtet werden.

Ein Algorithmus für das verwandte Problem des Protein-Alignments
wird vorgestellt und in weiterer Folge für das strukturelle Alinieren von
zwei RNA-Sequenzen modifiziert. Im Gegensatz zu den meisten vorher-
gehenden Algorithmen schränkt die hier präsentierte Methode die Se-
kundärstruktur von RNA nicht ein, d.h. es werden auch Pseudoknoten
berücksichtigt.

Ein Vergleich mit anderen Ansätzen zeigt, dass der Algorithmus zu den
Schnellsten mit den geringsten Anforderungen hinsichtlich CPU und
Hauptspeicher zählt, wobei die Ergebnisse aber im Allgemeinen besser
als die der anderen Algorithmen sind.
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I’ll need some information first
Just the basic facts

PINK FLOYD

Chapter 1

Introduction

1.1 Biological Background

In the 1860’s Gregor Mendel performed experiments on heredity and dis-
covered that heredity is not just a random process. By observing some gen-
erations of begonias he was able to conceive the Mendel’s law and pointed
out the existence of what we now call genes.

After that, it took some decades to fully understand the mechanisms be-
hind the fundamental processes like heredity and reproduction in nature.
Nowadays we know that the entire information is stored in genes, se-
quences of desoxyribonucleic acid (DNA in short) or ‘ribonucleic acid (RNA
in short). These genes encode the proteins, the main functional units of an
organism.

Proteins basically control every part of a human organism, they set, e.g.,
the color of our hair, the shape of our body or the length of our arms. The
interplay between DNA, RNA and proteins can schematically be drawn
as

DNA → RNA → protein

Basically, DNA stores all the information. RNA is – roughly stated – a
helper molecule that is necessary to convert the genetic information into
functional units, the proteins.

1



1.1. BIOLOGICAL BACKGROUND CHAPTER 1. INTRODUCTION

1.1.1 Desoxyribonucleic Acid

DNA is one of the two main biopolymers in nature. DNA is built of four
different nucleotides, namely adenine, guanine, cytosine, and thymine. Each
nucleotide is commonly designated with its first letter: A, G, C and T. The
difference between the single nucleotides is the different nitrogenous base.

DNA builds a “double helix”, a linear, double-stranded structure, discov-
ered in 1953 by James Watson and Francis Crick. The structure is held
together by hydrogen bonds between Watson-Crick-pairs, namely A-T and
G-C (see Figure 1.1).

Figure 1.1: Structure of DNA, taken from Lindsay (2004)

Triplets of nucleotides form a codon (e.g., CCG codes proline, AUU for
isoleucine). Each codon denotes one out of the twenty amino acids.

1.1.2 Ribonucleic Acid

The second important biopolymer is ribonucleic acid, or RNA in short.
Compared to DNA, there are some differences:

Firstly, there are also four nucleotides forming a RNA strand, but uracil
is replaced by thymine. Secondly, RNA does not have a double-helix as
its structure, but it is a single-stranded molecule that has the property of
folding back onto itself. By folding back, it forms pairs of GC, AU and less
stable GU. These pairs form the secondary structure of an RNA sequence
(details will be presented in the following sections, see Figure 1.2 for a
preview).

RNA is biologically important in several ways:

2
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Figure 1.2: Structure of RNA, generated by alidot, Hofacker et al. (1998)

I The list of all genetic information for an organism is called its genome.
Normally, genomes are made of DNA, but in some viruses the
genome is made of RNA.

I RNA plays an important role as a “copy molecule” (messengerRNA,
or mRNA in short) The plan for building a new protein is first copied
to mRNA and afterwards taken to the ribosome, the “working ma-
chinery” in a living cell. The ribosome builds a new protein by read-
ing the information provided by the mRNA.

I RNA acts as a carrier for other molecules. There are twenty of these
transfer RNA, each for one of the twenty amino acids. tRNA brings
the amino acids that are needed for the protein production (called
the protein synthesis) to the ribosome.

I RNA can drive reactions between molecules by itself (this property is
called catalytic property). Catalysts reduce the amount of energy that

3



1.1. BIOLOGICAL BACKGROUND CHAPTER 1. INTRODUCTION

a reaction needs to take place and make sure that the desired reaction
is specific and accurate. Until the early 1980’s the general opinion
was that only molecules built on DNA (so called enzymes) have this
property, but the research group around Tom Cech showed 1982 that
RNA has catalytic properties as well. In 1989, together with Sidney
Altman, he received the Nobel prize in chemistry for the discovery
of the ribozymes.

The large variety of important cell functions that RNA offers depend on
special structural properties and therefore it is worth taking a closer look
at the RNA secondary structure.

As mentioned above, RNA is a single-stranded molecule that forms a
structure by folding back onto itself. There are three hydrogen bonds be-
tween GC and AU, but only two between GU. All interactions together
form the secondary structure. There are three common ways to draw sec-
ondary structures:

1. “(“, respectively “)” denote paired base pairs, “.” denote unpaired
nucleotides (this is the string representation, see Figure 1.3).

GUCUAAAUUGACCGUACAUGAGGGCACGGCCAGCAUG
(((......)))....((((..(((...)))..))))

Figure 1.3: Secondary structure in string representation

2. Nucleotides denote vertices, interactions denote edges in a graph
(the linked diagram representation, see Figure 1.4).

GUCUAAAUUGACCGUACAUGAGGGCACGGCCAGCAUG

Figure 1.4: Secondary structure in linked diagram representation

3. A more illustrative way to show a secondary structure is given in
Figure 1.5).

4
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Figure 1.5: Secondary structure in two-dimensional representation

More formally, a RNA secondary structure is defined as follows (see Wa-
terman, 1978):

A secondary structure S is a vertex labeled graph on n vertices with an ad-
jacency matrix A satisfying the following properties:

1. ai,i+1 = 1 for a ≤ i < n.

2. For each i there is at most a single k 6= i− 1, i + 1 such that ai,k = 1.

3. If ai,j = ak,l = 1 and i < k < j then i < l < j.

An edge (i, j) with |i − j| 6= 1 is called a bond or base pair. A vertex, not
connected to any k except k = i− 1 and k = i + 1, is called unpaired.

If property 3 is not satisfied, the secondary structure is said to contain pseu-
doknots. Pseudoknots were not taken into account until recently. On the
one hand there are not that many known pseudoknots in RNA structures,
on the other hand pseudoknots make computations on secondary struc-
tures much more difficult. However, recently research was done on RNA
pseudoknots (e.g., Haslinger (2001)) showing that adding certain types of
pseudoknots leads to better structure prediction of RNA sequences.

One of the most prominent questions related to RNA secondary structure
is the question of predicting the accurate structure in case only the se-

5



1.1. BIOLOGICAL BACKGROUND CHAPTER 1. INTRODUCTION

quence itself (the primary structure) is given. If one knows the structure,
one may draw conclusions about functional motifs within the structure.
Since determining the structure experimentally is very expensive, struc-
ture prediction tools are used to obtain a set of reasonable structures.

RNA Secondary Structure Prediction

A very simple approach to predict the secondary structure due to Nussi-
nov, Pieczenik, Griss, and Kleitman (1978) and Waterman (1978) is to max-
imize the number of paired base pairs without pseudoknots. This can
efficiently be done by means of dynamic programming, but it is not very
accurate. Folds of RNA sequences minimize the energy that is inherently
contained in the structure and the energy does not correlate with the num-
ber of base pairs alone.

A more sophisticated model that works much better depends on energy
rules (see for example Zuker, 1989; Zuker and Sankoff, 1984). The sim-
plest way to do that is the following: assign a certain amount of energy, say
e(i, j), to every base pair. The energy assigned to pairs of nucleotides de-
pends on several parameters, as the number of hydrogen bonds between
the base pairs or the location of the base pairs. The energy of the whole
structure is then given by

E(S) =
∑
i,j∈S

e(i, j)

One is searching for the structure that forms the minimum energy of all
possible structures (this structure is called the minimum free energy struc-
ture or MFE in short). The most prominent program that approaches the
problem of predicting secondary structure by means of minimum free en-
ergy is Michael Zuker’s program mfold (Zuker, 2004).

Although the energy model is more elaborate than simply counting paired
base pairs, there are some disadvantages:

I The real secondary structure of an RNA sequence does not have to
be the one with minimum free energy. It is possible that suboptimal
foldings describe the real structure.

I There might be more structures with a minimum of free energy and
more suboptimal structures that are just, say, 5-10% above the mini-
mum.

6
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I The energy potentials assigned to each base pair are empirically mea-
sured and describe only an approximation to the real values.

By computing MFE-structures for RNA sequences, one can also retrieve
the so called partition function of the sequence. If S denotes the set of
all possible structures, the partition function gives the probability for any
structure S to be one that actually folds the sequence. Starting from the
partition function, it is subsequently possible to compute the probability
for every pair (i, j) that (i, j) forms a base pair in the secondary structure.
These probabilities are called the base pair probabilities and are initially de-
scribed in McCaskill (1990).

Another way to get the structure that is more likely to be the correct one
is to compare structures that are based on different, but related sequences,
such as virus genomes of the same family. Then, one searches for com-
mon structural elements, the functional motifs, that are contained in every
sequence.

RNA Structure Comparison

This section deals with structure comparison and structure alignment
rather intuitively. A formal description will be given in Section 1.2.

As written in Section 1.1.2, the variety of functions of RNA depend on
its structural properties. Since it is not certain that programs like mfold
produce correct secondary structures, comparing MFE-structures or sub-
optimal structures of evolutionary related sequences helps to find a com-
mon structure, that is, structural motifs that can be found in every (or a
majority) of the sequences.

Secondary structure is highly conserved during evolution and therefore
of great importance in interpreting the function of RNA sequences. Sim-
ulations (see Fontana, Konings, Stadler, and Schuster (1993); Schuster,
Fontana, Stadler, and Hofacker (1994) for details) show that mutations of
10% of all nucleotides in an RNA sequence lead to unrelated structure
which means that the sequence itself does not change that much, but the
secondary structures are completely different.

Since the number of mutations in RNA sequences is very high, the se-
quence itself changes very often. If the structure remains the same
throughout the entire process of mutation, this is called a compensatory
mutation. Compensatory mutations are a strong indication of highly con-
served units within a RNA sequence, since nature tends to reuse successful

7



1.2. ALIGNMENTS CHAPTER 1. INTRODUCTION

spots in a given sequence. If someone detects a part of highly conserved
structure, it is very likely that this part of the sequence offers a specific
function.

Figure 1.6 shows such compensatory mutations, indicated by a circle
around the nucleotides. The nucleotides in the sequences are different,
that is in sequence 10, for example, position 20 is a G, whereas in sequence
15 position 20 is a C. The structure, however, remains the same.
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Figure 1.6: Compensatory mutations in 15 HIV sequences, generated by
alidot, Hofacker et al. (1998)

This leads directly to the notion of an alignment. An alignment provides
the possibility to measure how different or how similar two (or more) se-
quences are. A formal description of alignment and secondary structure
will be given in Section 1.2.

1.2 Alignments

Changes in biopolymers like DNA or RNA are a natural process: errors in
replication lead to insertions and deletions within a sequence and it is of

8



CHAPTER 1. INTRODUCTION 1.2. ALIGNMENTS

great importance to discover these evolutionary relationships afterwards.

Alignments are a way to quantify the relation between different sequences,
respectively to assign a score to the comparison of sequences. This score,
in the best case, should reflect the evolutionary correlation between the
sequences: the higher the score, the higher the probability that the two
sequences have a common ancestor sequence.

One of the first successful approaches of sequence alignment to the field
of molecular biology is due to Doolittle, Hunkapiller, Hood, Devare, Rob-
bins, Aaronson, and Antoniades (1983). The authors showed that genes
in the simian sarcoma virus, leading to a cancer infection within the organ-
ism, correlate significantly with a gene that is responsible for cell growth.
Knowing the correlation between the “cancer” and the “growth” gene,
it was concluded that cancer may be caused by a normal growth gene
switched on at the wrong time.

An intuitive definition of alignments is the following: we are given

I a finite set of characters

I a finite set Ω of operations (like insertions, deletions)

The score function assigns a value f(o) to each of the given operations
o ∈ Ω. The overall score is then defined as

min ‖ max
∑
o∈Ω

f(o)

The following sections will give a formal definition of traditional sequence
alignments, and afterwards move on to structural alignments. The treat-
ment of this subject, especially the treatment of alignment algorithms, is
not complete by any means. For further reading the reader is referred
to the classical textbooks (like Waterman, 2000; Pevzner, 2000; Gusfield,
1997).

1.2.1 Sequence Alignments

Definition 1.2.1. Let Σ be a finite alphabet without the blank character ’-’ and let
Σ̂ = Σ∪ ′−′. If S1, S2 are two strings over the alphabet Σ with lengths n1 and n2

then a pairwise sequence alignment A of S1 and S2 are two strings Ŝ1, Ŝ2 ∈ Σ̂
such that – displayed in a 2 × n-dimensional matrix (the alignment matrix) –
the following properties hold:

9



1.2. ALIGNMENTS CHAPTER 1. INTRODUCTION

I ai,j ∈ Σ̂,∀i = 1, 2 and 1 ≤ j ≤ n

I Sequence Σ̂i without blanks is equal to sequence Si

I No column contains only blanks. This implies max{n1, n2} ≤ n ≤
n1 + n2

Two characters a and b are said to be aligned, if they are placed in the same
column of the alignment matrix. We call a 6= b with a, b 6=′ −′ a mismatch.
a = b denotes a match and if one of the two characters is a ’-’, it is called an
indel1. Figure 1.7 shows an example for these operations.

mismatch match

G − − G U C

indel

A C C G − C

Figure 1.7: Possible occurrences in a sequence alignment

Scoring Sequence Alignments

Scores assigned to sequence alignments should be an indication of the cor-
relation of the alignment:

Sequences that are very close to each other should have a high score,
whereas sequences that do not have anything in common, for example two
randomly chosen sequences from GenBank, a major source for sequence
data (see for Biotechnology Information, 2004), should have a low score.
The task of alignment algorithms is to find the alignment of the highest
score.

A pairwise alignment of two sequences S1, S2 is written as A(S1, S2). The
set of all alignments between S1 and S2 is denoted by A2(S1, S2) and the set
of all possible alignments between any two sequences by A2. A pairwise
sequence alignment score function is defined as follows

1indel is a composition of insertion and deletion. Since these two operations cannot be
distinguished in an alignment, they are called indels.

10
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Definition 1.2.2. A function sc : A2 → R is called alignment score func-
tion. If A is an alignment of two sequences, then sc(A) is called the score of the
alignment A. The optimal alignment score of S1, S2 is defined as scopt(S1, S2) :=
optA∈A2(S1,S2)sc(A), where opt either denotes the maximum or the minimum.

The common scoring schemes are based on comparing letters in Σ̂. Every
possible pair of letters (a, b) with a, b ∈ Σ̂ is assigned a certain value that
represents the score of aligning these two letters. There are two different
ways of scoring pairs of letters:

I Distance alignment assigns a score dist : Σ̂× Σ̂ → R that represents
the distance between the two letters. Chemically similar letters get a
low score, whereas chemically different letters get high scores.

I Similarity alignment assigns a score sim : Σ̂×Σ̂ → R that represents
how similar the two letters are. Chemically dissimilar letters get low
scores, whereas chemically similar letters get high scores.

The alignment functions dist and sim are based on mutation score matrices.
The simplest one assigns a match a value of 1, a mismatch counts −µ and
an indel operation −δ. The overall score is given by

sc(A2(S1, S2)) := #matches− µ#mismatches− δ#indels

A more elaborate example of mutation score matrices are given by the
PAM matrices (point access mutation) due to Dayhoff, Schwartz, and Or-
cutt (1978). These matrices reflect the frequency with which a replaces b in
evolutionary related sequences.

Given such score matrices, the distance score function is defined as

scd : A2 → R≥0 with scd(A) →
n∑

i=1

dist(a1,i, a2,i)

and a similarity score function defined as

scs : A2 → R with scs(A) →
n∑

i=1

sim(a1,i, a2,i)

There has been some discussion whether either similarity scores or dis-
tance scores are biologically more accurate. The discussion, however, is
only of academic use, because similarity score functions are equivalent to
distance score functions (see Waterman, 2000).

11
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A simple dynamic programming approach to compute a similarity align-
ment of two sequences with a given mutation score matrix is based on a
paper by Needleman and Wunsch (1970). Since this algorithm is an in-
tegral part of the algorithms described later on, we will present the main
ideas.

Two sequences S1 = (a1, . . . , am) and S2 = (b1, . . . , bn) are given. The idea
is to compute for every pair (x, y), with 1 ≤ x ≤ m and 1 ≤ y ≤ n, the
maximum score Dxy that can be achieved including the positions x in S1

and y in S2, that is the substrings [a1 . . . ax] and [a1 . . . ay] of S1 and S2,
respectively. We have two different choices to compute Dx,y:

1. MATCH ax matches by, the overall score is given by Dx−1,y−1 +
sim(ax, by)

2. GAP Either ax is matched and a gap is inserted into the second se-
quence or vice versa. Therefore there are two choices for Dx,y =
Dx−1,y + sim(ax,−) or Dx,y = Dx,y−1 + sim(−, by).

A recurrence relation follows right away:

Dx,y = max


Dx−1,y−1 + sim(ax, by)

Dx−1,y + sim(ax,−)

Dx,y−1 + sim(−, by)

Backtracking the solution is pretty simple: for every entry Dm,n the “di-
rection” from where the value was achieved (that is either a match or a
gap in the first or second sequence) is stored. Then, backtracking is done
by starting at position Dx,y and going back until the beginning is reached.
Figure 1.8 shows an example of computing the similarity score between
the sequence S1 = AUCUGAUand S2 = UGCAUA. The scoring function sim
is simple: same letters have a score of one, different letters a score of 0. As
one can easily verify is the running time of the algorithm in O(nm).

It is worth mentioning that there are interesting connections between the
algorithm above and the problems of computing the edit distance between
two strings or the computation of the longest common subsequence. In
graph-theoretical terms, the algorithm computes a non-crossing matching
of maximum weight in a bipartite graph. Again, the reader is referred to the
literature, especially to the book by Gusfield (1997).

12
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Figure 1.8: Example for Needleman-Wunsch

Scoring Gaps

Using point mutation matrices alone do not reflect the biological reality
very precisely. Mutations like insertions or deletions normally do not
affect a single point but rather longer parts of it. In a point mutation-
based scoring scheme all these operations would be treated independently,
whereas it is desirable to consider all these mutations as one single event.
These considerations lead to the notion of a gap.

Definition 1.2.3. A gap of length l is a maximal continuous sequence of blank
characters (’-’) in one of the two sequences.

Basically, we distinguish between two main scoring schemes for gaps:

I linear gap costs

I affine gap costs

13
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If inserting a gap has a score of g, in a linear scoring scheme the overall
costs for a gap of length l would be gl. It is reasonable to argue that the
penalty for a gap of length l should be less than the sum of the penalties
for l independent gap, that is

g(l1 + l2 + l3 + · · ·+ ln) ≤ g(l1) + g(l2) + g(l3) + · · ·+ g(ln)

In a scoring scheme with affine gap costs there are two parameters: the
gap open penalty o and gap prolongation costs p, leading to

g(l) = o + pl .

Nowadays, affine gap costs are the commonly used model and there are ef-
ficient algorithms that compute pairwise sequence alignments with affine
gap costs (see Pevzner, 2000). Until very recently, the problem of comput-
ing an alignment of more than two sequences with affine gap costs (a so
called multiple alignment) was not attacked because of exponential space
and time requirements. Newer results due to Althaus, Caprara, Lenhof,
and Reinert (2002) demonstrate an algorithm for computing alignments of
more than two sequences with arbitrary gap costs. Although still expo-
nential in nature, the algorithm can compute optimal multiple alignments
of 20 sequences with up to 100 nucleotides.

1.2.2 Structural Alignments

As described in Section 1.1.2 a large collection of RNA specific functions
depends on its secondary structure. Sequence conservation might not be
that high (for example because of compensatory mutations, see Section 1.1.2)
leading to a bad alignment score, whereas the secondary structure itself
is highly conserved. Therefore, the problem of RNA secondary structure
alignment (or RSA in short) is of peak importance in computational biology.

The first approach in considering sequence and structure simultaneously
is due to Sankoff (1985) where the author proposes a dynamic program-
ming approach to align and fold a set of given RNA sequences at once.
Due to its high computational demands–O(n6) and O(n4) in CPU time
and memory, respectively. Later on, genetic algorithms (see Notredame,
O’Brien, and Higgins, 1997), Branch-and-Cut approaches (see Reinert,
1999) or more elaborate dynamic programming approaches due to Ho-
facker, Bernhart, and Stadler (2004) were used to approach structural
alignments.

14
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Before giving a formal definition for RSA, we need the following definition
(taken from Reinert (1999)).

Definition 1.2.4. Let S be a sequence over Σ̂. A paired base pair (i, j) is called
an interaction if si 6=′ −′ and sj 6=′ −′. The set P of interactions is called the
annotation of sequence S. Two interactions (i, j) and (k, l) are said to be in
conflict, if they share one of the base pairs, that is either i = k or i = l or j = k or
j = l. In a secondary structure there are no two interactions in conflict. A pair
(S, P ) is called an annotated sequence.

Definition 1.2.5. Let Σ be a finite alphabet without the blank character ’-’ and
let Σ̂ = Σ∪ {′−′}. If (S1, P1) and (S2, P2) are two annotated sequences ∈ Σ̂ with
lengths n1 and n2, a pairwise structural alignment A of (S1, P1) and (S2, P2) is
a 2 × n-dimensional matrix consisting of two structured sequences (Ŝ1, P̂1) and
(Ŝ2, P̂2) with the following properties:

I ai,j ∈ Σ̂,∀1 ≤ j ≤ n, i = 1, 2

I Sequence Σ̂i = Si without blanks

I There is no column consisting of blanks only, implying that max(n1, n2) ≤
n ≤ n1 + n2

I ∀(l,m) ∈ P̂i holds (l − gaps(i, l), m− gaps(i, j)) ∈ Pi

A pair of interactions (i, j) and (k, l) are said to be realized, if the corre-
sponding base pairs are aligned, that is, i = k and j = l. Figure 1.9 gives
an example of realized interactions.

G G A G C G G C G A − − C A U C G G C

G G − − C G U C G A A U C A A U A G C

interaction
edges

alignment
edges

Figure 1.9: Structural alignment
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In graph-theoretical terms (see Section 2.1) a structural alignment can be
seen as a graph with a set of alignment edges between the sequence itself
and a set of interaction edges between the nodes of each sequence. Then, a
structural alignment is a set of non-crossing alignment edges with the set of
interaction edges, such that the start- and endnodes of the interaction edges
are realized by interaction edges (see Figure 1.10).

Figure 1.10: Graph-theoretic interpretation of structural alignments

Scoring Structural Alignments

As described earlier, structural alignments do not only consider sequence
evolution and sequence correlation, but also the corresponding structure.
Therefore, it is necessary to adapt the scoring schemes developed in Sec-
tion 1.2.1 in order to reflect structural correlation as well.

Formally, a structural scoring scheme of two annotated sequences (S1, P1)
and (S2, P2) is denoted by A2

s((S1, P1), (S1, P2)). The concept of a struc-
tural alignment and a a structural alignment scoring function, respectively,
can easily be extended to k annotated sequences (see Reinert, 1999). Since
the algorithms developed later on are capable of computing the structural
alignment of only two sequences, the reader is referred to the literature,
e.g., Reinert (1999), for details.

Definition 1.2.6. A function sc : A2
s → R is called structural alignment score

function. If As is a structural alignment of two annotated sequences, then sc(As)
is called pairwise structural alignment score of As. The optimal structural
alignment score of two annotated sequences (S1, P1) and (S2, P2) is given by
scopt((S1, P1), (S2, P2)) := maxAs∈A2((S1,P1),(S2,P2))sc(As).
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Normally, there are only similarity scores in use for defining structural cor-
relation between two annotations. Therefore, there is no distinction be-
tween similarity scores and distance scores – like in case of sequence alignments
– and no distinction between min and max.

In the special case of RNA, a scoring function for pairwise structural align-
ment is defined as

rna(As) →
n∑

i=1

sim(a1,i, a2,i)+
∑

(i,j)∈P̂1,(k,l)∈P̂2,(i,j)=(k,l)

isim(a1,i, a1,j, a2,k, a2,l) .

The function isim is defined as:

Definition 1.2.7. A function isim : Σ4 → R assigns a score to two pairs of
aligned characters that are defined by two matching interactions.

Simply stated, two interactions that are realized by their aligned nu-
cleotides contribute a certain score to the overall score. Whereas previous
work (see Reinert, 1999) did not take any structure prediction information
into account and every possible interaction has the same value, other au-
thors (Hofacker et al., 2004) argue in favor for using base pair probabilities
as weights (see Section 1.1.2).

Though, the task remains the same for all possible variations of isim:

Align the two given sequences in such a way that the sum of sequence and struc-
tural information is a maximum.

1.3 Guide to the Thesis

In Chapter 2 we give the basic definitions and notations, including the
mathematical background to some key concept used in this thesis, e.g.,
graph theory, linear programming or the theory behind Lagrangian relax-
ation.

Chapter 3 summarizes previous work done in the field of structural align-
ments. Some of these results are of great importance to the rest of the the-
sis, because the key ideas for the algorithms developed later on are based
on the algorithms described in this chapter.

In Chapter 4 some previous results described in Chapter 3 will be put to-
gether to formulate a new algorithm for RNA structure alignments. Basi-
cally, this will be accomplished by putting together the mathematical for-
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mulations presented in Section 3.1 and Section 3.2 and afterwards modi-
fying the algorithm for aligning folded protein structures.

Chapter 5 presents the results of tests on RNA sequences. Finally, in Chap-
ter 6 we draw some conclusions from the work presented in this thesis and
sketch further work that could be done based on the ideas described in this
thesis.
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Chapter 2

Preliminaries

2.1 Graph Theory

The following definitions are taken from Diestel (1997) and Reinert (1999):

Definition 2.1.1. A graph is a pair G = (V, E) of sets satisfying E ⊆ [V ]2. The
elements of V are called nodes (or vertices), elements of E are called edges. The
set of nodes in G are denoted by V = V (G), the set of edges by E = E(G).

Elements of E(G) are denoted by the set of their endnodes (or endvertices),
i.e., we write e = (v, w) for e ∈ E(G). A vertex v is incident with an edge
e if v ∈ e; then e is an edge at v. Two vertices x, y ∈ V (G) are adjacent,
or neighbors, if (x, y) ∈ E(G). Two edges e 6= f are adjacent if they have
an end in common. Pairwise non-adjacent vertices or edges are called
independent. A set of vertices or of edges is said to be independent, if no two
of its elements are adjacent.

We denote the number of nodes and edges in a graph with |V | and |E|
respectively. We say that G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and
E ′ ⊆ E. If V ′ ⊆ V , we define E(V ′) := {(v, w) ∈ E|v, w ∈ V ′} and call
the subgraph G′ = (V ′, E ′) node-induced by V ′. Similarly if E ′ ⊆ E we
define V (E ′) := {v, w ∈ V |(u, v) ∈ E ′} and call the subgraph G′ = (V ′, E ′)
edge-induced by E ′.

The degree dG(v) = d(v) of a node v is the number |E(v)| of adjacent nodes
in V (G).

Definition 2.1.2. A graph G = (V, E) is said to be k-partite, with k ≥ 2, if V
admits a partition into r classes such that every edge has its endnodes in different
classes: nodes in the same class must not be adjacent.
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Instead of 2-partite, one usually says bipartite. Figure 2.1 shows a 3-partite
and a bipartite graph.

Figure 2.1: 3-partite and bipartite graph

For a directed graph, digraph in short, D = (V, A) we denote the node set by
V = V (D) and the arc set by A = A(D). An arc a ∈ V × V is an ordered
pair of elements of V . If a = (v, w) ∈ A then a is said to be incident from v
and incident to w or v is the source and w is the target. Two nodes u, v ∈ V
are called adjacent in a digraph D = (V, A) if (u, v) ∈ A or (v, u) ∈ A. The
definitions of a node-induced, arc-induced subgraph follow analogously from
the ones of graphs.

We call a graph G = (V, E) a weighted graph if we assign weights to each
edge e = (v, w) ∈ E.

Definition 2.1.3. A set M of independent edges in a graph G is called a match-
ing. M is a matching of U ⊆ V if every vertex in U is incident with an edge in
M . The vertices in U are then called matched (by M ), unmatched otherwise.

We distinguish between two types of matchings: (a) a maximum cardinal-
ity matching maximizes the cardinality of M . If |M | = |V |

2
, that is every

node is incident to an edge in a matching M , the matching is called perfect.
Figure 2.2 shows such a perfect matching.

(b) a matching of maximal weight tries to maximize the sum of the edge
weights in M . The maximum cardinality matching can be seen as a spe-
cial case of the maximum weight matching where all edges have the same
weight.

A matching in a bipartite graph G = (V, E) with the node classes S1 =
(a1, . . . , an) and S2 = (b1, . . . , bm) is a special case of matchings in gen-
eral graphs. If an order ≺ is defined on the nodes of each class such that
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Figure 2.2: Perfect matching in a general graph

xa ≺ xb ⇔ a < b, a non-crossing matching is defined as a matching where
two edges – graphically spoken – do not cross, that is ∀e1 = (av, bw), e2 =
(ax, by) ∈ E(G) either v < x ⇒ w < y or x < v ⇒ y < w. Figure 2.3 shows
such a non-crossing matching in a bipartite graph.

Figure 2.3: Non-crossing matching in a bipartite graph

In a weighted bipartite graph the non-crossing matching of maximum weight
is the matching M whose edges do not cross and whose sum of edge
weights in M is maximal. Note that the problem of computing such a
matching can be solved by means of labeling algorithms (see Malucelli,
Ottmann, and Pretolani, 1993) in O(nlog n) or by using the approach due
to Needleman and Wunsch, as described in Section 1.2.1 (in terms of com-
putational biology, a maximum weight non-crossing matching denotes a tra-
ditional sequence alignment).
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2.2 Linear Algebra

In this section some mathematical tools that will be used throughout the
rest of the thesis will be introduced.

The set of real (rational, integer, natural) numbers is denoted by R (Q, N,
Z). For an ordered set E = {e1, . . . , en} and a field < we denote by <E the
set of vectors in which the components of each vector are indexed by the
members of E. In particular, RE denotes the |E|-dimensional vector space
over the field R.

Definition 2.2.1. For any field< a vector x ∈ <E is called a linear combination
of x1, . . . , xn, if there exist ai ∈ R such that x =

∑n
i=1 aixi. If additionally∑n

i=1 ai = 1 and ai ≥ 0, i = 1, . . . , n, x is a convex combination of x1, . . . , xn.
If S ⊆ <E , CH(S) denotes the convex hull of S, that is the set of all possible
convex combinations of elements in S.

A special class of functions that are of great importance in linear optimiza-
tion are described in the following definition:

Definition 2.2.2. A function f : <n → < is called convex if for every x, y ∈ <n,
and every λ ∈ [0, 1], we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

A function f : <n → < is called concave if for every x, y ∈ <n, and every
λ ∈ [0, 1], we have

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y)

2.3 Linear Programming

Cook, Cunningham, Pulleyblank, and Schrijver (1998) define the Linear
Programming Problem as finding a vector x that maximizes (or minimizes)
the objective function cT x, where x ranges over all vectors satisfying a set
of given linear inequalities Ax ≤ b. A vector x, such that Ax ≤ b holds, is
called a feasible solution.

More formally, a linear programming problem or LP-problem in short, con-
sists of a matrix A ∈ <m×n, a vector b ∈ <m and a vector cT ∈ <n with

min cT x

Ax ≤ b
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or
min{cT x|Ax ≤ b}

A feasible solution x is called an optimal solution if cT x ≥ cT x̂ for all fea-
sible solutions x̂. If a LP has no feasible solutions, it is said to be infeasible.

Definition 2.3.1. Given a LP

(P ) : min{cT x | Ax ≤ b}

the linear program

(D) : max{yT b | yT A = cT , y ≥ 0}

is called the dual problem.

Problem (P) is called the primal problem. Note, that a fundamental result
of duality theory states that the optimal value of the primal problem and
the dual problem are equal. Duality theory is of great importance in linear
programming. It allows conclusions between different linear programs
that basically describe the same problem to be drawn.

A class of linear programs are the Integer Linear Programs, or ILP in short.
An ILP is defined as

min cT x

Ax ≤ b

x integral

It has been shown that in general solving ILPs is NP-complete. However,
there exist efficient algorithms to tackle ILPs, e.g.,

I Branch-and-Cut-algorithms (see Section 3.1).

I Lagrangian Relaxation will be described in detail in Section 2.4.

2.4 Lagrangian Relaxation

2.4.1 General Description

Informally spoken, Lagrangian relaxation is well suited for problems where
the constraints can be divided into two sets: the problem, constrained only
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by a set of “good” constraints, is solvable very easily, whereas adding the
set of “bad” constraints makes it very hard to solve. The main idea is to
relax the problem by the “bad” constraints – called the Lagrangian relaxed
problem – and put them into the objective function, assigned with weights
(the Lagrangian multiplier). Each weight represents a penalty which is
added to a solution that does not satisfy the particular constraint.

The Lagrangian relaxed problem yields a bound on the original instance. The
core question is to find optimal Lagrangian multipliers that give the best
bound to the original problem.

In the following, Lagrangian relaxation will be described formally. The
description follows the one from Bertsimas and Tsitsiklis (1997). For an
easy introduction to Lagrangian relaxation see Fisher (1981) and especially
Fisher (1985), for a thorough mathematical treatment of the subject see
Lemaréchal (2001).

Assume the following integer linear problem:

min cT x (2.1)
Ax ≥ b (2.2)
Dx ≥ d (2.3)

x integer (2.4)

with A, D, b, c, d having integer entries. Let ZIP be the optimal value to the
ILP above and let

X = {x integral | Dx ≥ d}

We assume that optimizing over the set X can be done very easily, whereas
adding the “bad” constraints Ax ≥ b makes the problem infeasible to
solve. Therefore, we introduce a dual variable for every constraint of
Ax ≥ b. The vector λ ≥ 0 is the vector of dual variables (the Lagrangian
multipliers) that has the same dimension as vector b. For a fixed λ, the
problem

min cT x + λT (b− Ax)

Dx ≥ d

is introduced and its optimal value is denoted by Z(λ). By assumption,
the optimal value for the relaxed problem with a fixed vector λ ≥ 0 can be
efficiently computed and it is easy to see that Z(λ) provides a lower bound
on ZIP .

Lemma 2.4.1. If 2.1 has an optimal solution and if λ ≥ 0, then Z(λ) ≤ ZIP .
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Of particular interest is the tightest of all bounds, that is

max Z(λ)

λ ≥ 0

The problem above is called the Lagrangian dual. Let

ZD = maxλ≥0Z(λ) (2.5)

If X is a finite set, say X = {x1, . . . , xm}, then Z(λ) can also be written as

Z(λ) = mini=1,...,m(cT xi + λT (b− Axi))

The function Z(λ) is the minimum of a finite set of linear functions of λ
and therefore it is concave and piecewise linear, as the definition of of
concave functions implies (see Definition 2.2.2). Furthermore, the problem
of computing ZD can be written as a linear program (with a very large
number of constraints, though).

It is important to note, however, that – unlike in linear programming –
integer linear programming does not have strong duality theory. This im-
plies that the optimal value of the Lagrangian dual does not have to be the
same as the optimal value of the original (primal) problem. Instead of

ZD = ZIP

the following holds:
ZD ≤ ZIP

An example for the concepts described so far is given below.

Example 2.4.1. General assignment problem. The following ILP is given:

ZIP = min
m∑

i=1

n∑
j=1

cijxij (2.6)

m∑
i=1

xij = 1, j = 1, . . . , n (2.7)

n∑
j=1

aijxij ≤ bi, i = 1, . . . ,m (2.8)

xij ∈ {0, 1},∀i, j (2.9)
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The ILP is relaxed by (2.7) and these constraints are taken into the objective func-
tion, assigned with Lagrangian multiplier. This yields

Z(λ) = min
m∑

i=1

n∑
j=1

cijxij +
n∑

j=1

λ(
m∑

i=1

xij − 1) (2.10)

n∑
j=1

aijxij ≤ bi, i = 1, . . . ,m (2.11)

xij ∈ {0, 1},∀i, j (2.12)

The problem is reduced to m 0-1-knapsack problems that can be solved by means
of dynamic programming in (pseudo-)polynomial time.

2.4.2 Solving the Lagrangian Dual

In Section 2.4.1 we defined Lagrangian multipliers and Lagrangian dual. As
outlined in Lemma 2.4.1, the optimal value of the Lagrangian dual is always
smaller or equal to the optimal value of the original problem.

The core question is: how should the λ ≥ 0 be set, such that the gap be-
tween Z(λ) and ZIP is as small as possible (or 0 in the best case)?

For sake of simplicity, we assume that X is finite and can be written as
X = {x1, . . . , xm}. Then – as described above – Z(λ) can be written as

Z(λ) = mini=1,...,m(cT xi + λT (b− Axi))

With fi = b− Axi and hi = cT xi this can be rewritten as

Z(λ) = mini=1,...,m(hi + λfT
i )

a piecewise linear and concave function.

For the moment, assume that Z(λ) was also differentiable. Then, the clas-
sical approach of maximizing the function would be the steepest ascent
method, that is computing a sequence of iterations with

λt+1 = λt + γt∇Z(λt)

We are following the gradient at the current position – with a specified
stepsize γ – to find points with a higher function value.

Unfortunately, this procedure is no longer valid for our function, since it
is piecewise linear and concave, but as one can easily see, it is not differ-
entiable everywhere.
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Therefore, we extend the notion of a gradient in concave functions that are
not differentiable everywhere.

Lemma 2.4.2. A function f : <n → < is concave iff for any x∗ ∈ <n, there exists
a vector s ∈ <n such that

f(x) ≤ f(x∗) + sT (x− x∗)

holds ∀x ∈ <n.

In the two-dimensional case a subgradient is a tangent in a differential
point, as Figure 2.4 illustrates. In a non-differential point there exists more
than one subgradients, as one can easily see.

f(x*)+s  (x−x*)

x*

T

Figure 2.4: Concave function with a subgradient

Using the definition of concave functions, the notion of a gradient can be
extended as follows:

Definition 2.4.1. Let f be a concave function. A vector s such that

f(x) ≤ f(x∗ + s(x− x∗))

for all x ∈ <n, is called a subgradient of function f at point x∗. The set of all
subgradients of f at x∗ is denoted by ∂f(x∗) and is called the subdifferential of
f at x∗.

As soon as 0 ∈ ∂f(x∗), we are done, as the following lemma says:

Lemma 2.4.3. Let f : <n → < be a concave function. A vector x∗ maximizes f
over <n iff 0 ∈ ∂f(x∗).
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Lemma 2.4.3 follows directly from Definition 2.4.2. If (s = 0) ∈ ∂f(x∗), it
implies – according to Definition 2.4.2 – that

f(x) ≤ f(x∗)

which describes the maximum of function f .

To get the counterpart to the steepest ascent method for piecewise linear
functions, the notion of the subdifferential at a point x∗ has to be extended.

Lemma 2.4.4. Let
Z(λ) = mini=1,...,m(hi + λfT

i )

and
E(λ) = {i | Z(λ) = hi + λfT

i }

Remember that hi = cT xi and fi = b− Axi. Then, the following is true:

I For every i ∈ E(λ∗),fi is a subgradient of the function Z at point λ∗

I ∂Z(λ∗) = CH({fi, i ∈ E(λ∗)}), that is a vector s is a subgradient of the
function Z at λ∗ iff Z(λ∗) is a convex combination of the vectors fi, i ∈
E(λ∗).

Remember that the function under consideration is piecewise linear and
concave. Then, E(λ) is nothing else than the set of indices of the lin-
ear functions that form a minimum at that specific point (it has to be
the minimum, otherwise the sequence would not converge). In the two-
dimensional case this set contains the indices of functions that cross at that
specific point (see Figure 2.5 for an illustration).

The definitions above offer the tools to generalize the steepest ascent method
to non-differentiable, piecewise linear functions. The algorithm can be
written as

Definition 2.4.2. Subgradient optimization method.

1. Choose a starting point λ0; t = 0.

2. Choose a subgradient st of the function Z at λt. If st = 0 → STOP, because
the optimal value has been reached.

3. Compute λt+1 = λt + γts
t, where γt denotes the stepsize.

4. Increment t and go to 2.
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Z(λ)

λ∗

f
1

f
2

s
1

Figure 2.5: Subdifferential of Z(λ) at λ∗

The definition of stepsize γ is of crucial importance, since the speed of
convergence depends heavily on the stepsize. Poljak (1967) proves that
Z(λ) converges to the optimal value of Z – assuming it is finite – for any
stepsize γt such that

∞∑
t=1

γt = ∞

and
lim
t→∞

γt = 0

Such a sequence would be, e.g., γt = 1
t
. A more sophisticated formula is

the following:

γt = µ
ẐD − Z(λt)

‖ st ‖ 2
(2.13)

(2.13) goes back to the 1970’s, e.g., when Held and Karp applied the con-
cept of Lagrangian relaxation to the problem of the Travelling salesman for
the very first time (see Held, Wolfe, and Crowder, 1974; Held and Karp,
1971).
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Normally, the parameter µ is initialized with 1 and halved, if the value of
the Lagrangian dual does not increase within a fixed number of iterations.

Note, that subgradient optimization is easy to develop and implement. But
there are other methods, like cutting plane-approaches or bundle-methods,
to compute a series of Lagrangian multipliers that promise even faster speed
of convergence. For details, the reader is referred to Lemaréchal (2001).

2.4.3 Solving Hard Problems

Although Lagrangian relaxation performs quite well in NP-complete real-
world applications, like the General Assignment Problem, Travelling Sales-
man Problem or Scheduling Problems, it is not guaranteed that the sequence
of iterations converges to the optimal value.

Therefore, Lagrangian relaxation can be used in a Branch-and-Bound-
framework. Just like a linear programming relaxation on integer linear pro-
grams, Lagrangian relaxation provides upper and lower bounds on the prob-
lem to solve and it helps to decide, which branches are most likely to lead
to the optimal solution and should be explored.
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Well it’s a strange old game
You learn it slow

DIRE STRAITS

Chapter 3

Previous Work

This chapter describes some of the results achieved so far on the field struc-
tural alignments. After a description of a Branch-and-Cut algorithm for
RNA structural alignment, newer results in structural alignments of pro-
teins are presented. The chapter is concluded with some references to
other papers that deal with structural alignments.

3.1 Structural Alignment via Branch-and-Cut

Lenhof, Reinert, and Vingron (1998) and subsequently Reinert (1999) intro-
duce methods of polyhedral combinatorics to problems of computational
biology. The main idea is to phrase the problem of computing a structural
alignment of maximum score as an ILP and solve it afterwards by means
of Branch-and-Cut.

3.1.1 General Branch-and-Cut Framework

This section describes the Branch-and-Cut paradigm only very briefly. For
an extensive treatment of the subject, see, e.g., Jünger, Reinelt, and Thienel
(1995).

Branch-and-Cut algorithms are a well-studied tool for solving integer linear
programs that are known to be NP-complete. Basically, Branch-and-Cut
combines two approaches: (a) traditional Branch-and-Bound and (b) cutting
plane techniques.

The general framework works the following way:
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We are given an integer linear program (see Section 2.3) that cannot be
solved exactly in polynomial time because of its NP-completeness. There-
fore, we drop the constraint that x ∈ {0, 1} and add the inequalities x ≥ 0
and x ≤ 1 instead. Unfortunately, the number of inequalities can be ex-
ponential which makes a polynomial computation of the linear program
infeasible. Now, Branch-and-Cut comes into play:

We start with a small (say polynomial) number of inequalities and solve
the associated linear program. If the result satisfies all inequalities (not
only the ones that were considered in solving the linear program), the so-
lution is also a solution for the original problem. Otherwise, we add the
violated inequalities to the linear program and solve it again (that is we
“cut” off the invalid solution).

If no violated constraints can be found, we have to consider two cases:

1. The solution vector x is integral.

Then we have an optimal solution to the original problem, because
none of the ILP constraints is violated.

2. The solution vector x is fractional.

In this case, we branch the problem, that is we introduce new sub-
problems by setting a fractional variable to 0 or 1.

So, the main task in Branch-and-Cut algorithms lies in finding violated
inequalities. These algorithms, called separation algorithms, are highly
problem-specific and, depending on the hardness of the separation prob-
lem, exact or heuristic methods are used.

3.1.2 ILP Formulation

Recall the definition of secondary structure in Section 1.1.2 and the graph-
theoretic description of a structural alignment at the end of Section 1.2.2.

A structural alignment of two annotated sequences (S1, P1) and (S2, P2) is
a set of non-crossing alignment edges and the corresponding interaction
edges. Reinert (1999) gives another definition of a valid alignment.

Two annotated sequences (S1, P1) and (S2, P2) with a set A of alignment
edges between the sequences and a set I of interaction edges between
nodes of the same sequence are given. We then add a set H of directed
horizontal arcs between the nodes of the sequence, that is

H = {(si,j, si,j+1)|i ∈ {1, 2}, 1 ≤ j ≤ ni}
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and call the resulting graph the structural enhanced alignment graph, or
SEAG in short, of the two sequences (see Figure 3.1 for an example: solid
lines describe alignment edges, dashed lines are interaction edges and ar-
rows represent arcs between nodes).

Figure 3.1: SEAG of two sequences

The set M denotes the set (ip, iq, el, ek) with ip,q ∈ I, el,k ∈ A representing
all possible interaction matches in a secondary structure. Recall that an in-
teraction match needs two interaction edges whose endnodes are realized
by two alignment edges (see Figure 3.2 for an example with two realized
interaction matches).

For the ILP formulation another definition is needed:

Definition 3.1.1. A mixed cycle R in a SEAG is called critical if for i ∈ {1, 2}
all vertices in R ∩ Si occur consecutively in R.

Informally stated, that means that a cycle enters and leaves a sequence
exactly once. Based on this definition, we define a structural alignment as

Definition 3.1.2. Let Σ be a finite alphabet, (S1, P1) and (S2, P2) be two anno-
tated sequences over Σ. Let G = (V, E, A, I) be the SEAG of the two sequences.
A structural alignment is a pair (T,B) with T ⊆ E, B ⊆ I with the property
that the subgraph induced by T ∪H does not contain a critical cycle and no two
interaction edges are in conflict.

Figure 3.2 shows a valid structural alignment with two realized interaction
matches.

Using the definitions above, Reinert (1999) gives the following ILP defini-
tion for the structural alignment problem:
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Figure 3.2: Structural alignment based on SEAG

max
∑
ei∈A

wixi +
∑

mi,j∈M

wi,jxi,j∑
e∈C

xe ≤ |C ∩ E| − 1 ∀critical mixed cycles C∑
j

xi,j ≤ xi ∀xi, xi,j∑
i

xi,j ≤ xj ∀xj, xi,j

xi, xi,j ∈ {0, 1} ∀xi, xi,j

Variable xi is set to 1, if alignment edge i is realized. xi,j is set to 1, if
interaction match mi,j is realized.

As one can easily check, all requirements for a structural alignment are
met: the first constraints guarantee that the structural alignment contains
only valid alignment edges (putting it in different words: there are no
critical mixed cycles in the solution and therefore the alignment is valid).
Secondly, the constraints

∑
j xi,j ≤ xi and

∑
i xi,j ≤ xj,∀xi,j serve two

purposes:

1. An interaction is realized if and only if the two corresponding align-
ment edges are realized.

2. Every alignment is used by at most one interaction edge (that is there
is no pair of realized interactions that share a start- or endnode).
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Solving the ILP above by means of Branch-and-Cut, the author was able to
optimally align two annotated sequences that had a length of about 1400-
1500 nucleotides. For details, especially about the separation techniques
for the mixed cycle inequalities that were used within in the Branch-and-
Cut algorithm, the reader is referred to Reinert (1999).

3.2 Protein Alignment via Lagrangian Relax-
ation

A problem, similar to the one of computing a structural alignment be-
tween two annotated sequences, is the one of aligning two proteins. There
are several important applications to the comparison of different proteins
which are, again, similar to the ones of RNA:

I Function determination Just like with RNA molecules, the structure
of a protein determines the function and the interaction with other
proteins. Therefore, the function of an unknown protein can often
be derived by comparing its structure to the structure of known pro-
teins.

I Structure prediction If the structure of a protein was experimentally
evaluated, for example by means of X-ray crystallography, it is con-
sidered to be the correct one. If a new protein is found, its structure
can be predicted and afterwards be compared to known structures.

I Protein clustering The alignment of protein structures allows groups
of proteins to be formed, based on their structure similarity.

One way to compare different proteins is to compare their contact maps.
The notion of a contact map is based on the local vicinity between residues
of a protein.

Formally stated, a contact map of a folded protein of n residues is a n × n
matrix C with entries of 0 or 1, depending on the distance between the
two residues: Cij = 1 if and only if the distance of two heavy atoms – the
first one from the i-th and the second one from the j-th residue – is within
a given threshold, for example 3Å or 5Å. Hence, the basic idea is that in
case of similar contact maps the corresponding structures will be similar
as well.

Given a matrix C, a protein can be seen as a graph G whose nodes corre-
spond to the residues. An edge between the i-th and the j-th residue is
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inserted, if Cij = 1. The Contact Map Overlap problem, or CMO in short,
calls for an alignment of residues in the first protein with residues in the
second protein. The overlap of the two proteins is the number of contacts
in the first protein whose endpoints are aligned with residues that are also
in contact in the second protein.

Then, the problem of aligning two proteins is reduced to the problem of
finding the maximum overlap between two proteins. Figure 3.3 shows an
alignment of value 5.

Figure 3.3: Contact map overlap of value 5

At RECOMB’01 Lancia, Carr, Walenz, and Istrail (2001) presented an al-
gorithm based on Branch-and-Cut. They were able to align proteins with
proven optimality for the very first time. A year later, at RECOMB’02 (see
Caprara and Lancia, 2002), the approach was modified and the maximum
overlap was computed by means of Lagrangian relaxation. New results by
the same authors (see Caprara, Lancia, Carr, Walenz, and Istrail, 2004)
combine both approaches yielding the best algorithm for aligning protein
structures known so far.

The following description of computing the maximum overlap of two folded
proteins follows the one from Caprara and Lancia (2002), since the RE-
COMB’02 algorithm forms the basis for the method presented later in this
thesis.

3.2.1 Mathematical Formulation

We are given two undirected graphs G1 and G2, with G1 = (V1, E1) and
G2 = (V2, E2). Vertices denote residues of a protein. These vertices are con-
nected by an edge (a interaction edge), if and only if they are close enough.
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Let L = V1 × V2 (in this context, a set of non-crossing edges of L denotes a
traditional sequence alignment A), and let I be the collection of all (maxi-
mal) sets of pairwise incompatible lines I .

Two lines l = (i1, i2) and m = (j1, j2) are said to be incompatible, if either
i1 > j1 and i2 < j2, or i1 < j1 and i2 > j2 (in other words, incompatible
lines cross or touch each other). For each l = (i, j) ∈ L a binary variable
xl is introduced with xl = 1, if residue i of the first protein is mapped to
residue j in the second one. For each l,m ∈ L, l < m with l = (i1, i2) and
m = (j1, j2) the variable alm = 1, if (i1, j1) ∈ E1 and (i2, j2) ∈ E2 (note that
there is an order < defined on all lines to avoid double variable definitions
and constraints, respectively). In terms of RNA structural alignments, alm

is set to 1, if two alignment edges realize the corresponding interaction
edges.

Now, the main idea of Caprara and Lancia (2002) is not to maximize the
single alm directly, but rather split the weight alm into two separate profits
blm and bml. Afterwards the profits of blm, l, m ∈ L are maximized. Al-
though this may sound odd at the first time, but the separation into two
independent profits is the core idea behind the whole approach. However,
one has to ensure that blm + bml = alm for all l,m ∈ L. As an initial (arbi-
trary) choice alm is divided by 2, that is blm = bml = alm

2
.

The problem of computing the maximum overlap between two proteins can
then be written as

max
∑
l∈L

∑
m∈L

blmxlxm

with ∑
l∈I

xl ≤ 1,∀I ∈ I

x ≥ 0, integer

The integer program above ensures all conditions that a solution of the
CMO problem has to meet:

∑
l∈I xl guarantees that the solution does not

contain crossing lines, because in this case the sum of xl would be greater
than 1. The objective function itself aims for the maximum profit that can
be achieved by realizing lines between the first and second protein.

After linearizing the integer program above (Caprara and Lancia, 2002,
Section 2.1), the authors get the following ILP:

max
∑
l∈L

∑
m∈L

blmylm (3.1)
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that is constrained by∑
l∈I

xl ≤ 1 ∀I ∈ I (3.2)∑
l∈I

ylm ≤ xm ∀I ∈ I, m ∈ L (3.3)

ylm = yml ∀l,m ∈ L, l < m (3.4)
x, y ≥ 0 integer (3.5)

Variable yml replaces the product xmxl and l < m in equation (3.4) is intro-
duced as an (arbitrary) order on all lines to avoid unnecessary constraints
(otherwise yml = ylm and ylm = yml would be part of the ILP).

The constraints (3.2) guarantee, like in the first formulation, that

I Only valid alignments, that is alignments where no lines are crossing
(or touching), form a solution. Inequalities (3.3) take care that the
corresponding lines are realized, if an interaction edge is realized.

I Interaction edges, say l = (e1, e2) and m = (f1, f2), are realized if and
only if (e1, f1) ∈ E1 and (e2, f2) ∈ E2

Note, however, that in the CMO problem, we do not have to deal with re-
stricted degrees of the nodes. As long as the alignment edges are realized,
an arbitrary number of interaction edges adjacent to a single node can be
realized.

3.2.2 Relaxing the ILP

It is not possible to solve the ILP described above in polynomial time,
therefore we relax the problem.

If the ILP is relaxed by omitting constraints (3.4), interaction edges might
be realized “half way”, that is yml might be 1, whereas ylm = 0. Neverthe-
less, the relaxed ILP is solvable inO(|G1(E)||G2(E)|). The next paragraphs
will show how this can be accomplished.

After the removal of yml = ylm, each variable ylm appears only in the con-
straints (3.3) associated with xm. For each m ∈ L, this implies that, if vari-
able xm takes the value 0 all variables ylm take the same value, whereas, if
variable xm takes the value 1, the optimal choice of ylm with l ∈ L is given
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by the solution of

max
∑
l∈L

blmylm (3.6)∑
l∈I

ylm ≤ 1,∀I ∈ I, m /∈ I (3.7)∑
l∈I

ylm ≤ 0,∀I ∈ I, m ∈ I (3.8)

y ≥ 0, integer (3.9)

This simply means the following:

For every line m ∈ L we compute a maximum profit value pm. The higher
the value, the higher the profit that might be achieved, if line m is part
of the solution. The distinction between m ∈ I and m /∈ I guarantees
that the profit is computed correctly in the sense that two lines must not
cross (therefore

∑
l∈I ylm ≤ 0 with m ∈ I has to be fulfilled: as soon as∑

l∈I ylm was greater than 0, two lines of the same set I would be part of
the solution, which simply means that two lines would be crossing).

After calculating the profits for all lines the original problem is solved by
solving the alignment

max
∑
m∈L

pmxm (3.10)∑
l∈I

xm ≤ 1,∀I ∈ I (3.11)

x ≥ 0, integer (3.12)

The above formulation means the following:

For every single set I of pairwise incompatible lines it is desirable to take
the one with the maximum possible profit. Inequalities (3.11) guarantee
that the calculated solution is valid, since only one line of every set I is
part of the solution.

Then, the overall solution is given by the following computation:

1. Compute the profit pm for all m ∈ L, consisting of a set of ŷlm = 1, l ∈
L.

2. Compute a solution x̄ to the alignment using the values of pm,∀m ∈
L ,
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3. The solutions of step 1 and step 2 are brought together by calculating:

ȳlm = ŷlmx̄m (3.13)

This simply means that the maximum profit lines (computed in step
1) of a line m ∈ L are realized in the overall solution, if the line m is
part of the solution of the non-crossing matching calculated in step
2.

Taking a look at the computational complexity of the calculation above, we
can easily check that O(|N(E1)||N(E2)|) holds: In the first step ((3.6)-(3.9),
for every line l = (i, j) ∈ L the maximum profit is computed. This can be
done by means of dynamic programming: for every line l = (i, j) ∈ L we
are looking at all interaction edges that are either incident to i in G1(E) or
to j in G2(E) (like in the original paper, we call them N1(i) and N2(j)).
Now, we have to compute an alignment among the “left” and “right”
neighbors of line l such that no two lines cross. This can be done by
dynamic programming (for example by the algorithm of Needleman and
Wunsch) in O(|N1(i)||N2(j)|). Figure 3.4 gives an example of N(i) and
N(j) illustrating the fact that in the first step of the algorithm, an align-
ment is being computed.

i

j

Figure 3.4: First step in solving the relaxed problem

The endnodes of the dashed edges represent N(i), the endnodes of the
grey edges N(j). Among the lines that connect those endnodes one has to
find the non-crossing matching of maximum cardinality, since every edge has
the same weight.

Solving the second step, that is problem (3.10)-(3.12), takes O(|L|), as one
can easily verify. Every line l ∈ L has a certain profit pl and among all these
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profits we have to compute an alignment with the single pl as weights.
Again, this can be done by dynamic programming using the algorithm of
Needleman and Wunsch.

Taking these considerations into account, the overall complexity is given
by

O(|L|+
∑

i∈G1(V )

∑
j∈G2(V )

|N1(i)||N2(j)|) = O(|G1(E)||G2(E)|) .

One will have noticed that the algorithm described so far computes the
solution to a relaxed ILP, but it is no Lagrangian relaxation as described in
Section 2.4. The approach written above can, however, easily be adapted:

Instead of just relaxing the ILP by the constraints (3.4), we move the
constraints to the objective function assigned with Lagrangian multipliers.
Then, (3.6) has to be replaced by

max
∑
l∈L

∑
m∈L

blmylm +
∑
l∈L

∑
m∈L:l<m

λlm(ylm − yml)

Defining λml = −λlm for l < m and λmm = 0 for all m ∈ L, (3.6) can be
written as

max
∑
l∈L

∑
m∈L

(blm + λlm)ylm

What remains is the computation of the Lagrangian multipliers λlm. As de-
scribed in Section 2.4, we need to compute a series of such multipliers to
find the global maximum of the objective function. Adopting the general
framework given in Section 2.4, the vector of subgradients is given by

slm = ȳlm − ȳml,∀l,m ∈ L, l < m

By using these subgradients, the series of λk
lm with k = 0, . . . , n is com-

puted by

λk+1
lm =


λk

lm if slm = 0

max(λk
lm − γ,−bml) if slm = 1

min(λk
lm + γ, bml) if slm = −1

(3.14)

with
γ = µ

UB− LB∑
m,l s

2
ml

and
λ0

lm = 0
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for all m, l ∈ L as described in Section 2.4.

Parameter µ has to be initialized with a fixed value. Variable UB denotes
the best upper bound on the problem (the value of the solution of (3.10)-
(3.12)), whereas LB is a feasible solution that was found by an appropriate
heuristic (in Caprara and Lancia (2002) the authors simply take the solu-
tion to (3.10)-(3.12) and compute the corresponding overlap).

Two interesting facts should be written down explicitly:

1. The equation λml + λlm = 1 holds for all lines m and l. Hence, one
can easily see the purpose of the Lagrangian multipliers: bml = blm in
the beginning, but as soon as the multiplier are computed, the profit
between bml and blm is adjusted according to the single slm:

If slm = 0 holds, it basically says that the chosen edges match or
that they do not match at all. On the other hand, slm = 1 and slm =
−1, respectively, expresses that from one side (either from the left or
the right) the edge forming the optimal profit was realized, from the
other side, however, other lines were chosen to form the maximum
profit. Now, the goal of using the multiplier consists of adapting the
profits in a way that – in the optimal case – the same lines forming
the optimal value are chosen (seen from the left and the right side).

2. As written in Section 2.4, Lagrangian relaxation itself is a heuristic pro-
cedure and does not guarantee that the optimal value was found. In
fact, the algorithm described above works well for protein structures
that are pretty similar, whereas aligning different protein structures
is completely out of reach, as the authors write in Caprara and Lan-
cia (2002). The main problem with different structures lies in the
selection of lines that form the maximum profit value:

If the two proteins do not provide a common structure, different lines
forming the maximal profit will be chosen for each line. Therefore,
almost all sml will be 0, not because of the fact that the same profit
lines were chosen, but because of the fact that completely different
lines forming the profit were chosen, as one of the authors confirmed
in Lancia (2004) (remember that either sml = 1 or sml = −1 has to
hold in order to adapt the Lagrangian multiplier).
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3.3 Related Work

Besides the algorithms described in Section 3.1 and Section 3.2 other ap-
proaches have been developed for the problem of structurally aligning
two structures. What they all have in common is that no pseudoknots
are allowed within the structure.

1. A secondary structure without pseudoknots can be transformed into
a tree structure. The first algorithms for comparing tree structures
(and therefore RNA secondary structures without pseudoknots) are
due to Zhang and Sasha (1989) and have a complexity of O(n2).
A widely used software package, the Vienna RNA Package (see Ho-
facker, 2004), contains a program that allows the comparison of RNA
secondary structures based on their tree distance.

2. Bafna, Muthukrishnan, and Ravi (1995) present exact and heuristic
algorithms that allow the comparison of RNA sequences. The au-
thors state that “our algorithms for RNA string matching extend to
structures that allow crossing edges”, but it is written nowhere, how
this could be accomplished and if the complexity of the algorithms –
O(n2m2) with n and m being the lengths or the two RNA sequences
– would change.

3. Newer results due to Hofacker et al. (2004) approach the comparison
of RNA sequences by aligning the corresponding base pair probability
matrices: the entries of the matrices are the base pair probabilities for
each sequence.

Formally stated, we are given two matrices PA and PB with entries
φ

A|B
i,j that denote the base pair probability between residue i and j in

sequence A and B, respectively. Then, one basically tries to maximize
the score of the realized interaction matches between the interaction
edge (i, j) in the first and (k, l) in the second sequence, that is

max
∑

(i,j),(k,l)

(φA
(i,j) + φB

(k,l)) .

Besides the probabilities the algorithm takes traditional sequence in-
formation into account as well, that is, it scores (mis-)matches, indels
and gaps.

The approach is a variation of Sankoff’s dynamic programming al-
gorithm (see Sankoff, 1985) for simultaneous folding and alignment
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of two RNA sequences. The high computational demands – memory
and CPU requirements are in O(n4) and O(n6) – limit the length of
the input sequences to approximately 150 nucleotides per sequence
though.

44



Han var interessert i så mangt en ting
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Chapter 4

RNA Structural Alignment Using
Lagrangian Relaxation

Aligning proteins and RNA secondary structure turns out to be a remark-
ably similar task. There are, however, some differences that will be ad-
dressed in Section 4.1.

Section 4.2 deals with the changes that have to be applied to the ILP pre-
sented in Section 3.2.1 to reflect the differences between proteins and RNA
sequences.

Finally, Section 4.3 presents a modified version of the algorithm described
in Section 3.2.2. The modified algorithm will be able to compute structural
alignments of two annotated RNA sequences.

4.1 Differences Between Proteins and RNA

The problems of aligning protein structures and RNA secondary struc-
tures share a set of common properties, e.g.,

I Interaction edges represent correlations between residues.

I There are alignment edges between the two structures.

I The goal is the maximization of a certain score.

There are, however, some differences that have to be taken into account,
specifically during the adaption of the algorithm presented in Section 3.2.2
for the problem of aligning secondary structures.
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A quick glance at Figure 4.1 will make some of the differences apparent:
the upper figure shows the alignment of two protein structures, whereas
the lower one shows the structural alignment of two RNA sequences.

Figure 4.1: Differences between protein alignment and RNA structural
alignment

Table 4.1 summarizes the differences between protein structural alignment
and RNA structural alignment.

Note that the first and second difference, the weights of alignment and
interaction edges, would let the ILP for protein alignment unchanged, aml,
the weight of an interaction edge in the algorithm for the CMO problem,
has to be changed from 1 to the weight of the single interaction and the
alignment edge, respectively.

The third difference, namely the realization of alignment edges, leads to
no changes as well, since the realization of an alignment edge that is not
incident to any of the interaction edges is contained in the ILP formulation
for aligning proteins. The thing is, however, that these alignment edges are
of no use for the overall goal, the maximization of the structural alignment
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Protein structure align-
ment

RNA secondary structure
alignment

Weights of inter-
action edges

Edges between two nodes
simply denote that the two
residues are within a given
threshold.

Interaction edges do con-
tain information, for exam-
ple the base pair probability
and the number of the hy-
drogen bonds between the
two residues.

Weights of align-
ment edges

Edges between the two
structures represent a
mapping of nodes from
the first to nodes of the
second protein struc-
ture. There is no weight
assigned with these edges.

Alignment edges get the
mutation score matrices
value, indexed by the
two residues, as their
weight. Hence, alignment
edges contain additional
information.

Realization of
alignment edges

Alignment edges are real-
ized, if interaction edges
incident to the endnodes
of the alignment edge are
realized. An alignment
edge that is not incident
to any interaction edge is
irrelevant in aligning pro-
tein structures.

Alignment edges con-
tribute additional in-
formation (namely the
information about the
tradition sequence align-
ment) and there do not
have to be any interaction
edges that are incident
to the endnodes of an
realized alignment edge.

Degree of nodes A node can be linked to
several other nodes (an
interaction edge denotes
spatial vicinity between
residues) and therefore no
restrictions on the degree
of a node exist.

Due to the special struc-
ture of RNA a node can
be incident to at most one
other residue. That is,
the degree of nodes is re-
stricted to one in an RNA
structural alignment.

Table 4.1: Differences between protein and RNA structural alignments

score: alignment edges do not contribute to the score.

Finally, the fourth difference causes a significant change within the ILP
formulation and the way the Lagrangian method works:

We have to take care that the degree of every node is one at most. Hence,
the solution to the first step of the algorithm (computing the maximal
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“profit” that a line l can possibly achieve) does not select several other
lines, but has to select the best line with which the maximal profit is
achieved (otherwise the degree of the node would be greater than 1).

The restriction of the node degrees, however, makes the computation of
the single profits much easier: instead of solving an alignment for every
single alignment edge, only the best line has to be taken. By means of pri-
ority queues, for example, computing the best edge can be done in constant
time. Details will be presented in Section 5.1.1.

4.2 ILP Formulation for RSA

Taking a look at the differences between the Contact Map Overlap problem
and the problem of aligning RNA secondary structures, one immediately
recognizes that the original ILP formulation describing the CMO problem,
that is,

max
∑
l∈L

∑
m∈L

blmylm (4.1)

constrained by ∑
l∈I

xl ≤ 1 ∀I ∈ I (4.2)∑
l∈I

ylm ≤ xm ∀I ∈ I, m ∈ L (4.3)

ylm = yml ∀l,m ∈ L, l < m (4.4)
x, y ≥ 0 integer (4.5)

has to be extended with inequalities constraining the degree of each node.

Taking a look at the ILP formulation from Reinert (1999),

max
∑
ei∈A

wixi+
∑

mi,j∈I

wi,jxi,j (4.6)

∑
e∈C

xe ≤ |C ∩ E| − 1 ∀critical mixed cycles C (4.7)∑
j

xi,j ≤ xi ∀xi,j, xi (4.8)∑
i

xi,j ≤ xj ∀xi,j, xj (4.9)

xi, xi,j ∈ {0, 1} (4.10)
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there are two obvious changes to (4.1)-(4.5):

I constraints (4.8) and (4.9) have to be added to the CMO-ILP.

I objective function (4.1) has to be replaced by objective function (4.6).

Then, a first ILP formulation for aligning RNA secondary structure is

max
∑
m∈L

∑
l∈L

blmylm+
∑
m∈L

wmxm (4.11)∑
l∈I

xl ≤ 1 ∀I ∈ I (4.12)∑
l∈I

ylm ≤ xm ∀I ∈ I, m ∈ L (4.13)

ylm = yml ∀l,m ∈ L, l < m (4.14)∑
l∈L

ylm ≤ xm ∀m ∈ L (4.15)

x, y ≥ 0 integer (4.16)

(4.11)-(4.16) takes the differences listed in Table 4.1 into account:

I (4.11) maximizes the weight of interaction and realized alignment
edges.

I (4.15) and (4.14) take care that the degree of each node is one at most.
To be more precise, the number of interaction edges realized at a spe-
cific node is 2 at most (one outgoing and one incoming interaction
edge, that is ylm = 1 and ylm = 1). Since in the original formula-
tion ylm and yml belong to the same interaction edge, we count the
incoming and outgoing edge as one.

However, the ILP can be simplified:

As described above, the degree of each node is constrained by (4.15) and
(4.14). Therefore, every line m ∈ L can be incident to at most one other
line l ∈ L. Consequently, constraints (4.13) can be dropped, since there is
at most one line m, such that ylm = 1, for all other ylm = 0 holds. Then, the
only thing that has to be checked is that line l and m do not cross, but this
is already done by constraints (4.12).∑

l∈I xl ≥ 2 implies that yml = 1 for two lines l,m ∈ L. The lines l and
m are in the same set I of incompatible lines and therefore the two lines
would cross (which is not a valid structural alignment).
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Dropping constraints (4.13), the final ILP is

max
∑
m∈L

∑
l∈L

blmylm+
∑
m∈L

wmxm (4.17)∑
l∈I

xl ≤ 1 ∀I ∈ I (4.18)

ylm = yml ∀l,m ∈ L, l < m (4.19)∑
l∈L

ylm ≤ xm ∀m ∈ L (4.20)

x, y ≥ 0 integer (4.21)

Section 4.3 explains how the ILP above can be solved on the analogy of
solving the ILP for CMO.

4.3 Solving the ILP

Solving the ILP (4.17)-(4.21) can be done as described in Section 3.2. First,
a basic procedure will be explained, yielding solutions of poor quality on
the original problem. Consequently, the algorithm based on Lagrangian re-
laxation will be presented afterwards leading to significantly better results.

4.3.1 Relaxing the ILP

Like in Section 3.2.2 the ILP written above cannot be tackled directly.
Hence, the problem is relaxed by the equality constraints (4.19). Hence,
the relaxed ILP is solvable in O(|G1(E)||G2(E)|).
By dropping (4.19), the ILP is changed to

max
∑
m∈L

∑
l∈L

blmylm+
∑
m∈L

wmxm (4.22)∑
l∈I

xl ≤ 1 ∀I ∈ I (4.23)∑
l∈L

ylm ≤ xm m ∈ L (4.24)

x, y ≥ 0 integer (4.25)

Taking a close look at the ILP, one recognizes that it can be solved by the
same procedure as described in Section 3.2.2. The only difference is that
there is one more classe of inequalities, namely (4.24).
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The following considerations are analog to the ones in Section 3.2.2:

xm = 0, m ∈ L implies that all ylm in (4.24) have the same value, that is, all
values equal 0. However, for xm = 1 the optimal choice of ylm is given by

max
∑
m∈L

∑
l∈L

blmylm + wm ∑
l∈I

xl ≤ 1 ∀I ∈ I∑
l∈L

ylm ≤ 1 m ∈ L

y ≥ 0, integer

That means that the maximal “profit” is not given by a set of non-crossing
lines that are incident to the current line – like it was the case with align-
ing proteins. The restriction on the degree of every node leads to the se-
lection of exactly one line that promises the highest profit, if line m was
realized. Consequently, the main difference to the algorithm of aligning
protein structures is the following:

Not a set of other, non-crossing lines is chosen to form the maximal profit,
but just one single line. Otherwise the degree of every node could be
greater than one, that is, ∑

l∈L

ylm ≥ 2

for m ∈ L.

As soon as the profits pm are computed for every m ∈ L, the algorithm is
straightforward:

Given a single pm, m ∈ L, choose the lines that maximize the overall profit,
that is compute

max
∑
m∈L

pmxm∑
l∈I

xm ≤ 1,∀I ∈ I

x ≥ 0, integer

The value of the alignment gives an upper bound on the original prob-
lem. Intuitively, this is clear: Every line m chooses locally the best line
that maximizes the overall profit. In an optimal solution this means that
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line m chooses l as its maximum profit line and vice versa. This yields
the maximum value that both lines can possibly contribute to the overall
profit.

Since the constraints yml = ylm was dropped, this does not have to be the
case anymore. Consider the following case (see also Figure 4.2): Line m
realizes its maximum profit with line l, whereas line l achieves the best
value choosing k. Since yml = ylm this situation is valid in the relaxed ILP.

k l m

y  = 1y  = 1
kl lm

Figure 4.2: Valid situation in the relaxed ILP

The remaining algorithm remains the same, that is the optimal solution to
the relaxed ILP is computed in a two-phase selection algorithm:

1. First selection Compute the maximal profit pm that every line m ∈ L
can possibly achieve with another line l ∈ L.

2. Second selection Maximize the sum of profits such that no two lines
cross, that is compute an alignment with the single pm, m ∈ L as
weights.

A difficulty that comes along with constraining the degree of every node
is the calculation of a valid solution for a structural alignment, given a set
of non-crossing lines (see Section 4.3.2).

4.3.2 Computing Feasible Solutions

In Section 3.2.2 the calculation of the Lagrangian multiplier is described.
One of the key parameters is the stepsize γ that is computed the following
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way:

γ = µ
UB− LB∑

m,l s
2
ml

The values are

I UB An upper bound on the problem: this value is given by the result
of the non-crossing matching of maximum weight, that is the result
of the first alignment phase.

I LB A lower bound on the problem: a (heuristic) feasible solution for
the problem.

In case of the CMO-problem, computing a lower bound on a problem in-
stance, given a set of alignment edges that form the non-crossing match-
ing, is easy, since the degree of the nodes is not constrained. Therefore,
every interaction edge that is realized contributes to the solution. Dealing
with RNA secondary structures, the situation is different.

Here, the degree of the nodes is constrained, leading to the following ques-
tion: Given a set of fixed alignment edges, which interaction edges should
be chosen, such that the overall score is maximal?

The upper part of Figure 4.3 gives an example for the starting point of the
computation of a lower bound LB.

The problem can be formulated the following way:

Given a set of alignment edges and a set of interaction edges associated
with a certain value (in Figure 4.3 the values are represented by wi and
wj). Which interaction edges have to be chosen, such that the profit is
maximal under the constraint that every node is incident to at most one
interaction edge?

It turns out that this problem can be formulated as a general matching of
maximum weight (see Section 2.1).

Consider the alignment edges as nodes and every pair of interaction edges
(i1, i2) whose endpoints are adjacent to a pair of alignment edges are the
edges of the graph. We call the resulting graph the interaction matching
graph G. The sum of the weights of i1 and i2 is the weight of an edge in
G. The lower part of Figure 4.3 shows the matching graph of the graph
shown in the upper part of Figure 4.3.

Lemma 4.3.1. A matching of maximum weight in the interaction matching
graph corresponds to the structural alignment of maximum weight in the orig-
inal graph.
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a b c d e f g h

w + w ji

j
w

i

a b c d e f g h

w

Figure 4.3: Matching graph for computing a lower bound

Proof. Recall the definition of a matching of maximum weight from Sec-
tion 2.1. In a matching every node is incident to one edge at most, the sum
of the weights of the matching edges is maximal. It is not hard to see that
the two properties for a structural alignment are satisfied:

1. Every node in the original graph is incident to (at most) one inter-
action edge (remember that nodes in the interaction matching graph
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are a bijective mapping of alignment edges in the original graph).

2. The sum of weights of the interaction edges is maximal.

�

A “backtracking” of the solution, that is, which interaction edges are part
of the matching in the matching graph, is simple in the way that there is a
one-to-one mapping between the edges in the matching graph and pairs of
interaction edges in the original graph. Every edge in the matching graph
corresponds to a pair of interaction edges in the original graph.

4.3.3 Solving the Lagrangian Relaxed Problem

The problem described in Section 4.3.1 relaxes the ILP by just dropping
some constraints. A Lagrangian relaxation can be obtained by the same
approach as the one described in Section 4.3.1.

Instead of just dropping constraints (4.19), they are taken to the objective
function, assigned with a multiplier:

max
∑
m∈L

∑
l∈L

blmylm+
∑
m∈L

wmxm +
∑
l∈L

∑
m∈L,l<m

λlm(ylm − yml)∑
l∈I

xl ≤ 1 ∀I ∈ I

ylm = yml ∀l,m ∈ L, l < m∑
l∈L

ylm ≤ xm ∀m ∈ L

x, y ≥ 0 integer

Again, with λml = −λlm and λll = 0 the objective function can be written
as

max
∑
m∈L

∑
l∈L

(λlm + blm)ylm +
∑
m∈L

wmxm (4.26)

The multipliers are, like in Section 3.2.2, computed the following way.

First, compute the subgradients

slm = ȳlm − ȳml,∀l,m ∈ L, l < m
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Then, by using these subgradients, the series of λk
lm with i = 0, . . . , n is

given by

λk+1
lm =


λk

lm if slm = 0

max(λk
lm − γ,−blm) if slm = 1

min(λk
lm + γ, blm) if slm = −1

(4.27)

with

γ = µ
UB− LB∑

m,l s
2
ml

and
λ0

lm = 0,∀m, l ∈ L

4.4 An Algorithm Based on Lagrangian Relax-
ation

The considerations from the previous sections lead to the following algo-
rithm that computes a structural alignment for two annotated sequences
(S1, P1) and (S2, P2):

Algorithm 1: Computation of pairwise RNA structural alignment
1: Compute a traditional sequence alignment of S1 and S2 to get a set of

alignment edges.
2: Insert additional alignment edges to the ones computed by the tradi-

tional sequence alignment
3: Compute interaction edges using the annotations P1 and P2

4: Determine weights wml and bml = blm = wml

2
for every pair m and l,

with m, l ∈ L
5: while stop condition not met do
6: Compute maximal profit of each alignment edge m ∈ L
7: Compute an alignment with the single profits as weights.
8: Compute a feasible solution, given the alignment edges.
9: Compute subgradients according to non-crossing matching and the

chosen profit alignment edges
10: Adapt Lagrangian multiplier according to the subgradients
11: end while
12: Output structural alignment
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The stopping condition of the while loop is very vague, because there are
different strategies to stop the computation, e.g.

I The authors of Caprara and Lancia (2002) limit the number of itera-
tions to max{1000, 10 max{|G1(E)|, |G2(E)|}}, since they did not ex-
perimentally observe major improvements afterwards.

I Fisher (1981) proposes a fixed number of iterations.

I If UB = LB, the computations can be stopped, since the optimal so-
lution has been reached (or to put it in other words:

∑
m,l s

2
ml = 0).

In Chapter 5 we will discuss our implementation in detail and show the
computational results computing

I Structural alignments from similar sequences (e.g., sequences from
the same family) that provide already high sequence conservation.

I Structural alignments from sequences that do not have high se-
quence conservation (e.g., sequences stemming from different fam-
ilies).
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And what have you got at the end of the day?
What have you got to take away?

DIRE STRAITS

Chapter 5

Computational Results

This section describes the results that were obtained while performing
computations with real-world data.

First, a short summary of the implementation of the algorithm described in
Section 4.3 is given. Second, the generation of the alignment and interac-
tion edges is illustrated, since the running of the implementation depends
heavily on the number of edges.

Finally, the results of the implementation are discussed.

5.1 Implementational Issues

5.1.1 Implementation

The program for computing structural alignments of two RNA sequences
was implemented in C++ using LEDA, the Library of Efficient Data Types
and Algorithms (for details see LEDA, 2004).

Two points are of crucial importance for keeping the running time low:

1. Finding the maximum profit edge, that is the edge with which the
maximal possible profit is realized, should take constant time.

2. Computing a feasible solution of maximum weight given a set of
alignment edges, as described in Section 4.3.2. This leads to the com-
putation of a matching during every iteration of the algorithm.

Finding the maximum profit edge in constant time can be done as follows:
A set of possible partner lines (the dashed alignment edges in Figure 5.1)
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for an alignment edge (i, j) is given. All possible partner lines are stored
in a priority queue with the possible profit as the priority. Extracting the
element with the highest priority means nothing else than selecting the
edge with which the highest profit can possibly be achieved.

During every iteration each alignment edge has to change one profit at
most, because only one single profit edge is selected which might cause
an adaption of the corresponding Lagrangian multiplier.Therefore, updat-
ing a single profit (or priority in terms of priority queues) can be done in
O(log n).

j

i

Figure 5.1: Handling possible partner edges

The computation of the lower bound during each iteration is done as de-
scribed in Section 4.3.2. Given a set of select alignment edges, we search
for the matching of maximum weight in the corresponding interaction
matching graph. This can be done by using the built-in LEDA matching
algorithms.

5.1.2 Generating the Alignment Edges

The number of alignment edges influences the speed of the computa-
tion significantly: the more alignment edges, the more possible structural
alignments have to be considered and the more Lagrangian multipliers
have to be adapted. Therefore, we generate the alignment edges in an
intelligent way, improving the chance to generate the correct alignment
edges that form the structural alignment of maximum weight.

The process of generating the alignment edges is basically the same as the
one described in Reinert (1999):
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We start from computing a traditional sequence alignment with affine gap
costs. Then, we do not only consider the set of alignment edges forming
the best sequence alignment with respect to the score function, but also all
other alignment edges that are part of a sequence alignment seqs scoring
better than a fixed value s below the optimal. The term seq0 denotes align-
ment edges that are part of an optimal sequence alignment (remember
that, in general, an optimal sequence alignment of two sequences is not
uniquely defined) are taken into account. seq50 denotes the set of align-
ment edges that are part of a sequence alignment whose score is at most
50 below the optimal score.

This can efficiently done using the algorithm of Vingron and Argos (see
for example Vingron (1996)).

5.1.3 Generating the Interaction Edges

There are two ways to generate the interaction edges of an RNA sequence:

I Using the base pair probabilities as weights for the interaction
edges

The program RNAfold that is part of the Vienna RNA package al-
lows the computation of the base pair probabilities of a RNA se-
quence. The output is a dotplot of the sequence (see Figure 5.2). The
upper part of the matrix shows the probability with which the two
nucleotides, specified through the matrix position, fold onto each
other: the bigger the rectangle, the higher the probability.

The lower part shows one of the possible minimum free energy
structures of the sequence (this part, however, is of no further in-
terest for the following computations).

I Using fixed secondary structures

As a second method to generate interaction edges, secondary struc-
tures from the European ribosomal RNA database (Wuyts, de Peer,
Winkelmans, and Wachter, 2002) were used. The database offers a
large variety of annotated RNA sequences: data files containing both
the sequence and the biologically verified secondary structure.
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Figure 5.2: Dotplot of a HIV sequence

5.2 Results

5.2.1 Testing Strategies

Basically, two different testing strategies were pursued:

1. Aligning two RNA sequences with the base pair probabilities as
weights

In Section 1.1.2 we outlined that RNA alignments based on sequence
information alone are generally not sufficient to detect structural el-
ements. Therefore, the base pair probabilities for each sequence are
taken into account to compute structurally accurate alignments.

2. One given secondary structure

As the second testing strategy the (known) structure of one RNA
sequence was taken to form the interaction edges, whereas all pos-
sible interaction edges were allowed for the second RNA sequence.
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The idea is that the fixed structure should help to identify conserved
structures within the structural alignment.

5.2.2 Chosen Parameters

The following parameters were used throughout the computation process:

I Figure 5.3 shows the mutation score matrix that was used to score
pairs of nucleotides:

A C GU−

0

1

4

0

1

1

4

0

1

1

1

4

0 0−

A

U

C

G

4

Figure 5.3: Mutation score matrix used for experiments

I For the initial traditional sequence alignment with affine gap costs
we used 6 as gap open and 2 as gap extension penalty, respectively.
The level of suboptimality was set to 50, i.e. every alignment edge
is generated that is part of a sequence alignment whose score is not
more than 50 below the optimal score.

I Like Reinert (1999) the weight of an interaction edge was set to 8,
leading to a score of 16, if a pair of interaction edges (one interaction
edge in the first and the other one in the second sequence) is realized.

I Computing the optimal Lagrangian multiplier using subgradient op-
timization is an iterative computations (as outlined in Section 2.4.2):
the number of iterations was 1500 iterations at most, since it turned
out that afterwards no substantial improvements occurred anymore.
If the upper and lower bound coincide earlier, the computation is
stopped since the optimal value of the Lagrangian dual has been
reached.
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Compared to the tests conducted by Caprara and Lancia (2002) this
is a bit different: they set the number of iterations to 1000 at most.

5.2.3 General Observations

As described in Section 4.4 the optimal value is reached as soon as the
upper bound UB and the lower bound LB are the same. Two main ob-
servations regarding the upper and lower bound were made during the
experiments:

1. If an optimal value is found, the gap between upper and lower
bound becomes very small within just a few hundred iterations. The
rest of the iterations is used to adapt the Lagrangian multiplier in
such a way that – in the end – the gap becomes 0. Figure 5.4 shows
an example of the development of lower and upper bound where the
gap finally becomes 0.
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Figure 5.4: Development of lower and upper bound yielding a gap of 0

2. A low traditional sequence score, however, is a strong indication that
the Lagrange method will fail to find an optimal value, leading to a
gap between lower and upper bound. It was tried to increase the
number of iterations, but it turned out that the gap remained the
same even after a few thousand iterations. Figure 5.5 shows an ex-
ample where the gap between lower and upper bound remains the
same.
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Figure 5.5: Development of lower and upper bound yielding a non-
decreasing gap

This observation corresponds to the paragraph in Caprara and Lan-
cia (2002) where the authors state that

(. . . ) it has to be remarked that the optimal solution of
instances associated with substantially different proteins
seems completely out of reach not only for our algorithm
(. . . ).

The score of the traditional alignment measures how similar the two
sequences under consideration are: the lower the score, the dissim-
ilar the two sequences are. It will be shown in the next sections
that whenever the traditional sequence score is low, the gap between
lower and upper bound is big, yielding solutions that are not guar-
anteed to be optimal or near-optimal.

5.2.4 Tests with 5S RNA Sequences

In the beginning, we conducted some experiments with the following 5S
RNA sequences, all taken from the 5S Ribosomal RNA Database (Szyman-
ski, Barciszewska, Barciszewski, and Erdmann, 2000). The twelve 5S se-
quences, all belonging to the family of the Cytophagales, are listed in Ta-
ble 5.1.

65



5.2. RESULTS CHAPTER 5. COMPUTATIONAL RESULTS

] Group Name Length
1 A Bacteroides Thetaiotaomicron 111
2 A Bacteroides Veroralis 112
3 A Cytophaga Aquatilis 111
4 A Anaerorhabdus Furcosus 114
5 A Bacteroides Capillosus 115
6 A Bacteroides Fragilis 110
7 B Cytophaga Heparina 114
8 B Cytophaga Johnsonae 116
9 B Flavobacterium Breve 121
10 B Flexibacter Sp 117
11 B Porphyromonas Gingivalis 111
12 B Saprospira Grandis 122

Table 5.1: Twelve 5S RNA sequences

For all sequences the base pair probabilities were computed using RNAfold
from the Vienna RNA Package. Subsequently, for all possible pairs between
the two groups a structural alignment was computed using the base pair
probabilities, multiplied by 8, as the weight of the interaction edges. The
multiplication by 8 is necessary to adapt the weight to the mutation score
matrix presented in Section 5.2.2 (otherwise the maximal weight of an in-
teraction weight is one, whereas even different letters have a score of one).

Figure 5.6 shows the results of the structural alignments computed from
all possible pairs of sequences listed in Table 5.1.

Lower Bound and Upper Bound denote the best lower and upper bound
found during the computations. Conventional Alignment is the value of
the structural alignment induced by a traditional sequence alignment and
is computed the following way:

The alignment edges computed by a traditional sequence alignment with
affine gap costs are taken and form the input edges for the interaction
matching graph (see Section 4.3.2). Then, the structural alignment score
is computed that is defined by the traditional alignment edges.

It can be seen that the Lagrange method performs very well on test in-
stances that have a fairly high conventional alignment score, whereas se-
quences that provide a low conventional alignment score fail to be struc-
turally aligned to optimality (and hence lead to a gap between the lower
and the upper bound).

It is also worth noting that in one case – the structural alignment between

66



CHAPTER 5. COMPUTATIONAL RESULTS 5.2. RESULTS

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0  5  10  15  20  25  30  35

S
co

re

Instances

Lower Bound
Upper Bound

Convential Alignment

Figure 5.6: Structural alignments of 5S RNA sequences

Saprospira Grandis and Bacteroides Veroralis – the Lagrange method even
failed to produce a better score than the one provided by the conventional
sequence alignment. This might indicate that the two sequences are very
closely related to each other, yielding high sequence conversation that is
already optimal or near-optimal.

In the following, the score of some test instances that was computed using
the Lagrange method was compared to alignment produced by pmmulti ,
the program by Hofacker et al. (2004) to align base pair probability matri-
ces using dynamic programming. Table 5.2 shows the results.

The weights of the interaction edges were computed the same way as de-
scribed in (Hofacker et al., 2004) for the sake of greater comparability of the
results. This means that not the pure base pair probabilities were taken,
but the probability φ̄i,j between residue i and j was computed by

φ̄i,j = log
φi,j

φmin

with φmin being the lowest probability in the matrix.

Surprisingly, the gap between the value of pmmulti and the Lagrange
method turned out to be big. The primary reason for the different val-
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Sequence 1 Sequence 2 pmmulti Lagrange
Cytophaga Heparina Bacteroides Veroralis 743.67 829.214
Cytophaga Heparina Bacteroides Thetaiotaomicron 748.351 819.883
Cytophaga Johnsonae Cytophaga Aquatilis 640.335 673.783
Flectobacillus Major Euplotes Woodruffi 679.295 732.62
Flexibacter Sp Bacteroides Thetaiotaomicron 675.284 731.189
Flexibacter Sp Anaerorhabdus Furcosus 748.559 792.912
Flexibacter Sp Bacteroides Capillosus 497.828 702.525
Flexibacter Sp Cytophaga Aquatilis 531.358 696.05

Table 5.2: Comparison between Lagrange and pmmulti

ues lies in the secondary structure that is allowed during the computa-
tion: pmmulti follows a dynamic programming approach that does not
allow pseudoknots, whereas the Lagrange method does not restrict the
secondary structure (and indeed, a closer look at the structural alignment
produced by the Lagrange method reveals that the realized interaction
edges form around 15 pseudoknots).

5.2.5 Tests with 23S RNA Sequences

General Tests

The fourteen ribosomal 23S RNA sequences listed in Table 5.3, taken from
the European ribosomal RNA database, formed the input data for the follow-
ing tests. The idea is that taking one known structure directs the structural
alignment to conserved structural elements within the two sequences.

The column Acc.-Num. lists the GenBank identifier for the specific se-
quence, whereas column R has a star, if the sequence was also used during
the tests by Reinert (1999). This will be important later on, because the re-
sults computed by Reinert will be compared to the ones obtained by the
Lagrangian method.

In the first test round structural alignments for all possible pairs of se-
quences within each of two families were computed. The base pair prob-
abilities – again computed by means of RNAfold – were used as weights
of the interaction edges for both sequences. Figure 5.7 and Figure 5.8
show the results for the family of Crenarchaeota and Euryarchaeota, re-
spectively.

Again, it turns out that, in general, the better the conventional alignment
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] Family Name Acc.-Num. Length R
1 Crenarchaeota Pyrodictium Occultum M21087 1497 ∗
2 Crenarchaeota Sulfolobus yangmingensis AB010957 1493
3 Crenarchaeota Pyrobaculum oguniense AB029339 1472
4 Crenarchaeota Acidianus tengchongensis AF226987 1496
5 Crenarchaeota Sulfolobus shibatae M32504 1495
6 Crenarchaeota Thermoproteus tenax M35966 1504
7 Crenarchaeota Cenarchaeum symbiosum U51469 1474
8 Crenarchaeota Thermofilum Pendens X14835 1509 ∗
9 Euryarchaeota Natronobacterium tibetense AB005656 1474
10 Euryarchaeota Halobacterium halobium AJ002949 1463
11 Euryarchaeota Haloferax denitrificans D14128 1469 ∗
12 Euryarchaeota Methanobacterium formicium M36508 1476 ∗
13 Euryarchaeota Halococcus morrhua X00662 1475 ∗
14 Euryarchaeota Archaeoglobus fulgidus X05567 1492 ∗

Table 5.3: Fourteen ribosomal 23S RNA sequences
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Figure 5.7: Results computing structural alignments of Crenarchaeota se-
quences
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Figure 5.8: Results computing structural alignments of Euryarchaeota se-
quences

score, the smaller the gap between the lower and the upper bound com-
puted by the Lagrange method. Furthermore, the lower the conventional
alignment is, the higher the number of alignment edges (see Figure 5.9).
This is clear, since we compute the set of alignment edges by taking all
alignment edges whose score is a fixed threshold t below the optimal score.
Then, a high conventional alignment score indicates a better quality of the
sequence alignment, yielding a smaller number of alignment edges, sim-
ply because there are not that many suboptimal possibilities to align the
two sequences.

Consequently, a higher number of alignment edges is harder to align, since
a greater search space has to be explored.

Lagrange vs. Branch-and-Cut

Finally, the set of sequences from Table 5.3 marked with a star in column R
was further examined and the results were compared to those computed
by Reinert (1999).

There are two main differences to the tests conducted before:
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Figure 5.9: Correlation between conventional alignment and the number
of alignment edges

1. The interaction edges for one of the two sequences is taken from the
secondary structure taken from the European ribosomal RNA database.

2. The interaction edges for the second sequence were computed us-
ing the entries in the base pair probability matrices, disregarding the
base pair probability, however (this will be explained in the follow-
ing paragraphs).

Especially the second issue is of further interest:

Reinert (1999) performs his tests with holding one structure fixed, whereas
he allows all possible interaction edges as the second secondary structure.
During the the worst case generation method used by Reinert was tuned a
bit:

Instead of using all possible base pairs, only the interaction edges with a
base pair probability greater than 0 were taken. If a base pair has a prob-
ability of 0, it cannot be part of a valid secondary structure under any cir-
cumstances, simply because the RNA energy model would not allow such
an interaction. Therefore, all entries of the base pair probability matrices
were used, disregarding the probability as the weight of the interaction
edge. Instead of the probability, a weight of 8 was assigned to each in-
teraction edge to make the results comparable to those in Reinert (1999)
(Reinert scores every interaction match with 16).
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The assumption was that – despite the modified generation of the interac-
tion edges – the structural scores should be the same. It turned out that this
was not the case. Figure 5.10 shows the results for all pairs of sequences.
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Figure 5.10: Comparison Lagrange vs. Branch-and-Cut without worst case
generation

One can easily see that the score computed by the Lagrange method is
– except for one instance – always worse than the score computed by
the Branch-and-Cut algorithm. A comparison of the best upper bound
of the Lagrange method and the Branch-and-Cut algorithm – shown in
Figure 5.11 is even more illustrating.

Some instances yield even smaller upper bounds than the optimal results
computed by the Branch-and-Cut method.

Switching from the enhanced worst-case generation of the interaction
edges to the real worst-case generation changes the picture completely.
Figure 5.12 shows the results of the computation. The scores computed
are much higher then the ones shown in Figure 5.10, in 18 out of 30 cases
the Lagrange method computed better results than the Branch-and-Cut al-
gorithm. Furthermore, Reinert was only able to compute structural align-
ment with a suboptimality level of 10 at most with running times of 4000
and more seconds.
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Figure 5.11: Comparison of the upper bound vs. Branch-and-Cut

The Lagrange method works with a suboptimality level of 50 with a run-
ning time of about 660− 700 seconds per instance.

Comparing Figure 5.10 and Figure t5.12 raises the question whether the
structural alignment computed by Reinert are structurally correct. Since
the score is much higher, interaction edges are used that would not have
been generated by the enhanced worst-case generation of the interaction
edges. Consequently, this implies that interaction edges are used that
do not fit into the widely investigated RNA secondary structure energy
model. In the end, this circumstance possibly yields RNA structural align-
ments that lack the foundation of the RNA energy model and that might
not be observed in nature in that specific form.

Taking all things into account it has been shown that the Lagrangian
method works well on sequences that are similar and therefore provide
a (relatively) high traditional sequence alignment score.

It has to remarked, however, that there are still instances where the algo-
rithm fails to find an optimal solution (e.g., instances where the structural
score of the traditional alignment score is higher than the one found by
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Figure 5.12: Comparison of the Lagrange method with Branch-and-Cut,
part 2

the Lagrangian method). It definitely needs further investigation and re-
search, how the algorithm can be modified to provide faster convergence
to an optimal (or near-optimal) solution and to avoid big gaps between the
lower and the upper bound (like it is the case with instances 21 and 23 in
Figure 5.12).
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Chapter 6

Conclusions and Further Work

This thesis described a new algorithm for computing structural align-
ments of RNA sequences. After presenting a first ILP formulation for
structure alignments the problem is relaxed in a Lagrangian way, that
is some constraints are moved to the objective function, assigned with
Lagrangian multiplier. The resulting ILP formulation can efficiently be
solved and yields an upper bound on the original problem.

For the iterative adjustment of the Lagrangian multipliers it is necessary
to compute an upper and lower bound during each iteration of the pro-
cess. It has been shown how the computation of a lower bound can be
reduced to a general matching of maximum weight of the structural en-
hanced alignment graph.

Since the new method does not follow the previous dynamic program-
ming approaches, the secondary structure is not restricted, that is pseudo-
knots are allowed within the structure.

The new algorithm outperforms other approaches like Branch-and-Cut by
some orders of magnitude by taking much more alignment edges of the
structural enhanced alignment graph into account. This ultimately yields
higher structural alignment scores within shorter time.

There are, however, several fields of research that could be approached in
the future:

I Using other methods to adapt the Lagrangian multiplier that
promise better converge than subgradient optimization.

I Embedding the Lagrangian method into a Branch-and-Bound ap-
proach to obtain provable optimal solutions.
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I Extending the structural enhanced alignment graph in a way that
linear, affine or even arbitrary gap costs are taken into account.
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