
Reducing the Number of Simulations in
Operation Strategy Optimization

for Hybrid Electric Vehicles

Christopher Bacher1, Thorsten Krenek2, and Günther R. Raidl1

1 Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Vienna, Austria

{bacher,raidl}@ads.tuwien.ac.at
2 Institute for Powertrains and Automotive Technology, Vienna University of

Technology, Vienna, Austria
thorsten.krenek@ifa.tuwien.ac.at

Abstract. The fuel consumption of a simulation model of a real Hybrid
Electric Vehicle is optimized on a standardized driving cycle using meta-
heuristics (PSO, ES, GA). Search space discretization and metamodels
are considered for reducing the number of required, time-expensive simu-
lations. Two hybrid metaheuristics for combining the discussed methods
are presented. In experiments it is shown that the use of hybrid meta-
heuristics with discretization and metamodels can lower the number of
required simulations without significant loss in solution quality.

Keywords: Hybrid Electric Vehicles, hybrid metaheuristics, search space
discretization, metamodels

1 Introduction

For the automotive industry these days are game changing. Todays customer ex-
pectations and up-coming legal restrictions require the continuous development
of vehicles with lower fuel consumptions and less emissions. Ongoing improve-
ment of Internal Combustion Engines (ICEs) is one way to meet this challenge.
But increasingly, hybridization of drives is seen as a promising alternative too
— especially when the improvement of traditional drives reaches its limits.

The most popular form of hybridization today are different variants of hybrid
electric powertrains built into Hybrid Electric Vehicles (HEVs). They integrate
an ICE with one or more Electric Machines (EMs) and complement their fuel
tank with electro-chemical energy storages (typically). The powertrain structure
defines how different machines are able to interoperate; e.g., in a series hybrid the
ICE and an EM generate electricity for storage while a second EM propels the
vehicle, and in a parallel hybrid all machines are used for propulsion concurrently.
Some HEVs, like the HEV considered in this paper, combine multiple concepts.

Operational modes specify the concrete interaction behaviour of a HEV’s
components. Specific driving situations constrain the allowed operational modes

according to internal and environmental factors, like the State of Charge (SOC)
of the battery, axle torques or requirements of driving dynamics. Performance
and efficiency of HEVs depend strongly on the active mode chosen by the op-
eration strategy for different driving situations. Optimizing the parameters of
the operation strategy’s decision criteria is therefore of utmost importance for
the HEV’s fuel efficiency. As specifics of HEVs and operation strategies are often
vastly different, experience in manual adjustment is sparse. Therefore, automated
algorithmic approaches pose promising alternatives.

In this paper we investigate how to efficiently adjust the (continuous) param-
eters of a new operation strategy for a “real” HEV3 by applying metaheuristic
optimization methods in combination with metamodels and simple, but effective
post-processing techniques.

Our metaheuristic optimization techniques rely on the evaluation of a simu-
lation model of the considered HEV to test different parameter configurations,
i.e. candidate solutions, for the operation strategy. Parameter configurations are
evaluated by simulating the HEV on a standardized driving cycle defining a re-
quired velocity for each second of the cycle. Fuel consumption and SOC of the
battery are measured throughout the driving cycle and are used to compute an
objective value for a candidate solution, as described in Section 7. Besides mea-
suring these output values of the simulated HEV, the simulation is considered
to be a black box function. No further information about the internal state and
calculations of the simulation software is currently available to the optimization.

A major challenge for the metaheuristic optimization are the considerably
long simulation times, limiting the overall number of simulations which can be
performed in practice. For the model at hand the mean simulation time is about
seven minutes per candidate solution.Some parameter configurations even lead
to simulation times up to twenty minutes, hamstringing the optimization signifi-
cantly. Further soft constraints in the context of practical application have to be
considered. In our concrete case, license restrictions of the simulation software4

constrain the maximum number of parallel simulations to only eight.

The main goal of this paper is therefore to explore ways to reduce the num-
ber of necessary simulations during optimization, while adhering to the solution
quality of well known, unmodified reference algorithms. We intend to achieve this
by training neural networks and ensemble methods as regression models of the
simulations. We also consider how to evaluate the performance of the regression
models under the aspect of their integration in the optimization process. Further
we exploit a priori characteristics of the search space to limit its effective size.
This is done in two ways. First by considering inter-parameter constraints in the
form of inequalities and correspondingly repairing infeasible solutions. Second
by exploiting the experience that the search space in similar HEV optimization
problems often contain many plateaus or areas with shallow slopes. This obser-

3 Due to Non-Disclosure Aggrements we are a not allowed to disclose the actual vehicle.
4 We use the automotive simulation package GT Suite 7.2 from Gamma Technologies,

Inc. http://www.gtisoft.com

vation allows to discretize the continuous domains of the problem to finite sets,
without losing significant solution quality.

In Section 2 we give an overview of related work. Section 3 describes the used
metaheuristics, and Section 4 details the search constraints. Section 5 introduces
the employed regression models, while Section 6 integrates the mentioned mod-
ifications into a hybrid, phased metaheuristic. In Section 7 we describe the con-
sidered HEV model, its operation strategy and the objective function in more
detail and present our experimental results. Finally Section 8 concludes this
paper and gives an outline of possible future work.

2 Related Work

Concerning HEV optimization, in [13] a control strategy for a parallel HEV is
optimized by Sequential Quadratic Programming (SQP). Optimization is applied
on a response surface fit to data from a Design of Experiments (DOE). Their
results indicate that building metamodels for simulations of a driving cycle can
be done in principle.

Several metaheuristics are studied for a multi-objective HEV optimization
in [10]. The methods try to find pareto-optimal solutions that minimize fuel
consumption and multiple emission type like CO, Hydrocarbons, and NOx. In
contrast, we focus solely on minimizing the fuel consumption.

The current paper builds upon previous work in [15], where a new and effec-
tive hybrid metaheuristic — PSAGADO — for fuel consumption optimization
has been presented, and the first author’s master thesis [3]. The hybrid meta-
heuristic combines a Particle Swarm Optimization, a Genetic Algorithm, and a
Downhill-Simplex to improve the overall performance of the heuristic. Here, we
pick up some of the open questions regarding approximation of fitness functions
by surrogate models and search space properties.

An overview of basic techniques for simulation-based optimization is given in
[1]. The paper describes the use of metamodels/surrogates as replacements for
the original simulation, for reducing high computation times, e.g., by using the
metamodel as filter for the simulation.

In [12] a framework for combining neural networks with an Evolution Strategy
(ES), with Covariance Matrix Adaption (CMA), is proposed. Their strategies are
evaluated on a set of standard test functions. Two approaches are described. The
first approach, called “controlled individuals”, falls back to the original fitness
function for a specified fraction of the population, after all individuals have
been evaluated with the approximative fitness function. Depending on how the
reevaluated individuals are chosen, the approximative fitness function acts as a
filter. The second approach is termed “controlled generations”, where every few
generations the whole population is evaluated with the original fitness function.
Further the authors of [12] propose a method for managing the approximative
fitness functions and an online training schedule for selecting and weighting new
training data, based on the covariance matrix of the ES.

3 Used Metaheuristics

Optimization of the HEV’s operation strategy is carried out by population-
based metaheuristics. A priori, no information is available which metaheuristic
performs best on the given problem, especially with the modifications to reduce
running times in place. Based on our experience from [15], the following, well-
known metaheuristics have been selected and tested in different usage scenarios,
as described in Section 6.

Canonical Particle Swarm Optimization As first metaheuristic we con-
sider a Canonical Particle Swarm Optimization (CPSO) in the “velocity up-
date with inertia”-form as described in [17]. Originally proposed in [14], Parti-
cle Swarm Optimization (PSO) is a population-based metaheuristic where each
particle, i.e. candidate solution, possesses a position xi and a velocity vi in the
search space. The algorithm proceeds every iteration by evaluating the objective
function at positions xi, updating the velocities according to

vi := ωvi + φ1 · rand[0,1] · (xLi − xi) + φ2 · rand[0,1] · (xG − xi) (1)

where the constants φ1 and φ2 control the influence of their respective terms on
the update and rand[0,1] returns uniform random vectors in [0, 1]. The velocity
update in (1) decreases the velocity in the particle’s previous direction, and
reorients it towards its local best solution xLi and global best solution xG. The
updated velocity is used to move each particle to xi := xi + vi. We modified
the standard algorithm s.t. a particle repositions itself randomly if it has not
improved after l iterations.

Evolution Strategy with Active Covariance Matrix Adaption An ES
with Active Covariance Matrix Adaption (A-CMA)5 has been implemented, as
described in [11]. In each generation the ES samples λ individuals around a
mutation center xw according to aN (0,C) normal distribution. After evaluating
the new population, the mutation center is moved towards the averaged position
of the µ best individuals. The direction of the search, stored in C, and the actual
step size σ are decoupled and are updated seperately. The covariance matrix
C is updated s.t. existing covariance information is reduced and augmented
by information from the evolution path pc and information about the current
population Z:

C := (1− ccov)C + ccovpcp
T
c + βZ (2)

The evolution path pc stores weighted information about the averaged best
search directions of the µ best individuals, over all generations. The popula-
tion term Z modifies the original covariance matrix by rotating and stretching
C towards the µ best individuals and away from the µ worst individuals of the
current generation. Constants ccov and β weight the update terms. The update

5 As the algorithm description is rather complex, we recap only the intention of the
algorithm. For a complete description we refer to [11].

scheme is a variant of [9], with the intent to increase the adaption speed of C,
by actively penalizing bad mutation steps.

Sampling Genetic Algorithm Last but not least, a very simple Genetic
Algorithm (GA) is implemented for sampling purposes, which are described in
detail in Section 6. The GA controls a population of N individuals xi, i =
1, . . . , N . In each generation the population is evaluated and a new population
is generated. The new population is formed by two mechanisms. The remaining
dR ·Ne individuals, 0 ≤ R ≤ 1, are randomly sampled from the search space to
introduce variance into the population and to generate a diverse set of training
data. The remaining b(1−R) ·Nc individuals are created by recombination: By
a tournament selection of size k, to select two parents xp1 , xp2 are selected and
an offspring is derived, by treating the selected parents as corners of a hypercube
from within which a point is chosen uniformly at random.

4 Employed Post-Processing Techniques

The developed optimization framework allows to integrate post-processors for
modifying solutions generated by the afore-mentioned metaheuristics. Modifi-
cation of solutions is used to enforce search space constraints, like parameter
domains or interdependencies between parameters. Interdependencies occur, for
the HEV model at hand, in the form of simple inequalities like maxi∈L bi ≤ a ≤
minj∈U bj bounding some parameter a by lower bound parameters L and upper
bound parameters U . Violation of inequalities renders a solution infeasible for
simulation. The post-processor repairs infeasible solutions by assigning parame-
ter a of the violated inequality a feasible random value. Feasible values can be
easily determined by considering the parameter’s domain and the inequalities to
be satisfied.

Besides constraining parameters, a post-processor is used to discretize se-
lected dimensions of the search space. Experience shows that search spaces for
HEV models contain many plateaus with solutions of similar fitness. Evaluation
of multiple solutions on such a plateau is costly and should therefore be avoided.
Discretization supports this, as it limits the domains of the selected parameters
to a fixed number of equidistant points. Parameter values are then mapped to
the closest discretization point in the parameter’s domain.

Currently this mapping is performed in a Lamarckian way i.e. the discretized
solution actually replaces the original one. Temporary discretization i.e. map-
ping only for the evaluation process and retaining the original solution for the
optimization process, is also an option which might be considered in future work.

In our implementation discretization points are always equidistantly dis-
tributed and their number is adapted during the optimization process, starting
with very few points and progressing to a finer resolution of the search space.
Different ways to refine the number of discretization points during optimization
have been considered, like adapting them according to a linear function every
iteration or adapting them only two or three times during optimization, in a

step-wise fashion. Discretization makes it reasonable to store all computed solu-
tions in a database, which acts as cache for objective function values. Preliminary
experiments have shown that step-wise adaption is beneficial, as the number of
cache hits is higher due to the fact that the positions of the discretization points
is not modified every iteration.

5 Regression Models as Approximative Fitness Functions

Another way to decrease the number of simulations is to use regression models
as approximative fitness functions, as done in [12] and [1]. Information about
previous solutions is integrated into regression models to either act as a filter for
bad solutions or to stretch the gathered information for several generations. In
Section 6 we present hybrid metaheuristics for both approaches.

The range of functions which the regression models can fit to the gathered
data is extremely important, as both over- and underfitting may have a nega-
tive impact on the optimization performance. As an ideal shape of the regres-
sion function cannot be known before the optimization is finished, a heuristic
approach has to be considered. Therefore different regression techniques — so
called ensemble methods [16] — based on Multilayer Perceptrons (MLPs) are
evaluated beforehand and the “best” model is chosen for use.

A typical error function used for regression is the Sum-of-Squares Error:

SSE(ϕ(.),X) =

|X|∑
i=1

(yi − ϕ(xi))
2 (3)

The set X denotes all inputs {x1, . . . ,x|X|} and target values yi over which the
SSE is computed. The trained regression function ϕ(.) : Rd → R receives the d
input parameters of the HEV model as input.

For our purpose, however, SSE is not an appropriate error function for model
selection. If the described metaheuristics are considered, it can be seen that the
exact objective value of a solution is not required. Rather the order of candidate
solutions is important to the metaheuristics’ selection criteria.

Therefore Mean Total Order Deviation is proposed as error function:

MTOD(X) =
1

|X|2

|X|∑
i=1

|πo(xi)− πϕ(xi)| (4)

Where πo(xi) denotes the rank of solution xi ∈X, when all solutions in X are
ordered according to their real objective value yi. Similar, πϕ(xi) denotes the
rank of solution xi ∈X, when all solutions in X are ordered according to their
predicted objective value ϕ(xi).
MTOD is designed to indicate the mean ordering shift of a solution within the
evaluated solution set X. Unfortunately, MTOD is inappropriate for classical
MLP training methods due to lack of differentiability. Therefore we resort to

Sum-of-Squares Error (SSE) for training — under the assumption that SSE is a
close approximation of MTOD in many cases — and to MTOD for selection.

MLPs form the base learners for all further methods, as they are able to ex-
press a wide range of functions depending on the number of hidden neurons, i.e.,
neurons between the input and output layer. The considered MLP architectures
consist of one or two hidden layers, with different numbers of hidden neurons.
Hidden layers use sigmoid activation functions, while the output layer uses a
linear activation function. The neural networks are trained with a (modified)
Levenberg-Marquardt algorithm [8] provided by the used neural network library
ALGLIB6

To improve the generalization performance of the regression models, we con-
sider different ensemble methods for combining multiple neural networks. Bag-
ging [4] is the first evaluated approach, which trains multiple models on sets
randomly sampled from the original training set X. Bagging then averages the
outputs of these models to reduce their variance and to improve generalization
performance.

Second, (Stochastic) Gradient Boosting as described in [6] and [5] is adapted
for using neural networks. In Gradient Boosting several regression models are
used in succession. The first model ϕ0(.) is the mean over all target values
yi of X. Then different neural networks are trained successively on the errors
(yi − ϕj(xi)) and a new candidate regression model is formed by

ϕj(x) = ϕj−1(x) + ρφ(x), j = 1, . . . , E (5)

where ρ weights the newly added model φ(.) and is determined by treating the
SSE as a function of ρ only and setting its gradient to zero. At each step j the
candidate with the lowest SSE over the training set X is chosen. The algorithm
repeats these steps E-times to build the final model.

Third a partitioning approach similar to [7] is used. The training set X is
clustered using the K-means++ algorithm [2] and different neural networks are
trained for each cluster Ck ⊂ X. Selecting a neural network for a cluster uses
a validation approach. Validation is done by splitting Ck into a training and
a validation set and using the validation set for measuring the generalization
performance. This is repeated several times and the model architecture with the
lowest mean validation error is chosen.

Last a partial simulation and extrapolation approach is explored. The [0, p]-
fraction of the driving cycle, with p ∈ (0, 1), is simulated with the HEV model
and its output values are recorded, i.e., the fuel consumption. The simulated
parameter set x is then augmented with the recorded output values to form

x[0,p]. The collected set X [0,p] of all x
[0,p]
i is then used to train neural networks

for predicting the [p, 1]-fraction of the driving cycle. Using the additional input
data is expected to improve the prediction performance at the cost of higher
computation times.

6 For all (single) neural networks, (ALGLIB (www.alglib.net), Sergey Bochkanov) in
version 3.6 is used; accessed: 2013-11-04

6 A Two-Phase Optimization Approach

We propose an approach for integrating the different metaheuristics, the de-
scribed post-processing techniques, and regression models into new hybrid meta-
heuristics. Thereby the optimization is split into two phases.

The first phase is responsible for aggregating the initial training data. We
decided to use the GA from Section 3 for this sampling purpose, as preliminary
experiments showed that it produces a more diverse and larger set of training
data than the CPSO or the ES. Further we use a step-wise adaption of the
number of discretization points, where the times of adjustment correspond to the
phases of the optimization algorithm. At the end of this first phase, the different
regression models are evaluated. Their performance is measured by averaging
the Mean Total Order Deviation (MTOD) values of a 10-fold crossvalidation.
The regression model with the lowest validation error is chosen to be used in the
optimization. In the second phase the resolution of the search space is enhanced
by increasing the number of values per dimensions. Two different approaches for
regression model integration have been tested.

A generational approach, similar to the one in [12], in combination with
the CPSO is implemented. Optimization uses the regression models as main
objective function and switches to the simulation model every m generations.
Another integration method pairs the described ES with regression models as
filter, as in [1], before passing the best to the simulation model. Far higher
numbers of individuals can be sampled this way and only the best κ individuals
are simulated each generation.

Further the regression models are updated every τ iterations to include the
newly evaluated solutions. For the model update, a regression model with the
same architecture as selected at the end of the first phase is used.

7 Experimental Results and Discussion

The considered HEV model possesses an ICE and two EMs — the “generator”
and the “motor”. ICE and generator are situated on the same shaft, while the
“motor” is coupled to the former with a planetary gear set. The HEV is able
to operate in two different mode types: pure-electric (EV) and range-extended
(ER), with two modes each. The first electric mode uses only the motor-EM
for propulsion and is designed for low speeds. The second mode activates both
EMs, disables the ICE and decouples it by opening a clutch. It is intended
for higher velocities to lower the machine speeds, increasing the efficiency. The
first range-extended mode — a so called series mode — targets lower velocities.
The motor-EM propels the HEV, while the ICE/generator unit is decoupled
from the driving shaft and is solely used to charge the battery. In difference,
the second range-extended mode uses a power-split setup, where both ICE and
motor-EM are propelling the HEV, but the power output of the ICE is split s.t.
the generator-EM is used to charge the battery.

Twelve parameters of the HEV model are optimized. A switch between modes
of the same type is performed above specific speeds speedupEV/ER if the axle

torque is below specified thresholds torqueupEV/ER, respectively. Switching from
EV to ER is done at a defined speed speedminER, which has to be less than
speedupER. Further the allowed percental deviation from the initial SOC of the
battery socband is optimized. It contributes to the decision of switching between
different mode types. Also dependent on the socband is the power used to charge
the battery, which is further determined by the interpolation between charge
powers for low and high SOC deviations chargepowerL/H. The required charge
power is influenced by the decision if the current power demand of the motor-
EM is to be covered by the generator, regulated by the powerdemand switch,
too. Last generatorpowermin determines the minimal output of the generator-
EM. Beside these parameters of the operation strategy, the teeth count of the
ring and sun gear of the planetary gear set, connecting the engine- and driving
shafts, is optimized too. Ring and sun gear require the constraint that their teeth
difference has to be even.

The objective function which shall be minimized sums the HEV’s fuel con-
sumption in L/100km and a penalization term for SOC deviations between its
initial and final state. The driving cycle we considered for optimization is the
standardized EPA US-067 driving cycle. The penalization term estimates the
fuel needed (measured in L) to charge the battery to the initial SOC state with
the integrated ICE/generator unit, if the SOC is lower at the end of the cycle:

E∆SOC

Efuelρfuel
· 100

Geff
· 105

scycle
(6)

where E∆SOC is the energy equivalent to the SOC difference, Efuel ≈ 43MJ kg−1

denotes the energy density of the fuel, ρfuel ≈ 0.75kg L−1 the fuel density, Geff

specifies the average generator efficiency estimated during simulation and scycle

the length of the driving cycle in m. Penalization is included to favour SOC-
balanced solutions, to be comparable to other HEVs. If the SOC is higher at the
end than initially, then the penalization term becomes negative and even pro-
motes the solution. The effect is limited by high energy losses during conversion.

A major challenge for proper experimental examination of the optimization
problem at hand is the limited number of experiments which we could perform in
a reasonable time. The number of simulations was restricted to 16 per iteration.

First, experiments with the unmodified CPSO and the unmodified ES, as
described in Section 3, have been performed. Due to high computation times,
we have only been able to run 3 experiments per unmodified algorithm. Best
solutions for the experiments and information about the number of simulations
are given in Table 2. The algorithms’ parameters are given in Table 1. For the
two-phase optimization the number of discretization points, for each dimension,
changes from 6 in the first phase to 16 in the second.

The results for the unmodified metaheuristics clearly indicate that the CPSO
dominates the ES. A closer analysis in [3] shows that the ES exhibits problems
regarding the solution variance, which we attribute to the existence of plateaus

7 See http://www.fueleconomy.gov/feg/fe test schedules.shtml for more information;
accessed: 2013-11-11

Table 1: Algorithm parameters
Algorithm #Iterations Parameters

unmod. CPSO 200 #Part. = 16, ω = 0.7298, φ1 = φ2 = 1.496, l = 20
unmod. A-CMA-ES 200 λ = 16, µ = 4, init. as in [11]
CPSO-Phase I 65 #Part. = 16, ω = 0.7298, φ1 = φ2 = 2.0, l = 20
GA-Phase I 65 N = 16, R = 0.3, k = 2
CPSO-Phase II 480 as Phase I; m = 8, τ = 15
A-CMA-ES-Phase II 60 λ = 100, κ = 16, µ = 4, τ = 15

Table 2: Results for the unmodified optimization algorithms
Experiment Fuel c. #Simbest

unmod. CPSO 1 5.86 3168
unmod. CPSO 2 5.83 1872
unmod. CPSO 3 5.83 2816

Experiment Fuel c. #Simbest

unmod. A-CMA-ES 1 6.00 528
unmod. A-CMA-ES 2 6.00 2176
unmod. A-CMA-ES 3 6.00 2050

in the search space. The results for the first phase in Table 3 show that the
CPSO outperforms the GA if the search space is discretized. Although, the GA
generates more distinct solutions — 777 on average — and has therefore been
selected as the first phase for all further algorithms.

Table 4 depicts the best results for each type of regression model. Extrap-
olation after simulating 75% of the driving cycle clearly outperforms the other
models. Nevertheless, due to the still high simulation costs, Bagging has been
selected for further experiments.

In the second phase the variants described in Section 6 are evaluated. Prelim-
inary experiments have shown that the CPSO performs better if it is randomly
initialized as opposed to starting from a set of good solutions. For the ES, on
the other hand, it is beneficial to estimate the mutation center xw, the covari-
ance matrix C and the step size σ from the 30 best solutions and 20 random
solutions. The results for the second phase are given in Table 5. Both algorithms
have been able to reach solutions below 5.9L/100km. The difference in solution
quality compared to the unmodified algorithms is negligible as the HEV model
itself exhibits errors at similar magnitude. Comparing the best cases of these al-
gorithms to the unmodified CPSO’s best case, then the two-phase optimization
with CPSO reaches its best solution at 57.64% and the more consistent ES vari-
ant at 80.07% of the number of simulations. This implies that using discretization
and metamodels reduces the required runtime significantly if compared to the
unmodified reference algorithms. Further the performance of the ES improved
considerably if compared to the unmodified variant. We attribute this to the
local search behaviour of the used ES variant.

8 Conclusion and Future Work

We optimized the continuous parameters of an operation strategy for a HEV
model based on a real HEV. We explored different ways to reduce the number of
simulations required by the optimization by employing search space discretiza-
tion and metamodels. Search space discretization has proven to be a valuable

Table 3: Results for Phase I
Experiment Fuel c. #Simbest

CPSO 1 5.95 320
CPSO 2 6.11 211
CPSO 3 6.02 48
CPSO 4 5.95 105
CPSO 5 5.97 191
CPSO 6 5.96 266
CPSO 7 5.93 148
CPSO 8 6.07 210
CPSO 9 5.96 476
CPSO 10 5.91 87

Experiment Fuel c. #Simbest

GA 1 6.01 136
GA 2 5.98 501
GA 3 6.04 121
GA 4 6.04 625
GA 5 6.00 727
GA 6 6.06 694
GA 7 5.99 631
GA 8 6.02 594
GA 9 6.00 433
GA 10 6.04 357

Table 4: Results for the best regression models per type
Model Parameters tMSE vMSE tMTOD vMTOD

Neural network L = (12), ω = 1.0 1.37 6.25 0.0746 0.0952
Gradient Boosting E = 16, S = 1.0 0.16 5.49 0.0330 0.0984
Bagging E = 24, L = (24, 24), ω = 1.0, S = 1.25 0.89 5.00 0.0339 0.0783
Partitioning Op = 50%, K = 5 3.25 15.89 0.0749 0.1298
Partial simulation p = 0.25, L = (13), ω = 0.1 0.01 0.02 0.0615 0.0810
Partial simulation p = 0.50, L = (13, 13), ω = 1.0 0.00 0.01 0.0489 0.0703
Partial simulation p = 0.75, L = (78), ω = 1.0 0.00 0.00 0.0351 0.0387

L — the number of neurons per layer
ω — the value for the weight decay parameter of the training algorithm
Op — percentage of closest solutions taken from each neighbouring cluster
E — number of (internal) regression models
S — size factor of the new training set sampled from the original training set X

tXXX . . . training XXX, vXXX . . . validation, MSE = 1
|X| SSE

Table 5: Results for Phase II
Experiment Fuel c. #Sim1

best

CPSO 1 5.93 189 (966)
CPSO 2 5.97 294 (1071)
CPSO 3 5.97 535 (1312)
CPSO 4 5.89 277 (1054)
CPSO 5 6.10 127 (904)
CPSO 6 5.97 428 (1205)
CPSO 7 6.01 46 (823)
CPSO 8 5.88 302 (1079)
CPSO 9 5.98 192 (969)
CPSO 10 5.93 149 (926)

Experiment Fuel c. #Sim1
best

ES 1 5.87 893 (1670)
ES 2 5.92 803 (1580)
ES 3 5.89 334 (1111)
ES 4 5.90 508 (1285)
ES 5 5.87 722 (1499)

1 Numbers in braces give the number of simulations combined with
the average number of simulations (777) of the GA in phase I

tool in the presence of search spaces with plateaus. Bagging ensembles have been
used to improve the generalization performance and mixing partial simulation
and extrapolation yielded even better results. The presented hybrid two-phase
metaheuristics have been able to reach similar results as the reference algorithms,
while reducing the number of simulations to 57.64% and 80.07%, depending on
the metaheuristic. In future work, advanced ways for incorporating metamod-
els should be studied, like integrating partial simulation into the optimization
process, or using metamodels early in the optimization process. Different perfor-

mance measures for metamodels, e.g., measures capturing the performance for
solutions expected to be generated by the algorithms, should be considered.

References

1. April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simulation
optimization. In: Simulation Conference, 2003. Proceedings of the 2003 Winter.
vol. 1, pp. 71–78. IEEE Press (2003)

2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA (2007)

3. Bacher, C.: Metaheuristic optimization of electro-hybrid powertrains using ma-
chine learning techniques. Master’s thesis, Vienna University of Technology, Vi-
enna, Austria (2013)

4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
5. Friedman, J.H.: Stochastic gradient boosting. Computational Statistics and Data

Analysis 38, 367 – 378 (1999)
6. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.

Annals of Statistics 29, 1189 – 1232 (2000)
7. Frosyniotis, D., Stafylopatis, A., Likas, A.: A divide-and-conquer method for multi-

net classifiers. Pattern Analysis & Applications 6(1), 32–40 (2003)
8. Hagan, M., Menhaj, M.: Training feedforward networks with the Marquardt algo-

rithm. IEEE Transactions on Neural Networks 5(6), 989 –993 (1994)
9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9, 159195 (2001)
10. Hu, X., Wang, Z., Liao, L.: Multi-objective optimization of HEV fuel economy and

emissions using evolutionary computation. In: Society of Automotive Engineers
World Congress and Exhibition. vol. SP-1856, pp. 117–128 (2004)

11. Jastrebski, G., Arnold, D.: Improving evolution strategies through active covari-
ance matrix adaptation. In: IEEE Congress on Evolutionary Computation, 2006.
pp. 2814–2821. IEEE Press (2006)

12. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. Evolutionary Computation, IEEE Transactions on
6(5), 481–494 (2002)

13. Johnson, V.H., Wipke, K.B., Rausen, D.J.: HEV control strategy for real-time op-
timization of fuel economy and emissions. Society of Automotive Engineers trans-
actions 109(3), 1677–1690 (2000)

14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, 1995. Proceedings. vol. 4, pp. 1942 – 1948 vol. 4.
IEEE Press (1995)

15. Krenek, T., Ruthmair, M., Raidl, G.R., Planer, M.: Applying (hybrid) metaheuris-
tics to fuel consumption optimization of hybrid electric vehicles. In: Chio et al.,
C. (ed.) Applications of Evolutionary Computation, Lecture Notes in Computer
Science, vol. 7248, pp. 376–385. Springer Berlin Heidelberg (2012)

16. Mendes-Moreira, J.a., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches
for regression: A survey. ACM Comput. Surv. 45(1), 10:1–10:40 (Dec 2012)

17. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1(1), 33–57 (2007)

