
A New Type of Metamodel for
Longitudinal Dynamics Optimization

of Hybrid Electric Vehicles

Christopher Bacher and Günther R. Raidl

Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria

{bacher,raidl}@ads.tuwien.ac.at

1 Introduction

Optimizing the efficiency and performance of vehicles is an important task in
automotive engineering. Several factors determine the efficiency of conventional
vehicles like engine size, fuel consumption characteristics, gearing, exhaust after-
treatment, and aerodynamics. For Hybrid Electric Vehicles (HEVs) the situation
is even more complex as further components like electric machines and batteries
need to be considered. These enable a HEV to operate in different modes like
combustion drive, electric drive, parallel operation of the engines, and several
more. The activation of the modes during driving is governed by an opera-
tion strategy which responds to internal and environmental factors according to
parametrized rules.

When optimizing HEV models , one has to rely on computer simulation to
test different parameter configurations. In this work we consider longitudinal
dynamics simulations where the performance of a HEV model is simulated on a
given driving cycle. Driving cycles define a time series where for each point in
time a target velocity is specified. The vehicle is then simulated to match the tar-
get velocities while its performance criteria are measured, e.g. fuel consumption
or green house gas emissions. Standardized driving cycles are highly relevant for
determining official fuel consumption ratings, like the “New European Driving
Cycle”. Often heard critic concerning the standardized cycles concern their lim-
ited generalizability for real life usage. Therefore evaluating the performance of
a vehicle on a larger set of real life driving cycles would be beneficial.

Depending on the accuracy of the simulation model, the simulation times
usually range from several seconds to many minutes (up to 20 minutes in tested
scenarios) s.t. a long time is spent for evaluating the objective function for each
candidate solution. To overcome these limitations, metamodels can be used as
approximation for the time-intensive simulations. Common metamodels are re-
gression models fitted to a simulation, like Generalized Linear Models, Artifi-
cial Neural Networks, Support Vector Machines, or Regression Trees, which are
created to predict a performance measure of the simulation. Approaches for op-
timization of HEV models with metaheuristics and further references are given
in [1], and [2].The following concepts build upon the results for time-progressive



learning ensembles (TPLE) in [1]. The results indicate that the decomposition of
driving cycles into smaller parts, creating metamodels for each, and sequential
evaluation is promising.

2 Bottom-Up Metamodels

Typically metamodels suffer from a reusability issue. A metamodel ϕD : P → R
is created from a training set T = {(p, r) | p ∈ P, r = ΩD(p)}, where P
is the search space of the simulation and r is some performance measure of
a configuration p for the simulation ΩD of some driving cycle D. This is an
example of a top-down approach to metamodelling which requires the collection
of a large set of expensive simulation results for a specific cycle D. In this mindset
it is hard to generalize a model to an arbitrary driving cycle or even just a set
of prespecified cycles, as most of the acquired training data is valid for D only.

Therefore we propose a new bottom-up approach to metamodelling where
the metamodel ϕ is built from the simulation results for a set of multi-purpose
scenarios S. A scenario s is a small building block of a driving cycle defined
by a start velocity, end velocity, duration, and environmental settings. Each
scenario is then simulated with different settings for the configuration p, all
operation modes m, and initial values for internal signals I. The output set o of
performance measures and internal signals, which are relevant to the operation
strategy A, are recorded at the end of each simulation. Consecutively, scenario
models ϕm

s : P × I → R are built, generalizing the recorded scenario training
data. The obtained scenario models can then be (re-)used for different purposes.

Beside others, an obvious use case is to build a metamodel ϕD for a spe-
cific driving cycle D. To this end the driving cycle is rebuilt by a sequence of
n scenario models ϕsi as close as possible. The operation mode mi can not be
determined in advance, but only while evaluating ϕD for a specific configura-
tion p. The evaluation of ϕD proceeds by recursively invoking the operation
strategy A(oi−1) = mi with the output set oi−1 = ϕsi−1(p,oi−2) of the last
scenario to determine the operation mode mi of the next scenario. Subsequently
ϕmi
si (p,oi−1) is evaluated to determine oi. The metamodel for the reconstructed

cycle can then be evaluated as ϕD(p) = ϕ
A(on−1)
sn (p,on−1).

How scenarios should be chosen to reach a high level of accuracy across
different driving cycles as well as to limit computation times is an open issue.
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