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1 Drawing Planar Graphs
Ren�e Weiskircher

1.1 Introduction

When we want to draw a graph to make the information contained in its
structure easily accessible, it is highly desirable to have a drawing with as few
edge crossings as possible. The class of graphs that can be drawn with no
crossings at all is the class of planar graphs. Algorithms for drawing planar
graphs are the main subject of this chapter.

First we will give some necessary de�nitions and some basic properties of
planar graphs. In section 1.3, we will take a closer look at two linear time
algorithms for testing if a graph is planar. When a graph is not planar but we
want to apply an algorithm for drawing planar graphs, we can transform the
graph into a similar planar graph. Section 1.4 gives an overview of methods
for doing this.

Most drawing algorithms presented in this chapter need a 2-connected pla-
nar graph as input. If a planar graph does not have this property, we can add
edges to make it 2-connected and planar. Section 1.5 describes ways to ac-
complish this. The following sections describe drawing algorithms for planar
graphs. Section 1.6 treats the generation of convex straight-line representa-
tions, while section 1.7 gives an overview of some algorithms that use a special
ordering of the vertices of a graph called a canonical ordering.

1.2 What is a Planar Graph?

To de�ne what we mean by the term planar graph we �rst have to de�ne what
is meant by the term planar representation.

De�nition 1.1 (planar representation) A planar representation D of a
graph G = (V;E) is a mapping of the vertices in V to points in the plane and
of the edges in E to open Jordan curves with the following properties:

� The representation of edge e = (v1; v2) connects the representation of v1
with the representation of v2 for all edges e 2 E.
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� The representations of two disjoint edges e1 = (v1; v2) and e2 = (v3; v4)
have no common points.

� The representation of edge e = (v1; v2) does not contain the representation
of v3 2 V with v3 62 fv1; v2g.

If D is a planar representation, the set R2 �D is open and its regions are
called the faces of D. Since D is bounded, exactly one of the faces of D is
unbounded. This face is called the outer face of D.

Using the de�nition of planar representations, it is easy to de�ne the term
planar graph.

De�nition 1.2 (planar graph) A graph G is planar if and only if there
exists a planar representation of G.

There is an in�nite number of di�erent planar representations of a pla-
nar graph. We can de�ne a �nite number of equivalence classes of planar
representations of the same graph using the term planar embedding.

De�nition 1.3 (planar embedding) Two representations D1 and D2 of a
planar graph G realize the same planar embedding of G, if and only if the
following two conditions hold:

� The simple cycles of G that bound the faces of D1 are the same cycles that
bound the faces of D2.

� The outer face in D1 is bounded by the same cycle of G as in D2.

The de�nition of a planar graph above is very simple but it is a geometric
de�nition. Since the set of all planar representations of a graph is in�nite
and uncountable, it is not immediately clear how to test a graph for planarity.
Kuratowski found a combinatorial description of planar graphs but to present
this description, we have to de�ne the subdivision of a graph.

De�nition 1.4 (subdivision) A subdivision of a graph G = (V;E) is a
graph G0 = (V 0; E 0) that can be obtained from G by a sequence of split opera-
tions where we insert a new vertex u and replace an edge e = (v1; v2) by the
two edges e1 = (v1; u) and e2 = (u; v2).

Thus, a subdivision of a graph is another graph where some edges of the
original graph have been replaced by paths where every vertex has degree two.
Planar graphs are now characterized by the following:

Theorem 1.5 A graph G is planar if and only if it does not contain a sub-
division of K5 (the complete graph with 5 vertices, see Figure 1.1(a)) or K3;3

(the complete bipartite graph with 3 vertices in each set, see Figure 1.1(b)).
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(a) K5
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(b) K3;3

Figure 1.1: The basic non-planar graphs

If a graph G is directed (each edge is an ordered pair of vertices), we can
de�ne a more restricted class of planar graphs, the upward planar graphs.
First we de�ne the term upward representation.

De�nition 1.6 (upward representation) Let G = (V;E) with E � V �V
be a directed graph. A representation of G is called upward if the representation
of every edge is monotonically nondecreasing in the y-direction.

We use this de�nition to de�ne upward graphs and upward planar graphs.

De�nition 1.7 (upward graph) A directed graph is upward if and only if
it admits an upward representation.

De�nition 1.8 (upward planar graph) A directed graph is upward pla-
nar if and only if it admits an upward and planar representation.

It is possible to test in linear time whether a directed graph admits an up-
ward representation (because only acyclic graphs admit such a representation)
and, as we will see in the next section, we can test in linear time, whether a
graph admits a planar representation. But testing whether a graph admits an
upward planar representation is for general graphs NP-complete (Garg and
Tamassia, 1994).

A survey about upward planarity testing can be found in Garg and Tamas-
sia (1994). We will not treat the topic in this chapter, but algorithms for
drawing upward graphs can be found in Di Battista and Tamassia (1988).

1.3 Planarity Testing

The �rst algorithm for testing whether a given graph is planar was devel-
oped by Auslander and Parter (Auslander and Parter, 1961) and Goldstein
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(Goldstein, 1963). Hopcroft and Tarjan improved this result to linear running
time (Hopcroft and Tarjan, 1974). Another linear time algorithm for planarity
testing was developed by Lempel, Even and Cederbaum (Lempel et al., 1967)
and Booth and Lueker (Booth and Lueker, 1976). We will only give a short
overview of the two linear time algorithms.

1.3.1 The Algorithm of Hopcroft and Tarjan

This overview of the algorithm follows the one in Mutzel (1994). In principle,
the algorithm works as follows: Search for a cycle C whose removal disconnects
the graph. Then check recursively whether the graphs that are constructed by
merging the connected components of G�C and the cycle C are planar. In a
second step, combine the computed embeddings for the components to get a
planar embedding of the whole graph, if possible.

The algorithm needs a depth �rst search tree G0 = (V; T; B), where V is
the set of DFS numbers of the vertices in G, T is the set of tree edges of the
depth �rst search tree and B the set of back edges (for DFS trees see Mehlhorn
(1984)). We assume that G is 2-connected (this is not a restriction, because a
graph is planar if and only if all its 2-connected components are planar).

Let C be a spine cycle of G, which is a cycle consisting of a path of tree
edges starting at the root (vertex 1) of the DFS tree followed by a single back
edge back to the root vertex. Because G is 2-connected, such a cycle must
exist. We assume that removing all edges of C splits G into the subgraphs
G1; G2; : : : ; Gk. We de�ne the graphsG0

i for 1 � i � k as the graphGi together
with the cycle C and all the edges in G between a vertex in Gi and a vertex
on C. First, we recursively check whether each G0

i is planar and compute a
planar embedding for it. Planar embeddings are equivalence classes of planar
representations that describe the topology of the representation but not the
length and shape of edges or the position of vertices (see de�nition 1.3).

The planar embeddings of the G0

i must have all edges and vertices of C on
the outer face. Now we assume that we have found a suitable embedding for
each G0

i. We must test whether we can combine these embeddings to a planar
embedding of G. The reason why this may fail is that each Gi shares at least
two vertices with C. Figure 1.2 shows how this fact can make it impossible
to embed two graphs Gi and Gj on the same side of C. We say that the two
graphs interlace.

To test whether there is an assignment of the Gi's to the two sides of C
so that the resulting representation is planar, we build the interlace graph IG.
This graph has one vertex for each Gi and two vertices are adjacent if and
only if they interlace. We can only draw G planar if IG is bipartite. If there
is an embedding with the necessary properties for each G0

i and the interlace
graph is bipartite, we know that G is planar and we can construct a planar
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Gi

Gi
Gj

Gj

C C

Figure 1.2: Interlacing graphs Gi and Gj that can't be embedded on the same side of C

embedding for it.

1.3.2 The Algorithm of Lempel, Even and Cederbaum

A vertex-based method for planarity testing is the test developed by Lempel,
Even and Cederbaum (Lempel et al., 1967; Even, 1979). We say that this
test is vertex based because we add the vertices one by one to a special data
structure and check after each step if the information seen so far proves that
the graph is non-planar. This test runs in linear time, like the algorithm of
Hopcroft and Tarjan discussed before.

The input of the algorithm is again a 2-connected graph G = (V;E).
We assume V = fv1; v2; : : : ; vng where the numbering of the vertices is an
st-numbering.

De�nition 1.9 (st-Numbering) Given an edge fs; tg in a graph G = (V;E)
with n vertices, an st-numbering is a function g : V ! f1; : : : ; ng, such that

� g(s) = 1, g(t) = n

� 8v 2 V n fs; tg 9u; w 2 V (fu; vg; fv; wg 2 E ^ g(u) < g(v) < g(w))

Lempel, Even and Cederbaum showed that for every edge fs; tg in an arbitrary
graph G, there exists an st-numbering if and only if G is biconnected. A linear
time algorithm solving this problem is given in Even (1979).

We de�ne Gk as the subgraph of G induced by the vertices with indices 1
to k. This graph is extended to a graph Bk. For each edge (u; v) 2 E with
u in Gk and v not in Gk the graph Bk has a new virtual vertex and an edge
connecting v to this vertex. So there may be several virtual vertices in Bk that
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correspond to the same vertex in G. The idea of the algorithm is to check
whether we can identify the virtual vertices corresponding to the same vertex
in G without losing the planarity property.

If G is planar, Bk has a planar embedding where each vertex vi for 1 � i �
k is drawn on y-coordinate i, all virtual vertices are placed on y-coordinate
k+1 and all edges are disjoint y-monotone curves (which means that they are
only intersected at most once by any horizontal line). Such a representation
is called a bush form. Figure 1.3 shows an example for a bush form.

1

8 9 9 9 8 9 8 9

2

3

4

5

6

7

Level

8

7

6

5

4

3

2

1

Figure 1.3: A bush form

Let vi be a vertex in a bush form. If the removal of v disconnects the bush
form, we call it a split vertex. Let B0 be the bush-form after the removal of
vi. The split-components of vi are all the connected components of B0, where
the indices of all vertices are greater than i. Now consider the bush form in
Figure 1.3. Since the labels of the vertices are their st-numbers, it shows the
bush form B7. When we want to draw B8, we must �rst transform B7 so that
all virtual vertices with label 8 form a consecutive sequence on level 8. This
can be done by 
ipping the split component of vertex 1 which includes the
vertices 2 and 3 around so that the virtual vertices labeled 8 and 9 in the
split component swap their positions. We also have to move the virtual vertex
labeled 9 adjacent to vertex 4 to the right and 
ip the split component of
vertex 4 with the vertices 6 and 7. The resulting graph is shown in Figure 1.4.

If v is a split vertex of a bush form (which means that removing v discon-
nects the bush form), then we can freely permute the split components which
have vertices with higher st-number than v and we can 
ip each individual
component. There may be several possible ways of producing a consecutive
sequence of the vertices labeled k + 1 and since not all may eventually lead
to a planar representation of G, we have to keep track of all of them. This
can be done in linear time using a data structure called PQ-tree as proposed
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Figure 1.4: The bush form from Figure 1.3 has been transformed so that all vertices labeled
8 form a consecutive sequence

by Booth and Lueker (Booth and Lueker, 1976). If it is not possible to make
the vertices labeled k + 1 consecutive, we know that the graph is not planar.
Otherwise, the algorithm will produce a planar embedding of the graph. In
Mehlhorn and N�aher (1999) a detailed description of the complete algorithm
can be found.

1.4 How to Make a Graph Planar

There are many popular algorithms for drawing planar graphs and they pro-
duce a great variety of di�erent styles of representations. Therefore, it makes
sense to transform a non-planar graph into a similar planar graph, apply a
graph drawing algorithm for planar graphs to the result and then modify the
resulting representation so that it becomes a representation of the original
non-planar graph. A survey of methods for doing this can be found in Liebers
(1996).

Quite a drastic way of making a graph planar is to delete vertices. This
method is not used very much in graph drawing, because deleting vertices
changes a graph quite considerably. The problem of deciding for an integer
k if we can make a non-planar graph planar by deleting at most k vertices is
NP-complete (Lewis and Yannakakis, 1980).

Another way of making a graph planar is to split vertices. This is a rather
complex operation, so we will give the formal de�nition from Liebers (1996).

De�nition 1.10 (vertex splitting) Let G = (V;E) and G0 = (V 0; E 0) be
two graphs. Then we say G0 has been obtained by splitting vertex v of G into
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the vertices v1 and v2 if the following conditions are satis�ed:

V = (V 0nfv1; v2g) [ fvg

E = (E 0nfuvi j u 2 V 0 and uvi 2 E 0 for i 2 f1; 2gg

[fuv j u 2 V nfvg and (uv1 2 E 0 _ uv2 2 E 0)g

Splitting a vertex is also a drastic operation and is not commonly used in
graph drawing to planarize graphs. To decide if a non-planar graph can be
made planar by at most k vertex-splitting operations is NP-complete (Faria
et al., 1998).

Two more commonly used ways of transforming a non-planar graph into
a planar graph are the insertion of new vertices and the deletion of edges.

1.4.1 Inserting Vertices

Assume we have a non-planar graph G and a representation D of G with k
crossings. Then we can transform G into a planar graph G0 in the following
way:
Let e = (u; v) and f = (x; y) be two edges that cross in D. Then we can add a
new vertex vc to G, remove the edges e and f from G and insert the four new
edges e1 = (u; vc), e2 = (vc; v), f1 = (x; vc) and f2 = (vc; y). This is equivalent
to replacing the crossing in D between e and f by the new vertex vc. If we do
this for every pair of crossing edges, we will transform G into a planar graph
G0 and D into a planar representation D0 of G0.

Since the graph G0 is planar, we can draw it by using any algorithm for
drawing planar graphs. If D00 is the resulting representation, we can transform
this representation into a representation of the original non-planar graph G by
replacing all the vertices we introduced by crossings again. Since we want to
have as few crossings as possible in the resulting representation, we want to
introduce as few new vertices as possible.

The minimum number of vertices we have to insert is equal to the minimum
number of crossings in any representation of G. But the problem of deciding
for a graph G if it can be drawn with at most k crossings is NP-complete
(Garey and Johnson, 1983). The only heuristics that are known for inserting
the minimum number of vertices to construct a planar graph are the algorithms
for drawing non-planar graphs. By inserting vertices at every crossing of the
representation produced we get a planar graph.

1.4.2 Deleting Edges

If G is a non-planar graph, there is a non-empty subgraph of G which is planar.
Each spanning tree of G is planar, since every acyclic graph is planar. So we
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can derive a planar graph from a non-planar graph by deleting a subset of
its edges. But the problem of deciding for a non-planar graph G = (V;E)
and a number k < jEj if there is a planar subgraph with at least k edges is
NP-complete. This was independently shown by Liu and Geldmacher (Liu
and Geldmacher, 1977), Yannakakis (Yannakakis, 1978) and Watanabe et al.
(Watanabe et al., 1983). The associated NP-hard maximization problem is
to �nd a planar subgraph of a G with the property that there exists no other
planar subgraph that has more edges. This problem is called the maximum
planar subgraph problem. The problem of �nding a planar subgraph, which is
not a proper subgraph of another planar subgraph of G is called the maximal
planar subgraph problem and is solvable in polynomial time.

De�nition 1.11 (Maximal planar subgraph) A maximal planar subgraph
of a graph G = (V;E) is a subgraph G0 = (V;E 0) of G in which there exists no
edge in E � E 0 that can be added to G0 without losing planarity.

One approach to solving this problem is to start with the subgraph G1 =
(V; ;) of G and to test for each edge if we can add it to the current solution
without losing planarity. If we can do that, we add the edge and proceed to
the next edge. Since we have to perform a planarity test for each edge of the
graph and such a test can be implemented in linear time, this algorithm has a
running time of O(n �m) where n is the number of vertices in the graph and
m the number of edges.

Di Battista and Tamassia developed a data structure called SPQR-tree,
which can be used for decomposing a planar 2-connected graph into 3-connected
components and for fast online planarity testing (Di Battista and Tamassia,
1989; Di Battista and Tamassia, 1990; Di Battista and Tamassia, 1996). Us-
ing this data structure, they were able to develop an algorithm for �nding a
maximal planar subgraph in O(m logn) running time. There is also an al-
gorithm with the same asymptotic running time developed by Cai, Han and
Tarjan (Cai et al., 1993) which is based on the planarity testing algorithm in
Hopcroft and Tarjan (1974).

La Poutr�e (Poutr�e, 1994) proposed an algorithm for incremental planarity
testing yielding an algorithm for the maximal planar subgraph problem run-
ning in time O(n+m � �(m;n)) where �(m;n) is the inverse of the Ackermann
function which grows very slowly. There are even two linear time algorithms
for the problem, one by Djidjev (Djidjev, 1995) and one by Hsu (Hsu, 1995),
which has the best asymptotic running time possible for solving the maximal
planar subgraph problem.

A heuristic for the maximum planar subgraph problem is the Deltahedron
heuristic (Foulds and Robinson, 1978; Foulds et al., 1985). This heuristic
starts with the complete graph on 4 vertices (tetrahedron) as the initial planar
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subgraph and then places the remaining vertices into the faces of the current
planar subgraph. The sequence of the vertices depends on a chosen weight
function. Leung (Leung, 1992) proposed a generalization of this method. The
current planar subgraph has only triangular faces and in each step, we add a
single vertex and 3 edges or we add 3 vertices and 9 edges. A list of other
heuristics can be found in Liebers (1996).

J�unger and Mutzel (Mutzel, 1994; J�unger and Mutzel, 1996) proposed a
branch and cut algorithm for solving the maximum planar subgraph problem
based on an integer linear program that excludes the presence of subdivisions
of K3;3 and K5 in the solution graph. The advantage of a branch and cut
algorithm is that it either �nds an optimum solution together with a proof
of optimality or �nds a solution together with an upper bound on the value
of the optimum solution. For problems of moderate size (about 50 vertices),
their approach �nds an optimal solution in most cases.

1.5 How to Make a Planar Graph 2-Connected Planar

Many graph drawing algorithms only work for 2-connected or 3-connected
graphs. This is true for most algorithms presented in this chapter. Therefore
if we want to draw a graph which does not have the necessary connectivity
property for applying a speci�c graph drawing algorithm, we can increase its
connectivity by adding new edges (Augmentation). After a representation of
the augmented graph has been computed, we remove the representations of
the additional edges to get a representation of the original graph. Since we do
not want to change the graph too much, we want to add a minimum number
of edges in the augmentation step.

The planar augmentation problem is the problem of adding a minimum
number of edges to a given planar graph so that the resulting graph is 2-
connected and planar. Kant and Bodlaender (Kant and Bodlaender, 1991)
introduced this problem and showed that it is NP-hard. They have also given
a 2-approximation algorithm running in timeO(n logn) and a 3

2
-approximation

algorithm with running time O(n2 logn), where n is the number of vertices in
the graph. However, the 3

2
-approximation algorithm is not correct (Kant, 1994)

because there are problem instances where it computes only a 2-approximation.

Fialko and Mutzel developed a 5

3
-approximation algorithm (Fialko and

Mutzel, 1998). The running time of the algorithm is O(n2T ) where T is the
amortized time bound per insertion operation in incremental planarity testing.
Using the algorithm in Poutr�e (1994), a running time of O(n2�(k; n)) can be
achieved where � is the inverse Ackermann function and k is O(n2). Recently,
the algorithm has been improved by Mutzel to guarantee a 3

2
-approximation,
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but this result has not yet been published.
The 5

3
-approximation algorithm works on the block tree of the graph we

want to make 2-connected. The block tree has two types of vertices: The
b-vertices correspond to the maximal 2-connected components of the graph
and the c-vertices to the split vertices (as already mentioned, the removal of
a split vertex disconnects the graph). We have an edge between a c-vertex
and a b-vertex if and only if the corresponding split vertex belongs to the 2-
connected component represented by the b-vertex. The idea is now to insert
edges, merging paths of the block tree into single blocks until the tree has only
one vertex and is thus 2-connected.

1
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27,9 4,6,7

6,8

1,2,4

2,3

Figure 1.5: A graph and its block tree

A crucial role in the algorithm is played by the pendants of the block
tree which are b-vertices with degree one. The algorithm connects pendants
via edges if possible and otherwise connects pendants to non-pendant blocks.
To achieve the approximation ratio, pendants are combined to form larger
structures that are called labels. The algorithm looks at these labels in the
order of decreasing number of pendants and tries to connect the pendants of
two labels by introducing new edges. Inserting edges that connect the pendants
of two labels is called a label matching.

The algorithm prefers certain matchings, but because the resulting graph
has to be planar, not all of the preferred label matchings can be realized. Some
labels can not be matched at all and so the algorithm introduces edges that
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connect pendants of the same label and an additional edge from one of the
pendants to a non-pendant vertex outside the label.

The approximation guarantee of the algorithm is tight which means that
graphs exist for which the number of added edges is 5

3
of the optimum number.

On realistic instances, the algorithm performs very well and almost always �nds
a solution that uses at most one edge more than the optimum solution. This
has been tested using a branch and cut algorithm for the planar augmentation
problem developed by Mutzel (Mutzel, 1995) which is able to optimally solve
instances of realistic size.

1.6 Convex Representations

Some planar graphs can be drawn in such a way that all cycles that bound
faces are drawn as convex polygons. An example for such a drawing is shown
in Figure 1.6. Such a representation is only possible if all face boundaries of
the graph are simple cycles. Thus, a graph that is not 2-connected can have no
convex representation. It has been shown that such a convex representation
exists for all 3-connected graphs (Tutte, 1960) and Tutte gave an algorithm for
producing representations of 3-connected graphs which involves solving O(n)
linear equations where n is the number of vertices in the graph (Tutte, 1963).
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Figure 1.6: A convex drawing of a graph

Chiba, Yamanouchi and Nishizeki have developed an algorithm for pro-
ducing a convex representation of a 2-connected planar graph (if it admits a
convex representation) in linear time (Nishizeki and Chiba, 1988). In the same
paper, they gave a linear time algorithm for testing whether a 2-connected pla-
nar graph admits a convex representation. The drawing algorithm is based on
the proof of Tutte's result given by Thomassen (Thomassen, 1980). The test-
ing algorithm works by dividing a 2-connected planar graph into 3-connected
components as described in Hopcroft and Tarjan (1973) and testing planarity
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of a special graph constructed from the original graph using the algorithm
described in Hopcroft and Tarjan (1974).

To give a short outline of the drawing algorithm, we have to de�ne what
we mean by the term extendible polygonal representation of a face cycle of a
graph G. A face cycle is a cycle in the graph that is the boundary of a face
(region) of a planar representation of the graph. A convex representation S�

of a face cycle S is a convex polygon in which all vertices of S are drawn on
the boundary of S� and each apex of S� is occupied by the representation
of a vertex on S. The polygonal representation S� of S is called extendible
if there is a convex representation of G, in which S� is the outer face of the
representation.

Thomassen showed in Thomassen (1980), that the polygonal representa-
tion S� of S is extendible if and only if the following conditions hold.

1. For each vertex v of G not on S, there are three vertex disjoint paths from
v to vertices on S.

2. There are no connected components C in G� S, in which all vertices in
S adjacent to a vertex in C are located on the same straight segment P
of S�.

3. There is no edge that connects two vertices on a straight segment of S�.

4. Any cycle in G that does not share an edge with S has at least three
vertices with degree greater than 2.

If the conditions above are satis�ed, the following algorithm will correctly
compute a convex representation of G.

The input of the algorithm convex-draw is a triple consisting of the graph
G, a face cycle S of G and an extendible polygonal representation S� of S.

Algorithm convex-draw (G; S; S�):

1. We assume that G has more than 3 vertices, and some of them do not
belong to S, otherwise, our problem is already solved. Select an arbitrary
apex vertex v of S� and set G0 = (G � v). Divide G0 into the blocks
B1; : : : ; Bp as shown in Figure 1.7 according to the cut vertices on S�.

2. Draw each Bi convex applying the following procedure:

(a) Let vi and vi+1 be the cut vertices that split Bi from the rest of G0.
Then these two vertices have already a �xed position, because they
belong to S. These vertices also belong to the outer facial cycle Si of
Bi. We now draw all the vertices of Si that do not belong to S on a
convex polygon S�

i inside the triangle given by the vertices v; vi and
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vi+1. Each apex of the polygon is occupied by a vertex of Si which is
in G adjacent to v. The other vertices of Si are drawn on the straight
line segments of S�

i .

(b) Recursively call the procedure convex-draw for all blocks with the
arguments (Bi; Si; S

�

i ).

B1

B1B1

B1

v1

v

v

v3

v

2

4

Figure 1.7: Recursive computation of a convex representation

The algorithm for testing whether a 2-connected planar graph has a convex
representation relies on determining the separation pairs of the graph. A
separation pair is a pair of vertices whose removal disconnects the graph.

De�nition 1.12 (separation pair) A separation pair of a graph is a pair
of vertices fx; yg � V so that there exist two subgraphs G1 = (V1; E1) and
G2 = (V2; E2) which satisfy the following conditions:

1. V = V1 [ V2, V1 \ V2 = fx; yg

2. E = E1 [ E2, E1 \ E2 = ;, jE1j � 2, jE2j � 2.

A separation pair is called prime separation pair if at least one of the
graphs G1 and G2 is either 2-connected or is a subdivision of an edge joining
two vertices with degree greater than two.

In the algorithm for testing convex planarity, the forbidden separation pairs
(FSPs) and the critical separation pairs (CSPs) play a crucial role.

De�nition 1.13 (Forbidden separation pair) A prime separation pair is
called forbidden separation pair (FSP) if it has at least four split components
or three split components none of which is a path.
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x

y

x

y

Figure 1.8: Two examples of FSPs fx; yg. The shaded regions in the drawing on the right
are subgraphs.

If a graph has an FSP, there can be no convex representation of the graph.
Figure 1.8 shows two examples of FSPs. There is no convex drawing of these
graphs.

De�nition 1.14 (Critical separation pair) A prime separation pair is called
critical separation pair (CSP) if it has 3 split components of which at least one
is a path or if it has two split components of which none is a path.

x

y

x

y

Figure 1.9: Two examples for CSPs fx; yg. The shaded regions in the drawings are sub-
graphs.

The algorithm convex-test works as follows:

1. Find all separation pairs of G by the linear time algorithm described in
Hopcroft and Tarjan (1973) for �nding 3-connected components. Deter-
mine the set F of FSPs and the set C of CSPs.

2. If F 6= ;, then there is no convex representation of G. If both F and
C are empty, we can produce a convex representation choosing any face
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cycle of G as the cycle S that starts the computation. If there is exactly
one pair in C, we choose S as a cycle with the CSP on it, depending on
the structure of the split components. If there is more than one pair in
the set C, we go to the next step.

3. We transform each CSP with three split components by removing one
component that is a path. Then we connect all vertices of all pairs in
C to a new vertex vS and check if the resulting graph G0 is planar. If
this is not the case, we know that there is no convex representation of G.
Otherwise, let Z be any planar representation of G0. Let S be the face
cycle that surrounds vS in Z after deleting all edges incident to vS. Then
we know that there is a convex representation of G if we choose S as the
start cycle for the recursive computation of the algorithm convex-draw.
This is the case because all CSPs belong to S.

1.7 Methods Based on Canonical Orderings

There are several methods for drawing a planar graph that rely on a special
ordering of the vertices which is often called canonical ordering. The vertices
are ordered and successively added in this special order to a data structure
that describes a representation of the graph. In some of these algorithms, the
vertices are added one by one while in others a set of vertices can be added in
one step. Before the execution of one step, the data structure always describes
a representation of the subgraph induced by the vertices that have already
been added.

The vertex orderings used in all these algorithms and the algorithms them-
selves have several common properties:

1. The ordering is de�ned by some embedding of the graph.

2. The ordering of the vertices de�nes an ordered partition V1; V2; : : : ; Vk of
the vertices in the vertex set V of the graph. The union of the Vi is V ,
each Vi has at least one vertex and the Vi are pairwise disjoint.

3. In step i of the algorithm, the vertices in Vi together with the edges
that connect them to the vertices in V1 [ V2 [ : : : [ Vi�1 and the edges
between the vertices in Vi are added to the data structure that de�nes the
representation.

4. The set V1 has at least 2 elements and there is at least one edge in the
subgraph induced by V1 which is on the outer face of every representation
Di.
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5. Let Si be the data structure after inserting the vertices in Vi and let Di be
the corresponding representation. Then Di is the representation of a 2-
connected graph where all the vertices adjacent to vertices in Vi+1[: : :[Vk

are on the outer face of the representation.

The last point is not true for the algorithm proposed by Schnyder (Schny-
der, 1990) because in this algorithm, the vertices are inserted inside the triangle
given by the three vertices in V1. This algorithm (described in subsection 1.7.2
is quite di�erent from all others treated in this section, because it computes
three barycentric coordinates for each vertex before computing the x- and
y-coordinates.

1.7.1 The Algorithm of De Fraysseix, Pach and Pollack

The �rst algorithm using a canonical ordering for drawing planar graphs with
straight edges using polynomial area was described by De Fraysseix, Pach and
Pollack in 1990 (de Fraysseix et al., 1990). The algorithm draws a planar
triangulated graph on a grid of size (2n� 4)� (n� 2) where n is the number
of vertices in the graph. The running time of the algorithm is O(n logn). In
the same paper, the authors give a linear time and space algorithm for adding
edges to a planar connected graph to produce a planar triangulated graph.
The outer face of the representation is always a triangle. This result was later
improved by Kant (Kant, 1996), but his algorithm is very similar to the one
described in de Fraysseix et al. (1990).

Let G = (V;E) be a triangulated graph with a planar representation D
where (u; v) 2 E is on the outer face. Let � = (v1; : : : ; vk) be a numbering
of the vertices in V with v1 = u and v2 = v. We de�ne Gi as the subgraph
induced by the vertex set fv1; : : : ; vig. The face Ci is the outer face of the
representation Di of Gi that we get by removing all representations of vertices
and edges from D that do not belong to Gi.

Then � is a canonical ordering if and only if the following conditions hold
for all 4 � i � k:

� The subgraph Gi�1 is 2-connected and Ci�1 contains the edge (v1; v2).

� In the representation D, the vertex vi is in the outer face of Gi�1 and its
neighbors in Gi�1 form a subinterval of the path Ci�1 with at least two
elements.

Such a canonical ordering exists for any triangulated planar graph and
can be computed in linear time by starting with the representation D and
successively removing single vertices from the outer face that are not incident
to any chords of the outer face. It is easy to show that such a vertex always
exists for a triangulated planar graph.
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The invariants of the actual drawing algorithm are that after step i (in-
serting the vertex vi and the necessary edges), the following conditions hold:

� The vertex v1 is at position (0; 0) and v2 at position (2i� 4; 0).

� If the sequence of the vertices on the outer face is c1; c2; : : : ; ck with c1 = v1
and ck = v2, then we have x(cj) < x(cj+1) for 1 � j < k.

� The edge (cj; cj+1) has slope +1 or �1 for 1 � i < k.

To describe the idea of the drawing algorithm, we de�ne the left-vertex
cl of vertex vi as the leftmost vertex on Ci�1 that is adjacent to vi. With
leftmost we mean that the vertex comes �rst on the path from v1 via Ci�1 to
v2 that does not use the edge (v1; v2). The right-vertex cr of vi is de�ned as
the rightmost vertex on Ci�1 adjacent to vi. From now on we will refer to the
vertex cl+1 on Ci as the vertex directly left of cl on Ci.

When we want to add the vertex vi, we move the vertices cl+1 to cr�1 one
unit to the right while we move the vertices cr to ck two units to the right.
We also have to move some inner vertices of the representation to the right to
make sure that the representation remains planar. This is achieved by storing
for every vertex v on Ci a set of dependent vertices that have to be moved in
parallel with v. When v vanishes from the outer cycle, we add v to its own list
of dependent vertices and make this updated list the set of dependent vertices
of the new vertex on the outer cycle.

We place vi at the intersection of the line with slope +1 starting at cl and
the line with slope �1 starting at cr. Figure 1.10 shows an example for the
construction of such a representation. This approach can also be applied to
non-triangulated graphs by �rst adding edges to make the graph triangulated
(augmentation), applying the algorithm, and deleting the additional edges in
the computed representation.

1.7.2 The Barycentric Algorithm of Schnyder

In the same year, Schnyder described an algorithm for solving the same task
in time O(n) using a grid of size (n � 2) � (n � 2) (Schnyder, 1990). This
algorithm computes three coordinates for each vertex in the sequence given
by the same canonical ordering used by de Fraysseix, Pach and Pollack. In a
second step, it computes the actual grid coordinates for the vertices using the
barycentric coordinates.

The vertex positions are de�ned using a barycentric representation of the
input graph G.
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Figure 1.10: An example for the straight-line algorithm of de Fraysseix, Pach and Pollack

De�nition 1.15 (barycentric representation) A barycentric representa-
tion of G is an injective function

v 2 V ! (v1; v2; v3) 2 R
3

satisfying the following conditions:

1. v1 + v2 + v3 = 1 for all vertices v.

2. For each edge fu; vg and each vertex w 2 fu; vg there is some k 2 f1; 2; 3g
such that uk < wk and vk < wk.

A barycentric representation of the input graph is computed by �rst con-
structing a normal labeling of the angles of the faces of the input graph. Since
the input graph is triangulated, every face has exactly three angles. The angles
of each face are numbered 1, 2 and 3 so that the numbers appear in counter-
clockwise order around the face and for each interior vertex, the angles around
it in counterclockwise order form a nonempty sequence of 1's followed by a
nonempty sequence of 2's followed by a nonempty sequence of 3's. Such a
labeling can be constructed in linear time.

For each normal labeling, every edge has two di�erent labels on one end
while the labels on both sides of the other end are the same. We call the
repeated label the label of the edge. Thus, each normal labeling de�nes a
realizer of the graph.

De�nition 1.16 (realizer) A realizer of a triangular graph G is a partition
of the interior edges of G into three sets T1, T2 and T3 of directed edges so that
for each interior vertex v the following conditions are satis�ed:

1. The vertex v has outdegree 1 in T1, T2 and T3.
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2. The counterclockwise order of the edges around v is: leaving in T1, enter-
ing in T3, leaving in T2, entering in T1, leaving in T3, entering in T2.

Every normal labeling has the following property: For each number in
f1; 2; 3g there is exactly one vertex on the outer face where every adjacent
angle is labeled i. For each interior vertex, there is exactly one path leaving
the vertex where all edges are labeled i for i 2 f1; 2; 3g. This path ends in the
vertex of the outer face where all adjacent edges are labeled i. These 3 paths
leaving each interior vertex de�ne 3 regions of the graph and the number of
faces in each of these regions are the 3 barycentric coordinates of the vertex.

If we have 3 arbitrary noncolinear points �; � and 
 in the plane and vertex
v has the barycentric coordinates (v1; v2; v3), then drawing every vertex v at
position v1�+ v2� + v3
 will result in a planar straight-line embedding of the
graph.

1.7.3 The Straight-Line Algorithm of Kant

Kant used the canonical ordering approach to develop several drawing algo-
rithms (Kant, 1996). The �rst one also produces straight-line representations,
but in contrast to the algorithms mentioned before, it guarantees that the in-
ner regions are convex for 3-connected graphs, even if it is not the case that
every face of the graph is bounded by 3 edges. This is not necessarily the
case for the algorithms mentioned before, because if we want to apply them
to non-triangulated graphs, we �rst have to augment the graph by adding
edges to produce a second graph where every face is a triangle, then produce
a representation for this graph and �nally delete the added edges from the
�nal representation. Thus it might happen that not every inner face of the
representation is convex. The algorithm of Kant has a maximum grid-size of
(2n� 4)� (n� 2) and runs in O(n) time. Chrobak and Kant later improved
this algorithm so that it only uses an area of (n� 2)� (n� 2) (Chrobak and
Kant, 1993).

Since this algorithm is an improved version of the algorithm of de Fraysseix,
Pach and Pollack (de Fraysseix et al., 1990), we will only give an overview of
the di�erences. The algorithm of Kant can also cope with 3-connected graphs
that are not triangulated. This is achieved by de�ning the canonical ordering
not as an ordering of the vertices but rather as an ordered partition of the
vertices. Let G = (V;E) be a 3-connected graph with a planar representation
D where v1 2 V is on the outer face. Let � = (V1; : : : ; Vk) be a partition of V
and Gi the subgraph of G induced by V1[V2[ : : :[Vi. The face Ci is the outer
face of the representation Di of Gi that we get by removing all representations
of vertices and edges from D that do not belong to Gi.

Then � is a canonical ordering if and only if the following conditions hold:



1.7 Methods Based on Canonical Orderings 27

� V1 = fv1; v2g, v1 and v2 both lie on the outer face of D and (v1; v2) 2 E.

� Vk = vn and vn lies on the outer face of D with (v1; vn) 2 E and vn 6= v2.

� Each Ci for k > 1 is a cycle containing (v1; v2).

� Each Gi is 2-connected and internally 3-connected (removing any two
inner vertices will not disconnect the graph).

� For each i 2 f2; : : : ; k � 1g one of the following conditions holds:

1. Vi is a single vertex z belonging to Ci and having at least one neighbor
in G�Gi.

2. The vertices in Vi form a chain (a path where all inner vertices have
degree 2) (z1; : : : ; zl) on Ci where each zj has at least one neighbor
in G � Gi. The vertices z1 and zl each have exactly one neighbor in
Ci�1, and these are the only neighbors of the vertices in Vi.

This canonical ordering can be computed in linear time by starting with
the representation D and successively removing chains or single vertices from
the outer face so that the resulting graph G0 is 2-connected. To do this in linear
time, we have to store and update for each face the number of its vertices and
edges on the outer face and for each vertex the number of adjacent faces having
a separation pair.

To compute the actual representation, the canonical ordering is �rst trans-
formed into a leftmost canonical ordering which can be computed in linear time
from a canonical ordering and is necessary for achieving linear running time.
The invariants of the drawing algorithm after step i (inserting the vertices of
the set Vi and the necessary edges) are:

� v1 is at position (0; 0) and v2 at position (2i� 4; 0).

� If the sequence of the vertices on the outer face is c1; c2; : : : ; ck with c1 = v1
and ck = v2, then we have x(cj) < x(cj+1) for 1 � j < k.

The only di�erence in the actual drawing algorithm compared to the al-
gorithm of de Fraysseix, Pach and Pollack is that we can now insert several
vertices at once. These vertices form a chain and we give them the same
y-coordinate. Figure 1.11 shows an example for the construction of such a
representation.
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Figure 1.11: An example for the straight-line algorithm of Kant

1.7.4 The Orthogonal Algorithms of Kant

In the same paper (Kant, 1996), Kant also gives two algorithms for producing
orthogonal representations of planar graphs. In an orthogonal representation,
all edges consist only of horizontal and vertical segments. If every vertex is
drawn as a point, such a representation can only be used for planar graphs in
which every vertex has at most degree 4 (4-planar graphs). Since orthogonal
drawing algorithms are explicitly treated in Chapter ??, we will only give a
short overview of the two algorithms. The �rst algorithm draws 3-connected
4-planar graphs on an n � n grid with at most d3

2
ne + 4 bends so that each

edge has at most two bends. The second algorithm produces an orthogonal
representation for planar graphs with maximum degree 3 having at most bn

2
c+1

bends on a grid of size bn
2
c�bn

2
c. The running time of both algorithms is linear.

The algorithm for producing orthogonal representations of 3-connected 4-
planar graphs given in Kant (1996) also uses the canonical ordering. Since
the edges only consist of vertical and horizontal segments, there are exactly
4 directions from which an edge can attach to a vertex v. They are called
up(v), down(v), left(v) and right(v). One of these directions is called free
if we have not yet attached an edge to it. The idea of the algorithm is to
add each vertex v in the canonical ordering to the subgraph that is already
placed so that down(v) is not free and up(v) is free. The algorithm works in
two phases. In the �rst phase, we assign the 4 directions of each vertex to
the incident edges and give the vertices the y-coordinates. We also store for
each vertex and bend a pointer to its column. During the algorithm, we may
have to add new columns. In the second phase, we assign x-coordinates to the
columns and thus indirectly to the vertices and bends of the representation.

The algorithm in Kant (1996) for drawing planar graphs with maximum
degree 3 is based on an algorithm for 3-connected graphs with maximum de-
gree 3. This algorithm is similar to the algorithm of the last paragraph, but
we can place all vertices of the same partition of the canonical ordering on the
same y-coordinate. The algorithm is generalized for working on 2-connected
3-planar graphs using SPQR-trees. We recursively use the algorithm for draw-
ing 3-connected 3-planar graphs and then merge the representations into a
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representation for the whole graph. This method is again generalized to con-
nected 3-planar graphs by drawing every 2-connected component so that the
cut vertex is in the upper-left corner and then merging the representations into
a representation of the whole graph without introducing new bends.

1.7.5 The Mixed Model

Kant also introduces a new method for drawing 3-connected planar graphs
which he calls the Mixed Model. In this model, each edge is a poly-line which
may have at most three bends. Each edge consists of at most four parts. The
parts connected to the vertices may be diagonal, while the two middle parts
of each edges are vertical and horizontal. The principle of the algorithm is to
de�ne a set of points around each vertex where the orthogonal edges coming
from other vertices connect. These points de�ne the boundary of the bounding
box of the vertex. The points are then connected by straight lines to the vertex
itself. Each edge consists of a straight line segment between the start vertex
and a point on the boundary of the bounding box, an orthogonal part with
at most one bend from the bounding box of the start-vertex to the bounding
box of the target-vertex and another straight part from the boundary of the
bounding box of the target-vertex to the target-vertex itself.

The grid size for this algorithm is (2n� 6)� (3n� 9) and the number of
bends is at most 5n � 15. An important property of the algorithm is that it
guarantees that the angle between two edges emanating from the same vertex
is larger than 2=d radians where d is the degree of the vertex. The minimum
angle of two edges emanating from the same vertex in a representation is called
the angular resolution of the representation. Having a large angular resolution
improves the readability of a drawing.

Gutwenger and Mutzel have improved Kant's algorithm for the Mixed
Model to achieve a grid size of (2n � 5) � (3

2
n � 7

2
) (Gutwenger and Mutzel,

1998). They also have improved the angular resolution for graphs which are
not 3-connected. Since Kant's algorithm only works for 3-connected graphs,
graphs that are not 3-connected have to be augmented by adding additional
edges before the algorithm is applied and afterwards the additional edges have
to be deleted from the representation. This can lead to an angular resolution of
4

3d+7
where d is the maximum degree in the original graph. Since the algorithm

in Gutwenger and Mutzel (1998) can be applied directly to 2-connected graphs,
an angular resolution of 2=d can be guaranteed for any planar graph. The
running time for both algorithms is linear.

The algorithm for drawing graph G works in three phases:

1. If the graph is not 2-connected, edges are added to produce a planar
2-connected graph G0
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2. A suitable canonical ordering for G0 is computed

3. The ordering produced in the last step is used to draw the original graph
G.

For each vertex, we de�ne a set of inpoints and outpoints. The inpoints
are the points where the edges from vertices that have already been placed
arrive and the outpoints are the points where the edges to vertices that have
not already been placed leave. The inpoints and outpoints of each vertex are
located on the boundary of the roughly diamond shaped bounding box and will
be placed on grid coordinates. Figure 1.12 shows two examples of bounding
boxes.

Figure 1.12: Two examples of bounding boxes

The point straight down from a vertex as well as the two points straight
to the right and to the left are inpoints, while the point straight above the
vertex is always an outpoint. Thus, a vertex with an indegree not greater than
3 and an outdegree of at most 1 will have no adjacent diagonal edges. These
inpoints together with the edges that connect them to the vertex form a cross.
We call the four sectors de�ned by this cross NW;NE; SE and SW; like the
points of a compass.

If there are more than three incoming edges, we distribute the remain-
ing inpoints evenly among the sectors SE and SW . If there are more than
one outgoing edges, they are distributed evenly between the sectors NE and
NW . If the remaining number of edges is not even, we get an asymmetric
con�guration like in the righthand bounding box of Figure 1.12.

When a vertex is placed, we always have to avoid overlapping bounding
boxes except if we can identify the outpoint of an adjacent vertex with the
vertex we want to place. If the set Vi of vertices in the canonical order we want
to add in step i has only one element v, we place this vertex directly above
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the adjacent vertex which is connected by the inedge going straight down. We
choose the y-coordinate so that the minimum vertical distance between the
bounding box of an adjacent vertex and the bounding box of v is 1. We may
have to shift the adjacent vertices already placed and their dependent sets to
the right to make room for the edges. If Vi has more than one element, all
the vertices in the set will get the same y-coordinate. Figure 1.13 shows an
example of a drawing produced with Kant's original algorithm.

Figure 1.14 shows two drawings computed using the algorithm of Gutwenger
and Mutzel (Gutwenger and Mutzel, 1998).

Figure 1.13: A drawing produced by the Mixed Model algorithm of Kant

Figure 1.14: Example drawings produced by the algorithm of Gutwenger and Mutzel
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