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Abstract

We consider combinatorial problems for graphs that (a) can be solved in poly-
nomial time for graphs of bounded treewidth and (b) where the order of the
polynomial time bound is expected to depend on the treewidth of the consid-
ered graph. First we review some recent results for problems regarding list
and equitable colorings, general factors, and generalized satisfiability. Second
we establish a new hardness result for the problem of minimizing the maxi-
mum weighted outdegree for orientations of edge-weighted graphs of bounded
treewidth.

Keywords: Treewidth, W[1]-Hardness, Graph Coloring, General Factors, Gen-
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1 Introduction

Treewidth is a graph invariant that indicates, in a certain sense, the global con-
nectivity of a graph. Graphs of treewidth at most k are also known as partial
k-trees and width-k tree decomposable graphs. Treewidth plays a central role in
Robertson and Seymour’s Graph Minors Project and has important algorithmic ap-
plications. Many hard graph problems are easy for graphs of small treewidth; for
example, 3-Colorability and Hamiltonicity can be solved in linear time for
graphs of treewidth bounded by a constant k (albeit with a running time contain-
ing a constant factor that is exponential in k). In fact, all problems that can be
expressed in the formalism of Monadic Second Order Logic (that includes the two
mentioned problems, but also linear optimization problems like Dominating Set)
can be solved in linear time for graphs of bounded treewidth [8, 2]. However, there
are problems that are NP-hard for graphs of a certain fixed treewidth bound; for ex-
ample Bandwidth is NP-hard for graphs of treewidth 1 [13] and L(2, 1)-Coloring
is NP-hard for graphs of treewidth 2 [11] (to name an old and a new result).

In this paper we focus on problems that are, in a certain sense, neither very
easy nor very hard for graphs of bounded treewidth and thus lie between the two
extremes. More specifically, we focus on problems that can be solved in polynomial
time for graphs of bounded treewidth, but where the order of the polynomial that
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bounds the running time necessarily depends on the treewidth bound. The theoret-
ical framework of parameterized complexity provides the concepts and methods for
providing evidence that a certain problem is of this type. The key method is to show
that the problem at hand is W[1]-hard under fpt-reductions where W[1] is a com-
plexity class that is considered as the parameterized analog of NP. As NP-hardness
provides strong evidence that there is no polynomial-time algorithm for a problem,
W[1]-hardness provides strong evidence that a problem cannot be solved in polyno-
mial time for instances of bounded treewidth such that the order of the polynomial
is independent of the treewidth bound.

We provide definitions and background information on treewidth and parameter-
ized complexity in Section 2. In Section 3 we review some recent W[1]-hardness re-
sult for problems on graphs of bounded treewidth, including problems regarding list
and equitable colorings, general factors, and generalized satisfiability. In Section 4
we establish a new W[1]-hardness result for the Minimum Maximum Outdegree
problem for edge-weighted graphs.

2 Preliminaries

2.1 Graphs and Tree decompositions

All considered graphs are finite, simple and undirected, unless stated otherwise. We
denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively,
and an edge between vertices u and v by uv (or equivalently vu). Furthermore, we
denote the subgraph of a graph G induced by a set X ⊆ V (G) by G[X]; that is,
V (G[X]) = X and E(G[X]) = {uv ∈ E(G) : u, v ∈ X }. We also write G − X =
G[V (G) \X].

A tree decomposition of a graph G is a pair (T, χ) where T is a tree and χ is
a mapping that assigns to each vertex t ∈ V (T ) a set χ(t) ⊆ V (G) such that the
following conditions hold:

1. V (G) =
⋃

t∈V (T ) χ(t) and E(G) ⊆
⋃

t∈V (T ){uv : u, v ∈ χ(t) }.

2. The sets χ(t1) \ χ(t) and χ(t2) \ χ(t) = ∅ are disjoint for any three vertices
t, t1, t2 ∈ V (T ) such that t lies on a path from t1 to t2 in T .

The width of (T, χ) is maxt∈V (T ) |χ(t)|−1. The treewidth tw(G) of G is the smallest
integer k such that G has a tree decomposition of width k. For more information
on treewidth we refer to other sources [5, 16].

We shall frequently use the following observation.

Observation 1. Let G be a graph and X ⊆ V (G). Then tw(G) ≤ tw(G−X) + |X|.

Proof. If (T, χ) is a tree decomposition of G−X, then (T, χ′), with χ′(t) = χ(t)∪X
for t ∈ V (T ), is a tree decomposition of G.

It is NP-hard to determine the treewidth of a graph [1]. However, for fixed k ≥ 1,
one can decide in linear time whether the treewidth of a graph is at most k, and if
so, compute a tree decomposition of width k (Bodlaender’s Theorem [4]).
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2.2 Parameterized Complexity

Let us first review some basic concepts of Parameterized Complexity; for more in-
formation we refer to the books of Downey and Fellows [9], Flum and Grohe [12],
and Niedermeier [22]. An instance of a parameterized problem is a pair (x, k),
where x is the main part and k (usually a non-negative integer) is the parameter.
A parameterized problem is fixed-parameter tractable if it can be solved in time
O(f(k)|x|c) where f is a computable function and c is a constant independent of k.
FPT denotes the class of all fixed-parameter tractable decision problems. A param-
eterized problem P fpt-reduces to a parameterized problem Q if we can transform
an instance (x, k) of P into an instance (x′, g(k)) of Q in time O(f(k)|x|c) (f, g are
arbitrary computable functions, c is a constant) such that (x, k) is a yes-instance
of P if and only if (x′, g(k)) is a yes-instance of Q. This definition ensures that if
there exists an fpt-reduction from P to Q and Q is fixed-parameter tractable, then
so is P . A parameterized complexity class C is the class of parameterized decision
problems fpt-reducible to a certain parameterized decision problem QC . A param-
eterized problem P is C-hard if QC (and so each problem in C) can be fpt-reduced
to P . A C-hard problem that belongs to C is C-complete. Of particular interest is the
class W[1] that is considered as the parameterized analog to NP. It is believed that
FPT 6= W[1], and there is strong theoretical evidence that supports this belief; for
example, FPT = W[1] implies that the Exponential Time Hypothesis fails (cf. [12]).
There are parameterized problems that are believed to be “harder” than problems
in W[1]; indeed, there is an infinite hierarchy of parameterized complexity classes
FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · where all inclusions are believed to be
strict.

The following problem is well known to be W[1]-complete [9].

Clique

Instance: A graph G and a non-negative integer k.

Parameter: The integer k.

Question: Does G contain a clique on k vertices?

As observed by Pietrzak [23] the problem remains W[1]-complete if the input graph
is k-partite, which gives the following problem.

Partitioned Clique

Instance: A k-partite graph G with partition V1, . . . , Vk such that |V1| =
· · · = |Vk|.
Parameter: The integer k.

Question: Does G contain a clique on k vertices?

Partitioned Clique (also called Multicolored Clique) is particularly useful
for reductions in the context of bounded treewidth. Several W[1]-hardness results
that we consider in the sequel are obtained by fpt-reductions from this problem.
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3 Some known W[1]-Hardness Results

3.1 Coloring Problems

List coloring is an extensively studied variant of graph coloring [15, 30, 31].

List Coloring

Instance: A graph G and for each vertex v ∈ V (G) a list l(v) of allowed
colors for v.

Question: Is there a proper coloring for G where each vertex is colored
with a color from its list?

Theorem 1 ([10]). List Coloring is W[1]-hard when parameterized by the
treewidth of the instance graph.

We sketch the proof as it is very simple and provides a good example for reductions
from Partitioned Clique.

Consider a k-partite graph G with partition V1, . . . , Vk. We construct a graph H
as follows. Let b : V (G)→ {1, . . . , |V (G)|} be an arbitrary but fixed bijection. First
we take new vertices v1, . . . , vk, and set l(vi) = { b(v) : v ∈ Vi } (1 ≤ i ≤ k). Second,
for all 1 ≤ i < j ≤ k and each pair of nonadjacent vertices u ∈ Vi, v ∈ Vj we
add a vertex vuv and make it adjacent with vi and vj ; we put l(vuv) = {b(u), b(v)}.
It is easy to verify that H has a proper list coloring if and only if G has a clique
on k vertices. Note that H − {v1, . . . , vk} is edge-less and so of treewidth 1. Thus
tw(G) ≤ k + 1 follows by Observation 1. So there is indeed an fpt-reduction from
Partitioned Clique to List Coloring parameterized by the treewidth of the
instance graph.

Let us briefly mention a fixed-parameter tractability result that contrasts Theorem 1.
A graph G is called r-list-colorable or r-choosable if for every list assignment l such
that |l(v)| ≥ r for each vertex v ∈ V (G), there exists a proper coloring for G where
each vertex is colored with a color from its list. The list-chromatic number or choice
number of G is the smallest integer r such that G is r-list-colorable. Now, as shown
by Fellows et al. [10], determining the list chromatic number of a given graph is
fixed-parameter tractable when parameterized by the treewidth of the graph.

Consider the following problem.

Precoloring Extension

Instance: A graph G and a proper coloring c′ of some induced subgraph
G′ of G using colors from {1, . . . , r}.
Question: Is it possible to extend c′ to a proper coloring c of G using
only colors from {1, . . . , r}?

One can fpt-reduce List Coloring to Precoloring Extension by encoding the
lists by means of precolored vertices of degree one, without increasing the treewidth.

Corollary 1 ([10]). Precoloring Extension is W[1]-hard when parameterized
by the treewidth of the instance graph.
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The next problem was introduced by Meyer [21] motivated by a garbage truck
scheduling problem; for history and recent results see [6, 18].

Equitable Coloring

Instance: A graph G and a positive integer r.

Question: Is there a proper coloring of G using colors from {1, . . . , r}
such that the sizes of any two color classes differ at most by one?

Theorem 2 ([10]). Equitable Coloring is W[1]-hard when parameterized by the
treewidth of the instance graph. The problem remains W[1]-hard when we parame-
terize simultaneously by the treewidth and the number r of colors.

Theorem 2 can be shown by a reduction from Partitioned Clique; the reduction
is significantly more complicated than the one we sketched above.

For graphs of treewidth bounded by some arbitrary but fixed integer k, one can
solve Equitable Coloring in polynomial time, even when the number r of colors
is not constant and given as part of the input (albeit the order of the polynomial
depends on k). This was recently shown by Bodlaender and Fomin [6] using a
combinatorial result of Kostochka, Nakprasit, and Pemmaraju [17].

3.2 General Factors

Lovász [19, 20] introduced the following problem.

General Factor

Instance: A graphG and for each vertex v ofG a setK(v) ⊆ {0, . . . , d(v)};
we call K(v) the cardinality set of v.

Question: Is there a subset F ⊆ E(G) such that for each vertex v ∈ V (G)
the number of edges in F incident with v is an element of K(v)?

This problem clearly generalizes the polynomial-time solvable r-Factor problem
where all cardinality sets are equal to {r}. However, General Factor is easily
seen to be NP-hard, already if cardinality sets are restricted to {0, 3} and {1} (say, by
reduction from 3-Dimensional matching). Cornuéjols [7] gives a full classification
of the complexity of General Factor when cardinality sets are restricted to some
fixed class of sets (a dichotomy of NP-hard and polynomial-time solvable cases).

Theorem 3 ([26]). General Factor is W[1]-hard when parameterized by the
treewidth of the instance graph. The problem remains W[1]-hard when the given
graph is bipartite and all cardinality sets for vertices of one side of the bipartition
are equal to {1}.

The proof of this result is, once again, obtained by an fpt-reduction from Parti-
tioned Clique.

General Factor can be solved in polynomial time for graphs of bounded
treewidth where the order of the polynomial depends on the treewidth bound [29].
In fact, the main result of [29] is a meta-theorem that provides polynomial-time
algorithms for a wide range of problems on graphs of bounded treewidth. Each
of the covered problems asks for a given graph G with cardinality sets K(v) ⊆
{0, . . . , |V (G)|+ |E(G)| − 1} whether there exists a set X ⊆ V (G)∪E(G) such that
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1. for each vertex v ∈ V (G), the number of vertices in X adjacent to v plus the
number of edges in X incident with v belongs to K(v),

2. X satisfies a fixed property P (X) expressible in a certain formalism called
“Monadic Second Order Logic.”

For example P (X) could state that X is a set of vertices that forms a color class
for a proper 3-coloring of G. For General Factor the property P (X) just states
that X is a set of edges.

3.3 Generalized Satisfiability

A Boolean constraint is a pair C = ((x1, . . . , xr), R) where x1, . . . , xr are distinct
variables and R ⊆ {0, 1}r is a Boolean relation of arity r > 0. We write var(C) =
{x1, . . . , xr} and say that C is over a set X of variables if var(C) ⊆ X. A mapping
τ : X → {0, 1} satisfies a Boolean constraint C = ((x1, . . . , xr), R) if C is over X
and (τ(x1), . . . , τ(xr)) ∈ R.

Generalized Satisfiability

Instance: A finite set X of variables and finite set S of Boolean con-
straints over X.

Question: Is there a mapping τ : X → {0, 1} that satisfies all constraints
in S?

Clearly Generalized Satisfiability is NP-complete, as, for example, it contains
3-SAT as the special case where all constraints use the same relation R = {0, 1}3 \
{(0, 0, 0)}. Schaefer [27] classifies the complexity of Generalized Satisfiability
problems for instances that use relations from a fixed class (a dichotomy of NP-hard
and polynomial-time solvable cases).

By associating certain graphs to sets of Boolean constraints one can apply the
treewidth parameter to the Generalized Satisfiability problem.

Consider an instance (X,S) of Generalized Satisfiability. The primal graph
has vertex set X, two variables are adjacent if they occur together in a constraint.
Symmetrically, the dual graph has as vertex set S, two constraints are adjacent if
they share a variable. Finally, the incidence graph is the bipartite graph with vertex
set X ∪ S; a constraint and a variable are adjacent if the variable occurs in the
constraint.

It is easy to see that Generalized Satisfiability is fixed-parameter tractable
if parameterized by the treewidth of primal graphs [14]. However, regarding the
treewidth of dual and incidence graphs we have the following negative results.

Theorem 4 ([24]). Generalized Satisfiability is W[1]-hard when parameterized
by the treewidth of the dual graph or by the treewidth of the incidence graph of the
instance.

We sketch the proof which uses an fpt-reduction from Clique. Let G be a graph
with V (G) = {v1, . . . , vn}. We construct an instance (X,S) of Generalized Sat-
isfiability as follows. First we construct a relation R ⊆ {0, 1}2n that encodes the
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edges of G using Boolean values 0 and 1. For each edge vpvq of G, 1 ≤ p < q ≤ n,
we add to R the 2n-tuple

(tp,1, . . . , tp,n, tq,1, . . . , tq,n)

where tp,i = 1 if and only if p = i, and tq,i = 1 if and only if q = i, 1 ≤ i ≤ n. We
let S be the set of Boolean constraints

Ci,j = ((xi,1, . . . , xi,n, xj,1, . . . , xj,n), R)

and X the set of variables xi,j , for 1 ≤ i < j ≤ k. It is easy to verify that G contains

a clique on k vertices if and only if S is satisfiable. Since there are exactly
(
k
2

)
constraints in S, the treewidth of the dual graph is at most

(
n
k

)
−1, thus bounded in

terms of k. Using Observation 1 it is easy to see that the treewidth of the incidence
graph is at most

(
k
2

)
. Hence Theorem 4 follows.

Boolean Satisfiability is defined similarly except that instead of Boolean
constraints one considers clauses (disjunctions of variables or negated variables).
Primal, dual, and incidence graphs are defined for sets of clauses in the obvi-
ous way. Interestingly, Boolean Satisfiability and Generalized Satisfiabil-
ity are of different parameterized complexity: Boolean Satisfiability is fixed-
parameter tractable when parameterized by the treewidth of any of the three asso-
ciated graphs [25, 28].

4 A New Hardness Result for the Minimum Max-
imum Outdegree Problem

A (positive integral) edge weighting of a graph G is a mapping w that assigns to
each edge of G a positive integer. An orientation of G is a mapping Λ : E(G) →
V (G) × V (G) with Λ(uv) ∈ {(u, v), (v, u)}. The weighted outdegree of a vertex
v ∈ V (G) with respect to an edge weighting w and an orientation Λ is defined as

d+
G,w,Λ(v) =

∑
vu∈E(G) with Λ(vu)=(v,u)

w(vu).

Asahiro, Miyano, and Ono [3] consider the following problem and discuss applications
and related problems.

Minimum Maximum Outdegree

Instance: A graph G, an edge weighting w of G given in unary, and a
positive integer r.

Question: Is there an orientation Λ of G such that d+
G,w,Λ(v) ≤ r for

each v ∈ V (G)?

We assume that the edge weighting w is given in unary since otherwise the prob-
lem is already NP-complete for graphs of treewidth 2, as a simple reduction from
Partition shows [3]. If all edge weights are identical, then Minimum Maximum
Outdegree can be solved in polynomial time using network flows [3]. Furthermore,
the problem can be solved for graphs of treewidth k in time bounded by a polyno-
mial whose order depends on k [29]. The next theorem shows that this dependence
is necessary, unless FPT = W[1].
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Theorem 5. Minimum Maximum Outdegree is W[1]-hard when parameterized
by the treewidth of the instance graph.

Proof. We use the following intermediate problem:

Chosen Maximum Outdegree

Instance: A graph G, an edge weighting w of G given in unary, and for
each vertex v ∈ V (G) a non-negative integer ρ(v).

Question: Is there an orientation Λ of G such that d+
G,w,Λ(v) ≤ ρ(v) for

each v ∈ V (G)? We call such an orientation ρ-admissible.

Claim 1. Chosen Maximum Outdegree fpt-reduces to Minimum Maximum
Outdegree (both problems are parameterized by the treewidth of the instance
graph).

To prove this claim, let G,w, ρ be an instance of Chosen Maximum Outdegree.
We construct an edge weighted graph H from G as follows. Let r = maxv∈V (G) ρ(v).
For each vertex v ∈ V (G) with ρ(v) < r we add to G two new vertices xv, yv and the
edges vxv, vyv, and xvyv with edge weights r − ρ(v), r − ρ(v), and r, respectively.
It is easy to verify that H has an orientation with maximum weighted outdegree at
most r if and only if G has a ρ-admissible orientation. Thus Claim 1 follows.

Next we give an fpt-reduction from Partitioned Clique to Chosen Maximum
Outdegree; the theorem will then follow by Claim 1.

Consider a k-partite graph G with partition V1, . . . , Vk with |V1| = · · · = |Vk| = n.
We write Vi = {v1

i , . . . , v
n
i } for 1 ≤ i ≤ k. For 1 ≤ i < i′ ≤ k let Ei,i′ = { (q, q′) : 1 ≤

q ≤ n, 1 ≤ q′ ≤ n, vqi v
q′

i′ ∈ E(G) }. We are going to construct a graph H with edge
weighting w and vertex weighting ρ.

The vertex set of H is obtained as follows:

1. For 1 ≤ i ≤ k and 1 ≤ j ≤ n, we add to V (H) three vertices uji , x
j
i , and yji .

2. For 1 ≤ i ≤ k we add to V (H) a vertex ai.

3. For 1 ≤ i < i′ ≤ k we add to V (H) vertices bi,i′ , ci,i′ , and di,i′ .

4. For 1 ≤ i < i′ ≤ k and each (q, q′) ∈ Ei,i′ we add to V (H) a vertex eq,q
′

i,i′ .

The edge set of H is obtained as follows.

1. For 1 ≤ i ≤ k and 1 ≤ j ≤ n we add the edges aiu
j
i , u

j
ix

j
i , and ujiy

j
i .

2. For 1 ≤ i < i′ ≤ k and (q, q′) ∈ Ei,i′ we add the edges eq,q
′

i,i′ di,i′ , e
q,q′

i,i′ bi,i′ and

eq,q
′

i,i′ ci,i′ .

3. For 1 ≤ i < i′ ≤ k, 1 ≤ j ≤ n, and 1 ≤ j′ ≤ n we add the edges xji bi,i′ , y
j
i ci,i′ ,

and xj
′

i′ bi,i′ , y
j′

i′ ci,i′ .

We shall refer to the edges added in the last step as special edges.

Claim 2. The treewidth of H is at most 2
(
k
2

)
+ 1.
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Indeed, the set BC = { bi,i′ , ci,i′ : 1 ≤ i < i′ ≤ k } is of cardinality 2
(
k
2

)
and H −BC

is a disjoint union of trees. Hence Claim 2 follows from Observation 1.

Let N = n+ 1. We define the weights of special edges:

w(xji bi,i′) = w(yji ci,i′) = N3 + j (i < i′, 1 ≤ j ≤ n)

w(xji′bi,i′) = w(yji′ci,i′) = N3 + jN (i < i′, 1 ≤ j ≤ n)

Let M(v) denote the sum of the weights of all special edges incident with vertex v.
We set M = k(N3 + N2) to ensure that we have M(xji ) < M(yji ) < M for all
1 ≤ i ≤ k and 1 ≤ j ≤ n.

We define further edge and vertex weights as follows.
For 1 ≤ i ≤ k we set ρ(ai) = 1 and w(aiu

j
i ) = 1, for 1 ≤ j ≤ n.

For 1 ≤ i ≤ k and 1 ≤ i ≤ n we set w(ujix
j
i ) = ρ(xji ) = M and w(ujiy

j
i ) =

ρ(uji ) = ρ(yji ) = M + 1.
For 1 ≤ i < i ≤ k we set ρ(di,i′) = |Ei,i′ | − 1, and for (q, q′) ∈ Ei,i′ we define:

w(di,i′e
q,q′

i,i′ ) = 1

w(eq,q
′

i,i′ bi,i′) = w(xqi bi,i′) + w(xq
′

i′ bi,i′)

w(eq,q
′

i,i′ ci,i′) = w(yqi ci,i′) + w(yq
′

i′ ci,i′)

ρ(eq,q
′

i,i′ ) = w(eq,q
′

i,i′ ci,i′) (> w(eq,q
′

i,i′ bi,i′))

For 1 ≤ i < i ≤ k we define:

ρ(bi,i′) =

n∑
j=1

w(xji bi,i′) +

n∑
j=1

w(xji′bi,i′)

ρ(ci,i′) =

n∑
j=1

w(yji ci,i′) +

n∑
j=1

w(yji′ci,i′)

Claim 3. If H has a ρ-admissible orientation then G has a clique on k vertices.

To prove this claim, let Γ be an admissible orientation. Let A = {Λ(e) : e ∈ E(G) }.
We shall use terminology for directed graphs. For example, if (x, y) ∈ A then we
say that xy is an “outgoing edge” of x and an “incoming edge” of y.

Let 1 ≤ i ≤ k. Observe that ai has at most one outgoing edge. If it has no out-
going edges, then we can revert an arbitrarily chosen one maintaining a ρ-admissible
orientation. Hence, without loss of generality, we may assume that ai has exactly

one outgoing edge, say (ai, u
p(i)
i ) ∈ A for some p(i) ∈ {1, . . . , n}. Consequently, for

all j ∈ {1, . . . , n} \ {p(i)} we have (yji , u
j
i ) ∈ A, and in turn (ci′,i, y

j
i ) ∈ A for all

1 ≤ i′ ≤ k.
Let 1 ≤ i < i′ ≤ k. For similar reasons as in the previous paragraph

we may assume, without loss of generality, that di,i′ has exactly one incoming

edge, say (e
q(i,i′),q′(i,i′)
i,i′ di,i′) ∈ A for (q(i, i′), q′(i, i′)) ∈ Ei,i′ . It follows that

(ci,i′ , e
q(i,i′),q′(i,i′)
i,i′ ) ∈ A. We have already concluded that (ci,i′ , y

j
i ) ∈ A for all

j ∈ {1, . . . , n} \ {p(i)} and (ci,i′ , y
j
i′) ∈ A for all j ∈ {1, . . . , n} \ {p(i′)}. Thus the
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number of outgoing edges from ci,i′ is at least 2(n−1)+1 = 2n−1. Observe that each

edge incident with ci,i′ has weight greater than N3, the weight of ci,i′e
q(i,i′),q′(i,i′)
i,i′ is

even greater than 2N3. Since bρ(ci,i′)/N
3c = 2n, we conclude that ci,i′ has no further

outgoing edges than the 2n− 1 edges identified so far. In particular (eq,q
′

i,i′ , ci,i′) ∈ A
for all (q, q′) ∈ Ei,i′ \ {(q(i, i′), q′(i, i′))} and (y

p(i)
i ci,i′), (y

p(i′)
i′ ci,i′) ∈ A. The latter

implies (u
p(i)
i , y

p(i)
i ) ∈ A and consequently (x

p(i)
i , u

p(i)
i ) ∈ A and (bi,i′ , x

p(i)
i ) ∈ A; sim-

ilarly (bi,i′ , x
p′(i)
i′ ) ∈ A. We concluded above that for (q, q′) ∈ Ei,i′\{(q(i, i′), q′(i, i′))}

we have (eq,q
′

i,i′ , ci,i′) ∈ A, thus (bi,i, e
q,q′

i,i′ ) ∈ A. Hence the weighted outdegree of bi,i′

is high enough to conclude, similarly as above for ci,i′ , that all edges incident with
bi,i′ that we have not yet identified as outgoing are incoming edges.

In view of ρ(bi,i′) and ρ(ci,i′) and the weights of the respective outgoing edges
we conclude

w(bi,i′x
q(i,i′)
i ) + w(bi,i′x

q′(i,i′)
i′ ) = w(bi,i′e

q(i,i′),q′(i,i′)
i,i′ )

≥ w(bi,i′x
p(i)
i ) + w(bi,i′x

p(i′)
i′ )

and
w(ci,i′y

q(i,i′)
i ) + w(ci,i′y

q′(i,i′)
i′ ) = w(ci,i′e

q(i,i′),q′(i,i′)
i,i′ )

≤ w(ci,i′y
p(i)
i ) + w(ci,i′y

p(i′)
i′ ).

The first inequality gives q(i, i′)+q′(i, i′)N ≥ p(i)+Np(i′) and so q′(i, i′) ≥ p(i′); the
second inequality gives q′(i, i′) ≤ p(i′); their combination gives q′(i, i′) = p(i′). Using
this identity to simplify the two inequalities we can finally obtain q(i, i′) = p(i). We

conclude that v
p(i)
i and v

p(i′)
i′ are adjacent in G for all 1 ≤ i < i′ ≤ k. Consequently

the vertices v
p(1)
1 , . . . , v

p(k)
k induce a clique in G, and Claim 3 follows.

Claim 4. If G has a clique on k vertices then H has a ρ-admissible orientation.

This is the easy direction. Assume there exists a clique on k vertices in G. We can

write the vertices of the clique as v
p(1)
1 , . . . , v

p(k)
k where p(i) ∈ {1, . . . , n}. Clearly

(p(i), p(i′)) ∈ Ei,i′ holds for 1 ≤ i < i′ ≤ k. We define a ρ-admissible orientation Λ
es follows. Again we write A = {Λ(e) : e ∈ E(G) }.

For 1 ≤ i ≤ k we make aiu
p(i)
i the only outgoing edge of ai; accordingly for

j = p(i) we set (uji , y
j
i ), (xji , u

j
i ) ∈ A, and (yji , c), (c, x

j
i ) ∈ A for all c = ci′,i (1 ≤

i′ < i) and c = ci,i′ (i < i′ ≤ k); for j 6= p(i) we take the inverse orientation of the
mentioned edges.

For 1 ≤ i < i′ ≤ k we we make di,i′e
p(i),p(i′)
i,i′ the only incoming edge of di,i′ ; for

(p, p′) ∈ Ei,i′ we set (ep,p
′

i,i′ , bi,i′) ∈ A exactly when j = p(i), and we set (ep,p
′

i,i′ , ci,i′) ∈
A exactly when j 6= p(i).

This completes the definition of Λ. It is easy to verify that Γ is indeed ρ-admis-
sible, hence Claim 4 follows.

It is evident that H can be computed in polynomial time from G. By Claim 2, the
treewidth of H is a function of k, thus with Claims 3 and 4 we have established
an fpt-reduction from Partitioned Clique to Chosen Maximum Outdegree.
In view of Claim 1 and the W[1]-hardness of Partitioned Clique, Theorem 5
follows.
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