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Abstract

Krishnamurthy [1985] introduced symmetry
rules that make the informal “without loss of
generality” reasoning available for resolution-
based systems. The homomorphism rules of
Szeider [2005] are more powerful variants of
Krishnamurthy’s rules that can save in certain
cases an exponential number of inference steps
over symmetry rules. In this talk we will review
the concepts of symmetry and homomorphism
rules and discuss various questions and results
that arise in that context.

1 Resolution

Resolution is a reasoning method that is particularly
suited for automated reasoning as it rests on one sin-
gle rule of inference:

If from a set of clauses one can derive the
clauses C ∪ {x} and D ∪ {¬x} then the resolu-
tion rule (Res) allows to derive also the clause
C ∪D.

A clause is a set of literals and represents a disjunction; a
literal is a variable or a negated variable. The clauses in
the given set are axioms and can be derived immediately.
It is well known that a set of clauses is unsatisfiable if
and only if one can derive the empty clause from it using
the resolution rule. A derivation of the empty clause is
called a refutation.

Resolution is fundamental for many automated rea-
soning systems. Some unsatisfiable sets of clauses are
“hard” for resolution: an exponential number of reso-
lution steps is required to derive the empty clause. A
famous hard example for resolution are the “pigeon hole
clause sets.” The pigeon hole clause set PHn encodes
(the negation of) the fact that n + 1 pigeons do not
fit into n holes if each hole can hold at most one pi-
geon. Using variable xi,j to represent the proposition
“pigeon i sits in hole j” we can define PHn as the set

of the following clauses: all clauses {xi,1, . . . , xi,n} for
1 ≤ i ≤ n + 1 (“pigeon i sits in some hole”), and all the
clauses {¬xi,j ,¬xi′,j} for 1 ≤ i < i′ ≤ n + 1, 1 ≤ j ≤ n
(“pigeons i and i′ cannot sit in the same hole”). Haken
[1985] has shown that it requires 2Ω(n) resolution steps
to obtain the empty clause from PHn.

Such exponential lower bounds for resolution imply
that satisfiability solvers that are based on the Davis-
Putnam-Logmann-Loveland procedure (DPLL) [Davis et
al., 1962] need exponential time for these instances, in-
dependent of the branching heuristics used. As demon-
strated by Mitchel [1998] exponential resolution lower
bounds are also significant for the running time of con-
straint solvers.

2 Symmetries and Homomorphisms

If we take into account that PHn is highly symmetric,
we can make the following inductive argument: Assume
that PHn is satisfiable. Without loss of generality, as-
sume that pigeon n+1 sits in hole n; thus we set variable
xn+1,n to true. This leaves us with PHn−1. Repeating
this step several times we obtain PH1 which is evidently
unsatisfiable.

Krishnamurthy [1985] suggested certain symmetry
rules that formalize this type of reasoning for resolution-
based systems. He distinguished between two variants
of the symmetry rule: a global symmetry rule that takes
into account symmetries of the given set of axioms as
a whole, and a more powerful local symmetry rule that
takes into account what axioms were actually used for
deriving a certain clause. We will describe the rules more
detailed below.

Krishnamurthy’s symmetry rules are special cases of
homomorphism rules; the latter were introduced by Szei-
der [2005] using the concept of CNF homomorphism
[Szeider, 2003].
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Figure 1: Illustration for the homomorphism rule. The
homomorphism rule allows to obtain ϕ(C) in one single
step; ϕ(C) could be derived from ϕ(F ′) but this deriva-
tion (indicated by dashed lines) can be omitted.

Let F and G be sets of clauses. A homomorphism
from F to G is a mapping ϕ from the literals of F to
the literals of G such that the following conditions hold
(ϕ(C) denotes the set {ϕ(x) : x ∈ C }).

1. ϕ(¬x) = ¬ϕ(x) for all variables x of F (“ϕ preserves
complements”);

2. ϕ(C) ∈ G for all clauses C ∈ F (“ϕ preserves
clauses”).

For example, let F = {{x}, {¬y}, {¬x, y}} and G =
{{z}, {¬z}}. The mapping ϕ with ϕ(¬x) = ϕ(y) = z,
and ϕ(x) = ϕ(¬y) = ¬z, is a homomorphism from F to
G. Note that ϕ({¬x, y}) = {z}, thus a homomorphism
can “shrink” clauses.

If ϕ is a homomorphism from F to G and F ′ ⊆ F ,
then we write ϕ(F ′) = {ϕ(C) : C ∈ F ′ }. A symmetry
ϕ is an injective homomorphisms; i.e., a homomorphism
where ϕ(x) 6= ϕ(y) whenever x 6= y. A homomorphism
is nontrivial if it differs from the identity mapping.

It is easy to see that if F is unsatisfiable and there ex-
ists a homomorphism from F to G, the G is unsatisfiable
as well [Szeider, 2003].

Now we can formulate the following rule (see Figure 1
for an illustration).

Give a set of clauses F . Assume that we can
derive a clause C from a subset F ′ ⊆ F . If ϕ is
a homomorphism from F ′ to F , then the local
homomorphism rule (LHR) allows to derive the
clause ϕ(C).

The soundness of this rule can be seen as follows: we
consider a sequence C1, . . . , Cn of clauses, with Cn = C,
that corresponds to a derivation of C from F ′. Applying
ϕ we obtain the sequence ϕ(C1), . . . , ϕ(Cn), ϕ(Cn) =
ϕ(C). It is not difficult to see that the latter sequence
contains a valid derivation of ϕ(C) from the clauses in
ϕ(F ′). However, ϕ(F ′) ⊆ F , hence there exits a deriva-
tion of ϕ(C) from F .

The argument outlined above suggests to consider
refutations that use the homomorphism rule as a suc-
cinct representation of resolution refutations.

Restricting the local homomorphism rule in various
ways leads to the following less general rules:

• The global homomorphism rule (GHR) arises from
the local one by requesting that ϕ is an endomor-
phism of F , that is, ϕ is a homomorphism from F
to F .

• Krishnamurty’s local symmetry rule (LSR) arises
from the local homomorphism rule by requesting
that ϕ is a monomorphism from F ′ to F , i.e.,
ϕ(x) 6= ϕ(y) whenever x 6= y.

• Krishnamurty’s global symmetry rule (GSR) arises
from the local homomorphism rule by requesting
that ϕ is an automorphism of F , i.e., ϕ is both
a monomorphism as well as an endomorphism of F .

Thus one can consider the following five resolution-
based systems: Res, Res+GSR, Res+LSR, Res+GHR,
and Res+LHR (for example, the system Res+GSR uses
the resolution rule together with the global symmetry
rule).

3 Comparison of the systems
We say that an unsatisfiable set F of clauses is easy for a
system A if one can derive the empty clause from F using
a polynomial number of inference steps of system A. If F
requires an exponential number of steps, we say that F is
hard for A. How are the above resolution-based systems
related to each other? Is system A strictly stronger than
system B in the sense that every instance that is easy
for B is also easy for A, but some instances are easy
for A and hard for B? Or are two systems A and B
incomparable in the sense that there are instances that
are easy for A and hard for B and instances where the
converse prevails?

For the five systems under consideration the following
is known (the first two statements have been established
in [Urquhart, 1999] and [Arai and Urquhart, 2000], re-
spectively; statements 3-6 have been established in [Szei-
der, 2005]).

1. Res+GSR is strictly stronger than Res.
2. Res+LSR is strictly stronger than Res+GSR.
3. Res+GHR is strictly stronger than Res+GSR.
4. Res+LHR is strictly stronger than Res+GHR.
5. Res+LHR is strictly stronger than Res+LSR.
6. Res+LSR and Res+GHR are incomparable.

The diagram in Figure 2 illustrates the relationships
between the systems.

In the following let us briefly review the proof ideas
used for establishing the above comparison results. Re-
call from above that the pigeon hole clause sets are hard
instances for Res. For Res+GSR however, PHn has as
a short refutation as the following induction argument,
given by Urquhart [1999], shows.

Evidently PH1 has a short proof. Now consider PHn

for n > 1. Using the resolution rule we can derive from
{¬xn+1,n,¬x1,n} ∈ PHn and {x1,1, . . . , x1,n−1, x1,n} ∈
PHn the clause {x1,1, . . . , x1,n−1,¬xn+1,n}. Similarly we
can derive all the clauses {xi,1, . . . , xi,n−1,¬xn+1,n} for
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Figure 2: The relative strength of the considered reason-
ing systems.

i = 2, . . . , n. Thus we have the clauses of PHn−1 ex-
cept that some contain additionally the literal ¬xn+1,n.
By induction hypothesis there is a short Res+GSR-
derivation of the empty clause from PHn−1. This gives
rise to a short Res+GSR-derivation of the unit clause
{¬xn+1,n} from PHn. Evidently there is an automor-
phisms ϕ of PHn such that ϕ(xn+1,n) = xn+1,n−1.
Hence the global symmetry rule allows to derive the
clause ϕ({¬xn+1,n}) = {¬xn+1,n−1}. Similarly, we can
use the global symmetry rule to derive all the clauses
{¬xn+1,n−2}, . . . , {¬xn+1,1}. Resolving all these unit
clauses with the clause {xn+1,1, . . . , xn+1,n} ∈ PHn

yields the empty clause.

Thus PHn is hard for Res and easy for Res+GSR.

For the further comparison results one uses the fol-
lowing strategy. One “disguises” the clauses of PHn in a
certain way, making the symmetry/homomorphism rule
under consideration inapplicable. The disguise is formed
in such a way that the original clauses of PHn can be
obtained from the disguised clauses by means of a few
resolution steps. This property is used to show that the
disguised PHn remains hard for Res.

The simplest disguising technique is to replace a
clauses C by the clause C ∪ {x} and to add the unit
clause {¬x}; the original clauses C can be res-established
by resolving C∪{x} with {¬x}. Applying this technique
one can disguise PHn in such a way that every clause has
a unique size (except for unit clauses). Thus the global
symmetry rule is inapplicable.

The disguise can be designed in such a way that var-
ious symmetry/homomorphism rules cannot be applied
any more. If a certain symmetry/homomorphism rule X
is not applicable for the disguised PHn, then we have an
instance that is hard for the system Res+X. If we can
design the disguise in such a way that rule X can still be
applied but another more restricted rule Y cannot, we
have shown that system Res+X is strictly stronger than
system Res+Y.

There exists a disguise that makes the local homomor-
phism rule, the strongest of the rules considered, inap-
plicable [Szeider, 2005]. Hence there are hard instances
for the system Res+LHR.

4 Algorithmic Aspects
In our above considerations we have asked for the ex-
istence of short refutations; we have not worried about
the question of how a short refutation can actually be
found. This “proof complexity” perspective has the ad-
vantage that hardness results apply to all possible algo-
rithms that search for refutations: Even if we had an
ideal heuristics that always tells us the best next move
in our derivation, the running time of such an algorithm
would still be exponential if the instance under consid-
eration has no short refutation.

An algorithm that searches for proofs of one of the four
systems considered in Section 2, one needs to find sym-
metries/homomorphisms in order to apply the respective
rule.

The following decision problems arise in the context
of applying the various symmetry/homomorphism rules.

P1 Has a given set F of clauses a nontrivial automor-
phism?

P2 Given a set F of clauses and a subset F ′ of F ; is
there a nontrivial monomorphism from F ′ to F?

P3 Has a given set F of clauses an endomorphism that
is not an automorphism ?

P4 Given a set F of clauses and a subset F ′ of F ; is
there a nontrivial homomorphism from F ′ to F?

Problems P1, P2, P3, and P4 are associated with ap-
plications of the rules GSR, LSR, GHR, and LHR, re-
spectively. All problems belong to NP as one can easily
verify whether a given homomorphism has the required
property. Except for problem P1, all other problems
are known to be NP-hard (NP-hardness of P2 is shown
in [Boy de la Tour and Demri, 1995]; NP-hardness of
problems P3 and P4 is shown in [Szeider, 2005]). As
observed by Boy de la Tour and Demri [1995], prob-
lem P1 is polynomial-time equivalent to the graph au-
tomorphism problem GA, which asks whether a given
graph has a nontrivial automorphism. GA is a natu-
ral problem in NP that appears to be not solvable in
polynomial time. However, it is believed that GA is not
NP-complete since otherwise the Polynomial Hierarchy
would collapse to its second level [Schöning, 1988]. Thus
the weakest of the rules, GSR, is apparently computa-
tionally less costly than the other rules. Moreover, one
can compute first the automorphism group at a prepro-
cessing stage (cf. the discussion in [Boy de la Tour and
Demri, 1995]). Some experimental results on the algo-
rithmic use of a restricted version of GSR have been
reported by Benhamou and Säıs [1994].

In summary, the worst-case complexities of the
problems associated with applications of the symme-
try/homomorphism rules, except for the weakest rule
GSR, are not very encouraging, and a direct use of the
rules in automated deduction seems difficult. However,
it is conceivable that in certain situations one has ad-
ditional information on the given instance that allows
an efficient computation of homomorphisms and symme-
tries. This aspect seems to be of particular relevance if
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Figure 3: Illustration for the dynamic homomorphism
rule.

the instance encodes a problem from a different domain,
such as constraint satisfaction.

5 Dynamic Rules

The homomorphisms/symmetries of the above rules
act on the clauses of the input set F , the ax-
ioms. However, one could apply first some inference
steps in order to derive some clauses, and then ap-
ply the homomorphism/symmetry rules using homo-
morphisms/symmetries that act on the derived clauses.
These considerations lead to the following definition (see
Figure 3 for an illustration).

Given a set F of clauses. Assume that we can
derive from F the sets F ′ and F ′′, and assume
that, in turn, we can derive from F ′ the clause
C. If ϕ is a homomorphism from F ′ to F ′′,
then the dynamic homomorphism rule (DHR)
allows to derive the clause ϕ(C).

The dynamic homomorphism rule is discussed in
[Pitassi, 2003] and [Szeider, 2005].

The soundness of this rule can be established simi-
larly as the soundness of the local homomorphism rule.
In this more general setting, the above approach for find-
ing hard instances does not work anymore: one can al-
ways derive the original PHn from its disguise; once PHn

is derived, one can obtain the empty clause via a poly-
nomial number of inference steps using resolution and
symmetry rules that act on the derived clauses.

Currently we do not know any hard instances for the
system Res+DHR.
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