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Abstract

We generalize Krishnamurthy’s well-studied symmetry rule for resolution

systems by considering homomorphisms instead of symmetries; symme-

tries are injective maps of literals which preserve complements and clauses;

homomorphisms arise from symmetries by releasing the constraint of be-

ing injective.

We prove that the use of homomorphisms yields a strictly more pow-

erful system than the use of symmetries by exhibiting an infinite sequence

of sets of clauses for which the consideration of global homomorphisms

allows exponentially shorter proofs than the consideration of local sym-

metries. It is known that local symmetries give rise to a strictly more

powerful system than global symmetries; we prove a similar result for lo-

cal and global homomorphisms. Finally, we obtain an exponential lower

bound for the resolution system enhanced by the local homomorphism

rule.

1 Introduction

Informal proofs often contain the phrase “. . .without loss of generality, we as-
sume that. . .” indicating that it suffices to consider one of several symmetric
cases. Krishnamurthy [8] made this informal feature available for the resolu-
tion system; he introduced a global symmetry rule (exploiting symmetries of
the refuted CNF formula) and a local symmetry rule (exploiting symmetries of
those clauses of the refuted CNF formula which are actually used at a certain
stage of the derivation). Similar rules have been formulated for cut-free Gentzen
systems by Arai [1, 3].

∗Part of this work has been published in preliminary form in the proceedings of the 20th
International Symposium on Theoretical Aspects of Computer Science (STACS’03), Berlin,
February 27 – March 1, 2003.

†The author gratefully acknowledges the support of the Austrian Science Funds (FWF)
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In the quoted paper, Krishnamurthy observes that the resolution system,
equipped with the global symmetry rule, permits short proofs (i.e., proofs of
polynomial length) of several combinatorial principles, including the pigeon hole
formulas; however, it is well known that the pigeon hole formulas require res-
olution proofs of exponential length ([7]; see also [5]). A formal proof of this
separation (resolution from resolution + global symmetry) can be found in [12].
Moreover, Arai and Urquhart [4] showed that for resolution systems the local
symmetry rule attains an exponential speedup over the global symmetry rule.
Random formulas contain almost no nontrivial global symmetries, but it is ex-
pected that random formulas contain a lot of local symmetries [12].

The symmetries of CNF formulas considered by Krishnamurthy are special
cases of CNF homomorphisms, introduced in [10]. A homomorphism from a
CNF formula F to a CNF formula G is a map ϕ from the literals of F to the
literals of G which preserves complements and clauses; i.e., ϕ(x) = ϕ(x) for all
literals x of F , and {ϕ(x) : x ∈ C } ∈ G for all clauses C ∈ F — symmetries
are nothing but injective homomorphisms (see Section 3 for a more detailed
definition). Allowing homomorphisms instead of symmetries in the formulation
of the global and local symmetry rule gives raise to more general rules which
we term global and local homomorphism rule, respectively.

In view of the soundness proof for the local homomorphism rule (Lemma 8),
this rule can be considered as a means for omitting a subderivation if the sub-
derivation is the homomorphic image (say, under a homomorphism ϕ) of another
already established subderivation. For the global homomorphism rule, ϕ must
be additionally an endomorphism of the input formula. See Section 4 for a small
example which illustrates both variants of the homomorphism rule.

Separation results

We show that the consideration of homomorphisms gives an exponential speedup
over symmetries. We provide a sequence of formulas for which even global
homomorphisms outperform local symmetries (Section 5).

Furthermore, in Section 6 we exhibit a sequence of formulas for which proofs
using local homomorphisms are exponentially shorter than shortest proofs using
global homomorphisms (a similar result is shown in [4] for symmetries). Fig. 1
gives an overview of our results on the relative efficiency of the considered sys-
tems in terms of p-simulation (system A p-simulates system B if refutations of
system B can be transformed in polynomial time into refutations of system A,
cf. [11]).

Lower bounds

The exponential lower bound for resolution + local symmetry rule established in
[4] does not extend to the more general homomorphism system: to prevent any
symmetries, it suffices to modify formulas which are hard for resolution (e.g.,
pigeon hole formulas) so that all clauses have different width (besides some unit
clauses). This can be achieved by adding “dummy variables” to clauses and
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HR-II

SRC-I

R

SRC-II HR-I
R = resolution
SRC-I = resolution + global symmetry rule
SRC-II = resolution + local symmetry rule
HR-I = resolution + global homomorphism rule
HR-II = resolution + local homomorphism rule

Figure 1: Proof system map. A → B indicates that system A p-simulates
system B, but B cannot p-simulate A.

by providing unit clauses which contain the negations of the dummy variables.
However, since widths of clauses may decrease under homomorphisms, such
approach is not applicable for homomorphisms.

We achieve an exponential lower bound for the local homomorphism rule
by a “link construction,” which transforms any formula F which is hard for
resolution into a formula F ◦ which is hard for resolution + local homomorphism
rule. The trick is to take a new variable for every literal occurrence of F , and
to interconnect the obtained clauses by certain sets of clauses (“links”) which
cannot be mapped to F ◦ by a non-trivial homomorphism. This construction is
presented in Section 7.

Further Generalizations

The exponential lower bounds for the above systems depend crucially on the
fact that the considered homomorphisms/symmetries involve only clauses of
the input formula, not derived clauses. In Section 8 we discuss this observation
and formulate a generalization of the homomorphism rule, a “dynamic homo-
morphism rule,” where also homomorphisms of derived clauses can be used (a
dynamic symmetry rule can be formulated analogously). All formulas consid-
ered in the sequel (in particular the formulas of Section 7 that are hard for
resolution + local homomorphism rule) have short proofs in presence of the
dynamic rules. This yields immediately an exponential separation of dynamic
rules from their “static” variants. The complexities of resolution systems with
dynamic rules remain open.

2 Definitions and preliminaries

We consider propositional formulas in conjunctive norm form (CNF) represented
as sets of clauses: We assume an infinite set var of (propositional) variables. A
literal ` is a variable x or a negated variable ¬x; we write lit := {x,¬x : x ∈ var }.
For a literal ` we put ` := ¬x if ` = x, and ` := x if ` = ¬x. For a set of literals
C we put C := { ` : ` ∈ C }. We say that sets C,D of literals clash if C ∩D 6= ∅,
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and that C,D overlap if C ∩D 6= ∅. A set of literals is tautological if C ∩C 6= ∅.
A finite non-tautological set of literals is a clause; a finite set of clauses is a
formula. The length of a formula F is given by its cardinality |F |, and its size
by ‖F‖ :=

∑

C∈F |C|. Note that always |F | ≤ ‖F‖ + 1. A formula F mentions

a variable x if F contains a clause C such that x ∈ C ∪ C; var(F ) denotes the
set of variables mentioned by F . Similarly we put lit(F ) := var(F ) ∪ var(F ). A
literal ` is a pure literal of a formula F if some clauses of F contain ` but no
clause contains `.

A formula F is satisfiable if there is a map t : var(F ) → {0, 1} such that
every clause of F contains either a variable x with t(x) = 1 or a literal ¬x with
t(x) = 0. A formula is minimally unsatisfiable if it is unsatisfiable but every
proper subset is satisfiable.

If C1 ∩ C2 = {`} for clauses C1, C2 and a literal `, then the resolution rule
allows the derivation of the clause D = (C1 ∪ C2) \ {`, `}; D is the resolvent of
C1 and C2, and we say that D is obtained by resolving on `. Let F be a formula
and C a clause. A sequence S = C1, . . . , Ck of clauses is a resolution derivation
of Ck from F if for each i ∈ {1, . . . , k} at least one of the following holds.

1. Ci ∈ F (“Ci is an axiom”);

2. Ci is a resolvent of Cj and Cj′ for some 1 ≤ j < j′ < i (“Ci is obtained
by resolution”);

3. Ci ⊇ Cj for some 1 ≤ j < i (“Ci is obtained by weakening”).

We write |S| := k and call k the length of S. If Ck is the empty clause, then
S is a resolution refutation of F . A clause Ci in a resolution derivation may
have different possible “histories;” i.e., Ci may be the resolvent of more than
one pair of clauses preceding Ci, or Ci may be both an axiom and obtained
from preceding clauses by resolution, etc. In the sequel, however, we assume
that an arbitrary but fixed history is associated with each considered resolution
derivation; a similar convention applies to other types of derivations considered.

It is well known that resolution is a complete proof system for unsatisfiable
formulas; i.e., a formula F is unsatisfiable if and only if there exists a resolution
refutation of it.

The resolution complexity CompR(F ) of an unsatisfiable formula F is the
length of a shortest resolution refutation of F (for satisfiable formulas we put
CompR(F ) := ∞). Here, R stands for the resolution system, and we will use
similar notations for other proof systems considered in the sequel.

We call a resolution derivation weakening-free if no clause is obtained by
weakening. It is well known that weakening is inessential for the length of
resolution refutations:

Lemma 1. The length of a shortest weakening-free resolution refutation of a
formula F is not greater than the length of a shortest resolution refutation of F .

Proof. See the proof of the more general Lemma 9 below.
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If a formula F contains a unit clause {`}, then we can reduce F to a formula
F ′ by removing {`} from F and ` from all other clauses. We say that F can
be reduced to F ∗ by unit resolution if F ∗ can be obtained from F by multiple
applications of this reduction. Evidently, F is satisfiable if and only if F ∗ is
satisfiable. The following can be shown easily.

Lemma 2. Let F and F ∗ be formulas such that F can be reduced to F ∗ by unit
resolution. Then CompR(F ∗) ≤ CompR(F ).

Proof. It suffices to show the lemma for one reduction step. Let S = C1, . . . , Ck

be a resolution derivation from a formula F with {`} ∈ F , and let F ∗ =
{C` : C ∈ F } \ {{`}} where C` is a shorthand for C \ {`}. It follows by a
standard induction on k, that if ` /∈ Ck, then C`

1, . . . , C
`
k contains a subsequence

S∗ which is a resolution derivation of some subset of C`
k from F ∗.

The pigeon hole formulas PHn, n = 1, 2, . . . encode the fact that n + 1
pigeons do not fit into n holes if each hole can hold at most one pigeon (i.e.,
Dirichlet’s Box Principle); formally, we take variables xi,j , 1 ≤ i ≤ n + 1 and
1 ≤ j ≤ n (with the intended meaning ‘pigeon i sits in hole j’) and put

PHn := { {xi,1, . . . , xi,n} : 1 ≤ i ≤ n+ 1 } ∪

{ {¬xi,j ,¬xi′ ,j} : 1 ≤ j ≤ n, 1 ≤ i < i′ ≤ n+ 1 }.

Since PHn contains n+ 1 clauses of width n and n
(
n+1

2

)
clauses of width 2, we

have |PHn| = (n3 +n2)/2+n+1 = O(n3), and ‖PHn‖ = n3 +2n2 +n = O(n3).
Furthermore, the following can be verified easily.

Lemma 3. PHn is minimally unsatisfiable for every n ≥ 1.

Note that the weaker “onto” variant of the pigeon hole formula is not mini-
mally unsatisfiable.

The following seminal result on the length of resolution refutations is due
to Haken [7]; see also [5] for a simpler proof. This result is the basis for our
separation and lower bound results.

Theorem 1. Shortest resolution refutations of PHn have length 2Ω(n).

3 Homomorphisms

Consider a finite set L ⊆ lit of literals. A map ρ : L → lit is a renaming if for
every pair `, ` ∈ L we have ρ(`) = ρ(`) (note that in our setting, renamings are
not necessarily injective). For a subset C ⊆ L we put ρ(C) := { ρ(`) : ` ∈ C },
and for a formula F with lit(F ) ⊆ L we put ρ(F ) := { ρ(C) : C ∈ F }. Since
for a clause C, ρ(C) may be tautological, we define ρcls(F ) as the set of all
non-tautological ρ(C) with C ∈ F .

Lemma 4. Let F be a formula, ρ : lit(F ) → lit a renaming, and C,D clauses
of F . If C and D overlap, then ρ(C) and ρ(D) overlap. If C and D clash, then
ρ(C) and ρ(D) clash.
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Lemma 5. Let F be a formula, S = C1, . . . , Ck a resolution derivation from
F , and ρ : lit(F ) → lit a renaming. If ρ(Ck) is a clause, then ρ(C1), . . . , ρ(Ck)
contains a subsequence which is a resolution derivation of ρ(Ck) from ρcls(F ).

Proof. If Ck is an axiom or is obtained by the weakening rule, the same holds
trivially for ρ(Ck); i.e., if Ck ∈ F , then ρ(Ck) is a clause and belongs to ρ(F ),
and if Ck ⊇ Cj for some Cj , 1 ≤ j < k, then ρ(Ck) ⊇ ρ(Cj). Hence assume
that Ck is obtained by the resolution rule from clauses Cj , Cj′ , 1 ≤ j < j′ < k.
Thus, there is a literal ` with Cj ∩ Cj′ = {`}, and we have

ρ(Cj) ⊆ ρ(Ck) ∪ {ρ(`)} and ρ(Cj′ ) ⊆ ρ(Ck) ∪ {ρ(`)}. (1)

First we show that not both ρ(Cj) and ρ(Cj′ ) can be tautological. Suppose to
the contrary that there are literals a, b ∈ Cj , a

′, b′ ∈ Cj′ , such that ρ(a) = ρ(b),
and ρ(a′) = ρ(b′). Since ρ(Ck) is non-tautological, ρ(`) ∈ {ρ(a), ρ(b)} and
ρ(`) ∈ {ρ(a′), ρ(b′)}. W.l.o.g., we assume ρ(`) = ρ(a) = ρ(a′). By (1) we
have ρ(b), ρ(b′) ∈ ρ(Ck); however, since ρ(b) = ρ(b′), it follows that ρ(Ck) is
tautological, a contradiction.

Hence at least one of the clauses ρ(Cj) and ρ(Cj′ ) is non-tautological. If both
ρ(Cj) and ρ(Cj′ ) are non-tautological, then evidently ρ(Cj) ∩ ρ(Cj′ ) = {ρ(`)},
and so ρ(Ck) is the resolvent of ρ(Cj) and ρ(Cj′ ). It remains to consider the
case that exactly one of ρ(Cj) and ρ(Cj′ ) is tautological, say ρ(Cj). Thus,
assume that there are literals a, b ∈ Cj such that ρ(a) = ρ(b). As above we
conclude that ρ(`) ∈ {ρ(a), ρ(b)}, say ρ(`) = ρ(a). From ρ(b) 6= ρ(`) and the
first inclusion of (1) we conclude ρ(`) ∈ ρ(Ck). Hence ρ(Cj′ ) ⊆ ρ(Ck) follows
from the second inclusion of (1). Thus ρ(Ck) can be obtained from ρ(Cj′ ) by
weakening.

The lemma now follows by induction on the length of S.

Let F1, F2 be formulas and ϕ : lit(F1) → lit(F2) a renaming. We call ϕ a
homomorphism from F1 to F2 if ϕ(F1) ⊆ F2 (thus, for every C ∈ F1, ϕ(C) is
a clause and belongs to F2). The set of all homomorphisms from F1 to F2 is
denoted by Hom(F1, F2). A homomorphism ϕ ∈ Hom(F1, F2) is a monomor-
phism if the map ϕ : lit(F1) → lit(F2) is injective. Homomorphisms from a
formula to itself are called endomorphisms ; an endomorphism ϕ of F is called
automorphism (or symmetry) if ϕ(F ) = F ; otherwise it is a proper endomor-
phism. We denote by idF the automorphism of F which maps every literal
of F to itself. Finally, we call a homomorphism ϕ ∈ Hom(F1, F2) positive if
ϕ(var(F1)) ⊆ var(F2) (i.e., literals are mapped to literals of the same polarity),
and we call ϕ width preserving if |ϕ(C)| = |C| holds for all clauses C ∈ F1.

We state some direct consequences of Lemma 5.

Lemma 6. Let F1 and F2 be formulas.

1. If C1, . . . , Ck is a resolution derivation from F1, ϕ ∈ Hom(F1, F2), and
ϕ(Ck) is a clause, then ϕ(C1), . . . , ϕ(Ck) contains a subsequence which is
a resolution derivation of ϕ(Ck) from F2.
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2. If Hom(F1, F2) 6= ∅, then CompR(F2) ≤ CompR(F1).

3. If Hom(F1, F2) 6= ∅ and F1 is unsatisfiable, then F2 is unsatisfiable.

4. Let ϕ be an endomorphism of F1. Then F1 is satisfiable if and only if
ϕ(F1) is satisfiable.

Parts 3 and 4 of the previous lemma have short semantic proofs as well,
see [10]. In view of part 4 we can reduce a formula F by endomorphisms until we
end up with a subset F ′ of F for which every endomorphism is an automorphism.
We call such F ′ a core of F , and we call F a core if it is a core of itself. In
general, there may be different ways of reducing F by endomorphisms, and we
may end up with different cores. However, in [10] it is shown that all cores of a
formula are isomorphic; thus, in a certain sense, these reductions are confluent.
In the quoted paper it is also shown that recognition of cores (i.e., of formulas
without proper endomorphisms) is co-NP-complete. The following is a direct
consequence of the last part of Lemma 6.

Lemma 7. Minimally unsatisfiable formulas are cores.

4 The homomorphism rule

Consider a derivation S from a formula F and a subsequence S ′ of S which is a
derivation of a clause C from a subset F ′ ⊆ F . If there is a homomorphism ϕ ∈
Hom(F ′, F ) such that ϕ(C) is non-tautological, then the local homomorphism
rule allows the derivation of ϕ(C). We call the restricted form of this rule which
can only be applied if F ′ = F the global homomorphism rule. The systems HR-I

and HR-II arise from the resolution system by addition of the global and local
homomorphism rule, respectively.

We illustrate the new rules by the following simple example. Consider the
formula F = {C1, . . . , C5} with C1 = {a, x}, C2 = {¬v,¬x, y}, C3 = {a,¬y},
C4 = {b,¬z}, C5 = {¬v, z}, and assume that we have obtained the clause {a, v}
from F by the resolution derivation S consisting of the following 5 clauses:

C1 axiom;
C2 axiom;
{a,¬v, y} by resolution from C1 and C2;
C3 axiom;
{a,¬v} from {a,¬v, y} and C3 by resolution.

Consider the non-injective renaming ϕ defined by ϕ(x) = ϕ(¬y) = ¬z, ϕ(a) = b,
and ϕ(v) = v (by definition of a renaming, we need not specify the values for
¬x, y, ¬a, and ¬v). For F ′ = {C1, C2, C3}, we have ϕ(F ′) = {C4, C5} ⊆ F ;
thus ϕ ∈ Hom(F ′, F ). Since the axioms used in the derivation S belong to F ′,
S is actually a derivation of {a,¬v} from F ′. Thus we can obtain the clause
ϕ({a,¬v}) = {b,¬v} by the local homomorphism rule, and we can add it as
sixth clause to S. Actually, ϕ can be extended to an endomorphism ϕ′ of F by
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setting ϕ′(b) = b, and ϕ′(z) = z, yielding ϕ′(F ) = {C4, C5}. Thus, the inference
of {b,¬v} can also be justified by the global homomorphism rule.

Now we consider F ∗ = {C1, . . . , C6} with C6 = {¬a} instead of F . Clearly
ϕ ∈ Hom(F ′, F ∗) and so we can still derive {b,¬v} by the local homomor-
phism rule. However, ϕ cannot be extended to an endomorphism of F ∗ since
ϕ({¬a}) = {¬b} /∈ F ∗; thus {b,¬v} cannot be obtained by the global homo-
morphism rule in this case.

Lemma 8. The homomorphism rule is sound; i.e., formulas having an HR-II
refutation are unsatisfiable.

Proof. Let F be a formula, S = C1, . . . , Ck an HR-II refutation of F , and n(S)
the number of applications of the homomorphism rule. We show by induction
on n(S) that S can be transformed into a resolution refutation S ′ of F .

If n(S) = 0, then this holds vacuously. Assume n(S) > 0 and choose i ∈
{1, . . . , k} minimal such that Ci is obtained from some Cj , 1 ≤ j < i, using
the homomorphism rule. Thus, there is some F ′ ⊆ F and a homomorphism
ϕ ∈ Hom(F ′, F ) such that ϕ(Cj) = Ci, and C1, . . . , Cj contains a subsequence
S′ which is a derivation of Cj from F ′. By the choice of i, S′ is a resolution
derivation. Applying Lemma 6(1), we conclude that ϕ(C1), . . . , ϕ(Cj) contains
a subsequence S′′ which is a resolution derivation of ϕ(Cj) from ϕ(F ′) ⊆ F . By
juxtaposition of S′′ and S we get an HR-II refutation S∗; since n(S′′) = 0, and
since we replaced one application of the homomorphism rule by a weakening,
we have n(S∗) = n(S) − 1. By induction hypothesis, S∗ can be transformed
into a resolution refutation of F .

The proof of Lemma 8 gives a reason for considering HR-II refutations as
succinct representations of resolution refutations. Note that the transformation
defined in this proof may cause an exponential growth of refutation length (this
is the case for the formulas constructed in Section 7).

Krishnamurthy’s systems of symmetric resolution SR-λ and SRC-λ, λ ∈
{I, II}, arise as special cases of HR-λ: In SRC-λ, applications of the homomor-
phism rule are restricted to cases where ϕ is a monomorphism (for λ = I, ϕ is an
automorphism of the refuted formula); SR-λ arises from SRC-λ by considering
only positive monomorphisms (variables are mapped to variables). In the con-
text of SR-λ and SRC-λ we refer to the homomorphism rule as the symmetry
rule.

In terms of informal proofs the homomorphism rule can be considered as
the strategy of proving only a hardest case out of several prevailing cases; the
symmetry rule says that it suffices to prove one of several equivalent cases.

Next we show that Lemma 1 extends to all the above systems.

Lemma 9. For every HR-II derivation S = C1, . . . , Ck from a formula F there
is a weakening-free HR-II derivation S ′ = D1, . . . , Dk from F with Di ⊆ Ci, i =
1, . . . , k; consequently, the length of a shortest weakening-free HR-II refutation
of an unsatisfiable formula F is not greater than the length of a shortest HR-II
refutation of F . Analogous statements hold for the systems R, SR-λ, SRC-λ,
HR-λ (λ ∈ {I,II}).
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Proof. We obtain S′ inductively as follows. If Ck is an axiom, then we put
Dk := Ck, and if Ck is obtained by the weakening rule from some Cj , 1 ≤ j < k,
then we put Dk := Dj .

Now assume that Ck is obtained by the resolution rule from clauses Cj , Cj′ ,
1 ≤ j < j′ < k. Thus, there is a literal ` with Cj ∩ Cj′ = {`}. If ` /∈ Dj , then
we put Dk := Dj ⊆ Ck; otherwise, if ` /∈ Dj′ , then we put Dk := Dj′ ⊆ Ck. If,
however, ` ∈ Dj ∩Dj′ , then Dk := (Dj ∪ Dj′) \ {`, `} ⊆ Ck is the resolvent of
Dj and Dj′ .

It remains to consider the case that Ck is obtained by the homomorphism
rule from some Cj , 1 ≤ j < k. That is, ϕ(Cj) = Ck for ϕ ∈ Hom(F ′, F ), and F ′

is a subset of F containing all axioms used to derive Cj . We put Dk := ϕ(Di).
Evidently, Dk can be obtained from Di using ϕ (observe that the axioms used
to derive Dj belong to F ′ as well). Since Dj ⊆ Cj by induction hypothesis, we
haveDk = ϕ(Dj) ⊆ ϕ(Cj) = Ck. Hence the lemma holds for HR-II; it also holds
for the other claimed systems since the respective restrictions to applications of
the homomorphism rule in S translates to the same restrictions in S ′.

Borrowing a notion from category theory, we call a formula rigid if it has no
automorphism except the identity map (cf. [9]). Since an SRC-I refutation of a
rigid formula is nothing but a resolution refutation, we have the following.

Lemma 10. If a formula F is rigid, then CompSRC-I(F ) = CompR(F ).

We say that F is locally rigid if for every integer n ≥ 2 there is at most one
clause C ∈ F with |C| = n. The next result is due to Arai and Urquhart [4].

Lemma 11. If F is locally rigid, then CompR(F ) = CompSRC-II(F ).

5 Separating HR-I from SRC-II

For this section, F denotes some arbitrary but fixed unsatisfiable formula and
S = C1, . . . , Ck a weakening-free SRC-I refutation of F . Let h(1) < · · · < h(n)
be the indexes h(i) ∈ {1, . . . , k} such that Ch(i) is obtained by the symmetry
rule, and let αh(i) denote the automorphism used to obtain Ch(i).

We construct a formula F× as follows. For each i = 1, . . . , n we take a
variable-disjoint copy Fi of F , using a new variable 〈x, i〉 for each x ∈ var(F ).
To unify notation, we write 〈x, 0〉 := x and F0 := F . By disjoint union we
obtain the formula

F× :=

n⋃

i=0

Fi;

we observe that ‖F×‖ ≤ |S| · ‖F‖.
Next we define two special endomorphisms ψ and π of F×.
ψ denotes the endomorphism of F× which increments the level of variables,

i.e., we put ψ(〈x, i〉) = 〈x, i + 1〉 for i < n and ψ(〈x, n〉) = 〈x, n〉. For a clause
C with var(C) ⊆ var(F×) we write C+ = ψ(C).
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π denotes the endomorphism of F× which projects F× to F ; i.e., ψ(〈x, j〉) =
〈x, 0〉, fort any j = 0, . . . , n.

We call an HR-I derivation C1, . . . , Ct from F× decreasing if for each i ∈
{1, . . . , t}, there is some j ∈ {1, . . . , n} such that var(Ci) ⊆ var(Fj), and when-
ever Ci′ is obtained from Ci by the homomorphism rule, i′ ∈ {i+ 1, . . . , t}, we
have var(Ci′ ) ⊆ var(Fj−1).

Lemma 12. There is a decreasing and weakening-free HR-I refutation S× of
F× with |S×| ≤ |S|2.

Proof. We construct inductively a sequence S0, . . . , Sn of weakening-free HR-I
refutations of F× such that for each i ∈ {0, . . . , n} and

h∗(i) :=

{

h(i+ 1) − 1 for i < n,

k for i = n

the following holds:

(*) Si can be written as D1, . . . , Dt, C1, . . . , Ck such that the initial part
S∗

i := D1, . . . , Dt, C1 . . . , Ch∗(i) is decreasing, and for every variable 〈x, j〉
occurring in Si we have j ≤ i.

Evidently, S0 := S satisfies (*), since every automorphism α of F gives rise to
an automorphism α×ofF×, defined by α×(〈x, j〉) = 〈α(x), j〉.

Now consider 0 < i ≤ n and assume that we have already constructed

Si−1 = D1, . . . , Dt, C1, . . . , Ch∗(i−1)
︸ ︷︷ ︸

S∗

i−1

, Ch(i), . . . , Ck,

satisfying (*). We define

Si := D+
1 , . . . , D

+
t , C

+
1 , . . . , C

+
h∗(i−1), C1, . . . , Ch∗(i)

︸ ︷︷ ︸

S∗

i

, . . . , Ck.

Clearly Si is an HR-I refutation of F×, since D+
1 , . . . , C

+
h∗(i−1) is just the initial

part S∗
i−1 of Si−1 shifted one level up; the remaining part C1, . . . , Ck is an HR-I

refutation of F× by assumption. Moreover, for every variable 〈x, j〉 occurring
in Si, either 〈x, j〉 or 〈x, j − 1〉 occurs in Si−1, but not 〈x, j′〉 for any j′ > j.
Hence, for every variable 〈x, j〉 occurring in Si we have j ≤ i. It remains to
show that S∗

i is decreasing.

• S∗
i−1 = D1, . . . , Ch∗(i−1) is decreasing by induction hypothesis, hence so is

D+
1 , . . . , C

+
h∗(i−1).

• The clauses C1, . . . , Ch∗(i)−1 can be obtained from C+
1 , . . . , C

+
h∗(i)−1 by

projection π, and we have var(C+
j ) ⊆ var(F1) for j = 1, . . . , h∗(i− 1).
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• Recall that Ch(i) = αh(i)(Cj) for some 1 ≤ j < i. Since Cj = π(C+
j ), Ch(i)

can be obtained from C+
j by the endomorphism αh(i) ◦ π.

It follows now by induction that Sn satisfies (*); thus S× := Sn is a decreasing
and weakening-free HR-I refutation of F×. By construction, the length of S×

is at most nk ≤ |S|2. Whence the lemma is shown true.

Next we modify F× so that it becomes a locally rigid formula F ], deploying
a similar construction as used by Arai and Urquhart [4]. Let E1, . . . Em be a
sequence of all the clauses of F× such that for any Ej ∈ Fi and Ej′ ∈ Fi′ we
have

i < i′ implies j < j′;
i = i′ and |Ej | < |Ej′ | implies j < j′;

that is, for i < i′, clauses of Fi precede clauses of F ′
i , and clauses belonging to

the same Fi are ordered by increasing size.
For each clause Ej we take new variables yj,1, . . . , yj,j , and we put

Qj := {Ej ∪ {yj,1, . . . , yj,j}, {¬yj,1}, . . . , {¬yj,j}}.

Finally we define F ] :=
⋃m

j=1 Qj , observing that ‖F ]‖ ≤ ‖F×‖ + 2|F×|2. We
state a direct consequence of the above definitions.

Lemma 13. F ] is locally rigid and can be reduced to F× by unit resolution.

Consider an endomorphism ϕ× of F× for which ϕ×(Ej) = Ej′ implies j ≥ j′,
j, j′ ∈ {1, . . . ,m} (this holds for all endomorphisms used in S×, since S× is
decreasing). We extend ϕ× to an endomorphism of F ] by setting

ϕ](yj,i) := yj′,min(i,j′).

Observe that ϕ×(Ej) = Ej′ implies ϕ](Qj) = Qj′ .

Lemma 14. CompHR-I(F
]) ≤ |S×| + |F ]|.

Proof. Let S× be the HR-I refutation of F× as provided by Lemma 12, and
let Y denote the set of variables of the form yj,i. We replace each clause C of
S× by some clause C ′, C ⊆ C ′ ∪ Y , such that the resulting sequence S] is an
HR-I derivation from F ]: If C is an axiom, i.e., C = Ej ∈ F×, then we put
C ′ := Ej ∪ {yj,1, . . . , yj,j} ∈ F ]. If C is obtained by resolving clauses C1, C2,
then we let C ′ be the resolvent of C ′

1 and C ′
2. Finally, if C is obtained by the

homomorphism rule, say C = ϕ×(C1), then we put C ′ := ϕ](C1) where ϕ] is
the extension of ϕ× as defined above.

Since the last clause of S× is empty, the last clause of S] is a subset of Y ;
hence we can use unit clauses {¬y}, y ∈ Y , to extend S] to an HR-I refutation
of F ], increasing its length at most by |Y | + 1 ≤ |F ]|.

The following lemma is due to Urquhart [12], see also Krishnamurthy [8]. (In
[12], the lemma is formulated for certain formulas PHCn with PHn ⊆ PHCn;
its proof, however, does not rely on the clauses in PHCn \ PHn.)
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Lemma 15. There are SR-I refutations of length (3n + 1)n/2 for the pigeon
hole formulas PHn.

Theorem 2. There is an infinite sequence of formulas Fn, n = 1, 2, . . . such
that the size of Fn is O(n10), Fn has HR-I refutations of length O(n10), but
shortest SRC-II refutations have length 2Ω(n).

Proof. By Lemma 15, pigeon hole formulas PHn have SRC-I refutations Sn

of length O(n2). We apply the above constructions and consider PH×
n , PH]

n

and the corresponding HR-I refutations S×
n , S]

n, respectively. We put Fn :=
PH]

n. Lemmas 12, 15, and 14 yield |S]
n| = O(n10). Putting ϕ(〈x, i〉) := x

defines a homomorphism from F× to F . Thus, by Lemmas 6(2), 2, 13, and 11,
respectively, we have

CompR(PHn) ≤ CompR(PH×
n ) ≤ CompR(PH]

n) = CompSRC-II(PH]
n).

The result now follows from Theorem 1.

Corollary 1. SR-II (and so SR-I) p-simulates neither HR-I nor HR-II.

6 Separating HR-I from HR-II

In [4] it is shown that SR-II has an exponential speed up over SR-I. We show
an analogous result for HR-II and HR-I, using a similar construction.

Consider the pigeon hole formula PHn = {E1, . . . , Et}. For each clause Ej

we take new variables yj,1, . . . , yj,j , and we define

Qj := {Ej ∪ {yj,1}, {¬yj,1, yj,2}, . . . , {¬yj,j−1, yj,j}, {¬yj,j}},

and put PH∼
n :=

⋃t
j=1 Qj . Note that ‖PH∼

n ‖ ≤ ‖PHn‖ + 2|PHn|2 = O(n6).

Lemma 16. PH∼
n is a rigid core, for every n ≥ 1.

Proof. Let α be an automorphism of PH∼
n . We show that α = idPH∼

n
. Choose

j ∈ {1, . . . , t} arbitrarily. Since |α(C)| = |C| for every clause C, it follows
that α({¬yj,j}) = {¬yj′,j′} for some j′ ∈ {1, . . . , t}, i.e., α(yj,j) = yj′,j′ . Con-
sequently, α({¬yj,j−1, yj,j}) = {¬yj′,j′−1, yj′,j′} and so α(yj,j−1) = yj′,j′−1.
Repeated application of this argument yields j = j ′ and α(yj,i) = yj,i for all
i ∈ {1, . . . , j}. Hence we have yj,1 ∈ α(Ej ∪ {yj,1}); since Ej ∪ {yj,1} is the
only clause in PH∼

n which contains yj,1, we have α(Ej ∪ {yj,1}) = Ej ∪ {yj,1},
and so α(Ej) = Ej . For n = 1 it is now easy to see that α is the identity
map; hence assume n ≥ 2. For every variable x ∈ var(PHn) there are clauses
{¬x,¬x′}, {¬x,¬x′′} ∈ PHn with x′ 6= x′′. We have α({¬x,¬x′}) = {¬x,¬x′}
and α({¬x,¬x′′}) = {¬x,¬x′′}, thus α(x) ∈ {x, x′} ∩ {x, x′′} = {x}. Hence
α = idPH∼

n
, and so PH∼

n is rigid.
It follows from Lemma 3 that PH∼

n is minimally unsatisfiable. Thus it is a
core by Lemma 7.

12



We get the following separation of SR-II (resp. HR-II) from HR-I .

Theorem 3. There is an infinite sequence of formulas Fn, n = 1, 2, . . . such
that the size of Fn is O(n6), Fn has SR-II refutations (and so HR-II refutations)
of length O(n6), but shortest HR-I refutations have length 2Ω(n).

Proof. By means of Lemma 2 we conclude from Theorem 1 that

CompR(PH∼
n ) = 2Ω(n).

Since PHn is minimally unsatisfiable, so is PH∼
n ; thus PH∼

n is a core by Lemma 7.
It is not difficult to show that PH∼

n is rigid. Thus every HR-I refutation of PH∼
n

is nothing but a resolution refutation, and we get

CompHR-I(PH∼
n ) = CompR(PH∼

n ) = 2Ω(n).

By a straightforward construction, an SR-I refutation of PHn can be trans-
formed into an SR-II refutation of PH∼

n adding less than 2|PHn|2 steps of unit
resolution. Hence, the Theorem follows by Lemma 15.

Corollary 2. HR-I p-simulates neither SR-II nor HR-II.

In view of Corollary 1 we also have the following.

Corollary 3. HR-I and SR-II are incomparable in terms of p-simulation.

7 An exponential lower bound for HR-II

In this section, F denotes some arbitrarily chosen formula without unit clauses.
We assume a fixed ordering E1, . . . , Em of the clauses of F , and a fixed ordering
of the literals in each clause, so that we can write

F = {{`1, . . . , `i1}, {`i1+1, . . . , `i2}, . . . , {`im−1+1, . . . , `s}}; s = ‖F‖.

From F we construct a formula F ◦ as follows. For every j ∈ {1, . . . , s} we take
new variables yj,1, . . . , yj,j+2 and zj . We define the formula

L′
j = {{¬yj,1, yj,2}, {¬yj,2, yj,3}, . . . , {¬yj,j+5, yj,j+6}, {¬yj,j+7, `j}}

and obtain from it the formula Lj by adding the variable zj to all clauses except
the 4th and j + 5th one; we call the formula Lj a link. The clause widths of a
link Lj yield the unique sequence

3 3 3 2 3 . . . 3
︸ ︷︷ ︸

j times

2 3 3. (2)

A link Lj cannot be mapped by some homomorphism to a link Lj′ with j 6= j′,
since the respective sequences of clause widths are different for Lj and L′

j . More-
over, since one end of a link has three clauses of width 3, and the other end has
two clauses of width 3, one link cannot be mapped to itself by a homomorphism
which maps one end to the other. The proof of the next lemma is elementary,
but lengthy since several cases must be considered. Therefore we postpone it to
the appendix.
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Lemma 17. Hom(Lj , F
◦) = {idLj

} for any 1 ≤ j ≤ s.

For every clause Ei = {`j , . . . , `j+|Ei|} of F we define a corresponding clause

E◦
i := {yj,1, . . . , yj+|Ei|,1}.

Finally, we put the above definitions together and obtain

F ◦ := {E◦
1 , . . . , E

◦
m} ∪

s⋃

j=1

(Lj ∪ {¬zj}).

The size of Lj ∪ {¬zj} is less than 3(s+ 7) + 1, thus ‖F ◦‖ ≤ 3s2 + 23s.
We will refer to clauses E◦

i as main clauses, to clauses in Lj as link clauses,
and to unit clauses {zj} as auxiliary clauses.

For each link Lj there is exactly one main clause E◦
i with yj,1 ∈ E◦

i ; we put
L∗

j := Lj ∪E◦
i . For a subset F ′ ⊆ F ◦ we define its body b(F ′) to be the union of

all L∗
j ⊆ F ′. Informally speaking, b(F ′) can be obtained from F ′ by removing

incomplete links, links which are not adjacent with a main clause in F ′, and
isolated main clauses.

Lemma 18. For any F ′ ⊆ F ◦ and ϕ ∈ Hom(F ′, F ◦) we have the following.

1. If ` ∈ lit(b(F )) is not a pure literal of b(F ′), then ϕ(`) = `;

2. ϕ(C) = C for all C ∈ b(F ′);

3. if there is a weakening-free resolution derivation of a clause D from b(F ′),
then ϕ(D) = D.

Proof. If ` ∈ lit(b(F ′)) is not a pure literal of b(F ′), then ` ∈ lit(Lj) for some
Lj ⊆ b(F ′). Hence Part 1 follows from Lemma 17.

To show Part 2, choose a clause C ∈ b(F ′) arbitrarily. If C is a link clause
or an auxiliary clause, then ϕ(C) = C follows from Part 1; hence assume that
C is a main clause. By definition of b(F ′), C contains at least one literal ` such
that ` belongs to some link clause of b(F ′); consequently ϕ(`) = `. Since main
clauses are mutually disjoint, we conclude ϕ(C) = C; thus Part 2 follows.

Part 3 follows from Parts 1 and 2 by induction on the length of the resolution
derivation.

We take a new variable z and define a renaming ρ : lit(F ◦) → lit(F )∪{z,¬z}
by setting

ρ(yj,i) := `j (j = 1, . . . , s; i = 1, . . . , j + 7),
ρ(`j) := `j (j = 1, . . . , s),
ρ(zj) := z (j = 1, . . . , s).

Consequently, for link clauses C we have {`j , `j} ⊆ ρ(C) for some j ∈ {1, . . . , s};
for auxiliary clauses C we have ϕ(C) = {¬z}; for main clauses C◦ we have
ρ(C◦) = C. Hence ρcls(F

◦) is nothing but F ∪ {{¬z}}, and ¬z is a pure literal
of ρcls(F

◦).
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Lemma 19. Let S = C1, . . . , Cn be a resolution derivation from F ′ ⊆ F ◦. If
ρ(Cn) is non-tautological, then either some subsequence S ′ of ρ(C1), . . . , ρ(Cn)
is a resolution derivation of ρ(Cn) from ρcls(b(F

′)), or there is some D ∈ F ′

with ρ(D) ⊆ ρ(Cn).

Proof. We assume, w.l.o.g., that no proper subsequence of S is a resolution
derivation of Cn from F ′ ⊆ F ◦. Hence, if ` is a literal of some axiom of S, and
if no clause of S is obtained by resolving on `, then the last clause of S contains
` as well.

By Lemma 5 some subsequence S ′ of ρ(C1), . . . , ρ(Cn) is a resolution deriva-
tion of ρ(Cn) from ρcls(F

′).
Assume that S′ is not a resolution derivation of ρ(Cn) from ρcls(b(F

′)).
That is, some axiom D′ of S′ belongs to ρcls(F

′) \ ρcls(b(F
′)). Consequently,

there is an axiom D ∈ F ′ \ b(F ′) of S with ρ(D) = D′. We will show that
D′ = ρ(D) ⊆ ρ(Cn).

As observed above, ρcls(F
◦) = F ∪ {{¬z}}, and z /∈ C for any C ∈ F . Since

ρ(D) is tautological for link clauses, D is either a main clause or an auxiliary
clause.

First assume that D is a main clause. Consequently D′ ∈ F ; thus, for some
j ∈ {1, . . . , s},

D = {yj,1, . . . , yj+|D|,1} and D′ = {`j , . . . , `j+|D|}.

Consider any j′ ∈ {j, . . . , j + |D|}. Since D /∈ b(F ′), Lj′ * F ′ by definition of
b(F ′). Then, however, some yj′,i′ , i

′ ∈ {1, . . . , j′ + 2}, is a pure literal of F ′.
Hence no clause of S is obtained by resolving on yj′,i′ , and since S is assumed
to be minimal, yj′,i′ ∈ Cn follows. Thus ρ(yj′ ,i′) = `j′ ∈ ρ(Cn). This holds for
any j′ ∈ {j, . . . , j + |D|}, and so ρ(D) ⊆ ρ(Cn) follows.

Now assume that D is an auxiliary clause; thus D = {{¬zj}} and D′ =
{{¬z}}. Since ¬z is a pure literal of F ′, we conclude as in the previous case
that ¬z ∈ ρ(Cn). Thus D′ ⊆ ρ(Cn) follows. Whence the lemma is shown
true.

Lemma 20. CompR(F ) ≤ CompHR-II(F
◦) + |F |.

Proof. Let S = C1, . . . , Cn be a weakening-free HR-II resolution refutation of
F ◦, and let Ci be the first clause which is obtained from some clause Cj , j < i,
by the homomorphism rule; say ϕ ∈ Hom(F ′, F ◦) and Ci = ϕ(Cj). If ρ(Cj) is
non-tautological, then it follows from Lemma 19 that either some subsequence of
ρ(C1), . . . , ρ(Cj) is a resolution derivation of ρ(Cj) from ρcls(b(F

′)), or ρ(Ek) ⊆
ρ(Cj) for some k ∈ {1, . . . ,m} (recall that F = {E1, . . . , Em}). In the first case,
Lemma 18 yields ϕ(b(F ′)) = b(F ′) and ϕ(Cj) = Cj = Ci; thus ρ(Ci) = ρ(Cj).
In the second case we can obtain ρ(Ci) by weakening from Ek.

By multiple applications of this argument we can successively eliminate ap-
plications of the homomorphism rule, and we end up with a resolution refutation
of F which is a subsequence of E1, . . . , Em, ρ(C1), . . . , ρ(Cn).
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Theorem 4. There is an infinite sequence of unsatisfiable formulas Fn, n =
1, 2, . . . such that the size of Fn is O(n6), and shortest HR-II refutations of Fn

have length 2Ω(n).

Proof. Again we use the pigeon hole formulas and put Fn = PH◦
n+1 (we avoid

PH1 since it contains unit clauses). By construction, we have ‖PH◦
n+1‖ ≤

O(‖PHn+1‖
2) = O(n6). The theorem follows by Lemma 20 and Theorem 1.

Corollary 4. SR-II cannot p-simulate HR-I or HR-II; SR-I cannot p-simulate
HR-I or HR-II.

8 Discussion and further generalizations

The Achilles’ heel of HR-II appears to be the fact that the local homomorphism
rule cannot take advantage of structural properties of the input formula if these
properties are slightly “disguised;” that is, if the properties are not explicitly
present in the input formula, but can be made explicit by a simple preprocessing
using resolution. We used this observation for showing the exponential lower
bound for HR-II: though pigeon hole formulas PHn have short HR-II refutations,
disguised as PH◦

n they require HR-II refutations of exponential length.
Other proof systems like cutting plane proofs (CP) and simple combinatorial

reasoning (SCR) (see [6] and [2], respectively), which also allow short refutations
of the pigeon hole formulas, are more robust with respect to such disguise. This
was observed in [4], where it is shown that SRC-II cannot p-simulate CP or
SCR (CP cannot p-simulate SR-I neither). Using a similar argument, it can be
shown that HR-II cannot p-simulate CP or SCR. Thus we conclude that HR-II
and CP are incomparable in terms of p-simulation.

However, the described flaw of HR-II can be fixed; inspection of the sound-
ness proof (Lemma 8) yields that we can generalize the local homomorphism
rule as follows, without loosing soundness.

Consider a derivation S = C1, . . . , Ck from F and a subsequence S ′

of S which is a derivation of a clause C from some formula F ′. If
there is a homomorphism ϕ ∈ Hom(F ′, {C1, . . . , Ck}) such that ϕ(C)
is non-tautological, then the dynamic homomorphism rule allows the
derivation of ϕ(C).

Note that we have released two constraints of the local homomorphisms rule:
F ′ is not necessarily a subset of the input formula F , and ϕ is not necessarily
a homomorphism from F ′ to F (but a homomorphism from F ′ to the set of
clauses appearing in S). Let SR-III, SRC-III, and HR-III denote the proof
systems arising from the respective systems using the dynamic homomorphism
rule. The formulas which are used to show exponential lower bounds for the
global and local systems (see [4, 12] and Theorems 3 and 4 of the present paper)
have evidently refutations of polynomial length even in the weakest dynamic
system SR-III.
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The complexities of SR-III, SRC-III, and HR-III, and their relations to CP
and SCR remain as interesting open problems (it seems to be feasible to defeat
SR-III by formulas obtained from the pigeon hole formulas by suitable flipping
of polarities of literals).

9 Appendix: Proof of Lemma 17

This appendix is devoted to a proof of Lemma 17: the identity map is the only
homomorphism which maps a link Lj , j ∈ {1, . . . s}, into F ◦.

Choose j ∈ {1, . . . s} arbitrarily and consider ϕ ∈ Hom(Lj , F
◦). To simplify

notation we write yi := yj,i, yj+7 := `j , and z := zj .

Claim 1. ϕ is width preserving, i.e., |ϕ(C)| = |C| holds for all C ∈ Lj.

Proof. Observe that a clause C ∈ Lj has width 3 if and only if there is some
clause D ∈ Lj such that C and D clash and overlap. By Lemma 4, ϕ(C) and
ϕ(D) clash and overlap as well, hence |ϕ(C)| = 3. Thus |ϕ(C)| = |C| holds for
all clauses C ∈ Lj of width 3.

Now consider a clause C ∈ Lj of width 2; i.e., C = {¬yi, yi+1}. Con-
sequently, Lj contains clauses A = {¬yi−1, yi, z} and B = {¬yi+1, yi+2, z}.
Assume to the contrary that |ϕ(C)| < |C|; that is, ϕ(¬yi) = ϕ(yi+1). Conse-
quently ϕ(yi) ∈ ϕ(A) ∩ ϕ(B). Since also ϕ(z) ∈ ϕ(A) ∩ ϕ(B), but any distinct
clauses of F ◦ share at most one literal, it follows that either ϕ(A) = ϕ(B)
or ϕ(z) = ϕ(yi). The latter is impossible, since |ϕ(A)| = |A| = 3 as shown
above. Hence ϕ(A) = ϕ(B) follows of necessity. By definition of Lj it con-
tains a clause A′ = {¬yi−2, yi−1, z}. Since A and A′ clash and overlap, we
conclude by Lemma 4 that also ϕ(A) and ϕ(A′) clash and overlap. In particular
ϕ(A) 6= ϕ(A′) follows. Observe that for any two clauses X,Y ∈ F ◦ which clash
and overlap, if X and some unit clause Z ∈ F ◦ clash, then also Z and Y clash.
Hence, putting X = ϕ(A) = ϕ(B), Y = ϕ(A′), and Z = {ϕ(¬yi)} = {ϕ(yi+1)},
we conclude that ϕ(yi) ∈ ϕ(A′). Thus {ϕ(yi), ϕ(z)} ⊆ ϕ(A) ∩ ϕ(A′) and, as
shown above, ϕ(z) 6= ϕ(yi). However, any distinct clauses of F ◦ share at most
one literal; thus we have a contradiction. Whence |ϕ(C)| = |C| holds for all
clauses C ∈ Lj and the claim is shown true.

Claim 2. ϕ(Lj) ⊆ Lj′ for some j′ ∈ {1, . . . , s}.

Proof. Consider a clause C ∈ Lj of width 3. There is a clause C ′ ∈ Lj such
that C and C ′ clash and overlap. Since main clauses do not overlap with other
clauses, and since ϕ is width preserving by Claim 1, it follows that ϕ(C) is a
link clause. Since overlapping link clauses belong to the same link, it follows
that there is some link Lj′ , 1 ≤ j′ ≤ s, which contains all ϕ(C) for C ∈ Lj and
|C| = 3. It is now obvious that for C ∈ Lj with |C| = 2, ϕ(C) belongs to Lj′ as
well.

Claim 3. ϕ is a monomorphism.
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Proof. We assume to the contrary that ϕ(`′) = ϕ(`′′) holds for distinct literals
`′, `′′ ∈ lit(Lj); w.l.o.g., `′ is a variable. Since ϕ is width preserving, it maps
the only unit clause of Lj to itself, hence ϕ(z) = z. Thus `′ 6= z and we are left
with the following two cases.

Case 1: ϕ(yi′ ) = ϕ(yi) for some 1 ≤ i < i′ ≤ j + 7. We choose such pair
i, i′ with minimal i′. Let A denote the (unique) clause of F ◦ that contains yi

(A is possibly a main clause), and let B denote the (unique) clause of Lj that
contains yi′ and ¬yi′−1. If i = 1 then A is a main clause, and so ϕ(A) 6= ϕ(B);
hence ϕ(yi) ∈ ϕ(A)∩ϕ(B) contradicts the fact that main clauses do not overlap
with other clauses. Hence i > 1 follows. Consequently A is a link clause and
¬yi−1 ∈ A. By Claim 2 ϕ(A) and ϕ(B) belong to the same link Lj′ . Since i′

is chosen minimal, ϕ(yi−1) 6= ϕ(yi′−1). Thus ϕ(¬yi−1) ∈ ϕ(A) and ϕ(¬yi′−1) ∈
ϕ(B) implies ϕ(A) 6= ϕ(B). Since ϕ(A) and ϕ(B) overlap, |A| = |B| = 3 follows
(any two overlapping link clauses have width 3). Hence ϕ(z) ∈ ϕ(A) ∩ ϕ(B).
As two link clauses share at most one literal, we infer ϕ(z) = ϕ(yi′ ) and so
|ϕ(A)| < |A|. This contradicts the fact that ϕ is width preserving.

Case 2: ϕ(yi′ ) = ϕ(¬yi) for some 1 ≤ i < i′ ≤ j + 7. We choose such
pair i, i′ with maximal i′. Let A and B denote the (unique) clauses in Lj

that contain ¬yi, yi+1 and yi′ ,¬yi′−1, respectively. Since i′ is chosen maximal,
ϕ(yi+1) 6= ϕ(yi′−1) and so ϕ(A) 6= ϕ(B) follows. If any two link clauses overlap,
then their width is 3; therefore |A| = |ϕ(A)| = |B| = |ϕ(B)| = 3 and so
ϕ(z) ∈ ϕ(A) ∩ ϕ(B). However, since |ϕ(A) ∩ ϕ(B)| ≤ 1 (this holds for any two
link clauses), ϕ(z) = ϕ(¬yi) follows. Hence |ϕ(A)| < |A|, a contradiction.

Since each link yields a unique sequence of clause widths (cf. (2)), Claims 2
and 3 imply Hom(Lj , F

◦) = {idLj
}. Hence Lemma 17 is shown true.
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