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Abstract. A CNF formula is called matched if its associated bipartite graph
(whose vertices are clauses and variables) has a matching that covers all clauses.
Matched CNF formulas are satisfiable and can be recognized efficiently by matching
algorithms. We generalize this concept and cover clauses by collections of bicliques
(complete bipartite graphs). It turns out that such generalization indeed gives rise
to larger classes of satisfiable CNF formulas which we term biclique satisfiable. We
show, however, that the recognition of biclique satisfiable CNF formulas is NP-
complete, and remains NP-hard if the size of bicliques is bounded.

A satisfiable CNF formula is called var-satisfiable if it remains satisfiable under
arbitrary replacement of literals by their complements. Var-satisfiable CNF formulas
can be viewed as the best possible generalization of matched CNF formulas as every
matched CNF formula and every biclique satisfiable CNF formula is var-satisfiable.
We show that recognition of var-satisfiable CNF formulas is IT5 -complete, answering
a question posed by Kleine Biining and Zhao.

Keywords: SAT problem, bipartite graph, matched formula, deficiency, biclique
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1. Introduction

The satisfiability problem (SAT) asks whether a given propositional
formula F' in conjunctive normal form (CNF) has a satisfying truth
assignment. SAT is the first problem that has been shown NP-complete.
Since this problem is important in many areas (e.g., Artificial Intelli-
gence and Operations Research) considerable efforts have been made
to identify classes of satisfiable CNF formulas which can be recognized
in polynomial time; see [6, 9] for surveys.

Our point of departure is a certain class of satisfiable CNF formulas
which can be recognized in polynomial time by matching algorithms.
To define this class, we associate to a CNF formula F' a bipartite graph
I(F), the “incidence graph” of F', where one class of vertices consists of
the variables occurring in F', and the other class consists of the clauses
of F'; a variable v and a clause C' are joined by an edge if v occurs in C
(positively or negatively). For example, Figure 1 exhibits the incidence
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Figure 1. Incidence graph of a matched CNF formula.

graph of the formula
F={@VrVvs)A(pVqgVsVt)A(gVTV) (1)

(the meaning of dashed lines will be explained later). Note that polar-
ities of literals in F' are not taken into account in forming I(F).

Tovey [18] and independently Aharoni and Linial [1] make the fol-
lowing simple but nevertheless fruitful observation.

If I(F) has a matching M (i.e., a set of independent edges) such
that every clause of F' is incident with some edge in M, then F is
satisfiable.

For, we can obtain a satisfying truth assignment by setting a variable
TRUE if it occurs positively in the clause to which it is matched, and
FALSE otherwise (the value of variables which are not matched to any
clause is arbitrary).

Following Franco and Van Gelder [6] we call a CNF formula matched
if its incidence graph I(F') has a matching that covers all clauses.
For example, the graph in Figure 1 has such matching (indicated by
dashed lines); thus the formula in (1) is satisfiable. Since a matching
of maximum size can be found in polynomial time (see, e.g., [13]), we
can decide efficiently whether a given CNF formula is matched.

Matched CNF formulas can be characterized in terms of a graph
theoretic notion as observered by Franco and Van Gelder [6]: The
deficiency of a CNF formula F' on m clauses and n variables is defined
by 6(F) = m — n; the mazimum deficiency 0*(F') is the number of
clauses which remain exposed by a maximum matching of I(F'). Thus
F' is matched if and only if §*(F) = 0. It follows by Hall’s Theorem
that §*(F') equals the maximum §(F") taken over all CNF formulas F”’
which arise by removing any number of clauses (possibly none or all)
from F' (see [13], Theorem 1.3.1).

Fleischner et al. [5] show that satisfiability of CNF formulas whose
maximum deficiency is bounded by a fixed integer can be decided in
polynomial time. The algorithm of [5] is based on the fact that a CNF
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formula F' is satisfiable if and only if there is a truth assignment ¢
to at most 0*(F') variables such that the CNF formula F; is matched,
where F} results from F' by the usual reduction w.r.t. the assignment
t, i.e., by removing clauses satisfied by ¢ and literals which are set
to FALSE by t. Recently, the quoted result of Fleischner et al. could be
improved: Szeider [17] presents an algorithm which decides satisfiability
of formulas with n variables and maximum deficiency k in time O(2F -
n3); hence SAT for instances of bounded maximum deficiency is “fixed-
parameter tractable” in the sense of Downey and Fellows [3].

Kullmann [12, 11] develops a framework for the systematic simpli-
fication of CNF formulas by means of certain classes of partial assign-
ments (“autarkies”). The concept of matched CNF formulas provides
the basis for an important class of such assignments.

It would be desirable to find suitable generalizations of matched
CNF formulas to extend the quoted results.

In Section 3 we generalize matched CNF formulas, covering inci-
dence graphs by disjoint bicliques (complete bipartite graphs). This
approach yields a class of satisfiable CNF formulas (“biclique satisfiable
CNF formulas”) which properly contains all matched CNF formulas (a
matching is nothing but a collection of disjoint bicliques on two vertices
each). We show, however, that recognition of biclique satisfiable CNF
formulas is NP-complete (and remains NP-hard if the size of bicliques is
bounded from above). We present a reduction from graph 3-colorability
in Section 5.

The question rises whether “covering by bicliques” is a too specific
concept, since a more general approach might yield a larger class of sat-
isfiable CNF formulas which could possibly be recognized efficiently. To
tackle this question, we consider in Section 4 the class Var-SAT N CNF
as studied by Kleine Biining and Zhao [10]—a CNF formula belongs to
Var-SAT N CNF if and only if it is satisfiable and remains satisfiable
under arbitrary replacement of literals by their complements. We also
term formulas in Var-SATNCNEF to be var-satisfiable (in earlier versions
of this paper, not being aware of [10], we called such formulas “graph
satisfiable”).

Note that a CNF formula F' is var-satisfiable if and only if every
CNF formula F’ with I(F') = I(F) is satisfiable; thus satisfiability
of such F is determined solely by its incidence graph. Clearly, if a
CNF formula is biclique satisfiable (or matched), then it is also graph
satisfiable, but the converse does not hold.

Kleine Biining and Zhao [10] show that var-satisfiable 2-CNF for-
mulas can be recognized in linear time, and they ask whether there are
polynomial time algorithms for var-satisfiable CNF formulas in general.
We answer this question negatively and pinpoint the exact complexity
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of Var-SAT N CNF by showing its IT5-completeness (ITY = co-NPN
is a complexity class in the second level of the Polynomial Hierarchy,
see [14, 16]). Thus var-satisfiable CNF formulas are apparently harder
to recognize than biclique satisfiable ones. We obtain this completeness
result in two steps: first we show I15-completeness of an enhanced graph
coloring problem (given a graph G and a set S of vertices of G; can
every 2-coloring of the vertices in S be extended to a proper 3-coloring
of all vertices of G7). Second we reduce this enhanced graph coloring
problem to the recognition problem for Var-SAT N CNF.

Recognition of Var-SAT N CNF and the enhanced graph coloring
problem contribute to the (relatively short) list of natural problems
which are known to be II}-complete [15]. The following diagram visu-
alizes our main results (the inclusions are proper).

matched C  Dbiclique satisfiable C  var-satisfiable
(polynomial time) (NP-complete) (ITY -complete)

Both completeness results hold even for 3-CNF formulas.

The remainder of this paper is organized as follows. In the next
section we present our basic terminology on formulas, assignments
and graphs. In Sections 3 and 4 we introduce the concepts of bi-
clique satisfiable and var-satisfiable CNF formulas, respectively, and
state our main results. The more technical NP-completeness and I15-
completeness proofs are presented in Sections 5 and 6, respectively.

2. Notation and basic definitions

We assume an infinite supply of (propositional) variables. A literal ¢
is a variable x or a negated variable T; if ¢ = T then we put £ = . A
clause C is a finite disjunction of literals £1 V --- V £; k is the width
of C. A CNF formula F is a finite conjunction of clauses C1 A -+ A Cy;
if all clauses of F' have width < k then F is a k-CNF formula. We
allow the empty clause L and the empty CNF formula T; we also allow
multiple occurrences of literals in a clause and multiple occurrences of
clauses in a CNF formula.

A truth assignment is a map t : X — {TRUE, FALSE} defined on a
finite set X of variables; t is total for a CNF formula F if all variables
of F belong to X. For a variable x € X we put ¢(T) := TRUE if
t(z) = FALSE, and ¢(T) := FALSE if ¢(z) = TRUE. We say that ¢ satisfies
a clause C if t(¢) = TRUE for some literal of C, and we say that t
satisfies a CNF formula F' if ¢ satisfies all clauses of F. Thus no truth
assignment satisfies |, although every truth assignment satisfies T.
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A CNF formula F' is called satisfiable if it is satisfied by some truth
assignment; otherwise F' is unsatisfiable. F' is not-all-equal satisfiable
(nae-satisfiable, for short) if it is satisfied by some truth assignment ¢
such that every clause of F' contains a literal ¢ with ¢(¢) = FALSE; in this
case we say that t nae-satisfies F. Occasionally we will also consider
so-called quantified boolean formulas (QBFs, for short), propositional
formulas with a prefix of quantifiers. For example, if F' is a CNF formula
and X,Y is a bipartition of the set variables of F', then the quantified
boolean formula VX3Y - F' is called satisfiable if every possible way
of setting the variables in X to TRUE or FALSE can be extended to a
satisfying truth assignment of F'. For detailed definitions of QBFs we
refer the reader to [9, 14].

All graphs considered are finite and simple. We denote the vertex
set and the edge set of a graph G by V(G) and E(G), respectively. The
degree dg(v) of a vertex v € V(G) is the number of incident edges. If G
is bipartite, then we assume that sets V1(G), V2(G) C V(G) give a fixed
bipartition. Further graph theoretic terminology can be found in [2].

The incidence graph of a CNF formula F' is the bipartite graph I(F')
defined as follows: Vi (I(F')) consists of the variables of F' and Va(I(F))
consists of the clauses of F'; a variable x and a clause C' are adjacent if
and only if z occurs (positively or negatively) in C.

3. Covering by bicliques

A single edge can be considered as a biclique (i.e., a complete bipartite
graph) on two vertices, and so we ask whether we can use a collection
of bicliques instead of a matching to certify satisfiability. The following
observation gives a reason for such approach.

LEMMA 1. Let F be a CNF formula on n variables and m clauses. If
I(F) is a biclique and m < 2", then F is satisfiable.

Proof. Every clause of F' has exactly n literals; hence every clause
of F' discards exactly one of the 2" truth assignments. O

For example, the CNF formula (pV q) A (pVq) A (DV q) is satisfiable
by means of Lemma 1 (however, it is not matched).

The next idea is that we can certify satisfiability by using several
bicliques to cover all clauses in I(F'), as long as every variable belongs
to at most one biclique.
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LEMMA 2. A CNF formula F is satisfiable if there is a collection
C={X1,..., Xy} of sets of vertices of I(F) such that

(i) every clause of F belongs to some X;, 1 <i <k,
(ii) every variable of F' belongs to at most one X;, 1 <i <k,

(i) X; induces in I(F) a biclique on n; variables and m; < 2™
clauses, 1 <1i < k.

Proof. By means of Lemma 1, we find for every ¢ = 1,...,k some
truth assignment ¢; to the variables in X; such that all clauses in X; are
satisfied. Since every variable of F' belongs to at most one X;, we can
combine tq, ..., t; consistently to a satisfying truth assignment of F'. O

We call a CNF formula biclique satisfiable if it fulfills the conditions
stated in Lemma 2. See Figure 3 for an example, where bicliques are
indicated by different types of dashed lines.
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Figure 2. Graph of a biclique satisfiable CNF formula.

In Lemma 2 we only require that different elements of C do not share
variables; however nothing is lost if we require disjointness:

LEMMA 3. A CNF formula F is biclique satisfiable if and only if there
s a collection C which satisfies the conditions of Lemma 2 such that all
elements of C are mutually disjoint.

Proof. If C = {Xi,..., X} satisfies the conditions of Lemma 2
(wr.t. some CNF formula F), then putting X = X; \ Uj<;; X
yields a collection C" C {X{,...,X;} which satisfies the conditions
of Lemma 2 as well; however, elements of C’ are mutually disjoint. O

The question rises whether biclique satisfiable CNF formulas can be
recognized efficiently. Unfortunately, our results of Section 5 show the
following.

THEOREM 1. Recognition of biclique satisfiable 3-CNF formulas is
NP-complete.
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Are there any restrictions of the general concept of biclique satisfia-
bility which admit efficient recognition? A natural candidate for such
approach is to restrict the size of bicliques used in the cover by some
positive integer k& > 1. More formally, we say that a CNF formula
F is k-biclique satisfiable if there is a collection C which satisfies the
conditions of Lemma 2, and each X; contains at most k variables. The
following is obvious.

LEMMA 4. A CNF formula is matched if and only if it is 1-biclique
satisfiable. Hence 1-biclique satisfiable CNF formulas can be recognized
in polynomial time.

Our results of Section 5 yield that recognition of k-biclique satisfiable
CNF formulas becomes intractable as soon as we go beyond matched
CNF formulas:

THEOREM 2. For any k > 2, recognition of k-biclique satisfiable 3-
CNF formulas is NP-complete.

4. Var-satisfiable CNF formulas

We call a CNF formula F var-satisfiable if every CNF formula F’ with
I(F") = I(F) is satisfiable. Since a CNF formula is var-satisfiable if
and only if it is satisfiable and remains satisfiable under arbitrary
replacement of literals by their complements, the class of var-satisfiable
CNF formulas is nothing but the class Var-SAT N CNF considered by
Kleine Biining and Zhao [10].

Clearly matched and biclique satisfiable CNF formulas are var-satis-
fiable, since polarity of literals is not taken into account in forming in-
cidence graphs. However, there are var-satisfiable CNF formulas which
are not biclique satisfiable; take, for example,

F=({pVvgVr)AN@VagVr)ANDVeVT)A(pVaA[EVY.

(a similar argument as used in the proof of Lemma 1 shows that F' is
var-satisfiable.)
The following result is due to Kleine Biining and Zhao [10].

THEOREM 3. Var-satisfiable 2-CNF' formulas can be recognized in
linear time.

Kleine Biining and Zhao [10] ask whether a polynomial time algo-
rithm for recognition of var-satisfiable CNF formulas with clause widths
> 3 exists. We settle this question as follows (for a proof, see Section 6).
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THEOREM 4. Recognition of var-satisfiable 3-CNF formulas is TI5 -
complete.

We recall that the complexity class II5 belongs to the second level
of the Polynomial Hierarchy [16]; I} contains the complements of all
properties which can be checked in nondeterministic polynomial time
by an NP-oracle (or, equivalently, by a co-NP-oracle).

It is easy to see that Var-SAT N CNF belongs to IIY: if a given
CNF formula F' is not var-satisfiable, then we can guess an unsatis-
fiable CNF formula F’ with I(F) = I(F’); unsatisfiability of F’ can
be checked by a co-NP-oracle (for an alternate proof using quantified
boolean formulas, see Section 6).

For showing that Var-SAT N CNF is Hg—complete, we will use a
reduction from an enhanced 3-colorability problem (see Section 6).

5. NP-completeness of biclique satisfiability

We will obtain the quoted NP- and I1%-completeness results in a graph
theoretic framework. Let G be a bipartite graph. A biclique cover C of
Gisaset C ={Xy,...,X,} of mutually disjoint subsets of V(G) such
that each X; induces in G a biclique and

1 < [Va(G) N X;| < 2V(@nXil,

If, additionally, |[Va(G)NX;| < g for ¢ = 1,...,r, then we call C a
g-biclique cover. A vertex v is covered by C if v is contained in J;_; Xj;
otherwise v is exposed. A biclique cover is total if it covers all vertices
in Vo(G) (vertices in Vi(G) may remain exposed). In view of Lemma 3
it follows that a CNF formula F' is biclique satisfiable (g-biclique satis-
fiable) if and only if its incidence graph I(F') has a total biclique cover
(g-biclique cover, respectively).

Let C be a biclique cover of G and G’ a subgraph of G. Then C
induces a biclique cover

C1G:={XeC|XCV()}

of G’. Observe that it is possible that C is a total biclique cover of G,
but C1 G’ is not a total biclique cover of G’.

Let k be a positive integer. A k-coloring of a graph G is a map
x:V(G) = {1,...,k}. A k-coloring is proper if x(v) # x(w) holds for
every edge vw € E(G). Furthermore, G is called k-colorable if G has
some proper k-coloring.

It is well-known that the problem of whether a given graph is 3-col-
orable is NP-complete, see e.g., [7]. Evidently the problem remains NP-
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hard for graphs with minimum degree 2. We will reduce this problem
to the problem of whether a given bipartite graph has a total biclique
cover. We note that the latter problem has some similarity to “graph
packing” problems studied elsewhere (see Hell [8] for a recent survey),
but is apparently not entailed by known results from this area.

For the reduction, we will use the following two types of gadgets.

A color gadget is a bipartite graph H. with V3 (H.) = {x1,22} and
Vo(He) = {y1,v2,y3,w} as depicted in Figure 3. We call the vertices
y; outputs of H., and we will also use the notation out;(H.) := y;,
1=1,2,3.

T Z2

AN

n Y2 Ys w
Figure 8. Color gadget H..

Evidently, a color gadget H. has no total biclique cover. However,
for every i € {1,2,3} there is a (unique) biclique cover C; of H,
such that y; is the only vertex which remains exposed (e.g., C; =
{1, 22, y2, y3, w}}).

Let ¢ > 2 be an integer. A fan-out gadget is a bipartite graph Hy
with Vi(Hf) = { a;,bi,zi | i =1,...,q—1 } U{z} and Vo(H;) =
{¢,di,e; |i=1,...,q—1} as depicted in Figure 4(a) for ¢ = 2 and
in Figure 4(b) for ¢ > 2. We call the vertex in(Hy) := a; the input of
Hy, and the vertices in out(Hy) := {z1,..., 2} the outputs of H;.

aq bl Z1 z9
(a) W
C1 d1 €1

ay b1 21 as bo 22 ag—1 bg—1 Zg-1  Zq
c1 dy el Co do es Cg—1 dg—1 €q—1
Figure 4. Fan-out gadgets Hy.

LEMMA 5. A fan-out gadget Hy has a total biclique cover which ex-
poses all outputs. There is exactly one total biclique cover of Hy which
exposes the input; such cover, however, covers all outputs.
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Proof. Consider a fan-out gadget Hy with ¢ outputs. Evidently
{ {CLi,bi,Ci,di,ei} ‘ 1= 17 yqd — 1 }

is a total biclique cover of Hy which exposes all outputs. For the second
part of the lemma, we construct a total biclique cover C inductively as
follows. Since ¢; must be covered without using the input a1, we have
no choice but using {b1,c1} to cover c¢;. For ¢ = 2 we must use {z1,d; }
and {z9,e1} to cover d; and ej, respectively. For ¢ > 2, we must use
{e1,az} to cover ey, and as above, {bs, ca} to cover ¢y, and so forth. The
biclique cover C defined by this process is total and covers all outputs
of Hs. O

Consider any finite graph G with minimum degree 2. We are going
to construct a bipartite graph H¢g from G. For each vertex v of G we
will construct a graph H (v); then we will put all these graphs together
to form Hg.

Let v be any vertex of G. We take a color gadget H¢(v), and fan-out
gadgets H¢(v,j), j = 1,2,3, with dg(v) outputs each. For j = 1,2,3
we connect H(v) with H¢(v, j) by adding an edge between out;(H.(v))
and in(Hg(v,j)). We denote the obtained graph by H(v).

Let

Z = U out(He(v,7)).

1<j<3, veV(G)

We construct a set P of pairs {z, 2’} C Z such that

(i) for every {z,z'} € P there is some j € {1,2,3} and an edge vw €
E(G) such that z € out(H¢(v,j)) and 2’ € out(H¢(w, j)),

(ii) every z € Z belongs to exactly one pair in P.

Such P exists, since by construction each H¢(j,v) has dg(v) outputs;
moreover, P can be constructed efficiently by a greedy approach. Fi-
nally, we obtain a bipartite graph Hg from the disjoint union of all
H(v), v € V(G), by adding for each pair {z,2'} € P a new vertex
Pz € Va(Hg) and the edges zp, - and 2'p, ..

Note that dy,(v) < 3 for all v € Va(Hg); thus any CNF formula
whose incidence graph is Hg is a 3-CNF formula.
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LEMMA 6. For every graph G with minimum degree 2 the following
statements are equivalent.

(i) G is 3-colorable;
(ii) Hg has a total 2-biclique cover;

(iii) Hg has a total biclique cover.

Proof. (1)=(ii). Let x be a proper 3-coloring of G. We define for each
v € V(G) a biclique cover C(v) of H(v) as follows. Consider v € V(G)
and put j := x(v). For the color gadget H.(v), we take the unique
biclique cover C; which only exposes out;(H.(v)). To cover out;(H(v)),
we have no choice but using the set X := {out;(H(v)), in(H¢(v,5))}.
For the fan-out gadgets Hy(v,7), i = 1,2,3, we define total biclique
covers C() according to Lemma 5 as follows. For i # j we choose C()
such that all outputs of H¢(v, 1) are exposed; C (4) however, must expose
in(Hg(v,j)), since in(H¢(v, 7)) is already contained in X. Therefore we
must take for C\9) the unique biclique cover which covers all outputs of
H¢(v,j); cf. Lemma 5. Thus we have defined a total biclique cover

of H(v). By construction, C(v) exposes all outputs of H¢(v,i) for i #
j = x(v). Consequently, UvEV(G) C(v) is a biclique cover of Hg which
covers all vertices in

U Ve(# () = Va(He) \{ pse | {z. 7'} € P ).
veV(G)

Now consider a vertex p, s for some pair {z,2'} € P. By definition
of Hg, there is an edge vw € E(G) and some ¢ € {1,2,3} such that
z € out(H¢(v,i)) and 2’ € out(Hf(w,4)). Since x is a proper coloring,
x(v) # x(w) follows of necessity. Hence i # x(v) or ¢ # x(w); w.l.o.g.,
we assume i # x(v). It follows that C(v) exposes the outputs of H¢(v,1),
and so we can use X, »» := {2,p, ./} to cover p, .. Whence

C={X..|{z,7}eP}u [J CW
veV(Q)

is a total biclique cover of Hq. By construction, |X NVi(Hg)| < 2 for
all X € C.

(ii)=(iii). Trivial.

(iii)=-(i). Let C be a total biclique cover of Hq. For every v € V(G),
the biclique cover C | H(v) exposes at least one output of Hc(v). Hence
we can define 3-coloring of G by choosing x(v) such that out, () (Hc(v))
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is exposed by C1 H.(v) for all v € V(G). We show that x is a proper
coloring. Suppose to the contrary that x(v) = x(w) = j for some edge
vw € E(G). Since out;(Hc(v)) is exposed by C1 Hc(v), it follows that
{out;(H¢(v)),in(H¢(v,7))} € C; consequently, by Lemma 5, all outputs
of H¢(v,j) are covered by C1 H¢(v,j). The same argument shows that
all outputs of H¢(w, j) are covered by C1 H¢(w, 7). By construction of
Hg, there is a vertex p, ,» € Va(Hg) of degree 2 which is adjacent with
some output z of H¢(v,j) and some output 2z’ of H¢(w,j). Since z and
2" are covered by C1 H¢(v,j) and C1 H¢(w, j), respectively, it follows
that p, . is exposed by C, a contradiction, as C is assumed to be a total
biclique cover. O

Clearly the problem of whether a bipartite graph has a total biclique
cover is in NP. Moreover, the construction of Hg can be carried out
in polynomial time w.r.t. the size of G. Hence Lemma 6 implies the
following.

THEOREM 5. Recognition of bipartite graphs having a total biclique
cover is NP-complete. This problem remains NP-hard if we consider
only 2-biclique covers of bipartite graphs H with dg(v) < 3 for all
v e Vo(H).

Thus Theorems 1 and 2 are established.

6. II}-completeness of Var-SAT N CNF

This final section is devoted to a proof of Theorem 4.

Let G be a graph and S C V(G). We say that G is S-extending
3-colorable if every coloring xs : S — {1,2} can be extended to a
proper 3-coloring of G. (If S contains a pair of adjacent vertices, then
G is evidently not S-extending 3-colorable; hence it suffices to consider
S independent.)

THEOREM 6. The problem of whether a graph G with S C V(G) is
S-extending 3-colorable is 115 -complete.

Proof. The problem belongs to IIY, since if G' is not S-extending
3-colorable, then we can guess a 2-coloring xg of S and check by a
co-NP-oracle that yg cannot be extended to a proper 3-coloring of G.

For II5-hardness we use a reduction from the following problem
which is shown TI5-complete in [4].

Given a quantified boolean formula ® = VY3X - F (i.e., X,Y are

finite disjoint sets of variables such that every variable of F' belongs
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to X UY) where F is a CNF formula with exactly three literals
in every clause; is ® nae-satisfiable? (i.e., every truth assignment
to Y can be extended to a truth assignment to X UY which nae-
satisfies F.)

Consider ® = VYdX - F as above. We obtain from F' a graph G by
a standard transformation used elsewhere to reduce nae-satisfiability
from 3-colorability (see, e.g., Theorem 9.8 of [14]). For each variable
z of F' we take two vertices v, and vz, and for each clause C' = (I; V
lo V l3) of F' we take three vertices vc,1,vc,2,vc3; finally, we take one
more vertex a. We add edges such that v,,vz,a forms a triangle for
every variable z, and vc,1,vc 2, ve 3 forms a triangle for every clause C'.
Finally, for every clause C = (I; VI VI3) and i = 1,2,3, we join vc,;
and v;, by an edge (see Figure 5 for an illustration).

Figure 5. Reduction from nae-satisfiability.

F' is nae-satisfiable if and only if G is 3-colorable (see [14, Theorem
9.8]). In fact, every nae-satisfying total assignment of F' corresponds to
a proper 3-coloring of G such that vertex v; has color 1 if and only if [
is set TRUE by the corresponding assignment (fixing the color of vertex
a to 3.)

Putting S :={ v, | y €Y }, we conclude that ® is nae-satisfiable if
and only if every coloring xs : S — {1,2} can be extended to a proper
3-coloring of G. O

At this junction we give an outline for a polynomial-time transfor-
mation which reduces recognition of Var-SAT N CNF to satisfiability
of quantified boolean formulas with V3 prefix; since the latter problem
is well-known to be II5-complete (see, e.g., [14]), this transformation
yields Var-SAT N CNF € II¥ (cf. the discussion in Section 4). Consider
a CNF formula F' = C; A...ACy, and assume, w.l.o.g., that all literals
occurring in F' are positive (for, deciding var-satisfiability, polarity of
literals is inessential). Let X denote the set of variables of F. Consider
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some (positive) occurrence of a variable x in a clause C; of F'. We obtain
from F' a CNF formula F’ by replacing x in C; by a new variable ,
and by addition of the clauses D1 = (T VyV z), Do = (z VTV z),
Ds = (xVyVZ), Dy = (TVYVZ),; zis a new variable as well.
For any truth assignment t which satisfies Dq,..., Dy, t(2) = TRUE
implies t(z) # t(y), and t(z) = FALSE implies t(x) = ¢(y). Hence the
quantified boolean formula Vz3(X U {y}) - F’ is satisfiable if and only
if F' is satisfiable and remains satisfiable under replacing = in C; by
T. Applying this construction for all variable occurrences of F' we end
up with a quantified boolean formula ®p = VZI(X UY) - F”; ®p is
satisfiable if and only if F' is var-satisfiable. Since the construction of
®r can be carried out in polynomial time, we have in fact reduced
recognition of Var-SAT N CNF to satisfiability of QBFs with V3 prefix.

For showing Hg—completeness of Var-SAT N CNF we use a similar
construction as in Section 5. Let G be a graph with minimum degree
2 and S C V(G). We construct a graph Hg g as above, except for
vertices in S we use different gadgets instead of color gadgets (thus
Hg g is nothing but Hg). A precolor gadget is a bipartite graph H,
with Vi (Hp) = {z1,22} and Va(Hp) = {y1,y2, w1, w2} as depicted in
Figure 6. Similarly as for color gadgets, we call out;(Hp) = y;, i = 1, 2,
the outputs of H.

A X2
Y1 w1 w2 Y2

Figure 6. Precolor gadget Hp,.

Let G be a graph, S C V(G), and Hgg the bipartite graph as
defined above. Consider v € S and the precolor gadget Hp(v). For
i € {1,2} we write f,;(Hg,s) for the result of removing all vertices of
H,(v) from Hg,g except the vertex y; = out;(Hp(v)); ie., fvi(Ha,s) ==
Hgs — (V(Hp(v)) \{yi}). If F is a CNF formula with I(F) = Hg g,
then we can define F' = f,;(F) as the CNF formula which emerges
from F by the corresponding modification yielding I(F') = f; ,(Hq.s)-

Moreover, we write H, ¢ for the result of applying such modification
for all v € S; we call H¢, ¢ a gadget reduction of Hg,g. Since for each
v € S we have two possibilities for forming f; ,(Hg,s), it follows that
Hg s has 2151 different gadget reductions.

LEMMA 7. Let F be a CNF formula with I(F) = Hg g, and letv € S.
If both fy1(F) and f,2(F) are satisfiable, then F' is satisfiable. Conse-
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quently, if for every gadget reduction HE,S of Hg,s all CNF formulas
F* with I(F*) = H¢, g are satisfiable, then F' is satisfiable.
Proof. Using the notation 2! := z, 2% := T, we can write the clauses

of F which correspond to Hp(v) as
(V) A (282 V 2B2) A (253 V 222) A (2 v ty)
where «;, 5; € {0,1}. Consider the CNF formulas

Fy o= (21?V x§3) A (z]3V x5?) A (xgl),
Fy = (x7") A (27? V :cg3) A (213 V 25?).

Iy is unsatisfiable if and only if as # ag and (1 # P2 = (3. Symmet-
rically, F5 is unsatisfiable if and only if G # (3 and a1 # as = as.
Since these two cases exclude each other, it follows that we can choose
i € {1,2} such that F; is satisfiable. By assumption, f;,(F') is satisfi-
able. Since F; and f; ,(F') do not share any variable, we can combine
satisfying truth assignments of F; and f;,(F'), respectively, to a sat-
isfying truth assignment of F. Hence the first part of the lemma is
shown true. The second part follows by repeated application of the
first part. O

LEMMA 8. Let G be a graph with minimum degree 2, S C V(G) an
independent set of vertices, and let Hg s be the corresponding bipartite
graph as defined above. Then G is S-extending 3-colorable if and only
if every CNF formula F with I(F) = Hg g is satisfiable.

Proof. (=). Assume that G is S-extending 3-colorable, and choose
some gadget reduction H¢, ¢ of Hg,s arbitrarily. We define a coloring
xs : S — {1,2} by setting xs(v) = ¢ if and only if f,; was used by
obtaining H¢, ¢ from Hg,g. Since G is S-extending 3-colorable, there is
a proper 3-coloring x of G which extends xg. We are going to define a
total biclique cover of H, é g

Using the same notation C( as in the first part of the proof of
Lemma 6 and letting X := {out, () (Hp(v)),in(H¢(v, x(v)))}, we define
for vertices v € S a cover

C'(v) ={x}ucHuc?.

For the remaining vertices v € V(G) \ S we define C’(v) = C(v) as in
(2) of the proof of Lemma 6; the same argument as used there shows
that
C={X..|{s7}eP}u [J C(
veV(QG)
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is a total biclique cover of Hg g. Therefore, every CNF formula F™
with I(F*) = H}, 4 is satisfiable. Since the gadget reduction H} ¢ was
chosen arbitrarily: it follows now by Lemma 7 that every CNF formula
F with I(F) = Hg s is satisfiable.

(«<). Assume that every CNF formula F' with I(F) = Hg,g is sat-

isfiable, and choose an arbitrary coloring xyg : S — {1,2}. We show
that xs can be extended to a proper 3-coloring of G. We define a CNF
formula F' with I(F') = Hg,s as follows (naming of variables is chosen
w.r.t. Figures 3, 4, and 6).

For every precolor gadget Hy(v), v € S, we take clauses

@1V aW), (@1 V a2), (21 VTZ), (12 Va?) if ys(v) =
(z1VaM), (TTV 22), (z1 V 32), @2 Va?) if xs(v)

1 (3)
2 (4)

where a® = in(Hy(v,i)), i = 1,2.
For every color gadget H.(v) of Hg we take clauses
@vzz Ve, (@ZTVayva?), (z vEzVa®), (1 V), (5)
where a®) = in(Hy(v,1)), i = 1,2,3.
For every fan-out gadget H¢(v,i) we take clauses of the form

(@ Vb),@ VbV z), (@ Vb Vas),

(6)

(@g=1 V bg—1), (@g=1 V bg—1V 2g—1), (@g=1 V bg—1 V 2¢)
where a; = in(H¢(v,4)) and {z1,..., 24} = out(H¢(v,1)).

For every vertex p, . € V(Hg) with z € out(H¢(v,j)) and 2’ €
out(H¢(w, j)), we take the clause

(ZV 7). (7)

Since F' is assumed to be var-satisfiable, there is a truth assignment ¢
which satisfies F'. Next we make some simple observations.

Consider clauses defined in (3). It follows that t(x1) = TRUE,
otherwise one of the clauses (1 V x3), (z1 V T2) remains unsat-
isfied. Consequently #(a))) = TRUE. A symmetric argument shows
t(a?) = TRUE for clauses defined in (4).

Consider clauses defined in (5). Clearly ¢(z1) = TRUE or t(x3) =
TRUE in order to satisfy (x; V z3); consequently ¢(a(?)) = TRUE for
some ¢ € {1,2,3}.
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— Consider clauses defined in (6). If ¢(a;) = TRUE, then (b)) =
FALSE to satisfy (a7 V b1); consequently ¢(z1) = TRUE. A repeated
application of this argument shows that ¢(a1) = TRUE implies

t(z;) = TRUE for i =1,...,q.

We extend xg to a 3-coloring of G choosing x(v) for v € V(G) \ S
as specified in the following table (z1, z2 are the vertices in Vi (H(v))).
t(a1) t(x2) [x(v)

TRUE TRUE| 1
TRUE FALSE| 2
FALSE TRUE| 3
In view of the above observations, it follows that ¢(z) = TRUE for

all z € out(He¢(v,x(v))), v € V(G). It remains to show that y is
a proper 3-coloring. Suppose to the contrary that there is a pair of
adjacent vertices v,w € V(G) with x(v) = x(w) = j. By construction
of Hg g, there is a vertex p, . € Vo(Hg,s) of degree 2 being incident
with z € out(Hf(v,7)) and 2’ € out(H¢(w,j)); thus F contains the
clause (Z V 2’) because of (7). However, t(z) = t(z') = TRUE, since
z € out(H¢(v, x(v))) and 2’ € out(H¢(v, x(w))). Hence (Z V 2/) is not
satisfied, a contradiction. Therefore we conclude that the coloring y is
a proper. Since the coloring x g of S was chosen arbitrarily, G is indeed
S-extending 3-colorable. O

The combination of Lemma 8 and Theorem 6 yields II5-hardness of
var-satisfiability. Since the degree of vertices in Vo(Hg,g) is at most 3,
Theorem 4 is shown true.
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