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Abstract. A boolean formula in conjunctive normal form (CNF) F is
refuted by literal–once resolution if the empty clause is inferred from
F by resolving on each literal of F at most once. Literal–once resolu-
tion refutations can be found nondeterministically in polynomial time,
though this restricted system is not complete. We show that despite of
the weakness of literal–once resolution, the recognition of CNF-formulas
which are refutable by literal–once resolution is NP-complete. We study
the relationship between literal–once resolution and read-once resolution

(introduced by Iwama and Miyano). Further we answer a question posed
by Kullmann related to minimal unsatisfiability.

1 Introduction

Resolution is a method for establishing the unsatisfiability of formulas in con-
junctive normal form (CNF), based on the resolution rule: if C1∪{`} and C2∪{`}
are clauses, then the clause C1 ∪ C2 may be inferred, resolving on the literal `.
A resolution refutation of a CNF-formula F is a derivation of the empty clause
� from F , using the resolution rule. It is well-known that resolution is sound

and complete, i.e., a CNF-formula is unsatisfiable if and only if there is a resolu-
tion refutation of it ([14]). Resolution refutations can be represented as binary
trees, where the leaves are labeled by clauses of F (see Figure 1 for an example).
Unfortunately, the size of a shortest resolution refutation of a CNF-formula F

{x, y} {x, y} {x, y} {x, y}

{y} {y}

�

Fig. 1. A resolution refutation of F = {{x, y}, {x, y}, {x, y}, {x, y}}.
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{y} {y}

{x, y} {x, y} {y, z} {y, z}

{x, y, z} {x, z} {x, y, z} {x, z}

Fig. 2. A resolution refutation which is not read–once.

can be exponential in the number of clauses of F ([6, 7]). Therefore, considerable
effort has been made to identify restricted (and incomplete) classes of resolution
refutations where the size of refutations is polynomially bounded by the size of
input formulas (see [10] for a survey). One of the best known examples is unit

resolution, where the resolution rule is only applied to pairs of clauses C1, C2 if
C1 or C2 is a unit clause (i.e., a singleton). Unit resolution is not complete any
more, but the class of formulas which can be refuted by unit resolution can be
recognized in linear time (see, eg., [10]).

Iwama and Miyano ([8]) considered read–once resolution, where each clause
of the input formula must be used at most once in a refutation; i.e., two leaves
of the resolution tree may not be labeled by the same clause. (In [8] also reso-
lution refutations are considered, where clauses of the input formula may used
more than once, but the number of repetitions is restricted.) For example, the
refutation exhibited in Figure 2 is not read-once, since the clause {x, z} occurs
at two leaves (in fact, it can be shown that for F = {{x, y, z}, {x, z}, {x, y},
{x, y, z}, {y, z}} no read–once resolution exists, despite F being unsatisfiable;
see [8] or Proposition 1 below). It is easy to see that the size of a read–once
resolution refutation is polynomially bounded by the size of the input formula.
However, in [8] it is shown that—in spite of the shortness of read–once resolu-
tion refutations—it is NP-complete to recognize formulas which can be refuted
by read–once resolution.

If we modify the above example by adding two clauses {w, x, z} and {w, x, z}
to F , then we get a read–once resolution refutation (exhibited in Figure 3). There
are still two occurrence of {x, z}, but one occurrence became an interior vertex of
the tree, and so the refutation became read-once. Thus, it is natural to consider
resolution trees where no clause appears more than once at any position in the
resolution tree. We call such refutations strict read-once. It can be shown that
there are CNF-formulas which are refutable by read–once resolution, but not
by strict read-once resolution (see Proposition 1 below). Since strict read–once
resolution is therefore weaker than read–once–resolution, it is conceivable that
refutability by strict read-once resolution can be decided in polynomial time.
We will show, however, that recognition of formulas refutable by strict read-once
resolution is NP-complete.
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{y} {y}

{x, y} {x, y} {y, z} {y, z}

{x, y, z} {x, z} {x, y, z} {x, z}

{w, x, z} {w, x, z}

Fig. 3. A resolution refutation obtained from Figure 3; it is read–once, but not strict
read–once.

Going one step further, we also consider a type of resolution which is even
weaker than strict read–once resolution: a resolution tree is literal–once if it does
not contain two or more vertices whose clauses are inferred by resolving on the
same literal. For example, the resolution refutation depicted in Figure 1 is strict
read–once, but it is not literal–once, since clauses at two positions are inferred
by resolving on the same literal x. However, it is easy to see that every literal–
once resolution refutation is a (strict) read-once resolution. The main result of
this paper is the intractability of literal–once resolution; i.e., it is NP-complete
to recognize CNF-formulas which are refutable by literal–once resolution.

Furthermore, we show that intractability of read–once resolution can be ob-
tained as corollary of our main result. This fact may be of interest, since Iwama
and Miyano obtain the quoted result solely by presenting a single example with-
out giving an accurate proof.

In [11] Kullmann asked for the computational complexity of finding a subset
F ′ of a given formula F such that

(i) F ′ is minimal unsatisfiable (F ′ is unsatisfiable, but every proper subset of
F ′ is satisfiable), and

(ii) F ′ has exactly one more clause than variables.

We denote by MU(1) the class of formulas F ′ satisfying (i) and (ii). This class
is of special interest; for example, every minimal unsatisfiable Horn formula be-
longs to MU(1) ([4]). We show that F has a subset F ′ ∈ MU(1) if and only if F
is refutable by literal–once resolution. Whence the intractability of Kullmann’s
problem follows from the NP–completeness of refutability by literal–once reso-
lution.
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2 Notation

2.1 Digraphs

We denote a digraph D by an ordered pair (V, A) consisting on a finite nonempty
set V of vertices and a set A of arcs ; an arc is an ordered pair (u, v) of distinct
vertices u, v ∈ V . Let D = (V, A) be a digraph and v ∈ V . We denote the sets
of incoming and outgoing arcs of v by out(v) = { (u, w) ∈ A | u = v } and
in(v) = { (u, w) ∈ A | w = v }, respectively. For (u, v) ∈ A we say that u is a
predecessor of v and that v is a successor of u.

A digraph T = (V, A) is an in–tree if there is exactly one vertex v without
successors (the root of T ), and for every vertex w ∈ V there is exactly one
(directed) path Pw from w to v. Consequently, every vertex which is different
from the root has exactly one successor. A vertex without predecessors is a leaf.
An in–tree T is binary if every non-leaf has exactly two predecessors. Note that a
binary in–tree with k leaves has 2k−1 vertices. For graph theoretic terminology
not defined here, the reader is referred to [2].

2.2 CNF-Formulas

Let var be a set of boolean variables. A literal ` is an object of the form x or x
for x ∈ var; in the first case we call ` positive, in the second case negative; for a
negative literal ` = x, x ∈ var, we put ` = x. Literals ` and ` are complements of
each other. If x is a variable and ` ∈ {x, x}, then we call x the variable of ` and
write var(`) = x. A clause is a finite set of literals without complements. The
empty clause is denoted by �. For a clause C we put var(C) = { var(`) | ` ∈ C }.
A CNF-formula (or formula, for short) is a finite set of clauses. For a formula F
we put var(F ) =

⋃

C∈F var(C). A literal ` is a pure literal of F if ` ∈
⋃

C∈F C 63 `.
A formula F is Horn if every clause in F contains at most one positive literal.

A truth assignment t to a formula F is a map t : var(F ) → {0, 1}. Let t be a
truth assignment to F ; we put t(x) = 1− t(x) for x ∈ var(F ), and we say that
t satisfies a clause C ∈ F if t(`) = 1 for at least one literal ` ∈ C. Furthermore,
we say that t satisfies F if t satisfies all clauses of F . A formula F is satisfiable if
there is a truth assignment which satisfies F ; otherwise F is called unsatisfiable.
We denote the set of all unsatisfiable formulas by UNSAT.

2.3 Resolution

Let C1, C2 be two clauses. If there is exactly one literal ` such that ` ∈ C1 and
` ∈ C2 then we call the clause C = (C1 \{`})∪ (C2 \{`}) the resolvent of C1 and

C2; in this case we also say that C is obtained from C1, C2 by resolving on `.
Let T0 = (V, A) be an in–tree and λ a labeling of its vertices such that λ(v)

is a clause for every v ∈ V . We call T = (V, A, λ) a resolution tree if for every
vertex v ∈ V with predecessors v1, v2 it holds that λ(v) is the resolvent of λ(v1)
and λ(v2). Let T = (V, A, λ) be a resolution tree and v ∈ V . If v is a leaf,
then we put rlit(v) = ∅; otherwise v has two predecessors, say v1 and v2; we put
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rlit(v) = (λ(v1) ∪ λ(v2)) \ λ(v). We call the elements of rlit(v) resolution literals

of v. A clause C is a premise of a resolution tree T if λ(v) = C for some leaf v of
T . We write pre(T ) for the set of all premises of T . A clause C is the conclusion

of T if λ(v) = C for the root v of T ; in this case we write con(T ) = C. A
resolution tree T is a resolution refutation if con(T ) = �. Let F be a formula
and T a resolution refutation. If pre(T ) ⊆ F then we say that F is refuted by
T , or that T is a resolution refutation of F . A resolution tree T = (V, A, λ) is
trivial if |V | = 1. Clearly, a formula F is refuted by the trivial resolution tree
T = ({v}, ∅, λ) if and only if λ(v) = � ∈ F .

For a resolution tree T = (V, A, λ) and v ∈ V we define Tv to be the resolution
tree (V ′, A′, λ′) where (V ′, A′) is the maximal subtree of (V, A) with root v and
λ′ is the restriction of λ to V ′.

It is well–known that a formula F is unsatisfiable if and only if it can be
refuted by some resolution refutation T .

3 Restricted Types of Resolution

Read–Once Resolution. A resolution tree T = (V, A, λ) is read–once if λ(v) 6=
λ(w) for any two distinct leaves v, w of T . We denote by ROR the class of all
formulas refutable by read–once resolution refutations. (ROR corresponds
to the class which is denoted by R(0) in [8].)

Strict Read–Once Resolution. A resolution tree T = (V, A, λ) is strict read–

once if λ(v) 6= λ(w) for any two distinct vertices v, w of T . We denote
by SROR the class of all formulas refutable by strict read–once resolution
refutations.

Literal–Once Resolution. A resolution tree T = (V, A, λ) is literal–once if
rlit(v) 6= rlit(w) for any two distinct non–leaves v, w of T . We denote by LOR
the class of all formulas refutable by literal–once resolution refutations.

Proposition 1 LOR ( SROR ( ROR ( UNSAT.

Proof. If a resolution refutation is literal–once, then it is obviously strict read–
once; thus LOR ⊆ SROR. Consider the formula F = {{x, y}, {x, y}, {x, y},
{x, y}}. Figure 1 shows a strict read-once resolution refutation T of F , hence F ∈
SROR. (We note in passing that F belongs to a subclass of minimal unsatisfiable
formulas characterized in [9].) However, T is not literal-once. It is easy to see that
there is no literal–once resolution refutation of F at all. Whence LOR ( SROR
follows.

We have SROR ⊆ ROR by definition. Consider the formula F = {C1, . . . , C5}
with

C1 = {x, z}, C4 = {x, y, z},
C2 = {x, y}, C5 = {x, y, z},
C3 = {y, z}.

Figure 2 exhibits a resolution refutation of F , hence F ∈ UNSAT. We show that
F /∈ ROR. Consider a resolution refutation T of F with root v, and let v1, v2 the
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predecessors of v. Clearly |con(Tv1
)| = |con(Tv2

)| = 1. However, no pair of clauses
C ′, C ′′ ∈ F have a resolvent C with |C| = 1. Thus |pre(Tv1

)| , |pre(Tv2
)| ≥ 3. Since

|F | = 5 it follows that pre(Tv1
)∩pre(Tv2

) 6= ∅. Consequently, T is not read–once.
Hence F /∈ ROR and so ROR 6= UNSAT.

Let W1 = {w, x, z}, W2 = {w, x, z}, and consider F ∗ = F ∪ {W1, W2}. Ob-
serve that C1 is the resolvent of W1 and W2. The resolution tree exhibited in
Figure 3 shows that F ∗ ∈ ROR. Consider a read–once resolution refutation T
of F ∗. We show that T is not strict read–once. Again, let v1, v2 be the prede-
cessors of the root of T . W.l.o.g., we assume |pre(Tv1

)| ≤ |pre(Tv2
)|. Similarly

as above, |pre(Tv1
)| , |pre(Tv2

)| ≥ 3 follows. Since T is assumed to be read–once,
|pre(Tv1

)|+ |pre(Tv2
)| ≤ |F ∗|; thus |pre(Tv1

)| = 3. It can be verified that there is
no resolution tree T ′ with pre(T ′) ⊆ F ∗, |pre(T ′)| = 3 and |con(T ′)| = 1, such
that W1 ∈ pre(T ′) or W2 ∈ pre(T ′). However, W1, W2 ∈ pre(T ) since F /∈ ROR.
It follows that W1, W2 ∈ pre(Tv2

) and |pre(Tv2
)| = 4. Hence we have pre(Tv2

) =
{W1, W2, D1, D2} for some D1, D2 ∈ {C2, . . . , C5}. Checking all possibilities for
D1, D2 shows that either {D1, D2} = {C2, C4} or {D1, D2} = {C3, C5}. In both
cases, the two vertices u1, u2 of Tv2

which are labeled by W1 and W2, respectively,
have a common successor u. Evidently u is labeled by C1. Since C1 ∈ pre(T ), it
follows that T is not strict read–once. Whence SROR 6= ROR. ut

4 NP-Completeness Results

Let F be a formula with m clauses and T = (V, A, λ) a read–once (strict read–
once, literal–once, respectively) resolution refutation of F . Clearly T has at most
m leaves, and so |V | ≤ 2m− 1. Thus one can guess such resolution refutation T
of F and verify in deterministic polynomial time whether T is indeed read–once
(strict read–once, literal–once, respectively). Hence the following holds.

Lemma 1 The recognition problems for LOR, SROR, and ROR are in NP.

Next we state our main result whose proof we present in Section 6.

Theorem 1 Recognition of LOR is NP-complete.

We are going to show that recognition of ROR and recognition of SROR
are both NP-complete problems as well. We proceed by reducing recognition of
LOR to recognition of SROR and ROR, respectively. For these reductions, the
following construction is crucial.

Let F be a formula. For each x ∈ var(F ) we take two new variables x[1], x[2],
and for every clause C ∈ F we define

C◦ = { x[1] | x ∈ C } ∪ { x[2] | x ∈ C }.

We put
F ◦ = { C◦ | C ∈ F } ∪ { {x[1], x[2]} | x ∈ var(F ) }.

Observe that F ◦ is satisfiable if and only if F is satisfiable; furthermore, for
every x[i] ∈ var(F ◦) there is exactly one clause C ∈ F ◦ with x[i] ∈ C.
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The following result is a direct consequence of Lemmas 4, 5, and 7, which
are more technical and will be presented in the Appendix.

Proposition 2 For every formula F the following statements are equivalent.

F ∈ LOR; F ◦ ∈ ROR; F ◦ ∈ SROR.

The next two results follow from Theorem 1 and Proposition 2.

Theorem 2 Recognition of SROR is NP-complete.

Theorem 3 (Iwama and Miyano [8]) Recognition of ROR is NP-complete.

5 Literal–Once resolution and Minimal Unsatisfiable

Formulas

In this section we apply Theorem 1 to answer a question posed by Kullmann
([11]). A formula F is minimal unsatisfiable if F is unsatisfiable but F \ {C} is
satisfiable for every C ∈ F . The deficiency δ(F ) of a formula F is defined by

δ(F ) = |F | − |var(F )| .

Let k be an integer; we write MU(k) for the class of minimal unsatisfiable for-
mulas F with δ(F ) = k. By a result due to Tarsi ([1]), MU(k) = ∅ for k ≤ 0.
Recognition of minimal unsatisfiable formulas is DP -complete ([12]); however,
for every fixed k, the class MU(k) can be recognized in polynomial time ([11,
5]). In [11], Kullmann asked whether recognizing

C = { F | there is some F ′ ⊆ F with F ′ ∈ MU(1) }

is NP-complete. We answer this question positively: in the next lemma we show
C = LOR; hence NP-completeness of C follows from Theorem 1.

Proposition 3 Let F be a formula. Then F ∈ MU(1) if and only if there is a

literal–once resolution refutation T with pre(T ) = F . Consequently LOR = C.

Proof. We apply the following results from [4].

(i) If F ∈ MU(1) and F 6= � then there is a literal ` and clauses C1, C2 ∈ F
such that C1 is the only clause of F containing `; C2 is the only clause of F
containing `.

(ii) Let F be a formula and ` a literal such that there are unique clauses C1, C2 ∈
F with ` ∈ C1 and ` ∈ C2; let C1,2 be the resolvent of C1 and C2. Then
F ∈ MU(1) if and only if (F \ {C1, C2}) ∪ {C1,2} ∈ MU(1).

We proceed by induction on |F |. The proposition evidently holds if |F | = 1;
hence consider |F | > 1. Assume F ∈ MU(1) and choose `, C1, and C2 according
to (i). It follows now from (ii) that F ∗ = (F \ {C1, C2}) ∪ {C1,2} ∈ MU(1).

7



By induction hypothesis, there is a literal–once resolution refutation T ∗ with
C1,2 ∈ pre(T ∗) = F ∗. We extend T ∗ to a a literal–once resolution refutation T
with pre(T ) = F by adding leaves v1, v2 (labeled by C1 and C2, respectively)
to T ∗.

Conversely, assume that there is a literal–once resolution refutation T =
(V, A, λ) with pre(T ) = F . Choose two leaves v1, v2 of T which have a common
successor v. Put Ci = λ(vi), i = 1, 2 and C1,2 = λ(v). Consequently, there is a
literal ` such that ` ∈ C1 and ` ∈ C2. Hence removing v1 and v2 from T yields
a literal–once resolution refutation T ∗ with pre(T ∗) = (F \ {C1, C2}) ∪ {C1,2};
pre(T ∗) ∈ MU(1) by induction hypothesis. It follows now from (ii) that F ∈
MU(1). ut

In [4] it is shown that every minimal unsatisfiable Horn formula belongs to
MU(1). Since every unsatisfiable Horn formula contains a minimal unsatisfiable
Horn formula, Proposition 3 implies the following.

Proposition 4 Every unsatisfiable Horn formula is refutable by literal–once res-

olution.

6 Proof of Theorem 1

This section is devoted to a proof of Theorem 1. We reduce 3-SAT to recognition
of LOR (in fact we could reduce SAT as well, but we choose 3-SAT to keep
notation simpler). In a first step we reduce 3-SAT to the problem of finding
a “satisfying path” in a digraph D, i.e., a path which does not run through
prescribed pairs of vertices. In a second step we mimic this path problem by
constructing a formula F such that literal–once resolution refutations of F and
satisfying paths of D correspond to each other.

First we prove two short lemmas which we will need below.

Lemma 2 Let T be a literal–once resolution tree and C1, C2 ∈ pre(T ) with ` ∈
C1 and ` ∈ C2 such that rlit(v) = {`, `} for the root of T . Then C1∩C2 ⊆ con(T ).

Proof. Let v be the root of T and v1, v2 the predecessors of v. Consider `′ ∈
C1 ∩ C2. Since T is literal–once, it follows that `′ cannot be an element of both
rlit(Tv1

) and rlit(Tv2
). Hence `′ ∈ λ(v) = con(T ). ut

Lemma 3 Let T = (V, A, λ) be a literal–once resolution refutation and C1, C2 ∈
pre(T ). Then there cannot be distinct literals `, `′ ∈ C1 such that `, `′ ∈ C2.

Proof. We observe that there are vertices v, v1, v2 ∈ V such that v1, v2 are pre-
decessors of v and ` ∈ rlit(v). W.l.o.g., assume ` ∈ λ(v1) and ` ∈ λ(v2). It follows
that C1 ∈ pre(Tv1

) and C2 ∈ pre(Tv2
). Since rlit(Tv1

)∩ rlit(Tv2
) = ∅, ` is the only

literal with ` ∈ C1 and ` ∈ C2. ut
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Construction I Let F3 = {C1, . . . , Cn} be a formula with Ci = {`i,1, `i,2, `i,3}
for 1 ≤ i ≤ n. We write L for the set of literals ` such that var(`) ∈ var(F3).
Further, for ` ∈ L we put

q(`) = { i | ` ∈ Ci, 1 ≤ i ≤ n }.

Observe that i /∈ q(`) for every ` ∈ Ci, 1 ≤ i ≤ n, since clauses do not contain
complementary pairs of literals. We assume w.l.o.g. that F3 has no pure literals;
i.e., |q(`)| ≥ 1 for every ` ∈ L.

We construct a digraph D = (V, A) as follows. We take a set of n+1 vertices
{u0, . . . , un}, and for i = 1, . . . , n we join ui−1 and ui by three (directed) paths
Pi,1, Pi,2, Pi,3 of length

∣

∣q(`i,1)
∣

∣ + 1,
∣

∣q(`i,2)
∣

∣ + 1,
∣

∣q(`i,3)
∣

∣ + 1, respectively. We
denote the set of inner vertices of Pi,j by Vi,j (1 ≤ i ≤ n, 1 ≤ j ≤ 3). Hence we
have |Vi,j | =

∣

∣q(`i,j)
∣

∣ for 0 ≤ i ≤ n, 1 ≤ j ≤ 3. Now we form a set S of pairs
(v, v′) of vertices v, v′ ∈ V \ {u0, . . . , un} such that

– there is a pair (v, v′) ∈ S with v ∈ Vi,j and v′ ∈ Vi′ ,j′ (1 ≤ i < i′ ≤ n,
1 ≤ j, j′ ≤ 3) if and only `i,j = `i′,j′ , and

– every vertex in V \ {u0, . . . , un} is contained in exactly one pair of S.

Note that such set S exists and can be obtained efficiently. We call a directed
path in D satisfying if it runs from u0 to un and contains at most one vertex of
each pair in S. Observe that each satisfying path has to pass through all of the
vertices u0, . . . , un in increasing order.

Claim 1 F3 is satisfiable if and only if D has a satisfying path.

Proof. If F3 is satisfied by some truth assignment t, then we can choose σ(i) ∈
{1, 2, 3} for 0 ≤ i ≤ n such that t(`i,σ(i)) = 1. We observe that

P = P0,σ(0) . . . Pn,σ(n) (1)

is a satisfying path. Conversely, by definition, every satisfying path P is of the
form (1) for some σ : {0, . . . , n} → {1, 2, 3}. Thus, if P is a satisfying path,
then putting t(`i,σ(i)) = 1 for 0 ≤ i ≤ n induces a truth assignment t which
satisfies F3. ut

Note that the above construction is closely related to the connection method

(see, e.g., [13, 3, 10]).

Construction II Let D = (V, A) be the digraph obtained from a given 3-
CNF formula F3 according to Construction I. We consider a portion of distinct
boolean variables: for 0 ≤ i ≤ n we take a new variable νi; for each arc a ∈ A we
take a new variable αa; for each pair p ∈ S we take three distinct new variables
βp, γp, δp. We define a formula F with

var(F ) = {ν0, . . . , νn} ∪ { αa | a ∈ A } ∪ { βp, γp, δp | p ∈ S }
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by

F = {{ν0}, {νn}} ∪
⋃

v∈V

F (v)

and the following definitions (recall that in(v) and out(v) denote the sets of arcs
incoming to and outgoing from v, respectively). For 0 ≤ i ≤ n let

F (ui) = { {αa, νi} | a ∈ in(ui) } ∪
{ {αb, νi} | b ∈ out(ui) }.

(2)

For p = (v, v′) ∈ S with

in(v) = {a}, out(v) = {b}, in(v′) = {a′}, out(v′) = {b′} (3)

we put

F (v) = {{αa, βp, γp}, and

{βp, γp},
{γp, δp},
{αb, γp, δp}}

F (v′) = {{αa′ , βp, γp},
{βp, γp},
{γp, δp},
{αb′ , γp, δp}},

and write F (p) = F (v) ∪ F (v′).

Claim 2 Let T = (V, A, λ) be a literal–once resolution refutation of F and p =
(v, v′) ∈ S. If F (p) ∩ pre(T ) 6= ∅ then either F (p) ∩ pre(T ) = F (v) or F (p) ∩
pre(T ) = F (v′).

Proof. Let a, a′, b, b′ ∈ A according to (3). We use the shorthands

C1 = {αa, βp, γp}, C ′

1 = {αa′ , βb, γp},
C2 = {βp, γp}, C ′

2 = {βp, γp},
C3 = {δp, γp}, C ′

3 = {δp, γp},
C4 = {αb, γp, δp}, C ′

4 = {αb′ , γp, δp}

so that F (v) = {C1, . . . , C4} and F (v′) = {C ′

1, . . . , C
′

4}. First we show

{C1, C
′

1} * pre(T ). (4)

Suppose to the contrary that {C1, C
′

1} ⊆ pre(T ). Consequently, there is some
v ∈ V such that γp ∈ rlit(v). Thus C1, C

′

1 ∈ pre(Tv). By Lemma 2 it follows
that βp ∈ λ(v). Hence there must be a clause C ∈ pre(T ) \ pre(Tv) with βp ∈ C.
By construction of F , C2 and C ′

2 are the only clauses of F which contain βp.
Observe that γp ∈ C2 and γp ∈ C ′

2. Thus γp ∈ rlit(T ), since con(T ) = �. It
follows that γp ∈ rlit(T ) \ rlit(Tv). However, γp ∈ rlit(Tv), and therefore we have
a contradiction to the assumption T being literal–once. Whence (4) holds. By
analogous arguments one can show

{C4, C
′

4} * pre(T ),
{C2, C

′

2} * pre(T ),
{C3, C

′

3} * pre(T ).
(5)
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We show that
C1 ∈ pre(T ) ⇔ C2 ∈ pre(T ). (6)

Assume C1 ∈ pre(T ). Since βp ∈ C1, there must be a clause C ∈ pre(T ) with
βp ∈ C; C2 and C ′

2 are the only clauses of F which contain βp. By Lemma 3 we
conclude that C ′

2 /∈ pre(T ); thus C2 ∈ pre(T ). Whence we have shown one direc-
tion of (6). The converse can be shown similarly applying Lemma 3. Moreover,
one can show by analogous arguments that

C ′

1 ∈ pre(T ) ⇔ C ′

2 ∈ pre(T ),
C3 ∈ pre(T ) ⇔ C4 ∈ pre(T ),
C ′

3 ∈ pre(T ) ⇔ C ′

4 ∈ pre(T ).
(7)

Finally we observe that

pre(T ) ∩ {C1, C2, C
′

3, C
′

4} 6= ∅ ⇔ pre(T ) ∩ {C ′

1, C
′

2, C3, C4} 6= ∅. (8)

Claim 2 now follows from (4)–(8). ut

Claim 3 D has a satisfying path if and only if F ∈ LOR.

Proof. Assume that D has a satisfying path P . We denote by V (P ) and A(P )
the vertices and arcs of P , respectively. For 0 ≤ i ≤ n we put

FP (ui) = { {αa, νi} | a ∈ in(ui) ∩ A(P ) } ∪
{ {αb, νi} | b ∈ out(ui) ∩ A(P ) }

and for v ∈ V (P ) \ {u0, . . . , un} we put FP (v) = F (v). We show that

F (P ) = {{ν0}, {νn}} ∪
⋃

v∈V (P )

FP (v)

can be refuted by literal–once resolution (observe that F (P ) ⊆ F ). Consider a
vertex v ∈ V (P ) with p = (v, v′) ∈ S. Using the same notation as in the proof
of Claim 2, we have F (v) = {C1, C2, C3, C4} ⊆ F (P ). Now C1,2 = {αa, γp} is
a resolvent of C1 and C2; C3,4 = {αb, γp} is a resolvent of C3 and C4. Further,
Cv = {αa, αb} is a resolvent of C1,2 and C3,4. Hence finding a literal–once resolu-
tion refutation of F (P ) reduces to finding a literal–once resolution refutation of
(F (P ) \ F (v)) ∪ {{αa, αb}}. Similarly, if v′ ∈ V (P ) with p = (v, v′) ∈ S, then it
suffices to find a literal–once resolution refutation of (F (P )\F (v′))∪{{αa′ , αb′}}.
By multiple applications of this argument, F (P ) can be reduced to a formula of
the form

Flin = {{`1}, {`1, `2}, {`2, `3}, . . . , {`r−1, `r}, {`r}}.

It is easy to construct a literal–once resolution refutation Tlin for Flin. Now
Tlin can be extended by the above considerations to a literal–once resolution
refutation of F (P ). Whence F ∈ LOR follows.

Conversely, assume that F ∈ LOR. We show that D has a satisfying path.
Let T be a literal–once resolution refutation of F and put F ′ = pre(T ). Let W
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be the set of vertices w ∈ W such that there is at least one arc a ∈ in(w)∪out(w)
with αa ∈ var(F ′). Clearly W 6= ∅. Since F ′ has no pure literals, it follows that
for every w ∈ W \ {u0, un} there are arcs a ∈ in(w), b ∈ out(w) such that
αa, αb ∈ var(F ′) (if w = ui for some 1 ≤ i ≤ n − 1 this is obvious; on the
other hand, if w belongs to some pair in S, then it follows by Claim 2). Thus,
for every w ∈ W , at least one predecessor and at least one successor belongs to
W . Consider the subdigraph DW of D induced by W . Clearly DW is acyclic,
since D is acyclic by construction. Every nonempty acyclic digraph has at least
one vertex s without incoming arcs and at least one vertex t without outgoing
arcs. For DW the only possibility is s = u0 and t = un. We conclude that DW

contains a path from u0 to un. By Claim 2 it follows that for every (v, v′) ∈ S
at most one of v, v′ belongs to W . Thus P must be a satisfying path necessarily.
This completes the proof of the claim. ut

In view of Lemma 1, Theorem 1 now follows from Claims 1, 3, and the
NP-completeness of the 3-SAT problem.

Appendix: Technical Lemmas

Lemma 4 F ∈ LOR implies F ◦ ∈ LOR for every formula F .

Proof. We show by induction on |V | that for every literal–once resolution tree
T = (V, A, λ) there is a literal–once resolution tree T ′ with pre(T ′) = pre(T )◦,
con(T ′) = con(T )◦, and rlit(T ′) = { x[i], x[i] | x ∈ var(rlit(T )), i = 1, 2 }.
If |V | = 1, then there is nothing to show. Assume |V | > 1 and let v be the
root of T and x the variable in rlit(v). Moreover, let v1, v2 the predecessors of
v such that x ∈ λ(v1) and x ∈ λ(v2). For i = 1, 2 let T ′

i be a literal–once
resolution tree obtained from Tvi

as supplied by the induction hypothesis. Since
rlit(Tv1

)∩rlit(Tv2
) = ∅, it follows that rlit(T ′

1)∩rlit(T ′

2) = ∅. Now x[i] ∈ con(T ′

i ) =
con(Tvi

)◦. It is obvious how T ′

1 and T ′

2 can be assembled to literal–once resolution
tree T ′ with the desired properties by adding two non–leaves and a leaf w with
λ(w) = {x[1], x[2]}. ut

The following Lemma is due to an observation by Kullmann.

Lemma 5 F ◦ ∈ ROR implies F ◦ ∈ LOR for every formula F .

Proof. Observe that for every resolution tree T = (V, A, λ) and two distinct
vertices v, v′ ∈ V with rlit(v) = rlit(v′) = {x, x}, there must be at least four
distinct leaves u1, u2, u

′

1, u
′

2 ∈ V such that x ∈ λ(u1) ∩ λ(u′1) and x ∈ λ(u2) ∩
λ(u′2). (Every vertex v ∈ V with rlit(v) = {x, x} “consumes” at least one leaf u1

with x ∈ λ(u1) and one leaf u2 with x ∈ λ(u2).) However, for every variable x[i]
of F ◦ there is exactly one clause C ∈ F ◦ such that x[i] ∈ C. Hence every read–
once resolution refutation of F ◦ is literal–once. ut
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Lemma 6 Let F be a formula and T a resolution refutation with pre(T ) ⊆ F ◦.

Then pre(T ) = F ◦

1 for some F1 ⊆ F .

Proof. Follows from the fact that pre(T ) has no pure literals. ut

Lemma 7 F ◦ ∈ LOR implies F ∈ LOR for every formula F .

Proof. We show by induction on |F | that if T is a literal–once resolution refuta-
tion with pre(T ) = F ◦, then there is a literal–once resolution refutation T ′ with
pre(T ′) = F ; the lemma will follow by Lemma 6. If |F | = 1, then F = F ◦ = {�},
and the result follows by taking T ′ = T . Now assume |F | > 1 and let T be a
literal–once resolution refutation with pre(T ) = F ◦. We call a vertex v′ of T
mistimed if there is a predecessor v1 of v′ with λ(v1) = {x[1], x[2]}, x ∈ var(F ),
and a successor v of v′ such that rlit(v) ∩ {x[1], x[2]} = ∅. Mistimed vertices can
be successively eliminated as follows (roughly speaking, we shift leaves labeled
by clauses of the form {x[1], x[2]} towards the root). Consider a mistimed vertex
v′ of T with predecessors v1 and v2 such that λ(v2) = {x[1], x[2]}, x ∈ var(F ).
Let v be the successor of v′ such that v′ and v′′ are the predecessors of v. We
remove the arcs (v1, v

′) and (v′′, v) from T and add instead the arcs (v1, v) and
(v′′, v′). Clearly λ(v′) and λ(v) can be modified appropriately such that the re-
sult is still a read–once resolution refutation with same set of premises. Hence
we can assume, w.l.o.g., that T has no mistimed vertices.

We write L1 for the set of leaves v of T with λ(v) = C◦ for some C ∈ F ,
and we write L2 for the set of leaves of T not in L1 (i.e., if v ∈ L2, then
λ(v) = {x[1], x[2]} for some x ∈ var(F )). Observe that for any two leaves v1, v2

of T which have the same successor, either v1 ∈ L1 and v2 ∈ L2, or vice versa.
Therefore, if T is nontrivial, then the height of T (i.e., the length of a longest
path in T ) is at least 2.

We choose a vertex v of T such that Tv has height 2. Since T has no mistimed
vertices by assumption, we conclude that exactly one leaf of Tv is in L1. Hence v
has two predecessors v′ and v′′ such that v′ has two predecessors v1 ∈ L1 and v2 ∈
L2, and v′′ ∈ L1. Let Q, R ∈ F and x ∈ var(F ) such that λ(v2) = {x[1], x[2]},
λ(v1) = Q◦, and λ(v′′) = R◦. It follows for {i, j} = {1, 2} that x[i] ∈ rlit(v′)
and x[j] ∈ rlit(v). Observe that x[i] /∈ var(R◦); otherwise there would be a leaf
v∗2 6= v2 with λ(v∗2) = λ(v2). We conclude that x[1], x[2] /∈ var(λ(v)). Thus Q and
R have a resolvent C with λ(v) = C◦. Let T0 be the resolution tree obtained
from T by removing v1, v2, v

′, v′′. We have

pre(T0) = (pre(T ) \ {{x[1], x[2]}, Q◦, R◦}) ∪ {C◦}.

Clearly T0 is literal–once, hence the induction hypothesis applies. Thus, there
is a literal–once resolution refutation T ′

0 with pre(T ′

0)
◦ = pre(T0); in particular,

C ∈ pre(T ′

0). Let w be the leaf of T ′

0 labeled by C. It is now obvious how a
literal–once resolution refutation T ′ = (V ′, A′, λ′) can be obtained from T ′

0: we
add two vertices w1, w2, the arcs (w1, w), (w2, w) to T ′

0, and we put λ′(w1) = Q
and λ′(w2) = R. Hence the lemma follows. ut
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