NP-Completeness of Refutability by Literal-Once Resolution ${ }^{\star}$

Stefan Szeider
Institute of Discrete Mathematics
Austrian Academy of Sciences
Sonnenfelsgasse 19, 1010 Vienna, Austria
stefan.szeider@oeaw.ac.at

Abstract

A boolean formula in conjunctive normal form (CNF) F is refuted by literal-once resolution if the empty clause is inferred from F by resolving on each literal of F at most once. Literal-once resolution refutations can be found nondeterministically in polynomial time, though this restricted system is not complete. We show that despite of the weakness of literal-once resolution, the recognition of CNF-formulas which are refutable by literal-once resolution is NP-complete. We study the relationship between literal-once resolution and read-once resolution (introduced by Iwama and Miyano). Further we answer a question posed by Kullmann related to minimal unsatisfiability.

1 Introduction

Resolution is a method for establishing the unsatisfiability of formulas in conjunctive normal form (CNF), based on the resolution rule: if $C_{1} \cup\{\ell\}$ and $C_{2} \cup\{\bar{\ell}\}$ are clauses, then the clause $C_{1} \cup C_{2}$ may be inferred, resolving on the literal ℓ. A resolution refutation of a CNF-formula F is a derivation of the empty clause \square from F, using the resolution rule. It is well-known that resolution is sound and complete, i.e., a CNF-formula is unsatisfiable if and only if there is a resolution refutation of it ([14]). Resolution refutations can be represented as binary trees, where the leaves are labeled by clauses of F (see Figure 1 for an example). Unfortunately, the size of a shortest resolution refutation of a CNF-formula F

Fig. 1. A resolution refutation of $F=\{\{x, y\},\{x, \bar{y}\},\{\bar{x}, y\},\{\bar{x}, \bar{y}\}\}$.

[^0]

Fig. 2. A resolution refutation which is not read-once.
can be exponential in the number of clauses of $F([6,7])$. Therefore, considerable effort has been made to identify restricted (and incomplete) classes of resolution refutations where the size of refutations is polynomially bounded by the size of input formulas (see [10] for a survey). One of the best known examples is unit resolution, where the resolution rule is only applied to pairs of clauses C_{1}, C_{2} if C_{1} or C_{2} is a unit clause (i.e., a singleton). Unit resolution is not complete any more, but the class of formulas which can be refuted by unit resolution can be recognized in linear time (see, eg., [10]).

Iwama and Miyano ([8]) considered read-once resolution, where each clause of the input formula must be used at most once in a refutation; i.e., two leaves of the resolution tree may not be labeled by the same clause. (In [8] also resolution refutations are considered, where clauses of the input formula may used more than once, but the number of repetitions is restricted.) For example, the refutation exhibited in Figure 2 is not read-once, since the clause $\{x, \bar{z}\}$ occurs at two leaves (in fact, it can be shown that for $F=\{\{x, y, z\},\{x, \bar{z}\},\{\bar{x}, y\}$, $\{\bar{x}, \bar{y}, \bar{z}\},\{\bar{y}, z\}\}$ no read-once resolution exists, despite F being unsatisfiable; see [8] or Proposition 1 below). It is easy to see that the size of a read-once resolution refutation is polynomially bounded by the size of the input formula. However, in [8] it is shown that - in spite of the shortness of read-once resolution refutations - it is NP-complete to recognize formulas which can be refuted by read-once resolution.

If we modify the above example by adding two clauses $\{w, x, \bar{z}\}$ and $\{\bar{w}, x, \bar{z}\}$ to F, then we get a read-once resolution refutation (exhibited in Figure 3). There are still two occurrence of $\{x, \bar{z}\}$, but one occurrence became an interior vertex of the tree, and so the refutation became read-once. Thus, it is natural to consider resolution trees where no clause appears more than once at any position in the resolution tree. We call such refutations strict read-once. It can be shown that there are CNF-formulas which are refutable by read-once resolution, but not by strict read-once resolution (see Proposition 1 below). Since strict read-once resolution is therefore weaker than read-once-resolution, it is conceivable that refutability by strict read-once resolution can be decided in polynomial time. We will show, however, that recognition of formulas refutable by strict read-once resolution is NP-complete.

Fig. 3. A resolution refutation obtained from Figure 3; it is read-once, but not strict read-once.

Going one step further, we also consider a type of resolution which is even weaker than strict read-once resolution: a resolution tree is literal-once if it does not contain two or more vertices whose clauses are inferred by resolving on the same literal. For example, the resolution refutation depicted in Figure 1 is strict read-once, but it is not literal-once, since clauses at two positions are inferred by resolving on the same literal x. However, it is easy to see that every literalonce resolution refutation is a (strict) read-once resolution. The main result of this paper is the intractability of literal-once resolution; i.e., it is NP-complete to recognize CNF-formulas which are refutable by literal-once resolution.

Furthermore, we show that intractability of read-once resolution can be obtained as corollary of our main result. This fact may be of interest, since Iwama and Miyano obtain the quoted result solely by presenting a single example without giving an accurate proof.

In [11] Kullmann asked for the computational complexity of finding a subset F^{\prime} of a given formula F such that
(i) F^{\prime} is minimal unsatisfiable (F^{\prime} is unsatisfiable, but every proper subset of F^{\prime} is satisfiable), and
(ii) F^{\prime} has exactly one more clause than variables.

We denote by $\operatorname{MU}(1)$ the class of formulas F^{\prime} satisfying (i) and (ii). This class is of special interest; for example, every minimal unsatisfiable Horn formula belongs to $\operatorname{MU}(1)([4])$. We show that F has a subset $F^{\prime} \in \mathrm{MU}(1)$ if and only if F is refutable by literal-once resolution. Whence the intractability of Kullmann's problem follows from the NP-completeness of refutability by literal-once resolution.

2 Notation

2.1 Digraphs

We denote a digraph D by an ordered pair (V, A) consisting on a finite nonempty set V of vertices and a set A of arcs; an arc is an ordered pair (u, v) of distinct vertices $u, v \in V$. Let $D=(V, A)$ be a digraph and $v \in V$. We denote the sets of incoming and outgoing arcs of v by out $(v)=\{(u, w) \in A \mid u=v\}$ and $\operatorname{in}(v)=\{(u, w) \in A \mid w=v\}$, respectively. For $(u, v) \in A$ we say that u is a predecessor of v and that v is a successor of u.

A digraph $T=(V, A)$ is an in-tree if there is exactly one vertex v without successors (the root of T), and for every vertex $w \in V$ there is exactly one (directed) path P_{w} from w to v. Consequently, every vertex which is different from the root has exactly one successor. A vertex without predecessors is a leaf. An in-tree T is binary if every non-leaf has exactly two predecessors. Note that a binary in-tree with k leaves has $2 k-1$ vertices. For graph theoretic terminology not defined here, the reader is referred to [2].

2.2 CNF-Formulas

Let var be a set of boolean variables. A literal ℓ is an object of the form x or \bar{x} for $x \in$ var; in the first case we call ℓ positive, in the second case negative; for a negative literal $\ell=\bar{x}, x \in$ var, we put $\bar{\ell}=x$. Literals ℓ and $\bar{\ell}$ are complements of each other. If x is a variable and $\ell \in\{x, \bar{x}\}$, then we call x the variable of ℓ and write $\operatorname{var}(\ell)=x$. A clause is a finite set of literals without complements. The empty clause is denoted by \square. For a clause C we $\operatorname{put} \operatorname{var}(C)=\{\operatorname{var}(\ell) \mid \ell \in C\}$. A CNF-formula (or formula, for short) is a finite set of clauses. For a formula F we put $\operatorname{var}(F)=\bigcup_{C \in F} \operatorname{var}(C)$. A literal ℓ is a pure literal of F if $\ell \in \bigcup_{C \in F} C \not \supset \bar{\ell}$. A formula F is Horn if every clause in F contains at most one positive literal.

A truth assignment t to a formula F is a map $t: \operatorname{var}(F) \rightarrow\{0,1\}$. Let t be a truth assignment to F; we put $t(\bar{x})=1-t(x)$ for $x \in \operatorname{var}(F)$, and we say that t satisfies a clause $C \in F$ if $t(\ell)=1$ for at least one literal $\ell \in C$. Furthermore, we say that t satisfies F if t satisfies all clauses of F. A formula F is satisfiable if there is a truth assignment which satisfies F; otherwise F is called unsatisfiable. We denote the set of all unsatisfiable formulas by UNSAT.

2.3 Resolution

Let C_{1}, C_{2} be two clauses. If there is exactly one literal ℓ such that $\ell \in C_{1}$ and $\bar{\ell} \in C_{2}$ then we call the clause $C=\left(C_{1} \backslash\{\ell\}\right) \cup\left(C_{2} \backslash\{\bar{\ell}\}\right)$ the resolvent of C_{1} and C_{2}; in this case we also say that C is obtained from C_{1}, C_{2} by resolving on ℓ.

Let $T_{0}=(V, A)$ be an in-tree and λ a labeling of its vertices such that $\lambda(v)$ is a clause for every $v \in V$. We call $T=(V, A, \lambda)$ a resolution tree if for every vertex $v \in V$ with predecessors v_{1}, v_{2} it holds that $\lambda(v)$ is the resolvent of $\lambda\left(v_{1}\right)$ and $\lambda\left(v_{2}\right)$. Let $T=(V, A, \lambda)$ be a resolution tree and $v \in V$. If v is a leaf, then we put $\operatorname{rlit}(v)=\emptyset$; otherwise v has two predecessors, say v_{1} and v_{2}; we put
$\operatorname{rlit}(v)=\left(\lambda\left(v_{1}\right) \cup \lambda\left(v_{2}\right)\right) \backslash \lambda(v)$. We call the elements of rlit (v) resolution literals of v. A clause C is a premise of a resolution tree T if $\lambda(v)=C$ for some leaf v of T. We write $\operatorname{pre}(T)$ for the set of all premises of T. A clause C is the conclusion of T if $\lambda(v)=C$ for the root v of T; in this case we write $\operatorname{con}(T)=C$. A resolution tree T is a resolution refutation if $\operatorname{con}(T)=\square$. Let F be a formula and T a resolution refutation. If pre $(T) \subseteq F$ then we say that F is refuted by T, or that T is a resolution refutation of F. A resolution tree $T=(V, A, \lambda)$ is trivial if $|V|=1$. Clearly, a formula F is refuted by the trivial resolution tree $T=(\{v\}, \emptyset, \lambda)$ if and only if $\lambda(v)=\square \in F$.

For a resolution tree $T=(V, A, \lambda)$ and $v \in V$ we define T_{v} to be the resolution tree $\left(V^{\prime}, A^{\prime}, \lambda^{\prime}\right)$ where $\left(V^{\prime}, A^{\prime}\right)$ is the maximal subtree of (V, A) with root v and λ^{\prime} is the restriction of λ to V^{\prime}.

It is well-known that a formula F is unsatisfiable if and only if it can be refuted by some resolution refutation T.

3 Restricted Types of Resolution

Read-Once Resolution. A resolution tree $T=(V, A, \lambda)$ is read-once if $\lambda(v) \neq$ $\lambda(w)$ for any two distinct leaves v, w of T. We denote by ROR the class of all formulas refutable by read-once resolution refutations. (ROR corresponds to the class which is denoted by $R(0)$ in [8].)
Strict Read-Once Resolution. A resolution tree $T=(V, A, \lambda)$ is strict readonce if $\lambda(v) \neq \lambda(w)$ for any two distinct vertices v, w of T. We denote by SROR the class of all formulas refutable by strict read-once resolution refutations.
Literal-Once Resolution. A resolution tree $T=(V, A, \lambda)$ is literal-once if $\operatorname{rlit}(v) \neq \operatorname{rlit}(w)$ for any two distinct non-leaves v, w of T. We denote by LOR the class of all formulas refutable by literal-once resolution refutations.

Proposition 1 LOR \subsetneq SROR \subsetneq ROR \subsetneq UNSAT.
Proof. If a resolution refutation is literal-once, then it is obviously strict readonce; thus $\mathrm{LOR} \subseteq \mathrm{SROR}$. Consider the formula $F=\{\{x, y\},\{x, \bar{y}\},\{\bar{x}, y\}$, $\{\bar{x}, \bar{y}\}\}$. Figure 1 shows a strict read-once resolution refutation T of F, hence $F \in$ SROR. (We note in passing that F belongs to a subclass of minimal unsatisfiable formulas characterized in [9].) However, T is not literal-once. It is easy to see that there is no literal-once resolution refutation of F at all. Whence LOR $\subsetneq \mathrm{SROR}$ follows.

We have $\mathrm{SROR} \subseteq \mathrm{ROR}$ by definition. Consider the formula $F=\left\{C_{1}, \ldots, C_{5}\right\}$ with

$$
\begin{array}{ll}
C_{1}=\{x, \bar{z}\}, & C_{4}=\{x, y, z\}, \\
C_{2}=\{\bar{x}, y\}, & C_{5}=\{\bar{x}, \bar{y}, \bar{z}\}, \\
C_{3}=\{\bar{y}, z\} &
\end{array}
$$

Figure 2 exhibits a resolution refutation of F, hence $F \in$ UNSAT. We show that $F \notin$ ROR. Consider a resolution refutation T of F with root v, and let v_{1}, v_{2} the
predecessors of v. Clearly $\left|\operatorname{con}\left(T_{v_{1}}\right)\right|=\left|\operatorname{con}\left(T_{v_{2}}\right)\right|=1$. However, no pair of clauses $C^{\prime}, C^{\prime \prime} \in F$ have a resolvent C with $|C|=1$. Thus $\left|\operatorname{pre}\left(T_{v_{1}}\right)\right|,\left|\operatorname{pre}\left(T_{v_{2}}\right)\right| \geq 3$. Since $|F|=5$ it follows that $\operatorname{pre}\left(T_{v_{1}}\right) \cap \operatorname{pre}\left(T_{v_{2}}\right) \neq \emptyset$. Consequently, T is not read-once. Hence $F \notin$ ROR and so ROR \neq UNSAT.

Let $W_{1}=\{w, x, \bar{z}\}, W_{2}=\{\bar{w}, x, \bar{z}\}$, and consider $F^{*}=F \cup\left\{W_{1}, W_{2}\right\}$. Observe that C_{1} is the resolvent of W_{1} and W_{2}. The resolution tree exhibited in Figure 3 shows that $F^{*} \in$ ROR. Consider a read-once resolution refutation T of F^{*}. We show that T is not strict read-once. Again, let v_{1}, v_{2} be the predecessors of the root of T. W.l.o.g., we assume $\left|\operatorname{pre}\left(T_{v_{1}}\right)\right| \leq\left|\operatorname{pre}\left(T_{v_{2}}\right)\right|$. Similarly as above, $\left|\operatorname{pre}\left(T_{v_{1}}\right)\right|,\left|\operatorname{pre}\left(T_{v_{2}}\right)\right| \geq 3$ follows. Since T is assumed to be read-once, $\left|\operatorname{pre}\left(T_{v_{1}}\right)\right|+\left|\operatorname{pre}\left(T_{v_{2}}\right)\right| \leq\left|F^{*}\right|$; thus $\left|\operatorname{pre}\left(T_{v_{1}}\right)\right|=3$. It can be verified that there is no resolution tree T^{\prime} with $\operatorname{pre}\left(T^{\prime}\right) \subseteq F^{*},\left|\operatorname{pre}\left(T^{\prime}\right)\right|=3$ and $\left|\operatorname{con}\left(T^{\prime}\right)\right|=1$, such that $W_{1} \in \operatorname{pre}\left(T^{\prime}\right)$ or $W_{2} \in \operatorname{pre}\left(T^{\prime}\right)$. However, $W_{1}, W_{2} \in \operatorname{pre}(T)$ since $F \notin$ ROR. It follows that $W_{1}, W_{2} \in \operatorname{pre}\left(T_{v_{2}}\right)$ and $\left|\operatorname{pre}\left(T_{v_{2}}\right)\right|=4$. Hence we have $\operatorname{pre}\left(T_{v_{2}}\right)=$ $\left\{W_{1}, W_{2}, D_{1}, D_{2}\right\}$ for some $D_{1}, D_{2} \in\left\{C_{2}, \ldots, C_{5}\right\}$. Checking all possibilities for D_{1}, D_{2} shows that either $\left\{D_{1}, D_{2}\right\}=\left\{C_{2}, C_{4}\right\}$ or $\left\{D_{1}, D_{2}\right\}=\left\{C_{3}, C_{5}\right\}$. In both cases, the two vertices u_{1}, u_{2} of $T_{v_{2}}$ which are labeled by W_{1} and W_{2}, respectively, have a common successor u. Evidently u is labeled by C_{1}. Since $C_{1} \in \operatorname{pre}(T)$, it follows that T is not strict read-once. Whence $\operatorname{SROR} \neq \mathrm{ROR}$.

4 NP-Completeness Results

Let F be a formula with m clauses and $T=(V, A, \lambda)$ a read-once (strict readonce, literal-once, respectively) resolution refutation of F. Clearly T has at most m leaves, and so $|V| \leq 2 m-1$. Thus one can guess such resolution refutation T of F and verify in deterministic polynomial time whether T is indeed read-once (strict read-once, literal-once, respectively). Hence the following holds.

Lemma 1 The recognition problems for LOR, SROR, and ROR are in NP.
Next we state our main result whose proof we present in Section 6 .
Theorem 1 Recognition of LOR is NP-complete.
We are going to show that recognition of ROR and recognition of SROR are both NP-complete problems as well. We proceed by reducing recognition of LOR to recognition of SROR and ROR, respectively. For these reductions, the following construction is crucial.

Let F be a formula. For each $x \in \operatorname{var}(F)$ we take two new variables $x[1], x[2]$, and for every clause $C \in F$ we define

$$
C^{\circ}=\{\overline{x[1]} \mid \bar{x} \in C\} \cup\{\overline{x[2]} \mid x \in C\} .
$$

We put

$$
F^{\circ}=\left\{C^{\circ} \mid C \in F\right\} \cup\{\{x[1], x[2]\} \mid x \in \operatorname{var}(F)\} .
$$

Observe that F° is satisfiable if and only if F is satisfiable; furthermore, for every $x[i] \in \operatorname{var}\left(F^{\circ}\right)$ there is exactly one clause $C \in F^{\circ}$ with $x[i] \in C$.

The following result is a direct consequence of Lemmas 4, 5, and 7, which are more technical and will be presented in the Appendix.

Proposition 2 For every formula F the following statements are equivalent.

$$
F \in \mathrm{LOR} ; \quad F^{\circ} \in \mathrm{ROR} ; \quad F^{\circ} \in \mathrm{SROR} .
$$

The next two results follow from Theorem 1 and Proposition 2.
Theorem 2 Recognition of SROR is NP-complete.
Theorem 3 (Iwama and Miyano [8]) Recognition of ROR is NP-complete.

5 Literal-Once resolution and Minimal Unsatisfiable Formulas

In this section we apply Theorem 1 to answer a question posed by Kullmann ([11]). A formula F is minimal unsatisfiable if F is unsatisfiable but $F \backslash\{C\}$ is satisfiable for every $C \in F$. The deficiency $\delta(F)$ of a formula F is defined by

$$
\delta(F)=|F|-|\operatorname{var}(F)|
$$

Let k be an integer; we write $\mathrm{MU}(k)$ for the class of minimal unsatisfiable formulas F with $\delta(F)=k$. By a result due to Tarsi $([1]), \mathrm{MU}(k)=\emptyset$ for $k \leq 0$. Recognition of minimal unsatisfiable formulas is D^{P}-complete ([12]); however, for every fixed k, the class $\mathrm{MU}(k)$ can be recognized in polynomial time ([11, 5]). In [11], Kullmann asked whether recognizing

$$
\mathcal{C}=\left\{F \mid \text { there is some } F^{\prime} \subseteq F \text { with } F^{\prime} \in \operatorname{MU}(1)\right\}
$$

is NP-complete. We answer this question positively: in the next lemma we show $\mathcal{C}=$ LOR; hence NP-completeness of \mathcal{C} follows from Theorem 1 .

Proposition 3 Let F be a formula. Then $F \in \mathrm{MU}(1)$ if and only if there is a literal-once resolution refutation T with $\operatorname{pre}(T)=F$. Consequently $\mathrm{LOR}=\mathcal{C}$.

Proof. We apply the following results from [4].
(i) If $F \in \mathrm{MU}(1)$ and $F \neq \square$ then there is a literal ℓ and clauses $C_{1}, C_{2} \in F$ such that C_{1} is the only clause of F containing $\ell ; C_{2}$ is the only clause of F containing $\bar{\ell}$.
(ii) Let F be a formula and ℓ a literal such that there are unique clauses $C_{1}, C_{2} \in$ F with $\ell \in C_{1}$ and $\bar{\ell} \in C_{2}$; let $C_{1,2}$ be the resolvent of C_{1} and C_{2}. Then $F \in \mathrm{MU}(1)$ if and only if $\left(F \backslash\left\{C_{1}, C_{2}\right\}\right) \cup\left\{C_{1,2}\right\} \in \operatorname{MU}(1)$.

We proceed by induction on $|F|$. The proposition evidently holds if $|F|=1$; hence consider $|F|>1$. Assume $F \in \mathrm{MU}(1)$ and choose ℓ, C_{1}, and C_{2} according to (i). It follows now from (ii) that $F^{*}=\left(F \backslash\left\{C_{1}, C_{2}\right\}\right) \cup\left\{C_{1,2}\right\} \in \operatorname{MU}(1)$.

By induction hypothesis, there is a literal-once resolution refutation T^{*} with $C_{1,2} \in \operatorname{pre}\left(T^{*}\right)=F^{*}$. We extend T^{*} to a a literal-once resolution refutation T with $\operatorname{pre}(T)=F$ by adding leaves v_{1}, v_{2} (labeled by C_{1} and C_{2}, respectively) to T^{*}.

Conversely, assume that there is a literal-once resolution refutation $T=$ (V, A, λ) with pre $(T)=F$. Choose two leaves v_{1}, v_{2} of T which have a common successor v. Put $C_{i}=\lambda\left(v_{i}\right), i=1,2$ and $C_{1,2}=\lambda(v)$. Consequently, there is a literal ℓ such that $\ell \in C_{1}$ and $\bar{\ell} \in C_{2}$. Hence removing v_{1} and v_{2} from T yields a literal-once resolution refutation T^{*} with pre $\left(T^{*}\right)=\left(F \backslash\left\{C_{1}, C_{2}\right\}\right) \cup\left\{C_{1,2}\right\}$; $\operatorname{pre}\left(T^{*}\right) \in \operatorname{MU}(1)$ by induction hypothesis. It follows now from (ii) that $F \in$ MU(1).

In [4] it is shown that every minimal unsatisfiable Horn formula belongs to $M U(1)$. Since every unsatisfiable Horn formula contains a minimal unsatisfiable Horn formula, Proposition 3 implies the following.

Proposition 4 Every unsatisfiable Horn formula is refutable by literal-once resolution.

6 Proof of Theorem 1

This section is devoted to a proof of Theorem 1. We reduce 3-SAT to recognition of LOR (in fact we could reduce SAT as well, but we choose 3-SAT to keep notation simpler). In a first step we reduce 3 -SAT to the problem of finding a "satisfying path" in a digraph D, i.e., a path which does not run through prescribed pairs of vertices. In a second step we mimic this path problem by constructing a formula F such that literal-once resolution refutations of F and satisfying paths of D correspond to each other.

First we prove two short lemmas which we will need below.
Lemma 2 Let T be a literal-once resolution tree and $C_{1}, C_{2} \in \operatorname{pre}(T)$ with $\ell \in$ C_{1} and $\bar{\ell} \in C_{2}$ such that $\operatorname{rlit}(v)=\{\ell, \bar{\ell}\}$ for the root of T. Then $C_{1} \cap C_{2} \subseteq \operatorname{con}(T)$.

Proof. Let v be the root of T and v_{1}, v_{2} the predecessors of v. Consider $\ell^{\prime} \in$ $C_{1} \cap C_{2}$. Since T is literal-once, it follows that ℓ^{\prime} cannot be an element of both $\operatorname{rlit}\left(T_{v_{1}}\right)$ and $\operatorname{rlit}\left(T_{v_{2}}\right)$. Hence $\ell^{\prime} \in \lambda(v)=\operatorname{con}(T)$.

Lemma 3 Let $T=(V, A, \lambda)$ be a literal-once resolution refutation and $C_{1}, C_{2} \in$ $\operatorname{pre}(T)$. Then there cannot be distinct literals $\ell, \ell^{\prime} \in C_{1}$ such that $\bar{\ell}, \overline{\ell^{\prime}} \in C_{2}$.

Proof. We observe that there are vertices $v, v_{1}, v_{2} \in V$ such that v_{1}, v_{2} are predecessors of v and $\ell \in \operatorname{rlit}(v)$. W.l.o.g., assume $\ell \in \lambda\left(v_{1}\right)$ and $\bar{\ell} \in \lambda\left(v_{2}\right)$. It follows that $C_{1} \in \operatorname{pre}\left(T_{v_{1}}\right)$ and $C_{2} \in \operatorname{pre}\left(T_{v_{2}}\right)$. Since $\operatorname{rlit}\left(T_{v_{1}}\right) \cap \operatorname{rlit}\left(T_{v_{2}}\right)=\emptyset, \ell$ is the only literal with $\ell \in C_{1}$ and $\bar{\ell} \in C_{2}$.

Construction I Let $F_{3}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a formula with $C_{i}=\left\{\ell_{i, 1}, \ell_{i, 2}, \ell_{i, 3}\right\}$ for $1 \leq i \leq n$. We write L for the set of literals ℓ such that $\operatorname{var}(\ell) \in \operatorname{var}\left(F_{3}\right)$. Further, for $\ell \in L$ we put

$$
q(\ell)=\left\{i \mid \ell \in C_{i}, 1 \leq i \leq n\right\}
$$

Observe that $i \notin q(\bar{\ell})$ for every $\ell \in C_{i}, 1 \leq i \leq n$, since clauses do not contain complementary pairs of literals. We assume w.l.o.g. that F_{3} has no pure literals; i.e., $|q(\ell)| \geq 1$ for every $\ell \in L$.

We construct a digraph $D=(V, A)$ as follows. We take a set of $n+1$ vertices $\left\{u_{0}, \ldots, u_{n}\right\}$, and for $i=1, \ldots, n$ we join u_{i-1} and u_{i} by three (directed) paths $P_{i, 1}, P_{i, 2}, P_{i, 3}$ of length $\left|q\left(\overline{\ell_{i, 1}}\right)\right|+1,\left|q\left(\overline{\ell_{i, 2}}\right)\right|+1,\left|q\left(\overline{\ell_{i, 3}}\right)\right|+1$, respectively. We denote the set of inner vertices of $P_{i, j}$ by $V_{i, j}(1 \leq i \leq n, 1 \leq j \leq 3)$. Hence we have $\left|V_{i, j}\right|=\left|q\left(\overline{\ell_{i, j}}\right)\right|$ for $0 \leq i \leq n, 1 \leq j \leq 3$. Now we form a set S of pairs $\left(v, v^{\prime}\right)$ of vertices $v, v^{\prime} \in V \backslash\left\{u_{0}, \ldots, u_{n}\right\}$ such that

- there is a pair $\left(v, v^{\prime}\right) \in S$ with $v \in V_{i, j}$ and $v^{\prime} \in V_{i^{\prime}, j^{\prime}}\left(1 \leq i<i^{\prime} \leq n\right.$, $1 \leq j, j^{\prime} \leq 3$) if and only $\ell_{i, j}=\overline{\ell_{i^{\prime}, j^{\prime}}}$, and
- every vertex in $V \backslash\left\{u_{0}, \ldots, u_{n}\right\}$ is contained in exactly one pair of S.

Note that such set S exists and can be obtained efficiently. We call a directed path in D satisfying if it runs from u_{0} to u_{n} and contains at most one vertex of each pair in S. Observe that each satisfying path has to pass through all of the vertices u_{0}, \ldots, u_{n} in increasing order.

Claim $1 F_{3}$ is satisfiable if and only if D has a satisfying path.
Proof. If F_{3} is satisfied by some truth assignment t, then we can choose $\sigma(i) \in$ $\{1,2,3\}$ for $0 \leq i \leq n$ such that $t\left(\ell_{i, \sigma(i)}\right)=1$. We observe that

$$
\begin{equation*}
P=P_{0, \sigma(0)} \ldots P_{n, \sigma(n)} \tag{1}
\end{equation*}
$$

is a satisfying path. Conversely, by definition, every satisfying path P is of the form (1) for some $\sigma:\{0, \ldots, n\} \rightarrow\{1,2,3\}$. Thus, if P is a satisfying path, then putting $t\left(\ell_{i, \sigma(i)}\right)=1$ for $0 \leq i \leq n$ induces a truth assignment t which satisfies F_{3}.

Note that the above construction is closely related to the connection method (see, e.g., [13, 3, 10]).

Construction II Let $D=(V, A)$ be the digraph obtained from a given 3CNF formula F_{3} according to Construction I. We consider a portion of distinct boolean variables: for $0 \leq i \leq n$ we take a new variable ν_{i}; for each arc $a \in A$ we take a new variable α_{a}; for each pair $p \in S$ we take three distinct new variables $\beta_{p}, \gamma_{p}, \delta_{p}$. We define a formula F with

$$
\operatorname{var}(F)=\left\{\nu_{0}, \ldots, \nu_{n}\right\} \cup\left\{\alpha_{a} \mid a \in A\right\} \cup\left\{\beta_{p}, \gamma_{p}, \delta_{p} \mid p \in S\right\}
$$

by

$$
F=\left\{\left\{\nu_{0}\right\},\left\{\overline{\nu_{n}}\right\}\right\} \cup \bigcup_{v \in V} F(v)
$$

and the following definitions (recall that in (v) and out (v) denote the sets of arcs incoming to and outgoing from v, respectively). For $0 \leq i \leq n$ let

$$
\begin{align*}
F\left(u_{i}\right)= & \left\{\left\{\overline{\alpha_{a}}, \nu_{i}\right\} \mid a \in \operatorname{in}\left(u_{i}\right)\right\} \cup \tag{2}\\
& \left\{\left\{\alpha_{b}, \overline{\nu_{i}}\right\} \mid b \in \operatorname{out}\left(u_{i}\right)\right\} .
\end{align*}
$$

For $p=\left(v, v^{\prime}\right) \in S$ with

$$
\begin{equation*}
\operatorname{in}(v)=\{a\}, \quad \operatorname{out}(v)=\{b\}, \quad \operatorname{in}\left(v^{\prime}\right)=\left\{a^{\prime}\right\}, \quad \operatorname{out}\left(v^{\prime}\right)=\left\{b^{\prime}\right\} \tag{3}
\end{equation*}
$$

we put

$$
\begin{array}{rlrl}
F(v)= & \left\{\left\{\overline{\alpha_{a}}, \beta_{p}, \gamma_{p}\right\},\right. & \text { and } & F\left(v^{\prime}\right)= \\
& \left\{\left\{\overline{\beta_{p}}, \gamma_{p}\right\},\right. & \left\{\overline{\gamma_{p}}, \overline{\gamma_{p}}\right\}, \\
\left\{\overline{\gamma_{p}}, \overline{\gamma_{p}}\right\}, & \left\{\gamma_{p}, \overline{\delta_{p}}\right\}, \\
& \left.\left\{\alpha_{b}, \overline{\gamma_{p}}, \delta_{p}\right\}\right\} & \left.\left\{\alpha_{b^{\prime}}, \gamma_{p}, \delta_{p}\right\}\right\},
\end{array}
$$

and write $F(p)=F(v) \cup F\left(v^{\prime}\right)$.
Claim 2 Let $T=(V, A, \lambda)$ be a literal-once resolution refutation of F and $p=$ $\left(v, v^{\prime}\right) \in S$. If $F(p) \cap \operatorname{pre}(T) \neq \emptyset$ then either $F(p) \cap \operatorname{pre}(T)=F(v)$ or $F(p) \cap$ $\operatorname{pre}(T)=F\left(v^{\prime}\right)$.

Proof. Let $a, a^{\prime}, b, b^{\prime} \in A$ according to (3). We use the shorthands

$$
\begin{array}{ll}
C_{1}=\left\{\overline{\alpha_{a}}, \beta_{p}, \gamma_{p}\right\}, & C_{1}^{\prime}=\left\{\overline{\alpha_{a^{\prime}}}, \beta_{b}, \overline{\gamma_{p}}\right\}, \\
C_{2}=\left\{\overline{\beta_{p}}, \gamma_{p}\right\}, & C_{2}^{\prime}= \begin{cases}\beta_{p} & \left.\overline{\gamma_{p}}\right\}, \\
C_{3} & =\left\{\overline{\delta_{p}}, \overline{\gamma_{p}}\right\},\end{cases} \\
C_{4}=\left\{C_{b}^{\prime}, \overline{\gamma_{p}}, \delta_{p}\right\}, & C_{4}^{\prime}=\left\{\alpha_{b^{\prime}}, \gamma_{p},, \delta_{p}\right\}
\end{array}
$$

so that $F(v)=\left\{C_{1}, \ldots, C_{4}\right\}$ and $F\left(v^{\prime}\right)=\left\{C_{1}^{\prime}, \ldots, C_{4}^{\prime}\right\}$. First we show

$$
\begin{equation*}
\left\{C_{1}, C_{1}^{\prime}\right\} \nsubseteq \operatorname{pre}(T) \tag{4}
\end{equation*}
$$

Suppose to the contrary that $\left\{C_{1}, C_{1}^{\prime}\right\} \subseteq \operatorname{pre}(T)$. Consequently, there is some $v \in V$ such that $\gamma_{p} \in \operatorname{rlit}(v)$. Thus $C_{1}, C_{1}^{\prime} \in \operatorname{pre}\left(T_{v}\right)$. By Lemma 2 it follows that $\beta_{p} \in \lambda(v)$. Hence there must be a clause $C \in \operatorname{pre}(T) \backslash \operatorname{pre}\left(T_{v}\right)$ with $\overline{\beta_{p}} \in C$. By construction of F, C_{2} and C_{2}^{\prime} are the only clauses of F which contain $\overline{\beta_{p}}$. Observe that $\gamma_{p} \in C_{2}$ and $\overline{\gamma_{p}} \in C_{2}^{\prime}$. Thus $\gamma_{p} \in \operatorname{rlit}(T)$, since $\operatorname{con}(T)=\square$. It follows that $\gamma_{p} \in \operatorname{rlit}(T) \backslash \operatorname{rlit}\left(T_{v}\right)$. However, $\gamma_{p} \in \operatorname{rlit}\left(T_{v}\right)$, and therefore we have a contradiction to the assumption T being literal-once. Whence (4) holds. By analogous arguments one can show

$$
\begin{align*}
& \left\{C_{4}, C_{4}^{\prime}\right\} \nsubseteq \operatorname{pre}(T), \\
& \left\{C_{2}, C_{2}^{\prime}\right\} \nsubseteq \operatorname{pre}(T), \tag{5}\\
& \left\{C_{3}, C_{3}^{\prime}\right\} \nsubseteq \operatorname{pre}(T) .
\end{align*}
$$

We show that

$$
\begin{equation*}
C_{1} \in \operatorname{pre}(T) \quad \Leftrightarrow \quad C_{2} \in \operatorname{pre}(T) . \tag{6}
\end{equation*}
$$

Assume $C_{1} \in \operatorname{pre}(T)$. Since $\beta_{p} \in C_{1}$, there must be a clause $C \in \operatorname{pre}(T)$ with $\overline{\beta_{p}} \in C ; C_{2}$ and C_{2}^{\prime} are the only clauses of F which contain $\overline{\beta_{p}}$. By Lemma 3 we conclude that $C_{2}^{\prime} \notin \operatorname{pre}(T)$; thus $C_{2} \in \operatorname{pre}(T)$. Whence we have shown one direction of (6). The converse can be shown similarly applying Lemma 3. Moreover, one can show by analogous arguments that

$$
\begin{align*}
& C_{1}^{\prime} \in \operatorname{pre}(T) \Leftrightarrow \\
& C_{3} \in \operatorname{pre}(T) \Leftrightarrow \tag{7}\\
& C_{2}^{\prime} \in \operatorname{pre}(T), \\
& C_{3}^{\prime} \in \operatorname{pre}(T) \Leftrightarrow \\
& C_{4} \in \operatorname{pre}(T), \\
& C_{4}^{\prime} \in \operatorname{pre}(T) .
\end{align*}
$$

Finally we observe that

$$
\begin{equation*}
\operatorname{pre}(T) \cap\left\{C_{1}, C_{2}, C_{3}^{\prime}, C_{4}^{\prime}\right\} \neq \emptyset \quad \Leftrightarrow \quad \operatorname{pre}(T) \cap\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}, C_{4}\right\} \neq \emptyset . \tag{8}
\end{equation*}
$$

Claim 2 now follows from (4)-(8).
Claim $3 D$ has a satisfying path if and only if $F \in$ LOR.
Proof. Assume that D has a satisfying path P. We denote by $V(P)$ and $A(P)$ the vertices and arcs of P, respectively. For $0 \leq i \leq n$ we put

$$
\begin{aligned}
F_{P}\left(u_{i}\right)= & \left\{\left\{\overline{\alpha_{a}}, \nu_{i}\right\} \mid a \in \operatorname{in}\left(u_{i}\right) \cap A(P)\right\} \cup \\
& \left\{\left\{\alpha_{b}, \overline{\nu_{i}}\right\} \mid b \in \operatorname{out}\left(u_{i}\right) \cap A(P)\right\}
\end{aligned}
$$

and for $v \in V(P) \backslash\left\{u_{0}, \ldots, u_{n}\right\}$ we put $F_{P}(v)=F(v)$. We show that

$$
F(P)=\left\{\left\{\nu_{0}\right\},\left\{\overline{\nu_{n}}\right\}\right\} \cup \bigcup_{v \in V(P)} F_{P}(v)
$$

can be refuted by literal-once resolution (observe that $F(P) \subseteq F$). Consider a vertex $v \in V(P)$ with $p=\left(v, v^{\prime}\right) \in S$. Using the same notation as in the proof of Claim 2, we have $F(v)=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\} \subseteq F(P)$. Now $C_{1,2}=\left\{\overline{\alpha_{a}}, \gamma_{p}\right\}$ is a resolvent of C_{1} and $C_{2} ; C_{3,4}=\left\{\alpha_{b}, \overline{\gamma_{p}}\right\}$ is a resolvent of C_{3} and C_{4}. Further, $C_{v}=\left\{\overline{\alpha_{a}}, \alpha_{b}\right\}$ is a resolvent of $C_{1,2}$ and $C_{3,4}$. Hence finding a literal-once resolution refutation of $F(P)$ reduces to finding a literal-once resolution refutation of $(F(P) \backslash F(v)) \cup\left\{\left\{\overline{\alpha_{a}}, \alpha_{b}\right\}\right\}$. Similarly, if $v^{\prime} \in V(P)$ with $p=\left(v, v^{\prime}\right) \in S$, then it suffices to find a literal-once resolution refutation of $\left(F(P) \backslash F\left(v^{\prime}\right)\right) \cup\left\{\left\{\overline{\alpha_{a^{\prime}}}, \alpha_{b^{\prime}}\right\}\right\}$. By multiple applications of this argument, $F(P)$ can be reduced to a formula of the form

$$
F_{\mathrm{lin}}=\left\{\left\{\ell_{1}\right\},\left\{\overline{\ell_{1}}, \ell_{2}\right\},\left\{\overline{\ell_{2}}, \ell_{3}\right\}, \ldots,\left\{\overline{\ell_{r-1}}, \ell_{r}\right\},\left\{\overline{\ell_{r}}\right\}\right\}
$$

It is easy to construct a literal-once resolution refutation $T_{\text {lin }}$ for $F_{\text {lin }}$. Now $T_{\text {lin }}$ can be extended by the above considerations to a literal-once resolution refutation of $F(P)$. Whence $F \in$ LOR follows.

Conversely, assume that $F \in$ LOR. We show that D has a satisfying path. Let T be a literal-once resolution refutation of F and put $F^{\prime}=\operatorname{pre}(T)$. Let W
be the set of vertices $w \in W$ such that there is at least one arc $a \in \operatorname{in}(w) \cup$ out (w) with $\alpha_{a} \in \operatorname{var}\left(F^{\prime}\right)$. Clearly $W \neq \emptyset$. Since F^{\prime} has no pure literals, it follows that for every $w \in W \backslash\left\{u_{0}, u_{n}\right\}$ there are $\operatorname{arcs} a \in \operatorname{in}(w), b \in \operatorname{out}(w)$ such that $\alpha_{a}, \alpha_{b} \in \operatorname{var}\left(F^{\prime}\right)$ (if $w=u_{i}$ for some $1 \leq i \leq n-1$ this is obvious; on the other hand, if w belongs to some pair in S, then it follows by Claim 2). Thus, for every $w \in W$, at least one predecessor and at least one successor belongs to W. Consider the subdigraph D_{W} of D induced by W. Clearly D_{W} is acyclic, since D is acyclic by construction. Every nonempty acyclic digraph has at least one vertex s without incoming arcs and at least one vertex t without outgoing arcs. For D_{W} the only possibility is $s=u_{0}$ and $t=u_{n}$. We conclude that D_{W} contains a path from u_{0} to u_{n}. By Claim 2 it follows that for every $\left(v, v^{\prime}\right) \in S$ at most one of v, v^{\prime} belongs to W. Thus P must be a satisfying path necessarily. This completes the proof of the claim.

In view of Lemma 1, Theorem 1 now follows from Claims 1, 3, and the NP-completeness of the 3-SAT problem.

Appendix: Technical Lemmas

Lemma $4 F \in$ LOR implies $F^{\circ} \in$ LOR for every formula F.
Proof. We show by induction on $|V|$ that for every literal-once resolution tree $T=(V, A, \lambda)$ there is a literal-once resolution tree T^{\prime} with $\operatorname{pre}\left(T^{\prime}\right)=\operatorname{pre}(T)^{\circ}$, $\operatorname{con}\left(T^{\prime}\right)=\operatorname{con}(T)^{\circ}$, and $\operatorname{rlit}\left(T^{\prime}\right)=\{x[i], \overline{x[i]} \mid x \in \operatorname{var}(\operatorname{rlit}(T)), i=1,2\}$. If $|V|=1$, then there is nothing to show. Assume $|V|>1$ and let v be the root of T and x the variable in $\operatorname{rlit}(v)$. Moreover, let v_{1}, v_{2} the predecessors of v such that $\bar{x} \in \lambda\left(v_{1}\right)$ and $x \in \lambda\left(v_{2}\right)$. For $i=1,2$ let T_{i}^{\prime} be a literal-once resolution tree obtained from $T_{v_{i}}$ as supplied by the induction hypothesis. Since $\operatorname{rlit}\left(T_{v_{1}}\right) \cap \operatorname{rlit}\left(T_{v_{2}}\right)=\emptyset$, it follows that $\operatorname{rlit}\left(T_{1}^{\prime}\right) \cap \operatorname{rlit}\left(T_{2}^{\prime}\right)=\emptyset$. Now $\overline{x[i]} \in \operatorname{con}\left(T_{i}^{\prime}\right)=$ $\operatorname{con}\left(T_{v_{i}}\right)^{\circ}$. It is obvious how T_{1}^{\prime} and T_{2}^{\prime} can be assembled to literal-once resolution tree T^{\prime} with the desired properties by adding two non-leaves and a leaf w with $\lambda(w)=\{x[1], x[2]\}$.

The following Lemma is due to an observation by Kullmann.
Lemma $5 F^{\circ} \in$ ROR implies $F^{\circ} \in \operatorname{LOR}$ for every formula F.
Proof. Observe that for every resolution tree $T=(V, A, \lambda)$ and two distinct vertices $v, v^{\prime} \in V$ with $\operatorname{rlit}(v)=\operatorname{rlit}\left(v^{\prime}\right)=\{x, \bar{x}\}$, there must be at least four distinct leaves $u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime} \in V$ such that $x \in \lambda\left(u_{1}\right) \cap \lambda\left(u_{1}^{\prime}\right)$ and $\bar{x} \in \lambda\left(u_{2}\right) \cap$ $\lambda\left(u_{2}^{\prime}\right)$. (Every vertex $v \in V$ with $\operatorname{rlit}(v)=\{x, \bar{x}\}$ "consumes" at least one leaf u_{1} with $x \in \lambda\left(u_{1}\right)$ and one leaf u_{2} with $x \in \lambda\left(u_{2}\right)$.) However, for every variable $x[i]$ of F° there is exactly one clause $C \in F^{\circ}$ such that $x[i] \in C$. Hence every readonce resolution refutation of F° is literal-once.

Lemma 6 Let F be a formula and T a resolution refutation with $\operatorname{pre}(T) \subseteq F^{\circ}$. Then $\operatorname{pre}(T)=F_{1}^{\circ}$ for some $F_{1} \subseteq F$.

Proof. Follows from the fact that pre (T) has no pure literals.
Lemma $7 F^{\circ} \in \mathrm{LOR}$ implies $F \in \mathrm{LOR}$ for every formula F.
Proof. We show by induction on $|F|$ that if T is a literal-once resolution refutation with $\operatorname{pre}(T)=F^{\circ}$, then there is a literal-once resolution refutation T^{\prime} with $\operatorname{pre}\left(T^{\prime}\right)=F$; the lemma will follow by Lemma 6 . If $|F|=1$, then $F=F^{\circ}=\{\square\}$, and the result follows by taking $T^{\prime}=T$. Now assume $|F|>1$ and let T be a literal-once resolution refutation with $\operatorname{pre}(T)=F^{\circ}$. We call a vertex v^{\prime} of T mistimed if there is a predecessor v_{1} of v^{\prime} with $\lambda\left(v_{1}\right)=\{x[1], x[2]\}, x \in \operatorname{var}(F)$, and a successor v of v^{\prime} such that $\operatorname{rlit}(v) \cap\{x[1], x[2]\}=\emptyset$. Mistimed vertices can be successively eliminated as follows (roughly speaking, we shift leaves labeled by clauses of the form $\{x[1], x[2]\}$ towards the root). Consider a mistimed vertex v^{\prime} of T with predecessors v_{1} and v_{2} such that $\lambda\left(v_{2}\right)=\{x[1], x[2]\}, x \in \operatorname{var}(F)$. Let v be the successor of v^{\prime} such that v^{\prime} and $v^{\prime \prime}$ are the predecessors of v. We remove the $\operatorname{arcs}\left(v_{1}, v^{\prime}\right)$ and $\left(v^{\prime \prime}, v\right)$ from T and add instead the $\operatorname{arcs}\left(v_{1}, v\right)$ and $\left(v^{\prime \prime}, v^{\prime}\right)$. Clearly $\lambda\left(v^{\prime}\right)$ and $\lambda(v)$ can be modified appropriately such that the result is still a read-once resolution refutation with same set of premises. Hence we can assume, w.l.o.g., that T has no mistimed vertices.

We write L_{1} for the set of leaves v of T with $\lambda(v)=C^{\circ}$ for some $C \in F$, and we write L_{2} for the set of leaves of T not in L_{1} (i.e., if $v \in L_{2}$, then $\lambda(v)=\{x[1], x[2]\}$ for some $x \in \operatorname{var}(F))$. Observe that for any two leaves v_{1}, v_{2} of T which have the same successor, either $v_{1} \in L_{1}$ and $v_{2} \in L_{2}$, or vice versa. Therefore, if T is nontrivial, then the height of T (i.e., the length of a longest path in T) is at least 2 .

We choose a vertex v of T such that T_{v} has height 2 . Since T has no mistimed vertices by assumption, we conclude that exactly one leaf of T_{v} is in L_{1}. Hence v has two predecessors v^{\prime} and $v^{\prime \prime}$ such that v^{\prime} has two predecessors $v_{1} \in L_{1}$ and $v_{2} \in$ L_{2}, and $v^{\prime \prime} \in L_{1}$. Let $Q, R \in F$ and $x \in \operatorname{var}(F)$ such that $\lambda\left(v_{2}\right)=\{x[1], x[2]\}$, $\lambda\left(v_{1}\right)=Q^{\circ}$, and $\lambda\left(v^{\prime \prime}\right)=R^{\circ}$. It follows for $\{i, j\}=\{1,2\}$ that $x[i] \in \operatorname{rlit}\left(v^{\prime}\right)$ and $x[j] \in \operatorname{rlit}(v)$. Observe that $x[i] \notin \operatorname{var}\left(R^{\circ}\right)$; otherwise there would be a leaf $v_{2}^{*} \neq v_{2}$ with $\lambda\left(v_{2}^{*}\right)=\lambda\left(v_{2}\right)$. We conclude that $x[1], x[2] \notin \operatorname{var}(\lambda(v))$. Thus Q and R have a resolvent C with $\lambda(v)=C^{\circ}$. Let T_{0} be the resolution tree obtained from T by removing $v_{1}, v_{2}, v^{\prime}, v^{\prime \prime}$. We have

$$
\operatorname{pre}\left(T_{0}\right)=\left(\operatorname{pre}(T) \backslash\left\{\{x[1], x[2]\}, Q^{\circ}, R^{\circ}\right\}\right) \cup\left\{C^{\circ}\right\}
$$

Clearly T_{0} is literal-once, hence the induction hypothesis applies. Thus, there is a literal-once resolution refutation T_{0}^{\prime} with $\operatorname{pre}\left(T_{0}^{\prime}\right)^{\circ}=\operatorname{pre}\left(T_{0}\right)$; in particular, $C \in \operatorname{pre}\left(T_{0}^{\prime}\right)$. Let w be the leaf of T_{0}^{\prime} labeled by C. It is now obvious how a literal-once resolution refutation $T^{\prime}=\left(V^{\prime}, A^{\prime}, \lambda^{\prime}\right)$ can be obtained from T_{0}^{\prime} : we add two vertices w_{1}, w_{2}, the $\operatorname{arcs}\left(w_{1}, w\right),\left(w_{2}, w\right)$ to T_{0}^{\prime}, and we put $\lambda^{\prime}\left(w_{1}\right)=Q$ and $\lambda^{\prime}\left(w_{2}\right)=R$. Hence the lemma follows.

References

1. R. Aharoni and N. Linial. Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A, 43:196-204, 1986.
2. J. Bang-Jensen and G. Gutin. Digraphs: theory, algorithms, applications. Springer Monographs in Mathematics. Springer Verlag, 2000.
3. W. Bibel. On matrices with connections. Journal of the ACM, 28(4):633-645, 1981.
4. G. Davidov, I. Davydova, and H. Kleine Büning. An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics and Artificial Intelligence, 23:229-245, 1998.
5. H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Submitted, 2000.
6. Z. Galil. On the complexity of regular resolution and the Davis and Putnam procedure. Theoretical Computer Science, 4:23-46, 1977.
7. A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297308, 1985.
8. K. Iwama and E. Miyano. Intractability of read-once resolution. In Proceedings of the Tenth Annual Structure in Complexity Theory Conference, pages 29-36, Minneapolis, Minnesota, 1995. IEEE Computer Society Press.
9. H. Kleine Büning. On subclasses of minimal unsatisfiable formulas. To appear in Discr. Appl. Math., 2001.
10. H. Kleine Büning and T. Lettman. Propositional logic: deduction and algorithms. Cambridge University Press, Cambridge, 1999.
11. O. Kullmann. An application of matroid theory to the SAT problem. In Fifteenth Annual IEEE Conference of Computational Complexity, pages 116-124, 2000.
12. C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J. Comput. Syst. Sci., 37(1):2-13, 1988.
13. D. Prawitz. Advances and problems in mechanical proof procedures. In Machine Intelligence, volume 4, pages 59-71. American Elsevier, New York, 1969.
14. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the $A C M, 12(1): 23-41,1965$.

[^0]: * This work has been supported by the Austrian Science Fund, P13417-MAT.

