
Constraint Satisfaction with

Bounded Treewidth Revisited ⋆

Marko Samer a,1 and Stefan Szeider b

aDepartment of Computer Science, TU Darmstadt, Germany

bDepartment of Computer Science, University of Durham, UK

Abstract

We consider the constraint satisfaction problem (CSP) parameterized by the tree-
width of primal, dual, and incidence graphs, combined with several other basic
parameters such as domain size and arity. We determine all combinations of the
considered parameters that admit fixed-parameter tractability.

Key words: Constraint satisfaction, parameterized complexity, treewidth

1 Introduction

An instance of the constraint satisfaction problem (CSP) consists of a set of
variables that range over a domain of values together with a set of constraints
that allow certain combinations of values for certain sets of variables. The
question is whether one can instantiate the variables in such a way that all
constraints are simultaneously satisfied; in that case the instance is called
consistent or satisfiable. Constraint satisfaction provides a general framework
which allows direct structure-preserving encodings of numerous problems that
arise in practice.

Although constraint satisfaction is NP-complete in general, many efforts have
been made to identify restricted problems that can be solved in polynomial
time. Such restrictions can either limit the constraints used in the instance [6]

⋆ Research supported by the EPSRC, project EP/E001394/1.
Email addresses: samer@cs.tu-darmstadt.de (Marko Samer),

stefan.szeider@durham.ac.uk (Stefan Szeider).
1 This research was carried out during the author’s postdoc position at the Uni-
versity of Durham.

1

or limit the overall structure of the instance, i.e., how variables and con-
straints interact in the instance [8]. In this paper we focus on the latter form
of restrictions which are also referred to as “structural restrictions.” Structural
restrictions are usually formulated in terms of certain graphs and hypergraphs
that are associated with a CSP instance as described in the following.

The primal graph has the variables as its vertices; two variables are joined by
an edge if they occur together in the scope of a constraint. The dual graph has
the constraints as its vertices; two constraints are joined by an edge if their
scopes have variables in common. The incidence graph is a bipartite graph
and has both the variables and the constraints as its vertices; a variable and
a constraint are joined by an edge if the variable occurs in the scope of the
constraint. Finally, the constraint hypergraph is a hypergraph whose vertices
are the variables and whose hyperedges are the constraint scopes.

Fundamental classes of tractable instances are obtained if the associated (hy-
per)graphs are acyclic with respect to certain notions of acyclicity. Acyclicity
can be generalized by means of (hyper)graph decomposition techniques which
give rise to “width” parameters that measure how far an instance deviates
from being acyclic. Freuder [12] and Dechter and Pearl [9] observed that con-
straint satisfaction is polynomial-time solvable if

• the treewidth of primal graphs, tw,

is bounded by a constant. The graph parameter treewidth, introduced by
Robertson and Seymour in their Graph Minors Project, has become a very
popular object of study as many NP-hard graph problems are polynomial-time
solvable for graphs of bounded treewidth; we define treewidth in Section 2.2. In
subsequent years several further structural parameters have been considered,
such as

• the treewidth of dual graphs, twd,
• the treewidth of incidence graphs, tw∗,

and various width parameters on constraint hypergraphs, including

• the (generalized) hypertree-width, (g)hw, (Gottlob, Leone, and Scarcello [15]),
• the spread-cut-width, scw, (Cohen, Jeavons, and Gyssens [7]), and
• the fractional hypertree-width, fhw, (Grohe and Marx [18]).

Considering CSP instances where the width parameter under consideration is
bounded by some fixed integer k gives rise to a class Wk of tractable instances.
The larger k gets, the larger is the resulting tractable class Wk. However, for
getting larger and larger tractable classes one has to pay by longer running
times. A fundamental question is the trade-off between generality and perfor-
mance. A typical time complexity of algorithms known from the literature are

2

of the form
O(‖I‖f(k)) (1)

for instances I belonging to the class Wk; here ‖I‖ denotes the input size of I
and f(k) denotes a slowly growing function. Such a running time is polynomial
when k is considered as a constant. However, since k appears in the exponent,
such algorithms become impractical—even if k is small—when large instances
are considered. It is significantly better if instances I of the class Wk can be
solved in time

O(f(k) ‖I‖c) (2)

where f is an arbitrary (possibly exponential) computable function and c is a
constant independent of k and I. In that case the order of the polynomial does
not depend on k, and so considering larger and larger classes does not increase
the order of the polynomial. Thus, it is of interest to classify the trade-off
between generality and performance of a width parameter under consideration:
whether the parameter allows algorithms of type (1) or of type (2).

1.1 Parameterized Complexity

The framework of parameterized complexity provides the adequate concepts
and tools for studying the above question. Parameterized complexity was ini-
tiated by Downey and Fellows in the late 1980s and has become an important
branch of algorithm design and analysis; hundreds of research papers have
been published in that area (see the references in [10,11,21]). It has turned
out that the distinction between tractability of type (1) and tractability of
type (2) is a robust indication of problem hardness.

A fixed parameter algorithm is an algorithm that achieves a running time of
type (2). A parameterized problem is fixed-parameter tractable if it can be
solved by a fixed-parameter algorithm. FPT denotes the class of all fixed-
parameter tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evi-
dence that a parameterized problem is not fixed-parameter tractable. This
completeness theory is based on the weft hierarchy of complexity classes
W[1], W[2], . . . , W[P]. Each class is the equivalence class of certain parameter-
ized satisfiability problems under fpt-reductions (for instance, the canonical
W[1]-complete problem asks whether a given 3SAT instance can be satisfied
by setting at most k variables to true). Let Π and Π′ be two parameterized
problems. An fpt-reduction R from Π to Π′ is a many-to-one transformation
from Π to Π′, such that

(i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′ with k′ ≤ g(k) for a fixed computable
function g and

3

(ii) R is of complexity O(f(k) ‖I‖c) for a computable function f and a con-
stant c.

The class XP consists of parameterized problems which can be solved in poly-
nomial time if the parameter is considered as a constant. The above classes
form the chain

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

where all inclusions are believed to be proper. A parameterized analog of
Cook’s Theorem [10] as well as the Exponential Time Hypothesis [11,19] give
strong evidence to assume that FPT 6= W[1]. It is known that FPT 6= XP [10].
Although XP contains problems which are very unlikely to be fixed-parameter
tractable, it is often a significant improvement to show that a problem belongs
to this class, in contrast to, e.g., k-SAT which is NP-complete for every con-
stant k ≥ 3.

The following parameterized clique-problem and independent set-problem are
W[1]-complete [10]; these problems are the basis for the hardness results con-
sidered in the sequel.

Clique

Instance: A graph G and a non-negative integer k.
Parameter: k.
Question: Does G contain a clique on k vertices?

Independent Set

Instance: A graph G and a non-negative integer k.
Parameter: k.
Question: Does G contain an independent set on k vertices?

1.2 Parameterized Constraint Satisfaction

We consider any computable function p that assigns to a CSP instance I
a non-negative integer p(I) as a CSP parameter ; CSP instances are formally
defined in Section 2.1. For CSP parameters p1, . . . , pr we consider the following
generic parameterized problem:

CSP(p1, . . . , pr)
Instance: A CSP instance I and non-negative integers k1, . . . , kr with

p1(I) ≤ k1, . . . , pr(I) ≤ kr.
Parameters: k1, . . . , kr.
Question: Is I consistent?

4

Slightly abusing notation, we will also write CSP(S) for a set S of parameters,
assuming an arbitrary but fixed ordering of the parameters in S. We write
CSPboole(S) to denote CSP(S) with the Boolean domain {0, 1}, and CSPbin(S)
to denote CSP(S) where all constraints have arity at most 2.

Note that we formulate the problem CSP(p1, . . . , pr) as a “promise problem”
in the sense that for solving the problem we do not need to verify the as-
sumption p1(I) ≤ k1, . . . , pr(I) ≤ kr. However, unless otherwise stated, for
all cases considered in the sequel where CSP(p1, . . . , pr) is fixed-parameter
tractable, also the verification of the assumption p1(I) ≤ k1, . . . , pr(I) ≤ kr is
fixed-parameter tractable. For a CSP instance I we have the following basic
parameters:

• the number of variables, vars,
• the number of values, dom,
• the number of constraints, cons,
• the largest size of a constraint scope, arity,
• the largest size of a relation, dep,
• the largest number of occurrences of a variable, deg,
• the largest overlap between two constraint scopes, ovl,
• the largest difference between two constraint scopes, diff.

Gottlob, Scarcello, and Sideri [17] have determined the parameterized com-
plexity of constraint satisfaction with respect to the treewidth of primal
graphs: CSP(tw, dom) is fixed-parameter tractable and CSP(tw) is W[1]-hard.
The parameterized complexity of constraint satisfaction with respect to other
structural parameters like treewidth of dual graphs, treewidth of incidence
graphs, and the more general width parameters defined in terms of constraint
hypergraphs remained open. In this paper we determine exactly those combi-
nations of parameters from tw, twd, tw∗, vars, dom, cons, arity, dep, deg, ovl,
and diff that render constraint satisfaction fixed-parameter tractable.

The following concept allows us to establish the classification by considering
only a few border case. Let S and S ′ = {p′1, p

′
2, . . . , p

′
r′} be two finite sets

of CSP parameters. S dominates S ′ if for every p ∈ S there exists an r′-ary
computable function f that is monotonically increasing in each argument such
that for every CSP instance I we have p(I) ≤ f(p′1(I), p′2(I), . . . , p′r′(I)). See
Lemma 2 for examples that illustrate this notion (if S or S ′ is a singleton, we
omit the braces to improve readability). It is easy to see that whenever S dom-
inates S ′, then fixed-parameter tractability of CSP(S) implies fixed-parameter
tractability of CSP(S ′), and W[1]-hardness of CSP(S ′) implies W[1]-hardness
of CSP(S) (see Lemma 1).

5

1.3 Results

We obtain the following classification result (see also the diagram in Figure 1
and the discussion in Section 3).

Theorem 1 (Classification Theorem) Let S ⊆ {tw, twd, tw∗, vars, dom,
cons, arity, dep, deg, ovl, diff}.

(1) If {tw∗, dep}, {tw∗, dom, diff}, or {dom, cons, ovl} dominates S, then
CSP(S) is fixed-parameter tractable.

(2) Otherwise, if neither of them dominates S, then, unless FPT = W[1],
(a) CSP(S) is not fixed-parameter tractable.
(b) if dom ∈ S, then even CSPboole(S) is not fixed-parameter tractable.
(c) if arity ∈ S, then even CSPbin(S) is not fixed-parameter tractable.

The complexity theoretic assumption FPT 6= W[1] is discussed in Section 1.1.

The notion of domination allows us to extend the W[1]-hardness results of
the Classification Theorem to all parameters that are more general than the
treewidth of incidence graphs. In particular, we obtain the following corollary
to Theorem 1.

Corollary 1 The problems CSP(p, dom) and CSPboole(p) are W[1]-hard if p
is any of the parameters treewidth of incidence graphs, hypertree-width, gen-
eralized hypertree-width, spread-cut-width, and fractional hypertree-width.

Recently, Gottlob et al. [14] have shown that the problem of deciding whether
a given hypergraph has (generalized) hypertree-width at most k, is W[2]-hard.
Note that this result does not imply W[1]-hardness of CSP(hw, dom) (respec-
tively CSP(ghw, dom)), since it is possible to design algorithms for CSP in-
stances of bounded (generalized) hypertree-width that avoid the decomposi-
tion step. Chen and Dalmau [5] have recently proposed such an algorithm,
which, however, is not a fixed-parameter algorithm.

Our results indicate a somewhat surprising difference between Boolean con-
straint satisfaction and propositional satisfiability (SAT). A SAT instance is
a set of clauses, representing a propositional formula in conjunctive normal
form. The question is whether the instance is satisfiable. Primal, dual, and in-
cidence graphs and the corresponding treewidth parameters tw, twd, and tw∗

can be defined for SAT similarly as for constraint satisfaction [27], as well as
the parameterized decision problem SAT(p) for a parameter p. In contrast to
the W[1]-hardness of CSPboole(tw

∗), as established in Corollary 1, the problem
SAT(tw∗) is fixed-parameter tractable. This holds also true for SAT(twd) and
SAT(tw) since tw∗ dominates twd and tw. Szeider [27] has shown the fixed-
parameter tractability of SAT(tw∗) by using a general result for Monadic Sec-

6

ond Order (MSO) logic on graphs; Samer and Szeider [25] have developed an
efficient dynamic programming algorithm for this problem. We refer the in-
terested reader to a recent survey chapter [26] on fixed-parameter tractability
and SAT.

2 Preliminaries

2.1 Constraint Satisfaction

Formally, a CSP instance I is a triple (V, D, C), where V is a finite set of
variables, D is a finite set of domain values, and C is a finite set of constraints.
Each constraint in C is a pair (S, R), where S, the constraint scope, is a non-
empty sequence of distinct variables of V , and R, the constraint relation, is a
relation over D whose arity matches the length of S; a relation is considered
as a set of tuples. We assume w.l.o.g. that every variable occurs in at least one
constraint scope and every domain element occurs in at least one constraint
relation. We write var(C) for the set of variables that occur in the scope of
constraint C, rel(C) for the relation of C, and con(x) for the set of constraints
that contain variable x in their scopes. Moreover, for a set C of constraints,
we set var(C) =

⋃

C∈C var(C).

An assignment is a mapping τ : X → D defined on some set X of variables.
Let C = ((x1, . . . , xn), R) be a constraint and τ : X → D an assignment. We
define

C[τ] = { (d1, . . . , dn) ∈ R : xi /∈ X or τ(xi) = di, 1 ≤ i ≤ n }.

Thus, C[τ] contains those tuples of R that do not disagree with τ at some
position. An assignment τ : X → D is consistent with a constraint C if C[τ] 6=
∅. An assignment τ : X → D satisfies a constraint C if var(C) ⊆ X and τ is
consistent with C. An assignment satisfies a CSP instance I if it satisfies all
constraints of I. The instance I is consistent (or satisfiable) if it is satisfied
by some assignment. The constraint satisfaction problem is the problem of
deciding whether a given CSP instance is consistent (resp. satisfiable).

A constraint C = ((x1, . . . , xn), R) is the projection of constraint C ′ =
(S ′, R′) to V ⊂ var(C ′) if V = {x1, . . . , xn} and R consists of all tu-
ples (τ(x1), . . . , τ(xn)) for assignments τ that are consistent with C ′. If C
is a projection of C ′, we say that C is obtained from C ′ by projecting out
all variables in var(C ′) \ var(C). A constraint C = ((x1, . . . , xn), R) is the
join of constraints C1, . . . , Cr if var(C) =

⋃r
i=1 var(Ci) and if R consists of

all tuples (τ(x1), . . . , τ(xn)) for assignments τ that are consistent with Ci for
all 1 ≤ i ≤ r (cf. Abiteboul et al. [1]).

7

2.2 Tree Decompositions

Let G be a graph, T a rooted tree, and χ a labeling of the vertices of T
by sets of vertices of G. We refer to the vertices of T as “nodes” to avoid
confusion with the vertices of G, and we call the sets χ(t) “bags.” For each
node t of T we denote by Tt the subtree of T rooted at t. The pair (T, χ) is a
tree decomposition of G if the following three conditions hold:

(1) For every vertex v of G there exists a node t of T such that v ∈ χ(t).
(2) For every edge vw of G there exists a node t of T such that v, w ∈ χ(t).
(3) For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1

to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2) (“Connectedness Condition”).

The width of a tree decomposition (T, χ) is defined as the maximum |χ(t)|−1
over all nodes t of T . The treewidth tw(G) of a graph G is the minimum width
over all its tree decompositions.

As shown by Bodlaender [2], there exists for every fixed k a linear time al-
gorithm that checks whether a given graph has treewidth at most k and, if
so, outputs a tree decomposition of minimum width. Bodlaender’s algorithm
does not seem feasible to implement [4]. However, there are several other
known fixed-parameter algorithms that are feasible. For example, Reed’s al-
gorithm [23] runs in time O(|V | log |V |) for any fixed k and decides either that
the treewidth of the given graph G = (V, E) exceeds k, or outputs a tree de-
composition of width at most 4k. The algorithm produces tree decompositions
with O(|V |) many nodes.

Let (T, χ) be a tree decomposition of a graph G and let r be a node of T .
The triple (T, χ, r) is a nice tree decomposition of G if the following three
conditions hold (here we consider T as a tree rooted at r):

(1) Every node of T has at most two children.
(2) If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in

that case we call t a join node.
(3) If a node t of T has exactly one child t′, then exactly one of the following

prevails:
(a) |χ(t)| = |χ(t′)|+1 and χ(t′) ⊂ χ(t); in that case we call t an introduce

node.
(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget

node.

It is well known (and easy to see) that for every fixed k, given a tree decom-
position of a graph G = (V, E) of width at most k and with O(|V |) nodes,
one can construct in linear time a nice tree decomposition of G with O(|V |)
nodes and width at most k [4].

8

3 The Domination Lattice

Lemma 1 Let S and S ′ be two sets of CSP parameters such that S domi-
nates S ′. Then there is an fpt-reduction from CSP(S ′) to CSP(S). In particu-
lar, fixed-parameter tractability of CSP(S) implies fixed-parameter tractability
of CSP(S ′), and W[1]-hardness of CSP(S ′) implies W[1]-hardness of CSP(S).

PROOF. Let S = {p1, . . . , pr} and S ′ = {p′1, . . . , p
′
r′} and assume that S

dominates S ′. By definition, for every i = 1, . . . , r there exists an r′-ary com-
putable function fi that is monotonically increasing in each argument such
that for every CSP instance I we have pi(I) ≤ fi(p

′
1(I), p′2(I), . . . , p′r′(I)).

Consider an instance (I, k′
1, . . . , k

′
r′) of CSP(S ′); i.e., we have p′i(I) ≤ k′

i

for all 1 ≤ i ≤ r′. We put ki = fi(k
′
1, k

′
2, . . . , k

′
r′) for all 1 ≤ i ≤ r.

Since fi is monotonically increasing in each argument, we have pi(I) ≤
fi(p

′
1(I), p′2(I), . . . , p′r′(I)) ≤ fi(k

′
1, k

′
2, . . . , k

′
r′) = ki. Hence (I, k1, . . . , kr) is an

instance of CSP(S). Whence we have indeed an fpt-reduction from CSP(S ′)
to CSP(S). The second part of the lemma is a direct consequence of the
first part. 2

Next we give a more formal definition of the basic CSP parameters introduced
in Section 1.2. For a CSP instance I = (V, D, C) the parameters are defined
as follows:

• vars(I) = |V |
• dom(I) = |D|
• cons(I) = |C|

• arity(I) = maxC∈C |var(C)|
• dep(I) = maxC∈C |rel(C)|
• deg(I) = maxx∈V |con(x)|

• ovl(I) = maxC,C′∈C,C 6=C′ |var(C) ∩ var(C ′)|
• diff(I) = maxC,C′∈C |var(C) \ var(C ′)|

The following lemma provides the basis for deriving all domination relations
between the sets of parameters we consider in the sequel of this paper.

Lemma 2

(1) If S ⊆ S ′,
then S dominates S ′.

(2) tw dominates vars.
(3) tw dominates {tw∗, arity}.
(4) twd dominates cons.
(5) twd dominates {tw∗, deg}.
(6) tw∗ dominates tw.
(7) tw∗ dominates twd.

(8) vars dominates {cons, arity}.
(9) dom dominates {cons, arity, dep}.

(10) cons dominates {vars, deg}.
(11) arity dominates tw.
(12) dep dominates {dom, arity}.
(13) deg dominates twd.
(14) ovl dominates arity.
(15) diff dominates arity.

9

PROOF. Part 1 is obvious. Parts 2 and 4 follow from the fact that there is
always a trivial tree decomposition of the primal graph and of the dual graph
of I of width vars(I)−1 and cons(I)−1, respectively. Thus, tw(I) ≤ vars(I)−1
and twd(I) ≤ cons(I)− 1. Part 3 follows from the fact that every tree decom-
position of the incidence graph can be transformed into a tree decomposition
of the primal graph by replacing each constraint C in the bags by var(C).
Thus, tw(I) ≤ tw∗(I)(arity(I) − 1) as observed by Kolaitis and Vardi [20]. A
symmetric argument applies to part 5, i.e., every tree decomposition of the
incidence graph can be transformed into a tree decomposition of the dual
graph by replacing each variable x in the bags by con(x). Thus, twd(I) ≤
tw∗(I)(deg(I)−1). Part 6 follows from the inequality tw∗(I) ≤ tw(I)+1 shown
by Kolaitis and Vardi [20]; a symmetric argument gives tw∗(I) ≤ twd(I) + 1,
hence part 7 holds as well. Parts 8, 9, 10, and 12 follow from the obvious
inequalities vars(I) ≤ cons(I) · arity(I), dom(I) ≤ cons(I) · arity(I) · dep(I),
cons(I) ≤ vars(I) · deg(I), and dep(I) ≤ dom(I)arity(I), respectively. (Recall for
parts 8 and 9 that we assume w.l.o.g. that every variable occurs in at least
one scope and every domain element occurs in at least one relation.) Part 11
follows from the fact that a constraint of arity r yields a clique on r vertices
in the primal graph; it is well known that if a graph G contains a clique with
r vertices, then tw(G) ≥ r − 1 [3]. Thus, arity(I) ≤ tw(I) + 1. A symmetric
argument applies to part 13, i.e., a variable of degree r yields a clique on r ver-
tices in the dual graph. Thus, deg(I) ≤ twd(I) + 1. Finally, parts 14 and 15
follow from the obvious inequalities ovl(I) ≤ arity(I) and diff(I) ≤ arity(I),
respectively. 2

Note that parts 2, 4, and 6–15 in the above lemma are strict in the sense that
p dominates q but q does not dominate p.

Based on Lemmas 1 and 2, we obtain the following corollary to the Classifica-
tion Theorem by simply going through all subsets of parameters and checking
whether they are dominated by {tw∗, dep}, {tw∗, dom, diff} or {dom, cons, ovl}.

Corollary 2 Let S ⊆ {tw, twd, tw∗, vars, dom, cons, arity, dep, deg, ovl, diff}.
Then CSP(S) is fixed-parameter tractable if S contains at least one of the
following 14 sets as subset:

{tw, dom}, {tw, dep}, {vars, dom},

{twd, dom, arity}, {twd, dep}, {dom, cons, arity},

{twd, dom, diff}, {tw∗, dep}, {dom, cons, ovl},

{tw∗, dom, arity}, {vars, dep}, {dom, cons, diff},

{tw∗, dom, diff}, {cons, dep}.

Otherwise, if none of them is a subset of S, CSP(S) is not fixed-parameter
tractable unless FPT = W[1].

10

Let us now consider the sets S of parameters that are not dominated
by {tw∗, dep}, {tw∗, dom, diff}, or {dom, cons, ovl}, and let us assume that
CSP(S) is W[1]-hard for these sets as indicated by the Classification The-
orem. Thus by Lemma 2(a), we know that for each of these sets S, if S ′ ⊆ S,
then also CSP(S ′) is W[1]-hard. Consequently, it suffices to consider those sets
of parameters that are not subset of another set. This yields a characterization
dual to Corollary 2. Thus, together with the sets listed in Corollary 2, we ob-
tain our domination lattice in Figure 1. Note that if two sets are domination
equivalent (that is, if they dominate each other and thus trivially have the
same parameterized complexity), we consider only one of them in the lattice.
For example, {tw, dom} and {tw∗, dom, arity} are domination equivalent.

dom, cons, arity

dom, cons, ovl twd, dom, arity vars, dom cons, dep

twd, dom, ovl cons, arity dom, arity, deg tw, dom vars, dep twd, dep

tw∗, dom, diff tw, dep

tw∗, dep

twd, dom, diff

dom, cons, diff

dom, cons, arity

dom, cons

∅

Fig. 1. Domination lattice

The domination lattice shows the relationships among the resulting 17 sets:
A set S dominates a set S ′ if and only if there is a path running upwards
from S to S ′; in fact, it can be easily shown that whenever one of the 17 sets
dominates another, it strictly dominates the other set. The sets S for which
CSP(S) is fixed-parameter tractable according to the Classification Theorem
are indicated in the lattice by boxes with rounded corners.

In order to prove the Classification Theorem, we will need the following propo-
sition, which can be easily read off from the domination lattice.

Proposition 1 Let S ⊆ {tw, twd, tw∗, vars, dom, cons, arity, dep, deg, ovl, diff}.
If S is not dominated by {tw∗, dep}, {tw∗, dom, diff}, or {dom, cons, ovl}, then
S dominates {twd, dom, ovl}, {cons, arity}, {dom, cons}, or {dom, arity, deg}.

In view of Proposition 1, Theorem 1 is established if we show
(i) fixed-parameter tractability of CSP(tw∗, dep), CSP(tw∗, dom, diff),
and CSP(dom, cons, ovl), as well as (ii) W[1]-hardness of CSP(twd, dom, ovl),
CSP(cons, arity), CSP(dom, cons), and CSP(dom, arity, deg).

11

3.1 Tractability Results

Let us start with the fixed-parameter tractability of CSP(tw∗, dep). To this
aim, we will prove a series of auxiliary results that are of independent interest.

Let I = (V, D, C) be a CSP instance, x ∈ V , and C1, . . . , Cr ∈ C the constraints
with v ∈ var(Ci) for all 1 ≤ i ≤ r, r > 3. Now let us construct a CSP
instance I ′ = (V ′, D, C′) as follows: We take a new variable x′ /∈ V and put
V ′ = V ∪ {x′}. We take the new constraint Cx=x′ = ((x, x′), =D), where
=D denotes the equality relation { (d, d) : d ∈ D }. For i ∈ {1, 2}, let Cx′

i

denote the constraint obtained from Ci by replacing x by x′ in the scope
of Ci. We put C′ = (C \ {C1, C2}) ∪ {Cx′

1 , Cx′

2 , Cx=x′}. Evidently, I and I ′

are either both consistent or both inconsistent. Now variable x occurs in the
scopes of r − 1 constraints of I ′. By repeating this construction r − 3 times,
we finally are left with a CSP instance where x occurs in the scopes of at
most three constraints. Further, we can apply a similar construction with
respect to other variables, obtaining an instance I∗ where all variables occur
in the scopes of at most three constraints. We say that I∗ is obtained from I
by splitting. In particular, denoting by d(x) the number of constraints of I
containing variable x in their scopes, we obtain I∗ by repeating the above
procedure

∑

x∈V max(0, d(x)−3) times. The following lemma summarizes this
construction:

Lemma 3 Given a CSP instance I, we can obtain in polynomial time a CSP
instance I∗ such that the following holds:

(1) I is consistent if and only if I∗ is consistent.
(2) Each variable of I∗ occurs in the scopes of at most three constraints of I∗.

Note that the splitting procedure described above does not yield a unique
instance I∗ as the construction depends on the chosen ordering of the con-
straints C1, . . . , Cr in each splitting step. The following result indicates that
one needs to choose the orderings carefully to avoid and unbounded increase
of incidence treewidth.

Proposition 2 There are CSP instances of constant incidence treewidth
from which one can obtain by splitting instances of arbitrarily high incidence
treewidth.

PROOF. We consider a family of CSP instances In consisting of variables xi

for 1 ≤ i ≤ n and variables yi,j for 0 ≤ i ≤ n and 1 ≤ j ≤ 2n. Further, In has
constraints Ci,j for 0 ≤ i ≤ n and 0 ≤ j ≤ 2n, with xi ∈ var(Ci′,j′) if and only
if i ∈ {i′ − 1, i′}, and yi,j ∈ var(Ci′,j′) if and only if i = i′ and j ∈ {j′ − 1, j′}.
It is not difficult to verify that tw∗(In) = 3; this follows for example from

12

x1 x2

x
(7)
1

x1

x
(7)
2

x2

x
(6)
1

x
(5)
1

x
(4)
1

x
(3)
1

x
(2)
1

x
(1)
1

x
(6)
2

x
(5)
2

x
(4)
2

x
(3)
2

x
(2)
2

x
(1)
2

Fig. 2. Incidence graphs of I2 and I∗2 , respectively

the observation that three cops can search the incidence graph of In in the
Seymour-Thomas search game [3]. For an example see the left hand side of
Figure 2 for the case n = 2.

We obtain from In the instance I∗
n by splitting, performing the splitting in a

particular way, resulting in an incidence graph as depicted at the right hand
side of Figure 2 for the case n = 2. It is straightforward to formalize this
construction for arbitrary n. Evidently, the incidence graph of I∗

n contains a
(2n + 1) × (2n + 1) grid as a minor (a graph G is a minor of a graph H if G
can be obtained from a subgraph of H by contraction of edges; we contract an
edge uv by replacing the vertices u and v by a new vertex x that is adjacent to
all the vertices that were adjacent to u or v). Using the well-known facts that
the treewidth of an r× r grid equals r, and that the treewidth of a graph is at
least as large as the treewidth of any of its minors (see, e.g., Bodlaender [3]),
we conclude that tw∗(I∗

n) ≥ 2n + 1. 2

Next we show that by carefully choosing the ordering we can always find a
splitting such that the incidence treewidth increases at most by one.

Lemma 4 Given a CSP instance I together with a tree decomposition of
width k of the incidence graph of I. By splitting I we can obtain I∗ with inci-
dence treewidth at most k + 1 in polynomial time. Moreover, within the same
time bounds we can construct a tree decomposition of the incidence graph of I∗

of width at most k + 1 such that each bag contains at most k + 1 variables.

PROOF. Let us call a nice tree decomposition (T, χ, r) of the incidence graph
of a CSP instance I = (V, D, C) to be k-special if the following conditions hold:

(1) χ(r) = ∅.
(2) |χ(t)| ≤ k + 2 and |χ(t) ∩ V | ≤ k + 1 hold for every node t of T .

13

(3) If |χ(t)| = k + 2 for a node t of T , then t is an introduce node that is not
the child of a forget node where a variable is forgotten that occurs in the
scopes of more than three constraints.

Now, given an arbitrary tree decomposition of width k of the incidence graph
of I, we can convert it in polynomial time into a nice tree decomposition of the
same width. Moreover, by adding new forget nodes on top of the root, we can
easily obtain a nice tree decomposition (T, χ, r) of width k where χ(r) = ∅.
Evidently, (T, χ, r) is k-special.

If each variable of I occurs in the scopes of at most three constraints, then
we have nothing to show. Hence assume that some variable x occurs in the
scopes of more than three constraints. Let S = {C1, . . . , Cs} be the set of
constraints of I having x in their scopes. Since χ(r) = ∅, there must be a
unique forget node tx where x is forgotten, i.e., x /∈ χ(tx) but x ∈ χ(t′x) for
the single child t′x of tx. Note that all constraints in S must occur in bags
of nodes of the subtree rooted at t′x since otherwise an edge of the incidence
graph (between x and a constraint in S) would not be covered by the tree
decomposition. We distinguish two cases:

Case 1: |S ∩ χ(tx)| ≤ s − 2.

Hence at least two constraints from S are already forgotten at tx. Let t be
the lowest node in T where exactly two constraints in S, say C1 and C2, are
forgotten. Note that t must be either a forget node at which C1 or C2 is
forgotten, or a join node. Since s > 3, t cannot be the root, hence it has a
parent t′.

We form a new CSP instance I ′ by introducing a new variable x′ and replacing
the constraints C1, C2 by the constraints Cx′

1 , Cx′

2 , Cx=x′ as described above. To
get a nice tree decomposition (T ′, χ′, r) of the incidence graph of I ′ we modify
(T, χ, r) as follows: First we replace in the bags of t and all nodes below t the
variable x with x′ and constraint Ci with Cx′

i , i ∈ {1, 2}. Second, we replace
the edge tt′ of T with the path tt1t2t3t4t

′, where t1, . . . , t4 are new nodes. The
bags of the new nodes are defined as follows:

χ′(t1) = χ′(t) ∪ {Cx=x′} (introduce Cx=x′)

χ′(t2) = χ′(t1) \ {x
′} (forget x′)

χ′(t3) = χ′(t2) ∪ {x} (introduce x)

χ′(t4) = χ′(t3) \ {Cx=x′} (forget Cx=x′)

It can be easily verified that this construction gives indeed a nice tree decom-
position (T ′, χ′, r) of I ′. Since (T, χ, r) is k-special and t is either a forget node
or a join node, |χ(t)| = |χ′(t)| ≤ k + 1. Consequently, for i ∈ {2, 4} we have

14

x
(1)
1

x
(3)
1

x
(5)
1

x
(7)
1

x
(2)
1

x
(4)
1

x
(6)
1

x1

x
(1)
2

x
(3)
2

x
(5)
2

x
(7)
2

x
(2)
2

x
(4)
2

x
(6)
2

x2

Fig. 3. Incidence graph of I∗2 obtained by splitting I2 from Figure 2 using Lemma 4

|χ′(ti)| ≤ k +1; for i ∈ {1, 3} we have |χ′(ti)| ≤ k + 2 and |χ′(ti)∩V | ≤ k + 1,
however, ti is a child of a forget node where either a constraint is forgotten or
a variable is forgotten that occurs in the scopes of exactly three constraints.
Hence, (T ′, χ′, r) is k-special.

Case 2: |S ∩ χ(tx)| ≥ s − 1.

Hence at most one constraint from S, say C1, is already forgotten at tx. As
above we form a new CSP instance I ′ by introducing a new variable x′ and
replacing the constraints C1, C2 by the constraints Cx′

1 , Cx′

2 , Cx=x′. We get a
nice tree decomposition (T ′, χ′, r) of the incidence graph of I ′ by modifying
(T, χ, r) as follows: First we replace in the bags of t′x and all nodes below t′x the
variable x with x′ and constraint Ci with Cx′

i , i ∈ {1, 2}. Second we replace
the edge t′xtx of T with the path t′xt1t2t3t4tx, where t1, . . . , t4 are new nodes.
The bags of these new nodes are defined as in Case 1.

Evidently, (T ′, χ′, r) is a nice tree decomposition of the incidence graph of I ′.
Since (T, χ, r) is k-special and t′x is the child of the forget node tx where
variable x is forgotten that occurs in the scopes of more than three constraints,
|χ(t′x)| = |χ′(t′x)| ≤ k + 1. Hence, it follows as in the preceding case that
(T ′, χ′, r) is k-special. This completes the proof of the second case.

As long as there are still variables that occur in the scopes of more than
three constraints we repeat the above construction until we end up with an
instance I∗ and a k-special tree decomposition of the incidence graph of I∗. 2

In particular, if we apply the splitting procedure of Lemma 4 to the CSP
instance In as defined in the proof Lemma 3, we obtain a CSP instance of
incidence treewidth 3. The corresponding incidence graph for the case n = 2
is depicted in Figure 3.

We call a CSP parameter p to be splitting compatible if there exists a com-
putable function f such that for every CSP instance I and every instance I∗

15

obtained from I by splitting we have p(I∗) ≤ f(p(I)). Note that many natural
parameters such as dom, arity, and dep are splitting compatible.

Theorem 2 Let S be a set of splitting compatible CSP parameters. Then there
is an fpt-reduction from CSP(tw∗, S) to CSP(twd, S).

PROOF. Let (I, k, k1, . . . , kr) be an instance of CSP(tw∗, p1, . . . , pr); i.e.,
tw∗(I) ≤ k and pi(I) ≤ ki for 1 ≤ i ≤ r. First we compute a nice tree
decomposition (T, χ, r) of the incidence graph of I of width at most k. Now
we can use Lemma 4 to obtain by splitting the instance I∗ and the nice tree
decomposition (T ′, χ′, r) of the incidence graph of I∗ of width at most k + 1.
From (T ′, χ′, r) we obtain a tree decomposition of the incidence graph of I∗ by
replacing each variable x in each bag χ′(t) by the constraints of I∗ in which x
occurs. Evidently, this produces a tree decomposition (T ′′, χ′′) of the dual
graph of I∗. Moreover, since every bag χ′(t) contains at most k + 1 variables,
the width of (T ′′, χ′′) is at most 3(k + 1). Let k′ = 3(k + 1) and k′

i = fi(ki),
where fi is the function witnessing that parameter pi is splitting compatible,
1 ≤ i ≤ r. Now (I∗, k′, k′

1, . . . , k
′
r) is an instance of CSP(twd, p1, . . . , pr), hence

the result follows. 2

The next result, combined with Theorem 2, yields fixed-parameter tractability
of CSP(tw∗, dep), the first of the three tractability results required for estab-
lishing the Classification Theorem.

Theorem 3 CSP(twd, dep) is fixed-parameter tractable.

PROOF. Let I be an instance of CSP(twd, dep) with k = twd(I) and p =
dep(I). We compute in linear time a tree decomposition (T, χ) of the dual
graph of I of width k. Then we compute the join of all constraints in χ(t) for
each node t of T , which yields an equivalent acyclic CSP instance I ′. Note that
the join of at most k + 1 constraints can be computed in time O(kpk+1) and
there are at most pk+1 tuples in each relation of I ′. Since k and p are bounded,
the above reduction from I to I ′ is an fpt-reduction. Since I ′ is acyclic, we can
simply apply Yannakakis’ algorithm [28]. 2

In view of Theorem 2, we immediately obtain the following corollary.

Corollary 3 CSP(tw∗, dep) is fixed-parameter tractable.

Remark. The construction in the proof of Theorem 2 can be applied to propo-
sitional satisfiability in two ways. First, a direct application of the construction

16

to CNF formulas gives an fpt-reduction from SAT(tw∗) to SAT(twd) (recall
the definitions for SAT(p) as given in Section 1.3). Second, in the context
of satisfiability we can also define a splitting operation that splits a clause
(ℓ1∨ℓ2∨ℓ3∨· · ·∨ℓr) with r ≥ 4 into two clauses (ℓ1∨ℓ2∨x) and (¬x∨ℓ3 · · ·∨ℓr)
where x is a new variable. By repeated application of this operation we can
transform any CNF formulas into one with at most three literals per clause. A
construction dual to the one given in the proof of Theorem 2, splitting clauses
instead of variables, yields an fpt-reduction from SAT(tw∗) to SAT(tw).

We continue with further tractability results for the Classification Theorem.
What remains to show is fixed-parameter tractability of CSP(tw∗, dom, diff)
and CSP(dom, cons, ovl).

Theorem 4 CSP(twd, dom, diff) is fixed-parameter tractable.

PROOF. We proceed in a similar way as for Theorem 3. Let I be an instance
of CSP(twd, dom, diff) with k = twd(I), d = dom(I), and q = diff(I). We
compute in linear time a tree decomposition (T, χ) of the dual graph of I of
width k. Then we compute again the join of all constraints in χ(t) for each
node t of T , which yields an equivalent acyclic CSP instance I ′. Note that the
resulting relation after performing a join-operation on two constraints with
relations containing at most p tuples contains at most pdq tuples. Thus, the
join of at most k+1 constraints can be computed in time O(kp2dqk) and there
are at most pdq(k+1) tuples in each relation of I ′. Since k, d, and q are bounded,
the above reduction from I to I ′ is an fpt-reduction. Since I ′ is acyclic, we can
simply apply Yannakakis’ algorithm [28]. 2

Again, in view of Theorem 2, we immediately obtain the following corollary.

Corollary 4 CSP(tw∗, dom, diff) is fixed-parameter tractable.

Finally, we are left with our third tractability result.

Theorem 5 CSP(dom, cons, ovl) is fixed-parameter tractable.

PROOF. Let I be an instance of CSP(dom, cons, ovl) with d = dom(I),
c = cons(I), and l = ovl(I). It is easy to see that each constraint has at most
(c−1)l variables in its scope that occur also in the scopes of other constraints
in I. Thus, for deciding consistency, only these (c − 1)l variables are relevant
and all others can be projected out. Consequently, we can transform I by an
fpt-reduction into an equivalent CSP instance I ′ with dom(I ′) = d, cons(I ′) =
c, and arity(I ′) ≤ (c − 1)l. Since {twd, dep} dominates {dom, cons, arity}

17

by Lemma 2(4) and (12), the tractability of CSP(dom, cons, ovl) follows by
Lemma 1 and Theorem 3. 2

3.2 Hardness Results

We first show that CSP(twd, dom, ovl) is W[1]-hard. To this aim, we prove that
the problem remains W[1]-hard if we allow only Boolean domain.

Theorem 6 CSPboole(tw
d, ovl) is W[1]-hard.

PROOF. We give an fpt-reduction from the W[1]-complete problem Inde-

pendent Set to CSPboole(tw
d, ovl). To this aim, consider a graph G = (V, E)

and an integer k. We assume w.l.o.g. that G is nontrivial and connected. We
construct a Boolean CSP instance I such that I is consistent if and only if
G has an independent set of size k. The instance I is constructed as follows:
For every edge uv ∈ E and i ∈ {1, . . . , k} we take two variables xi[u, v] and
xi[v, u]. Moreover, for every i ∈ {1, . . . , k} we construct a “big” constraint Ci

of arity 2|E|, and for every edge e ∈ E we construct a “small” constraint C[e]
of arity 2k.

In particular, for each i ∈ {1, . . . , k} we have a big constraint Ci whose scope
consists of all variables xi[u, v] and xi[v, u] for uv ∈ E. The relation Ri of Ci is
defined such that for every satisfying assignment there is exactly one vertex u
such that all variables of the form xi[u, v] are set to 1 and all other variables
in the scope of Ci are set to 0 (thus Ri contains exactly |V | tuples). Further,
for each edge uv ∈ E we have a small constraint C[uv] whose scope consists
of all the variables xi[u, v] and xi[v, u] for i ∈ {1, . . . , k}. The relation R[uv]
of C[uv] is defined such that every satisfying assignment sets at most one of the
variables in the scope of C[uv] to 1 (thus R[uv] contains exactly 2k+1 tuples).

Let S = {s1, . . . , sk} ⊆ V be an independent set of G of size k. We define an
assignment τ setting τ(xi[u, v]) = 1 if and only if u = si. It is easy to see that
τ satisfies all constraints of I.

Conversely, let τ be an assignment that satisfies I. Because of the big con-
straints, there is for every i ∈ {1, . . . , k} exactly one vertex si ∈ V such that τ
maps all variables of the form xi[si, v] to 1. We show that S = {s1, . . . , sk} is
an independent set of size k. First note that si 6= sj for i 6= j since otherwise
a small constraint C[siv] for some edge siv ∈ E would be invalidated. Hence,
|S| = k. Second, if there were two adjacent vertices u, v ∈ S, then the small
constraint C[uv] would be invalidated. Hence, S is independent.

18

It remains to show that twd(I) and ovl(I) are both bounded. Let T be a
path with |E| nodes ve with e ∈ E. For every node ve we define χ(ve) =
{C[e], C1, . . . , Ck}. It is easy to see that (T, χ) is a tree decomposition of the
dual graph of I of width k. Thus, twd(I) ≤ k. Note that the scopes of any
two big constraints (and of any two small constraints) are disjoint. The only
non-empty overlap is between a big constraint Ci and a small constraint C[uv]
and contains exactly the variables xi[u, v] and xi[v, u]. Thus, ovl(I) = 2. 2

Next we show that CSP(cons, arity) is W[1]-hard. To this aim, we prove
that the problem remains W[1]-hard if we allow only binary constraints (i.e.,
constraints of arity 2). Our reduction was used by Papadimitriou and Yan-
nakakis [22] for showing W[1]-hardness of CSP(vars).

Theorem 7 CSPbin(cons) is W[1]-hard.

PROOF. We give an fpt-reduction from the W[1]-complete problem Clique

to CSPbin(cons). To this aim, consider a graph G = (V, E) and an integer k.
Let E ′ = {(u, v), (v, u) : uv ∈ E}. We construct a binary CSP instance I =
({x1, . . . , xk}, V, C), where C contains constraints ((xi, xj), E

′) for all 1 ≤ i <
j ≤ k. Evidently G contains a clique on k vertices if and only if I is consistent.
Thus, the theorem follows by observing that cons(I) =

(

k

2

)

. 2

Now we show that CSP(dom, cons) is W[1]-hard. Similar to Theorem 6, we
prove that the problem remains W[1]-hard if we allow only Boolean domain.

Theorem 8 CSPboole(cons) is W[1]-hard.

PROOF. We give an fpt-reduction from the W[1]-complete problem Clique

to CSPboole(cons). To this aim, consider a graph G = ({v1, . . . , vn}, E) and an
integer k. We construct a Boolean CSP instance I = ({ xi,j : 1 ≤ i ≤ k, 1 ≤
j ≤ n }, {0, 1}, C) such that I is consistent if and only if there exists a clique
of size k in G.

We construct the relation R ⊆ {0, 1}2n that encodes the edges of G as follows:
For each edge vpvq of G, 1 ≤ p < q ≤ n, we add to R the 2n-tuple

(tp,1, . . . , tp,n, tq,1, . . . , tq,n)

where tp,i = 1 if and only if p = i, and tq,i = 1 if and only if q = i, 1 ≤ i ≤ n.
Now let C be the set of constraints

Ci,j = ((xi,1, . . . , xi,n, xj,1, . . . , xj,n), R)

19

for 1 ≤ i < j ≤ k. It is easy to see that G contains a clique on k vertices if
and only if I is consistent. Thus, since cons(I) =

(

k

2

)

, the theorem follows. 2

Finally, we are left with the hardness proof of CSP(dom, arity, deg). In contrast
to the previous hardness results, this problem is actually NP-hard due to a
standard reduction from graph 3-colorability. Thus CSP(dom, arity, deg) is not
fixed-parameter tractable unless P = NP. This even holds if we allow only
binary constraints.

Theorem 9 CSPbin(dom, deg) is NP-hard.

PROOF. We give an fpt-reduction from graph 3-colorability to
CSPbin(dom, deg). To this aim, consider a graph G = (V, E). Note that
we can assume w.l.o.g. that each vertex of G has degree at most 4, since
graph 3-colorability remains NP-complete under this restriction [13]. We
construct a binary CSP instance I = (V, {1, 2, 3}, C), where C contains
constraints ((u, v), {1, 2, 3}2 \ {(1, 1), (2, 2), (3, 3)}) for all uv ∈ E. Evidently
G is 3-colorable if and only if I is consistent. Thus the theorem follows by
observing that dom(I) = 3 and deg(I) = 4. 2

4 Conclusion

We have presented a general framework for studying the trade-off between
generality and performance for parameterized constraint satisfaction. Within
our framework we have classified the parameterized complexity of combina-
tions of natural parameters including the treewidth of primal, dual, and in-
cidence graphs, the domain size, the largest size of a constraint relation, and
the largest size of a constraint scope. The parameterized complexity of further
parameters and their combinations remain open for future research. Further-
more, it would be interesting to extend the hardness results of this paper to
completenes results for classes of the weft hierarchy.

Acknowledgment

We thank Moshe Vardi for suggesting us to include the treewidth of dual
graphs into our considerations. We also thank an anonymous referee for point-
ing out the incorrectness of Lemma 3 in the preliminary version [24] of this
paper and for suggesting the proof of Theorem 6.

20

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1-2):1–45, 1998.

[4] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[5] H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods
without decompositions. In Proc. 11th International Conference on Principles
and Practice of Constraint Programming (CP’05), vol. 3709 of LNCS, pages
167–181. Springer-Verlag, 2005.

[6] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming,
part 1, chapter 8, pages 245–280. Elsevier, 2006.

[7] D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural
tractability for constraint satisfaction and spread cut decomposition. In Proc.
19th International Joint Conference on Artificial Intelligence (IJCAI’05), pages
72–77. Professional Book Center, 2005.

[8] R. Dechter. Tractable structures for constraint satisfaction problems. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, part 1, chapter 7, pages 209–244. Elsevier, 2006.

[9] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38(3):353–366, 1989.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[11] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,
2006.

[12] E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of
the ACM, 32(4):755–761, 1985.

[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[14] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and F. Scarcello. Hypertree
decompositions: Structure, algorithms, and applications. In Proc. 31st
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’05), vol. 3787 of LNCS, pages 1–15. Springer-Verlag, 2005.

21

[15] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions: A survey. In
Proc. 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS’01), vol. 2136 of LNCS, pages 37–57. Springer-Verlag, 2001.

[16] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[17] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

[18] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In Proc.
17th ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 289–
298, ACM Press, 2006.

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences 63(4):512–
530, 2001.

[20] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[22] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407–427, 1999.

[23] B. Reed. Finding approximate separators and computing tree width quickly.
In Proc. 24th ACM Symposium on Theory of Computing (STOC’92), pages
221–228. ACM Press, 1992.

[24] M. Samer and S. Szeider. Constraint satisfaction with bounded treewidth
revisited. In Proc. 12th Internationial Conference on Principles and Practice of
Constraint Programming (CP’06), vol. 4204 of LNCS, pages 499–513. Springer-
Verlag, 2006.

[25] M. Samer and S. Szeider. Algorithms for propositional model counting. In Proc.
14th Internationial Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR’07), vol. 4790 of LNCS, pages 484–498. Springer-Verlag,
2007.

[26] M. Samer and S. Szeider. Fixed-parameter tractability. In A. Biere, M. Heule,
H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, part 1,
chapter 13. IOS Press. To appear.

[27] S. Szeider. On fixed-parameter tractable parameterizations of SAT. In Proc. 6th
International Conference on Theory and Applications of Satisfiability (SAT’03),
Selected and Revised Papers, vol. 2919 of LNCS, pages 188–202. Springer-Verlag,
2004.

[28] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7th
International Conference on Very Large Data Bases (VLDB’81), pages 82–94.
IEEE Computer Society, 1981.

22

