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Abstract

We present algorithms for the propositional model counting problem #SAT. The al-
gorithms utilize tree decompositions of certain graphs associated with the given CNF
formula; in particular we consider primal, dual, and incidence graphs. We describe the
algorithms coherently for a direct comparison and with sufficient detail for making an
actual implementation reasonably easy. We discuss several aspects of the algorithms
including worst-case time and space requirements.
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1. Introduction

Propositional model counting (#SAT) is the problem of determining the number of
satisfying truth assignments (models) of a given propositional formula in conjunctive
normal form (CNF). This problem arises in several areas of artificial intelligence, in
particular in the context of probabilistic reasoning [3, 27]. However, since the problem
is #P-complete [31], it is very unlikely that it can be solved in polynomial time. #SAT
remains #P-hard even for monotone 2CNF formulas and Horn 2CNF formulas, and it is
NP-hard to approximate the number of models of a formula with n variables within 2n1−ε

for ε > 0. This approximation hardness holds also for monotone 2CNF formulas and
Horn 2CNF formulas [27]. Thus, in contrast to the decision problem SAT, restricting the
syntax of instances does not lead to tractability.

An alternative to restricting the syntax is to impose structural restrictions on the
input formulas. Structural restrictions can be applied in terms of certain parameters
(invariants) of graphs or hypergraphs associated with formulas. In this paper we will
mainly consider the following graphs (more exact definitions are given in Section 2.3,
examples are shown in Figure 1). The primal graph has as vertices the variables of the
given formula, two variables are joined by an edge if they occur together in a clause.
Symmetrically, the dual graph has as vertices the clauses of the formula, two clauses are
joined by an edge if they share a variable. Finally, the incidence graph is a bipartite graph
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Figure 1: Graphs associated with the CNF formula F = {C1, . . . , C5} with C1 = {u,¬v,¬y}, C2 =
{¬u, z}, C3 = {v,¬w}, C4 = {w,¬x}, C5 = {x, y,¬z}; the primal graph G(F ), the dual graph Gd(F ),
and the incidence graph G∗(F ).

where one vertex class consists of the clauses of the given formula, and the other consists
of the variables; a clause and a variable are joined by an edge if the variable occurs in
the clause. Primal and incidence graphs have been widely studied in the literature on
satisfiability and constraint satisfaction, whereas dual graphs have received less attention.

We apply structural restrictions on CNF formulas by bounding the graph parameter
treewidth of the associated graphs. Treewidth, introduced by Robertson and Seymour
in their Graph Minors Project, indicates in a certain sense the “tree-likeness” of a graph.
Many otherwise NP-hard graph problems such as Hamiltonicity and 3-colorability are
solvable in polynomial time for graphs of bounded treewidth. It is generally believed
that many practically relevant problems actually do have low treewidth [4]. Treewidth
is based on certain decompositions of graphs, called tree decompositions, where sets
of vertices (“bags”) of a graph are arranged at the nodes of a tree such that certain
conditions are satisfied (see Section 2.1). If a graph has treewidth k then it admits a tree
decomposition of width k, i.e., a tree decomposition where all bags have size at most k+1.
Depending on whether we consider the treewidth of the primal, dual, or incidence graph
of the given CNF formula, we speak of the primal, dual, or incidence treewidth of the
formula, respectively.

Owing to a general result on Monadic Second Order Logic of Courcelle, Makowsky,
and Rotics [9], the model counting problem can be solved in polynomial time for formulas
of bounded primal, dual, or incidence treewidth. However, the algorithms obtained via
this general method are impractical. For getting practical results, one needs to design
tailor-suited algorithms for the particular problem domain. As the algorithms under
consideration are typically exponential in the treewidth, small improvements can have a
strong impact on the practicability.

Contributions of this paper
We propose three efficient model counting algorithms that utilize small primal, dual,

and incidence treewidth of instances. We present the three algorithms in a coherent
fashion that allows a direct comparison of several aspects. We describe the algorithms
at a level of detail that makes an implementation reasonably straightforward.

Our three algorithms follow the principle of dynamic programming: we start at leaf
nodes of the tree decomposition and work our way up in the tree, computing at each



node some information (stored in a table) on the subgraph thus far encountered. More
details on the dynamic programming process and an analysis of space requirements is
given in Section 3.4.

The following table summarizes worst-case runtimes of the algorithms. Here k1, k2, k3

and N1, N2, N3 denote the width and number of nodes of the given tree decomposition
of the primal, dual, and incidence graph, respectively; d and l denote the maximum
number of occurrences over all variables and the cardinality of a largest clause of the
given CNF formula, respectively. For the bounds on the runtimes we assume arithmetic
operations to have constant runtime; in Section 3 we provide a refined analysis based on
bit complexity.

primal graph dual graph incidence graph

O(2k1k1 dN1) O(2k2k2 l N2) O(2k3k3 (l + 2k3)N3)

Note that all three algorithms are fixed-parameter algorithms with respect to the
corresponding treewidth parameter. A fixed-parameter algorithm solves instances of
size n and parameter k in time O(f(k)nc) where f denotes a computable function and
c denotes a constant that is independent of the parameter k [12, 14, 24]. The main
advantage of fixed-parameter algorithms is that the runtime increases moderately when n
becomes large, in contrast to algorithms with runtime of, say, O(nk).

The incidence treewidth algorithm is superior to the other two algorithms if the input
formula has large clauses and contains variables that occur in many clauses. Such in-
stances have large primal and large dual treewidth since a clause containing more than n
literals causes the primal treewidth to be at least n, a variable occurring in more than n
clauses causes the dual treewidth to be at least n (this follows from the fact that if a
graph contains a complete subgraph on more than n vertices then the treewidth of the
graph is at least n [20]).

However, our results indicate that the primal treewidth algorithm as well as the dual
treewidth algorithm are exponentially faster then the incidence treewidth algorithm, im-
posing an exponential factor of 2k instead of 4k. Thus, although one can simulate the
primal and dual treewidth algorithms by the incidence treewidth algorithm (a CNF for-
mula of primal or dual treewidth k has incidence treewidth at most k + 1 [22]), such a
simulation increases the runtime exponentially.

We also study space requirements of the three algorithms in terms of the maximum
number of tables that need to be kept simultaneously in memory during the dynamic pro-
gramming process. We analyze the table requirements and explain how optimal bottom-
up traversals can be computed efficiently.

In summary, our analysis indicates that each of the three algorithms has its advantages
and disadvantages. One needs to choose the right algorithm depending on context and
area of the application under consideration.

Related work
Fischer, Makowsky, and Ravve [13] propose a fixed-parameter algorithm for #SAT

with respect to the incidence treewidth. Their algorithm is based on a recursive splitting
of the given formula according to a tree decomposition of the incidence graph, making
use of the inclusion-exclusion principle. The time complexity stated in [13] is similar to
the one we obtain for our incidence treewidth algorithm.



Branchwidth is a graph parameter that is related to treewidth by a constant fac-
tor [26]. Bacchus, Dalmao, and Pitassi [3] propose an algorithm that solves #SAT in
time nO(1)2O(k) for formulas with n variables whose formula hypergraphs have branch-
width k. The algorithm is based on the DPLL procedure and uses caching techniques
for an efficient reuse of solutions for sub-problems; the branch decomposition provides
an ordering of the variables as processed by the DPLL procedure. A fixed-parameter
algorithm for the decision problem SAT with respect to primal treewidth has previously
been proposed by Gottlob, Scarcello, and Sideri [17].

A different approach for solving #SAT is due to Nishimura, Ragde, and Szeider [25].
They present a fixed-parameter algorithm for computing strong backdoor sets with re-
spect to cluster formulas, which yields a fixed-parameter algorithm for #SAT. In terms of
generality, the corresponding parameter clustering-width is incomparable with incidence
treewidth.

The clique-width of directed incidence graphs of CNF formulas provides a parame-
terization that is strictly more general than the treewidth parameters considered above.
The directed (or signed) incidence graph is obtained from the incidence graph by indicat-
ing positive or negative occurrences of variables by the orientation of the corresponding
edge. Fixed-parameter tractability of #SAT follows via the meta-theorem of Courcelle,
Makowsky, and Rotics [8] on counting problems expressible in a certain fragment of
Monadic Second Order Logic (MSO1), yielding an algorithm that is double-exponential
in the width of the clique-width decomposition. A single-exponential algorithm is due to
Fisher, Makowsky, and Ravve [13]. However, both algorithms rely on clique-width ap-
proximation algorithms. The known polynomial-time algorithms for that purpose admit
an exponential approximation error [19] and are of limited practical value.

The various treewidth parameters can be defined analogously for instances of the
constraint satisfaction problem (CSP), considering constraints (i.e., relations) instead
of clauses when forming the graphs. From the work of Gottlob et al. [17] it follows
that the Boolean CSP is fixed-parameter tractable with respect to the parameter primal
treewidth. In contrast to SAT and #SAT, this result cannot be generalized to the more
general parameter incidence treewidth (subject to a complexity theoretic assumption):
Samer and Szeider [29] show that the Boolean CSP (also known as generalized satisfia-
bility) parameterized by the incidence treewidth is W[1]-hard. W[1] is a complexity class
in parameterized complexity theory; there is strong theoretical evidence that W[1]-hard
problems are not fixed-parameter tractable [12]. Of related interest is a dichotomy theo-
rem for generalized satisfiability counting problems due to Creignou and Hermann [10].

In the context of constraint satisfaction several hypergraph parameters have been
considered, such as hypertree-width [16], spread-cut width [7], and fractional hypertree-
width [18]. For instances of unbounded arity (i.e., the associated hypergraphs have
hyperedges of arbitrary size) these parameters are strictly more general than incidence
treewidth. In the following we provide arguments that indicate that these hypergraph
parameters have no apparent significance for the problems SAT and #SAT.

A hypergraph is acyclic if there is a tree decomposition (of its primal graph) whose
number of nodes equals the number of hyperedges and for each hyperedge there is a
tree-node that contains exactly the vertices of the hyperedge in its bag (cf. Gottlob et
al. [16]). Note that if a hyperedge contains all the vertices of a hypergraph, then the
hypergraph is acyclic and all the above mentioned hypergraph parameters equal 1.



Proposition 1. SAT and #SAT remain NP-hard and #P-hard, respectively, for CNF
formulas with acyclic primal hypergraphs.

Proof. Let F be an arbitrary CNF formula and let x be a new variable not occurring
in F . Consider the CNF formula F ′ obtained from F by adding the clause C = var (F )∪
{x}. The primal hypergraph of F ′, obtained by dropping negations and considering
clauses as hyperedges, is acyclic. Since x is a pure literal, F and F ′ are equivalent
with respect to satisfiability. Now let τ0 be the assignment that sets all variables of F
to 0. If τ0 satisfies F , then F ′ has exactly twice as many models as F minus one (i.e.,
#(F ′) = 2 #(F ) − 1); otherwise, if τ0 does not satisfy F , then F ′ has exactly twice as
many models as F (i.e., #(F ′) = 2 #(F )). !

A similar construction can be applied with respect to the dual hypergraph whose
vertices are the clauses and which contains for every variable y a hyperedge consisting of
all the clauses that contain y or ¬y.

Proposition 2. SAT and #SAT remain NP-hard and #P-hard, respectively, for CNF
formulas with acyclic dual hypergraphs.

Proof. Let F be an arbitrary CNF formula. Take a new variable x and obtain from F
the formula F ′ by replacing every clause C with C′ = C ∪ {x} and by adding the unit
clause {¬x}. The dual hypergraph of F ′ is acyclic. Clearly F and F ′ are equivalent with
respect to satisfiability and have exactly the same number of models (i.e., #(F ′) = #(F )).

!

2. Preliminaries

2.1. Tree Decompositions
Let G = (V (G), E(G)) be a graph, T = (V (T ), E(T )) be a tree, and χ be a labeling

of the vertices of T by sets of vertices of G. We refer to the vertices of T as “nodes” to
avoid confusion with the vertices of G. The tuple (T, χ) is a tree decomposition of G if
the following three conditions hold:

1. For every v ∈ V (G) there exists a node t ∈ V (T ) such that v ∈ χ(t).
2. For every vw ∈ E(G) there exists a node t ∈ V (T ) such that v, w ∈ χ(t).
3. For any three nodes t1, t2, t3 ∈ V (T ), if t2 lies on the path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2) (“Connectedness Condition”).

The width of a tree decomposition (T, χ) is defined by maxt∈V (T ) |χ(t)| − 1. The
treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.
For constant k, there exists a linear-time algorithm that checks whether a given graph
has treewidth at most k and, if so, outputs a tree decomposition of minimum width [5].
However, the huge constant factor in the runtime of this algorithm makes it practically
infeasible. For our purposes, however, it suffices to obtain tree decompositions of small
but not necessarily minimal width. There exist several powerful tree decomposition
heuristics that construct tree decompositions of small width for many cases that are
relevant in practice [6, 23].

In this paper we also consider a special type of tree decompositions. The triple
(T, χ, r) is a nice tree decomposition of G if (T, χ) is a tree decomposition, the tree T is
rooted at node r, and the following three conditions hold [20]:



1. Every node of T has at most two children.
2. If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in that case

we call t a join node.
3. If a node t of T has exactly one child t′, then exactly one of the following prevails:

(a) |χ(t)| = |χ(t′)| + 1 and χ(t′) ⊂ χ(t); in that case we call t an introduce node.
(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget node.

It is known that one can transform efficiently any tree decomposition of width k of a
graph with n vertices into a nice tree decomposition of width at most k and at most 4n
nodes [20].

Let (T, χ, r) be a nice tree decomposition of a graph G. For each node t of T let Tt

denote the subtree of T rooted at t; furthermore, let Gt denote the subgraph of G that is
induced by the set Vt =

⋃
t′∈V (Tt)

χ(t′) of vertices. Observe that (Tt, χ|V (Tt), t) is a nice
tree decomposition of Gt.

2.2. Propositional Formulas
We consider propositional formulas F in conjunctive normal form (CNF) represented

as set of clauses. Each clause in F is a finite set of literals, and a literal is a negated or
unnegated propositional variable. For example,

F = {{¬x, y, z}, {¬y,¬z}, {x,¬y}}

represents the propositional formula (¬x∨ y ∨ z)∧ (¬y ∨¬z)∧ (x∨¬y). For a clause C
we denote by var (C) the set of variables that occur (negated or unnegated) in C; for a
formula F we put var (F ) =

⋃
C∈F var (C). The size of a clause is its cardinality.

A truth assignment is a mapping τ : X → {0, 1} defined on some set X of variables.
We extend τ to literals by setting τ(¬x) = 1 − τ(x) for x ∈ X . A truth assignment
τ : X → {0, 1} satisfies a clause C if for some variable x ∈ var(C)∩X we have x ∈ C and
τ(x) = 1, or ¬x ∈ C and τ(x) = 0. A truth assignment τ : X → {0, 1} falsifies a clause C
if var (C) ⊆ X and for every variable x ∈ var(C) we have x ∈ C and τ(x) = 0, or ¬x ∈ C
and τ(x) = 1. An assignment satisfies (resp. falsifies) a set A of clauses if it satisfies (resp.
falsifies) every clause in A. A set A of clauses is satisfiable (resp. falsifiable) if there exists
a truth assignment that satisfies (resp. falsifies) A; otherwise F is unsatisfiable (resp.
unfalsifiable). Note that a set A of clauses is unfalsifiable if and only if the union of A
contains a complementary pair of literals. For a formula F , we call a truth assignment
τ : var (F ) → {0, 1} a model of F if τ satisfies F . We denote by #(F ) the number of
models of F . Thus, F is satisfiable if and only if #(F ) ≥ 1. The propositional satisfiability
problem SAT is the problem of deciding whether a given propositional formula in CNF is
satisfiable. The propositional model counting problem #SAT is the problem of computing
#(F ) of a given propositional formula F in CNF.

2.3. Primal, Dual, and Incidence Treewidth
The primal graph G(F ) of a CNF formula F is the graph with vertex set var(F ); two

variables x, y are joined by an edge if and only if x, y ∈ var(C) for some clause C ∈ F .
The primal treewidth (or treewidth, for short) tw(F ) of a CNF formula F is the treewidth
of its primal graph, that is tw(F ) = tw(G(F )).



The dual graph Gd(F ) of a CNF formula F is the graph with vertex set F ; two
clauses C, C′ are joined by an edge if and only if var(C) ∩ var (C′) += ∅. The dual
treewidth twd(F ) of a CNF formula F is the treewidth of its dual graph, that is twd(F ) =
tw(Gd(F )).

The incidence graph G∗(F ) of a CNF formula F is the bipartite graph with vertex set
F ∪ var(F ); a variable x and a clause C are joined by an edge if and only if x ∈ var(C).
The incidence treewidth tw∗(F ) of a CNF formula F is the treewidth of its incidence
graph, that is tw∗(F ) = tw(G∗(F )).

3. The Fixed-Parameter Algorithms

Since the number of models of a CNF formula can be exponential in the number of
its variables (and thus may become too large to be stored in a single data word), we
consider in the following the bit complexity of our algorithms, i.e., instead of assuming
that arithmetic operations have constant runtime we bound their runtime by the number
of bit operations (cf. Aho, Hopcroft, and Ullman [1], pages 22–23). To this aim, we
introduce δ to denote the runtime of multiplying two n-bit integers, the computationally
most expensive arithmetic operation in our algorithms. In the literature there exist
several algorithms for multiplying two n-bit integers; we refer the interested reader to
Knuth’s in-depth overview [21]. One of the most prominent of these algorithms is due
to Schönhage and Strassen [21, 30] and runs in time O(n log n log log n). Thus, we can
assume that δ = O(n log n log log n), where n is the number of variables of the given
CNF formula. Recently, Fürer [15] presented an even faster algorithm. If arithmetic
operations are assumed to have constant runtime, that is, δ = O(1), we easily obtain the
runtimes listed in the introduction from the runtimes stated in Theorems 1, 2, and 3.

3.1. Primal Treewidth
For this section, let (T, χ, r) be a nice tree decomposition of the primal graph G(F )

of a CNF formula F . Let k denote the width of (T, χ, r) and let t be a node of T . For
each truth assignment α : χ(t) → {0, 1} we define N(t, α) as the set of truth assignments
τ : Vt → {0, 1} for which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χ(t).
2. There is no clause in F that is falsified by τ .

We represent the values of n(t, α) = |N(t, α)| for all α : χ(t) → {0, 1} by a table Mt

with |χ(t)| + 1 columns and 2|χ(t)| rows. The first |χ(t)| columns of Mt contain Boolean
values encoding α(x) for variables x ∈ χ(t). The last entry of each row contains the
integer n(t, α).

Lemma 1. Let t be a join node of T with children t1, t2. Then, for each truth assignment
α : χ(t) → {0, 1}, we have

n(t, α) = n(t1, α) · n(t2, α).

Proof. In the following, we will show that the mapping f : τ -→ (τ |Vt1
, τ |Vt2

) is a
bijection from the set N(t, α) into the set M = {(τ1, τ2) | τ1 ∈ N(t1, α) and τ2 ∈
N(t2, α)}. The above equality follows then immediately.



It is easy to see that f is a mapping from N(t, α) into M . To show that f is injective,
let τ, σ ∈ N(t, α) such that f(τ) = f(σ). Then, since τ |Vt1

= σ|Vt1
and τ |Vt2

= σ|Vt2
,

we know that τ = σ. To show that f is surjective, let (τ1, τ2) ∈ M . Now let us define
the truth assignment τ : Vt → {0, 1} by τ |Vt1

= τ1 and τ |Vt2
= τ2. For the sake

of contradiction, let us assume that there exists a clause C ∈ F which is falsified by τ .
Since C is not falsified by τ1 and τ2, we know that var(C) ! Vt1 and var (C) ! Vt2 . Thus,
there exist variables x, y ∈ var (C) with x ∈ Vt1 \ Vt2 and y ∈ Vt2 \ Vt1 . By the definition
of join nodes, this implies that x, y /∈ χ(t) = χ(t1) = χ(t2). Moreover, by Condition
2 of a tree decomposition, there must be a node t′ ∈ V (T ) such that x, y ∈ χ(t′).
Clearly, t′ /∈ V (Tt). This, however, contradicts the Connectedness Condition in the
definition of a tree decomposition of the primal graph since, for example, there are nodes
t′ ∈ V (T ) \ V (Tt) and t′1 ∈ V (Tt1) such that x ∈ χ(t′) ∩ χ(t′1) but x /∈ χ(t). Hence, we
have τ ∈ N(t, α). Consequently, f is indeed a bijection from N(t, α) into M . !

Lemma 2. Let t be an introduce node with child t′ and χ(t) = χ(t′) ∪ {x} for a vari-
able x. Then, for each truth assignment α : χ(t) → {0, 1}, we have

n(t, α) =

{
0 if α falsifies some C ∈ F ;
n(t′, α|χ(t′)) otherwise.

Proof. Note that, by definition, N(t, α) = ∅ if α falsifies some clause C ∈ F . Thus,
let us assume that α falsifies no clause C ∈ F . In the following, we will show that the
mapping f : τ -→ τ |Vt′ is a bijection from the set N(t, α) into the set N(t′, α|χ(t′)). The
above equality follows then immediately.

It is easy to see that f is a mapping from N(t, α) into N(t′, α|χ(t′)). To show that
f is injective, let τ, σ ∈ N(t, α) such that f(τ) = f(σ). Then, since τ |Vt′ = σ|Vt′ and
τ(x) = α(x) = σ(x) for the single variable x ∈ Vt \ Vt′ , we know that τ = σ. To
show that f is surjective, let τ ′ ∈ N(t′, α|χ(t′)). Now let us define the truth assignment
τ : Vt → {0, 1} by τ |Vt′ = τ ′ and τ(x) = α(x) for the single variable x ∈ Vt \ Vt′ . For the
sake of contradiction, let us assume that there exists a clause C ∈ F which is falsified
by τ . Since C is not falsified by τ ′ and α, we know that var (C) ! Vt′ and var(C) ! χ(t).
Thus, there exist variables x, y ∈ var (C) with x ∈ χ(t) \ Vt′ and y ∈ Vt′ \ χ(t). This,
however, contradicts the definition of a tree decomposition of the primal graph. Hence,
we have τ ∈ N(t, α). Consequently, f is indeed a bijection from N(t, α) into N(t′, α|χ(t′)).

!

Lemma 3. Let t be a forget node with child t′ and χ(t) = χ(t′) \ {x} for a variable x.
Then, for each truth assignment α : χ(t) → {0, 1}, we have

n(t, α) = n(t′, α ∪ {(x, 0)}) + n(t′, α ∪ {(x, 1)}).

Proof. It is easy to see that N(t, α) = N(t′, α ∪ {(x, 0)}) ∪ N(t′, α ∪ {(x, 1)}). The
above equality follows then immediately. !

Lemma 4. Let t be a leaf node. Then, for each truth assignment α : χ(t) → {0, 1}, we
have

n(t, α) =

{
0 if α falsifies some C ∈ F ;
1 otherwise.



Proof. Since Vt = χ(t) for every leaf node t, we know that for each truth assignment
τ : Vt → {0, 1} there exists exactly one truth assignment α : χ(t) → {0, 1} (and vice
versa) such that τ(x) = α(x) for all variables x ∈ Vt. Hence, the above equality follows
immediately. !

By using these equalities, we can now construct the tables Mt from the leaves to the
root according to the following lemma.

Lemma 5. Let t be a node of T . Given the tables of the children of t, we can compute
the table Mt in time O(2k(kd+ δ)), where d is the maximum number of occurrences over
all variables.

Proof. To check the runtime of computing Mt, let q = |χ(t)|; since we assume that the
width of the tree decomposition under consideration is k, we have q ≤ k + 1. Now let us
distinguish between the different kinds of nodes.

(i) Let t be a join node with children t1, t2. We compute the table Mt from tables Mt1

and Mt2 according to Lemma 1 as follows: For each of the 2q choices of α in table Mt,
we go simultaneously through the corresponding rows in the tables Mt1 and Mt2 and
set the last entry of row Mt(α) to n(t1, α) · n(t2, α). Hence, we can compute Mt in
time O(2qδ) ⊆ O(2k(kd + δ)).

(ii) Let t be an introduce node with child t′. We compute the table Mt from table Mt′

according to Lemma 2 as follows: For each of the 2q choices of α in table Mt, we check
whether α falsifies some clause in F , which can be accomplished in time O(qd). If so, we
set the last entry of row M(t, α) to 0; otherwise, we search for row Mt′(α|χ(t′)) and set
the last entry of row M(t, α) to n(t′, α|χ(t′)), which can be accomplished in time O(q+δ).
Hence, we can compute Mt in time O(2q(qd + δ)) ⊆ O(2k(kd + δ)).

(iii) Let t be a forget node with child t′. We compute the table Mt from table Mt′

according to Lemma 3 as follows: For each of the 2q choices of α in table Mt, we search for
the rows Mt′(α∪{(x, 0)}) and Mt′(α∪{(x, 1)}), which can be accomplished in time O(q).
We set the last entry of row Mt(α) to n(t′, α ∪ {(x, 0)}) + n(t′, α ∪ {(x, 1)}). Hence, we
can compute Mt in time O(2q(q + δ)) ⊆ O(2k(kd + δ)).

(iv) Let t be a leaf node. We compute the table Mt according to Lemma 4 as follows:
For each of the 2q choices of α in table Mt, we check whether α falsifies some clause in F ,
which can be accomplished in time O(qd). If so, we set the last entry of row M(t, α)
to 0; otherwise, we set it to 1. Hence, we can compute table Mt in time O(2qqd) ⊆
O(2k(kd + δ)). !

Theorem 1. Given a nice tree decomposition of the primal graph of a CNF formula F ,
we can compute #(F ) in time O(2k(kd + δ)N); d denotes the maximum number of
occurrences over all variables in F , k denotes the width and N the number of nodes of
the tree decomposition.

Proof. Let (T, χ, r) be a nice tree decomposition of the primal graph of F ; let k and N
be the width and number of nodes of (T, χ, r) respectively. Starting from the leaf nodes
of T , we compute the tables Mt for all nodes t of T in a bottom-up ordering. Each table
can be computed by Lemma 5 in time O(2k(kd + δ)). Since we have

#(F ) =
∑

α:χ(r)→{0,1}

n(r, α),
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Figure 2: Solving #SAT on a nice tree decomposition of the primal graph

we can read off #(F ) from the table Mr at the root r. !

An example of this algorithm on the tree decomposition of the primal graph in Fig-
ure 1 is shown in Figure 2. Note that, for simplicity, we have omitted those rows from
the tables where n(t, α) = 0. From table Mt0 we can read off that there are exactly
1 + 1 + 2 + 2 + 2 + 1 + 2 + 1 = 12 models of the corresponding CNF formula. Let us
remark that our above algorithm is related to Yannakakis’s algorithm [33] for deciding
whether an acyclic constraint satisfaction instance has a solution.

3.2. Dual Treewidth
For this section, let (T, χ, r) be a nice tree decomposition of the dual graph Gd(F ) of

a CNF formula F . Let k denote the width of (T, χ, r) and let t be a node of T . For each
subset A ⊆ χ(t) we define N(t, A) as the set of truth assignments τ : var(Vt) → {0, 1}
for which the following two conditions hold:

1. Every clause in A is falsified by τ .
2. Every clause in Vt \ χ(t) is satisfied by τ .



We represent the values of n(t, A) = |N(t, A)| for all A ⊆ χ(t) by a table Mt with
|χ(t)|+1 columns and 2|χ(t)| rows. The first |χ(t)| columns of Mt contain Boolean values
encoding membership of C in A for clauses C ∈ χ(t). The last entry of each row contains
the integer n(t, A).

Lemma 6. Let t be a join node of T with children t1, t2. Then, for each set A ⊆ χ(t),
we have

n(t, A) =
n(t1, A) · n(t2, A)
2|var(χ(t))\var(A)| .

Proof. In the following, we will show that the mapping f : τ -→ (τ |var(Vt1 ), τ |var(Vt2 ))
is a bijection from the set N(t, A) into the set M = {(τ1, τ2) | τ1 ∈ N(t1, A), τ2 ∈
N(t2, A), τ1(x) = τ2(x) for all x ∈ var(Vt1) ∩ var (Vt2)} and that |M | = |N(t1, A)|
|N(t2, A)|/2|var(χ(t))\var(A)|. The above equality follows then immediately.

First, let us show that f is a mapping from N(t, A) into M . To this aim, let τ ∈
N(t, A) and f(τ) = (τ1, τ2). Note that τi(x) = τ(x) for all x ∈ var (Vti), i = 1, 2.
Thus, we know that every clause in A ⊆ χ(t) = Vt1 ∩ Vt2 is falsified by τi and every
clause in (Vt \ χ(t)) ∩ Vti = Vti \ χ(ti) is satisfied by τi, that is, τ1 ∈ M1 and τ2 ∈ M2.
To show that f is injective, let τ, σ ∈ N(t, A) such that f(τ) = f(σ). Then, since
τ |var(Vt1 ) = σ|var(Vt1 ) and τ |var(Vt2 ) = σ|var(Vt2 ), we know that τ = σ. To show that f is
surjective, let (τ1, τ2) ∈ M . Now let us define the truth assignment τ : var (Vt) → {0, 1}
by τ |var(Vt1 ) = τ1 and τ |var(Vt2 ) = τ2. Since A ⊆ χ(t) = Vt1 ∩ Vt2 and Vt \ χ(t) =
(Vt1 ∪ Vt2) \ χ(t) = (Vt1 \ χ(t1)) ∪ (Vt2 \ χ(t2)), it is easy to see that τ ∈ N(t, A).
Consequently, f is indeed a bijection from N(t, A) into M .

What remains to show is that |M | = |N(t1, A)||N(t2, A)|/2|var(χ(t))\var(A)|. To
this aim, note first that, by the definition of a dual graph and a tree decomposition,
var (Vt1) ∩ var(Vt2) = var (χ(t)) = var(χ(t1)) = var (χ(t2)). Moreover, for τ1 ∈ N(t1, A)
and τ2 ∈ N(t2, A), it holds that τ1(x) = τ2(x) for all x ∈ var(A). Now, for i = 1, 2,
let Xi = var(χ(ti)) \ (var(A) ∪ var(Vti \ χ(ti))) be the set of variables in var (χ(ti))
that do not occur in falsified clauses in A or in satisfied clauses in Vti \ χ(ti). It holds
that X = X1 ∩ X2 = var(χ(t)) \ (var (A) ∪ var (Vt \ χ(t))), i.e., X = X1 ∩ X2 is the
set of variables in var(χ(t)) that do not occur in falsified clauses in A or in satis-
fied clauses in Vt \ χ(t). It is thus easy to see that if τ ∈ N(ti, A), then for every
truth assignment τ ′ : var(Vti ) → {0, 1} with τ ′(x) = τ(x) for all x ∈ var (Vti) \ Xi

it holds that τ ′ ∈ N(ti, A). Moreover, if (τ1, τ2) ∈ M , then for every truth assign-
ment τ ′1 : var(Vt1 ) → {0, 1} and τ ′2 : var(Vt2 ) → {0, 1} with τ ′1(x) = τ1(x) for all
x ∈ var (Vt1) \ X , τ ′2(x) = τ2(x) for all x ∈ var(Vt2 ) \ X , and τ ′1(x) = τ ′2(x) for
all x ∈ X it holds that (τ ′1, τ ′2) ∈ M . Now let M1 = {τ |var(Vt1 )\X | τ ∈ N(t1, A)},
M2 = {τ |var(Vt2 )\X | τ ∈ N(t2, A)}, and M ′ = {(τ1, τ2) | τ1 ∈ M1, τ2 ∈ M2, τ1(x) =
τ2(x) for all x ∈ (var (Vt1) ∩ var(Vt2 )) \ X}. By our observation above, we know that
|N(t1, A)| = 2|X||M1|, |N(t2, A)| = 2|X||M2|, and |M | = 2|X||M ′|. Our next step is
to compute |M ′|. To this aim, we partition M1 and M2 into equivalence classes such
that τ, τ ′ ∈ Mi are in the same equivalence class if and only if τ(x) = τ ′(x) for all
x ∈ var (Vti) \ Xi. It is easy to see that there are exactly 2|Xi\X| truth assignments in
each equivalence class of Mi and therefore exactly |Mi|/2|Xi\X| equivalence classes of Mi,
for i = 1, 2. Now let us consider w.l.o.g. any equivalence classes E1 ⊆ M1 and E2 ⊆ M2.
Let τ1 ∈ E1 and τ2 ∈ E2. By our definition of the equivalence classes, we know that for



all τ ′i ∈ Ei it holds that τ ′i(x) = τi(x) for all x ∈ var(χ(ti)) \ Xi. Moreover, note that
((var (χ(t1)) \ var(A)) \ X1) ∩ ((var (χ(t2)) \ var(A)) \ X2) = ∅. Otherwise, there exist
C1 ∈ Vt1 \χ(t1) and C2 ∈ Vt2 \χ(t2) such that var(C1)∩ var (C2) += ∅, which contradicts
the definition of a dual graph or a tree decomposition. Thus, we know that there exists
exactly one τ ′1 ∈ E1 such that τ ′1(x) = τ2(x) for all x ∈ (var (χ(t2))\var (A))\X2 = X1\X .
Symmetrically, there exists exactly one τ ′2 ∈ E2 such that τ ′2(x) = τ1(x) for all
x ∈ (var (χ(t1)) \ var(A)) \ X1 = X2 \ X . Hence, since (var(χ(t)) \ var(A)) \ X =
((var (χ(t1)) \ var (A)) \ X1) ∪ (X1 \ X) = ((var (χ(t2)) \ var (A)) \ X2) ∪ (X2 \ X),
we know that τ ′1(x) = τ ′2(x) for all x ∈ (var (χ(t)) \ var(A)) \ X , that is, (τ ′1, τ ′2) ∈
M ′. So we have |M ′| = (|M1|/2|X1\X|)(|M2|/2|X2\X|) = |M1||M2|/2|(X1∪X2)\X| =
|N(t1, A)||N(t2, A)|/2|(X1∪X2)\X|+2|X| = |N(t1, A)||N(t2, A)|/2|X1∪X2|+|X|. Conse-
quently, by putting our results together, we obtain |M | = 2|X|(|N(t1, A)||N(t2, A)|/
2|X1∪X2|+|X|) = |N(t1, A)||N(t2, A)|/2|X1∪X2|. !

Lemma 7. Let t be an introduce node with child t′ and χ(t) = χ(t′)∪{C} for a clause C.
Then, for each set A ⊆ χ(t), we have

n(t, A) =






0 if A is unfalsifiable;

n(t′, A) · 2|var(C)\var(χ(t′))| otherwise, if C /∈ A;
n(t′, A \ {C})

2|var(C)∩(var(χ(t′))\var(A\{C}))| otherwise, if C ∈ A.

Proof. Note that, by definition, N(t, A) = ∅ if there is no truth assignment τ :
var (Vt) → {0, 1} that falsifies A. Thus, let us assume that A is falsifiable. Now we define
M1 = {τ : var(Vt) → {0, 1} | there exists τ ′ ∈ N(t′, A) such that τ(x) = τ ′(x) for allx ∈
var (Vt′)} and M2 = {τ ∈ N(t′, A \ {C}) | τ(x) = 0 if x ∈ C and τ(x) = 1 if ¬x ∈ C
for allx ∈ var (C) ∩ var (Vt′)}. In the following, we will show that (i) if C /∈ A
the mapping f : τ -→ τ is a bijection from the set N(t, A) into the set M1 and
|M1| = |N(t′, A)|2|var(C)\var(χ(t′))| and that (ii) if C ∈ A the mapping g : τ -→ τ |Vt′

is a bijection from the set N(t, A) into the set M2 and |M2| = |N(t′, A \ {C})|/
2|var(C)∩(var(χ(t′))\var(A\{C}))|. The above equality follows then immediately.

(i) Since C /∈ A and Vt \ χ(t) = Vt′ \ χ(t′), it is easy to see that f is a bijection
from N(t, A) into M1. To compute |M1|, note that var(C) ∩ var(Vt′ ) ⊆ var (χ(t′)).
Otherwise, there exists C′ ∈ Vt′ \ χ(t′) such that var(C) ∩ var(C′) += ∅, which
contradicts the definition of a dual graph or a tree decomposition. Thus, we have
|M1| = |N(t′, A)|2|var(Vt)\var(Vt′ )| = |N(t′, A)|2|var(C)\var(χ(t′))|.

(ii) First let us show that g is a mapping from N(t, A) into M2. To this aim, let τ ∈
N(t, A) and g(τ) = τ ′. Since C ∈ A, we know that τ(x) = 0 if x ∈ C and τ(x) = 1 if ¬x ∈
C for all x ∈ var(C). Thus, we have τ ′(x) = τ(x) = 0 if x ∈ C and τ ′(x) = τ(x) = 1
if ¬x ∈ C for all x ∈ var(C) ∩ var (Vt′), that is, τ ′ ∈ M2. To show that g is injective, let
τ, σ ∈ N(t, A) such that g(τ) = g(σ). Then, since τ |var(Vt′ ) = σ|var(Vt′ ), τ(x) = σ(x) = 0
if x ∈ C, and τ(x) = σ(x) = 1 if ¬x ∈ C for all x ∈ var(Vt) \ var (Vt′) ⊆ var(C), we
know that τ = σ. To show that g is surjective, let τ ′ ∈ M2. Now let us define the truth
assignment τ : var (Vt) → {0, 1} by τ |var(Vt′ ) = τ ′, τ(x) = 0 if x ∈ C, and τ(x) = 1
if ¬x ∈ C for all x ∈ var(C) \ var (Vt′). Since Vt \ χ(t) = Vt′ \ χ(t′), it is easy to see
that τ ∈ N(t, A). Consequently, g is indeed a bijection from N(t, A) into M2. To compute
|M2|, note that if τ ∈ N(t′, A\{C}), then for every truth assignment τ ′ : var (Vt′) → {0, 1}



with τ ′(x) = τ(x) for all x ∈ var(A\{C})∪var (Vt′\χ(t′)) it holds that τ ′ ∈ N(t′, A\{C}).
However, we know that for all τ ∈ N(t′, A \ {C}) it holds that τ(x) = 0 if x ∈ C and
τ(x) = 1 if ¬x ∈ C for all x ∈ var(C) ∩ var(A \ {C}). Otherwise, A is not falsifiable,
which contradicts our assumption. Moreover, we have var(C) ∩ var(Vt′ \ χ(t′)) = ∅.
Otherwise, there exists C′ ∈ Vt′ \χ(t′) such that var(C)∩var (C′) += ∅, which contradicts
the definition of a dual graph or a tree decomposition. In particular, this implies that
if τ ∈ N(t′, A \ {C}) then also τ ′ ∈ N(t′, A \ {C}) if τ ′ differs from τ only on variables
in var(C) ∩ (var (Vt′) \ var(A \ {C})) = var (C) ∩ (var (χ(t′)) \ var (A \ {C})). Thus, we
have |M2| = |N(t′, A \ {C})|/2|var(C)∩(var(χ(t′))\var(A\{C}))|. !

Lemma 8. Let t be a forget node with child t′ and χ(t) = χ(t′) \ {C} for a clause C.
Then, for each set A ⊆ χ(t), we have

n(t, A) = n(t′, A) − n(t′, A ∪ {C}).

Proof. Let M = N(t′, A)\N(t′, A∪{C}) be the set of truth assignments τ : var (Vt′) →
{0, 1} such that every clause in A is falsified by τ and every clause in (Vt′ \χ(t′))∪{C} =
Vt′ \ χ(t) is satisfied by τ . Since Vt = Vt′ , it is easy to see that N(t, A) = M . Moreover,
since always N(t′, A ∪ {C}) ⊆ N(t′, A), the above equality follows immediately. !

Lemma 9. Let t be a leaf node. Then, for each set A ⊆ χ(t), we have

n(t, A) =

{
0 if A is unfalsifiable;
2|var(χ(t))\var(A)| otherwise.

Proof. Note that, by definition, N(t, A) = ∅ if there is no truth assignment τ :
var (Vt) → {0, 1} that falsifies A. Thus, let us assume that A is falsifiable. It is easy to
see that there are exactly 2|var(Vt)\var(A)| truth assignments τ : var (Vt) → {0, 1} such
that every clause in A is falsified by τ . Hence, since Vt = χ(t) for every leaf node t, the
above equality follows immediately. !

By using these equalities, we can now construct the tables Mt from the leaves to the
root according to the following lemma.

Lemma 10. Let t be a node of T . Given the tables of the children of t, we can compute
the table Mt in time O(2k(kl + δ)), where l is the size of a largest clause.

Proof. To check the runtime of computing Mt, let q = |χ(t)|; since we assume that the
width of the tree decomposition under consideration is k, we have q ≤ k + 1. Now let us
distinguish between the different kinds of nodes.

(i) Let t be a join node with children t1, t2. We compute the table Mt from the
tables Mt1 and Mt2 according to Lemma 6 as follows: For each of the 2q choices of A
in table Mt, we go simultaneously through the corresponding rows in the tables Mt1

and Mt2 and compute the cardinality of var (χ(t)) \ var (A), which can be accomplished
in time O(ql). We set the last entry of row Mt(A) to n(t1, A)·n(t2, A) and perform a shift
of |var(χ(t))\var (A)| bits to the right. Hence, we can compute Mt in time O(2q(ql+δ)) ⊆
O(2k(kl + δ)).

(ii) Let t be an introduce node with child t′. We compute the table Mt from table Mt′

according to Lemma 7 as follows: For each of the 2q choices of A in table Mt, we search



for row Mt′(A \ {C}), which can be accomplished in time O(q). Then we check whether
A is falsifiable and, if so, whether C ∈ A, which can be accomplished in time O(ql). If
C /∈ A, we compute the cardinality of var(C) \ var(χ(t′)) and, if C ∈ A, we compute the
cardinality of var (C) ∩ (var (χ(t′)) \ var (A \ {C})), which can also be accomplished in
time O(ql). In the first case we set the last entry of row M(t, A) to n(t′, A) and perform a
shift of |var (C)\var (χ(t′))| bits to the left, and in the second case we set the last entry of
row M(t, A) to n(t′, A\{C}) and perform a shift of |var(C)∩(var (χ(t′))\var (A\{C}))|
bits to the right. Hence, we can compute Mt in time O(2q(ql + δ)) ⊆ O(2k(kl + δ)).

(iii) Let t be a forget node with child t′. We compute the table Mt from table Mt′

according to Lemma 8 as follows: For each of the 2q choices of A in table Mt, we search
for the rows Mt′(A) and Mt′(A∪{C}), which can be accomplished in time O(q). We set
the last entry of row Mt(A) to n(t′, A) − n(t′, A ∪ {C}). Hence, we can compute Mt in
time O(2q(q + δ)) ⊆ O(2k(kl + δ)).

(iv) Let t be a leaf node. We compute the table Mt according to Lemma 9 as follows:
For each of the 2q choices of A in table Mt, we check whether A is falsifiable and, if so, we
compute the cardinality of var (χ(t)) \ var (A), which can be accomplished in time O(ql).
If A is not falsifiable, we set the last entry of row M(t, A) to 0; otherwise, we set the
last entry of row M(t, A) to 1 and perform a shift of |var(χ(t)) \ var(A)| bits to the left.
Hence, we can compute Mt in time O(2q(ql + δ)) ⊆ O(2k(kl + δ)). !

Theorem 2. Given a nice tree decomposition of the dual graph of a CNF formula F ,
we can compute #(F ) in time O(2k(kl + δ)N); l denotes the size of a largest clause, k
denotes the width and N the number of nodes of the tree decomposition.

Proof. Let (T, χ, r) be a nice tree decomposition of the dual graph of F ; let k and N
be the width and number of nodes of (T, χ, r) respectively. Starting from the leaf nodes
of T we compute the tables Mt for all nodes t of T in a bottom-up ordering. Each table
can be computed by Lemma 10 in time O(2k(kl + δ)). Now we show how to compute
#(F ) from table Mr at the root r. To this aim, recall that n(r, A) is the number of truth
assignments τ : var (F ) → {0, 1} such that every clause in A is falsified by τ and every
clause in F \ χ(r) is satisfied by τ . Thus, by the inclusion-exclusion principle, it follows
immediately that we can compute the number of models of F from the entries of Mr in
the following way:

#(F ) =
|χ(r)|∑

i=0

(
(−1)i

∑

A⊆χ(r), |A|=i

n(r, A)
)

We can do this by going through all at most 2k+1 choices of A ⊆ χ(r): Starting with an
initial value of 0, we add or subtract n(r, A), depending on whether the cardinality of A
is even or odd. This can be done in time O(2k(k + δ)). !

An example of this algorithm on the tree decomposition of the dual graph in Figure 1
is shown in Figure 3. Note that, for simplicity, we have omitted those rows from the
tables where n(t, A) = 0. From table Mt0 we can read off that there are exactly 36− 6−
12 − 8 + 2 = 12 models of the corresponding CNF formula.

Note that, in contrast to join-tree algorithms for constraint satisfaction, edge removals
from the dual graph based on the running intersection property [11] can yield incorrect
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Figure 3: Solving #SAT on a nice tree decomposition of the dual graph

results in our setting. For example, in the CNF formula {C1, C2, C3}, where C1 =
{¬x, y}, C2 = {¬y, z}, and C3 = {¬y,¬z}, we cannot remove the edge between C1 and C3

in the dual graph, since we would loose the information that C1 and C3 have a variable in
common. In that case, however, our algorithm would not be able to detect that C1 and C3

contain complementary literals and ignoring this relation would give us a wrong result.

3.3. Incidence Treewidth
For this section, let (T, χ, r) be a nice tree decomposition of the incidence graph

G∗(F ) of a CNF formula F . Let k denote the width of (T, χ, r).
For each node t of T , let Ft denote the set consisting of all the clauses in Vt, and let

Xt denote the set of all variables in Vt, i.e., Ft = Vt ∩ F and Xt = Vt ∩ var(F ). We also
use the shorthands χc(t) = χ(t) ∩ F and χv(t) = χ(t) ∩ var (F ) for the set of variables
and the set of clauses in χ(t), respectively.

Let t be a node of T . For each truth assignment α : χv(t) → {0, 1} and subset
A ⊆ χc(t) we define N(t, α, A) as the set of truth assignments τ : Xt → {0, 1} for which
the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χv(t).
2. A is exactly the set of clauses in Ft that are not satisfied by τ .

We represent the values of n(t, α, A) = |N(t, α, A)| for all α : χv(t) → {0, 1} and
A ⊆ χc(t) by a table Mt with |χ(t)|+1 columns and 2|χ(t)| rows. The first |χ(t)| columns
of Mt contain Boolean values encoding α(x) for variables x ∈ χv(t), and membership
of C in A for clauses C ∈ χc(t). The last entry of each row contains the integer n(t, α, A).

Lemma 11. Let t be a join node of T with children t1, t2. Then, for each truth assign-
ment α : χv(t) → {0, 1} and set A ⊆ χc(t), we have

n(t, α, A) =
∑

A1,A2⊆χc(t), A1∩A2=A

n(t1, α, A1) · n(t2, α, A2).



Proof. In the following, we will show that the mapping f : τ -→ (τ |Xt1
, τ |Xt2

) is
a bijection from the set N(t, α, A) into the set M = {(τ1, τ2) | there exists A1 ⊆
χc(t1) and A2 ⊆ χc(t2) with A1 ∩ A2 = A such that τ1 ∈ N(t1, α, A1) and τ2 ∈
N(t2, α, A2)}. The above equality follows then immediately.

First, let us show that f is a mapping from N(t, α, A) into M . To this aim, let
τ ∈ N(t, α, A) and f(τ) = (τ1, τ2). Now let A1 and A2 be exactly the sets of clauses of
Ft1 and Ft2 that are not satisfied by τ1 and τ2 respectively. Since Xt = Xt1 ∪ Xt2 , we
know that a clause is satisfied by τ if and only if it is satisfied by τ1 or τ2. Thus, since
Ft = Ft1 ∪Ft2 , we have A ⊆ A1∩A2 and A1∩A2 ⊆ A, that is, A1∩A2 = A. In addition,
we know that A1 ⊆ χc(t1). For the sake of contradiction, let us assume that there exists
a clause C ∈ Ft1 \ χc(t1) ⊆ Ft that is not satisfied by τ1. If C is not satisfied by τ , then
C ∈ A ⊆ χc(t) = χc(t1), which contradicts our assumption. Otherwise, if C is satisfied
by τ , then C must also be satisfied by τ2, since it is not satisfied by τ1. Thus, there
exists a variable x ∈ Xt2 that occurs also in C and satisfies C under the truth assignment
τ2(x) = τ(x). By the definition of an incidence graph and a tree decomposition, however,
this implies that x ∈ Xt1 . So we have x ∈ Xt1 ∩ Xt2 = χv(t) = χv(t1), which implies
that τ(x) = τ1(x). Thus, C is satisfied by τ1, which again contradicts our assumption.
So we have A1 ⊆ χc(t1). It is now easy to see that τ1 ∈ N(t1, α, A1). The case of τ2 is
completely symmetric. Consequently, f is indeed a mapping from N(t, α, A) into M .

To show that f is injective, let τ, σ ∈ N(t, α, A) such that f(τ) = f(σ). Then, since
τ |Xt1

= σ|Xt1
and τ |Xt2

= σ|Xt2
, we know that τ = σ. To show that f is surjective, let

(τ1, τ2) ∈ M . Now let us define the truth assignment τ : Xt → {0, 1} by τ |Xt1
= τ1 and

τ |Xt2
= τ2. Since Xt = Xt1 ∪ Xt2 , we know that a clause is satisfied by τ if and only if

it is satisfied by τ1 or τ2. Thus, we know that A = A1 ∩ A2 is exactly the set of clauses
of Ft = Ft1 ∪ Ft2 that are not satisfied by τ . It is now easy to see that τ ∈ N(t, α, A).
Consequently, f is indeed a bijection from N(t, α, A) into M . !

Lemma 12. Let t be an introduce node with child t′.
(a) If χ(t) = χ(t′) ∪ {x} for a variable x, then, for each truth assignment α : χv(t′) →
{0, 1} and set A ⊆ χc(t), we have

n(t, α ∪ {(x, 0)}, A) =






0 if ¬x ∈ C for some clause C ∈ A;
∑

B′⊆B
n(t′, α, A ∪ B′) otherwise, where

B = {C ∈ χc(t) | ¬x ∈ C};

n(t, α ∪ {(x, 1)}, A) =






0 if x ∈ C for some clause C ∈ A;
∑

B′⊆B
n(t′, α, A ∪ B′) otherwise, where

B = {C ∈ χc(t) | x ∈ C}.

(b) If χ(t) = χ(t′)∪{C} for a clause C, then, for each truth assignment α : χv(t) → {0, 1}
and set A ⊆ χc(t), we have

n(t, α, A) =






n(t′, α, A) if C /∈ A and α satisfies C;
n(t′, α, A \ {C}) if C ∈ A and α does not satisfy C;
0 otherwise.

Proof. (a) Let us consider the case of N(t, α ∪ {(x, 0)}, A); the case of N(t, α ∪
{(x, 1)}, A) is completely symmetric. Note that, by definition, N(t, α∪{(x, 0)}, A) = ∅ if



there is some clause C in A such that C contains ¬x. Thus, let us assume that no clause
in A contains ¬x. Moreover, let B = {C ∈ χc(t) | ¬x ∈ C}. In the following, we will
show that the mapping f : τ -→ τ |Xt′ is a bijection from the set N(t, α∪{(x, 0)}, A) into
the set

⋃
B′⊆B N(t′, α, A∪B′). Note that always N(t′, α, A∪B′) ∩N(t′, α, A∪B′′) = ∅

for B′ += B′′. The above equality follows then immediately.
For any τ ∈ N(t, α ∪ {(x, 0)}, A), let f(τ) = τ ′. It is then easy to see that τ ′ ∈

N(t′, α, A∪B′) for some B′ ⊆ B. To show that f is injective, let τ, σ ∈ N(t, α∪{(x, 0)}, A)
such that f(τ) = f(σ). Then, since τ |Xt′ = σ|Xt′ and τ(x) = σ(x) = 0 for the single
variable x ∈ Xt \ Xt′ , we know that τ = σ. To show that f is surjective, let τ ′ ∈
N(t′, α, A∪B′) for some B′ ⊆ B. Now we define the truth assignment τ : Xt → {0, 1} by
τ |Xt′ = τ ′ and τ(x) = 0. It is then easy to see that τ ∈ N(t, α∪{(x, 0)}, A). Consequently,
f is indeed a bijection from N(t, α ∪ {(x, 0)}, A) into

⋃
B′⊆B N(t′, α, A ∪ B′).

(b) Note that, by definition, N(t, α, A) = ∅ if C ∈ A and α satisfies C or C /∈ A and
α does not satisfy C for the single clause C ∈ χc(t) \ χc(t′). Thus, let us assume that
(i) C /∈ A and α satisfies C or (ii) C ∈ A and α does not satisfy C. In the following, we
will show that the mapping f : τ -→ τ is a bijection from the set N(t, α, A) into the set
N(t′, α, A \ {C}). The above equalities follow then immediately.

For any τ ∈ N(t, α, A), it is easy to see that f(τ) = τ ∈ N(t′, α, A \ {C}). Moreover,
since f(τ) = τ , it follows trivially that f is injective. To show that f is surjective, let
τ ∈ N(t′, α, A \ {C}). Under the assumption of case (i) resp. case (ii), it is then easy
to see that τ ∈ N(t, α, A). Consequently, f is indeed a bijection from N(t, α, A) into
N(t′, α, A \ {C}). !

Lemma 13. Let t be a forget node with child t′.
(a) If χ(t) = χ(t′)\{x} for a variable x, then, for each truth assignment α : χv(t) → {0, 1}
and set A ⊆ χc(t), we have

n(t, α, A) = n(t′, α ∪ {(x, 0)}, A) + n(t′, α ∪ {(x, 1)}, A).

(b) If χ(t) = χ(t′)\{C} for a clause C, then, for each truth assignment α : χv(t) → {0, 1}
and set A ⊆ χc(t), we have

n(t, α, A) = n(t′, α, A).

Proof. It is easy to see that N(t, α, A) = N(t′, α∪{(x, 0)}, A)∪N(t′, α∪{(x, 1)}, A) in
case (a) and that N(t, α, A) = N(t′, α, A) in case (b). The above equalities follow then
immediately. !

Lemma 14. Let t be a leaf node. Then, for each truth assignment α : χv(t) → {0, 1}
and set A ⊆ χc(t), we have

n(t, α, A) =

{
1 if A = {C ∈ χc(t) | α does not satisfy C };
0 otherwise.

Proof. Since Xt = χv(t) and Ft = χc(t) for every leaf node t, we know that for each
truth assignment τ : Xt → {0, 1} there exists exactly one truth assignment α : χv(t) →
{0, 1} (and vice versa) such that τ(x) = α(x) for all variables x ∈ Xt. Hence, the above
equality follows immediately. !



By using these equalities, we can now construct the tables Mt from the leaves to the
root according to the following lemma.

Lemma 15. Let t be a node of T . Given the tables of the children of t, we can compute
the table Mt in time O(2k(kl + 2k(k + δ))), where l is the size of a largest clause.

Proof. To check the runtime of computing Mt, let p = |χv(t)| and q = |χc(t)|; since
we assume that the width of the tree decomposition under consideration is k, we have
p + q ≤ k + 1. Now let us distinguish between the different kinds of nodes.

(i) Let t be a join node with children t1, t2. We compute the table Mt from the ta-
bles Mt1 and Mt2 according to Lemma 11 as follows: First we initialize the last entry of
all 2p+q rows of table Mt with 0. For each of the 2p choices of α in table Mt, we go simul-
taneously through the corresponding rows in the tables Mt1 and Mt2 . In each step, we
consider all 2q possibilities for A1 in table Mt1 and all 2q possibilities for A2 in table Mt2 ;
we compute A1 ∩ A2 and search for row Mt(α, A1 ∩ A2), which can be accomplished in
time O(q). We add n(t1, α, A1) · n(t2, α, A2) to the last entry of row Mt(α, A1 ∩ A2).
Hence, we can compute Mt in time O(2p2q2q(q + δ)) ⊆ O(2k(kl + 2k(k + δ))).

(ii) Let t be an introduce node with child t′. We compute the table Mt from table Mt′

according to Lemma 12 as follows: For each of the 2p choices of α in table Mt, we consider
all 2q possibilities for A in table Mt. In case (a), we assume that the last entry of all
2p+q rows of table Mt have been initialized with 0. Now we check whether α(x) = 0 and, if
so, whether for all C ∈ A it holds that ¬x /∈ C, which can be accomplished in time O(ql).
If this is the case, we search for every row Mt′(α|Xt′ , A∪B′) with B′ ⊆ {C ∈ χc(t) | ¬x ∈
C}, which can be accomplished in time O(2q(p + q)). We add n(t′, α|Xt′ , A ∪ B′) to
the last entry of row Mt(α, A). The case α(x) = 1 is completely symmetric. Hence,
we can compute Mt in time O(2p2q(ql + 2q(p + q + δ))) ⊆ O(2k(kl + 2k(k + δ))). In
case (b), we set the last entry of row Mt(α, A) to 0 if either C ∈ A and α satisfies C
or C /∈ A and α does not satisfy C, which can be accomplished in time O(p + l).
Otherwise, we search for row Mt′(α, A \ {C}) and set the last entry of row Mt(α, A)
to n(t′, α, A \ {C}), which can be accomplished in time O(p + q + δ). Hence, we can
compute Mt in time O(2p2q(l + p + q + δ)) ⊆ O(2k(kl + 2k(k + δ))).

(iii) Let t be a forget node with child t′. We compute the table Mt from table Mt′

according to Lemma 13 as follows: For each of the 2p choices of α in table Mt, we consider
all 2q possibilities for A in table Mt. In case (a), we search for the rows Mt′(α∪{(x, 0)}, A)
and Mt′(α ∪ {(x, 1)}, A), which can be accomplished in time O(p + q). We set the last
entry of row Mt(α, A) to n(t′, α ∪ {(x, 0)}, A) + n(t′, α ∪ {(x, 1)}, A). Hence, we can
compute Mt in time O(2p2q(p + q + δ)) ⊆ O(2k(kl + 2k(k + δ))). In case (b), we search
for row Mt′(α, A) and set the last entry of row Mt(α, A) to n(t′, α, A), which can be
accomplished in time O(p+q+δ). Hence, we can compute Mt in time O(2p2q(p+q+δ)) ⊆
O(2k(kl + 2k(k + δ))).

(iv) Let t be a leaf node. We compute the table Mt according to Lemma 14 as follows:
For each of the 2p choices of α in table Mt, we consider all 2q possibilities for A in table Mt.
We set the last entry of row Mt(α, A) to 1 if A = {C ∈ χc(t) | α does not satisfy C} and
to 0 otherwise, which can be accomplished in time O(p + ql). Hence, we can compute
table Mt in time O(2p2q(p + ql)) ⊆ O(2k(kl + 2k(k + δ))). !
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Figure 4: Solving #SAT on a nice tree decomposition of the incidence graph

Theorem 3. Given a nice tree decomposition of the incidence graph of a CNF for-
mula F , we can compute #(F ) in time O(2k(kl + 2k(k + δ))N); l denotes the size of a
largest clause, k denotes the width and N the number of nodes of the tree decomposition.

Proof. Let (T, χ, r) be a nice tree decomposition of the incidence graph of F ; let k
and n be the width and number of nodes of (T, χ, r) respectively. Starting from the leaf
nodes of T we compute the tables Mt for all nodes t of T in a bottom-up ordering. Each
table can be computed by Lemma 15 in time O(2k(kl + 2k(k + δ))). Since we have

#(F ) =
∑

α:χv(r)→{0,1}

n(r, α, ∅),

we can read off #(F ) from the table Mr at the root r. !

An example of this algorithm on the tree decomposition of the incidence graph in



Figure 1 is shown in Figure 4. Note that, for simplicity, we have omitted those rows from
the tables where n(t, α, A) = 0. From table Mt0 we can read off that there are exactly
6 + 6 = 12 models of the corresponding CNF formula.

3.4. Space Requirements
When we perform dynamic programming on a nice tree decomposition we traverse the

nodes of the tree in an arbitrary bottom-up ordering. When we compute the table of a
node we can assume that the tables at its children are already computed and are currently
kept in memory. Once the table of a node is computed, the tables of its children can be
discarded. Thus, at some point, when the table of a node is computed, all tables of its
children are simultaneously in memory; we will refer to this scheme of table computation
as the “simultaneous updating scheme.”

A variant of this scheme was considered by Aspvall, Proskurowski, and Telle [2], not
requiring that the tables of children of a node are present simultaneously; the parent
table is updated whenever a child table becomes available. We will refer to the scheme
of Aspvall et al. as the “sequential updating scheme.” In view of the updating functions
for join nodes as defined in Lemmas 1, 6, and 11, respectively, one can use the sequential
updating scheme for the primal and dual treewidth algorithms. The incidence treewidth
algorithm, however, requires the simultaneous updating scheme.

The following algorithm carries out the simultaneous updating scheme on a nice tree
decomposition (T, χ, r); the algorithm also computes for every node t the number ρ(t)
of tables required simultaneously to compute the table Mt. The algorithm is recursive,
initially t = r.

1. Clearly ρ(t) = 1 if t is a leaf; Mt can be computed independently.
2. If t has only one child t′, then recurse on the subtree Tt′ rooted at t′ and compute

the table Mt′ and the number ρ(t′). Now discard all tables of nodes below t′ and
compute the table Mt; then discard Mt′ . This gives ρ(t) = max(2, ρ(t′)).

3. If t has two children t′ and t′′, then compute ρ(t′) and ρ(t′′); w.l.o.g., assume
ρ(t′) ≥ ρ(t′′). First recurse on Tt′ and compute the table Mt′ ; discard all tables
below t′ and keep Mt′ in memory. Next recurse on Tt′′ to compute the table Mt′′ ;
discard all tables below t′′ and keep Mt′′ in memory. Now compute the table Mt

using the tables Mt′ and Mt′′ ; afterwards discard the tables Mt′ and Mt′′ . This
gives ρ(t) = max(3, ρ(t′), ρ(t′′) + 1).

Note that if the tree T is binary, then ρ(r) is known as the Horton-Strahler number
of T [32]. Aspvall et al. [2] show that if T has N nodes than the sequential updating
scheme requires not more than /log2

4
3 (N + 1)0 tables at any point of the computation.

We use a similar reasoning to bound the space required by the simultaneous updating
scheme (this holds in particular when the algorithm outlined above is applied).

Proposition 3. The simultaneous updating scheme applied to a nice tree decomposi-
tion with N nodes requires not more than /1 + log2(N + 1)0 tables at any point of the
computation.

Proof. We write ρ(T ) = ρ(r) if r is the root of tree T (thus ρ(T ) is the number of
tables required by the simultaneous updating scheme on T ). Let C denote the class of
rooted trees where each node has at most two children, and let Ci = {T ∈ C : ρ(T ) = i }.



We construct a sequence T1, T2, . . . of trees with Ti ∈ Ci, where Ti belongs to Ci and has
the smallest number of nodes among all trees in Ci. For T1 we clearly have to take the
trivial one-node tree; for T2 we take the tree consisting of the root and one leaf; T3 has
three nodes, the root and two leaves. For i > 3, we construct Ti by putting together
a root r and two disjoint copies of Ti−1 with their roots as the children of r. In view
of case (3) above, it follows that indeed ρ(Ti) = i and |V (Ti)| is minimal. We have
|V (Ti)| = 2i−1 − 1; taking logarithms yields i = /1 + log2(|V (Ti)| + 1)0. !

Thus the simultaneous updating scheme requires at most one more table than the
sequential one. This result suggests the use of the simultaneous updating scheme for
all three algorithms as it is slightly more convenient to implement without requiring
significantly more space.
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