
Handbook of Satisfiability

Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsch

IOS Press, 2008

c© 2008 Marko Samer and Stefan Szeider. All rights reserved.

363

Chapter 13

Fixed-Parameter Tractability
Marko Samer and Stefan Szeider

13.1. Introduction

The propositional satisfiability problem (SAT) is famous for being the first prob-
lem shown to be NP-complete—we cannot expect to find a polynomial-time al-
gorithm for SAT. However, over the last decade, SAT-solvers have become amaz-
ingly successful in solving formulas with thousands of variables that encode prob-
lems arising from various application areas. Theoretical performance guarantees,
however, are far from explaining this empirically observed efficiency. Actually,
theorists believe that the trivial 2n time bound for solving SAT instances with
n variables cannot be significantly improved, say to 2o(n) (see the end of Sec-
tion 13.2). This enormous discrepancy between theoretical performance guaran-
tees and the empirically observed performance of SAT solvers can be explained by
the presence of a certain “hidden structure” in instances that come from applica-
tions. This hidden structure greatly facilitates the propagation and simplification
mechanisms of SAT solvers. Thus, for deriving theoretical performance guaran-
tees that are closer to the actual performance of solvers one needs to take this
hidden structure of instances into account. The literature contains several sug-
gestions for making the vague term of a hidden structure explicit. For example,
the hidden structure can be considered as the “tree-likeness” or “Horn-likeness”
of the instance (below we will discuss how these notions can be made precise).
All such concepts have in common that one associates with a CNF formula F a
non-negative integer k = π(F); the smaller the integer, the more structured the
instance under a certain perspective. We call such a mapping π a satisfiability
parameter or a parameterization of the satisfiability problem.

Consider a satisfiability parameter π. For each integer k one can consider the
class Cπ

k of formulas F such that π(F) ≤ k. This gives rise to an infinite hierarchy
Cπ
0 ⊆ Cπ

1 ⊆ Cπ
2 ⊆ · · · of classes. Every CNF formula F belongs to some Cπ

k for k
sufficiently large (namely, k = π(F)).

We are interested in satisfiability parameters π such that satisfiability of in-
stances in Cπ

k and membership in Cπ
k can be decided in polynomial time. The

larger we make k (thus the more general the class Cπ
k), the worse we expect

the performance guarantee for the polynomial-time algorithm for solving in-

364 Chapter 13. Fixed-Parameter Tractability

stances in Cπ
k —in other words, we expect a certain tradeoff between generality

and performance.

Assume our SAT algorithm for Cπ
k runs in time O(nk) on instances with

n variables, then we have an example for a non-uniform polynomial-time algo-
rithm, since the degree of the polynomial depends on k. A running time such
as O(2kn3) establishes uniform polynomial time. For a non-uniform polynomial-
time algorithm even relatively small values for k render classes Cπ

k practically
infeasible—just take the above example of time complexity O(nk) and consider
an instance F ∈ Cπ

10 with n = 1000 variables. On the other hand, a uniform
polynomial-time algorithm with running time such as O(2kn3) makes the satisfi-
ability problem practically feasible for classes Cπ

k as long as k remains small.

Hence, it is an interesting research objective to design and study satisfia-
bility parameters and to find out whether they admit uniform polynomial-time
algorithms or not. Classical complexity theory does not provide the means and
tools for this purpose, as the computational complexity of a problem is consid-
ered exclusively in terms of the input size; structural properties of instances are
not represented. In the late 1980s Rod Downey and Mike Fellows initiated the
framework of Parameterized Complexity which resolves this shortcoming of clas-
sical theory. Their point of departure was the following observation: uniform
polynomial-time algorithms exist for finding a vertex cover of size k in a graph,
but apparently no uniform polynomial-time algorithm exists for finding an inde-
pendent set of size k (in both cases k is considered as the parameter). Downey,
Fellows, and their collaborators have developed a rich theoretical framework for
studying the computational complexity of parameterized problems. Over recent
years, parameterized complexity has become an important branch of algorithm
design and analysis in both applied and theoretical areas of computer science;
hundreds of research papers and three monographs have been published so far
on the subject [DF99, FG06, Nie06]. Parameterized complexity considers prob-
lem instances in a two-dimensional setting: the first dimension is the usual input
size n, the second dimension is a non-negative integer k, the parameter . An algo-
rithm that solves an instance in time O(f(k)nc) is called a fixed-parameter algo-
rithm; here f denotes an arbitrary computable function and c denotes a constant
that is independent of n and k. Thus fixed-parameter algorithms are algorithms
with a uniform polynomial-time complexity as considered in the above discus-
sion. A parameterized problem is fixed-parameter tractable if it can be solved by
a fixed-parameter algorithm.

Parameterized complexity also offers a completeness theory which is similar
to the theory of NP-completeness in the classical setting. This completeness
theory provides strong evidence that certain problems (such as the parameterized
independent set problem as mentioned above) are not fixed-parameter tractable.
We will briefly discuss some fundamental notions of this completeness theory in
Section 13.2. In this survey, however, we will mainly focus on positive results,
describing key concepts that lead to satisfiability parameters that admit fixed-
parameter algorithms. The presented negative results (i.e., hardness results) have
merely the purpose of carving out territories that are very likely to be inaccessible
to fixed-parameter algorithms.

The majority of combinatorial problems studied in the framework of parame-

Chapter 13. Fixed-Parameter Tractability 365

terized complexity offers a “natural parameter”, e.g., it is natural to parameterize
the vertex cover problem by the size of the vertex cover. However, the satisfi-
ability problem lacks a single obvious natural parameter—there are numerous
possibilities for parameters. This variety, however, makes parameterized SAT a
rich and interesting research area; one of its fundamental objectives is to iden-
tify satisfiability parameters that are as general as possible (i.e., for as many
instances as possible one can expect that the parameter is small), and which are
still accessible to fixed-parameter algorithms.

In the next section we review the main concepts of parameterized complexity
theory. In Section 13.3 we provide some preliminaries and introduce the basic
notions of parameterized satisfiability; we also discuss parameterized Max-SAT
and related parameterized optimization problems. Then three sections are de-
voted to satisfiability parameters of different flavors: in Section 13.4 we consider
parameters based on backdoor sets relative to a polynomial-time base class; in
Section 13.5 we consider parameters that measure the “tree-likeness” of instances;
in Section 13.6 we consider further parameters including one that is based on
graph matchings. Finally, we conclude in Section 13.7.

13.2. Fixed-Parameter Algorithms

In this section we provide a brief (and rather informal) review of some funda-
mental concepts of parameterized complexity. For an in-depth treatment of the
subject we refer the reader to other sources [DF99, FG06, Nie06].

An instance of a parameterized problem is a pair (I, k) where I is the main
part and k is the parameter ; the latter is usually a non-negative integer. A
parameterized problem is fixed-parameter tractable if it can be solved by a fixed-
parameter algorithm, i.e., if instances (I, k) can be solved in time O(f(k)‖I‖c)
where f is a computable function, c is a constant, and ‖I‖ denotes the size of I
with respect to some reasonable encoding. FPT denotes the class of all fixed-
parameter tractable decision problems.

Let us illustrate the idea of a fixed-parameter algorithm by means of the vertex
cover problem parameterized by the solution size. This is the best-studied prob-
lem in parameterized complexity with a long history of improvements [CKJ01].
Let us state the parameterized vertex cover problem in the following form which
is typical for parameterized complexity.

VC

Instance: A graph G = (V, E) and a non-negative integer k.
Parameter: k.
Question: Is there a subset S ⊆ V of size at most k such that every
edge of G has at least one of its incident vertices in S? (S is a vertex
cover of G.)

Note that if we consider k not as parameter but simply as part of the input,
then we get an NP-complete problem [GJ79]. A simple fixed-parameter algorithm
for VC can be constructed as follows. Given an instance (G, k) of VC, we
construct a binary search tree. The root of the tree is labeled with (G, k). We
choose an arbitrary edge uv of G and observe that every vertex cover of G must

366 Chapter 13. Fixed-Parameter Tractability

contain u or v. Hence we can branch into these two cases. That is, we add two
children to the root, labeled with (G − u, k − 1) and (G − v, k − 1), respectively
(k gets decremented as we have spent one unit for taking u or v into the vertex
cover). We recursively extend this branching. We stop a branch of the tree if we
reach a node labeled with (G′, k′) such that either k′ = 0 (we have used up the
budget k) or G′ has no edges (we have found a vertex cover of size k − k′). Note
that in the second case we can find the vertex cover of size k−k′ by collecting the
vertices that have been removed from G along the path from the root to the leaf.
It is easy to see the outlined algorithm is correct and decides VC in time O(2kn)
for graphs with n vertices. Using the O∗-notation [Woe03] which suppresses
polynomial factors, we can state the running time of the above algorithm by the
expression O∗(2k).

The above algorithm for VC illustrates the method of bounded search trees
for the design of fixed-parameter algorithms. Kernelization is another important
technique, which shrinks the size of the given problem instance by means of
(polynomial-time) data reduction rules until the size is bounded by a function of
the parameter k. The reduced instance is called a problem kernel . Once a problem
kernel is obtained, we know that the problem is fixed-parameter tractable, since
the running time of any brute force algorithm depends on the parameter k only.
The converse is also true: whenever a parameterized problem is fixed-parameter
tractable, then the problem admits a polynomial-time kernelization [CCDF97].
Consider again the VC problem as an example. It is easy to see that a vertex v of
degree greater than k must belong to every vertex cover of size at most k; hence if
we have such a vertex v, we can reduce the instance (G, k) to (G−v, k−1). Assume
that we are left with the instance (G′, k′) after we have applied the reduction rule
as long as possible (if k′ < 0, then we reject the instance). Observe that each
vertex of G′ can cover at most k edges. Hence, if G′ has more than k2 edges, we
know that G has no vertex cover of size at most k. On the other hand, if G′ has
at most k2 edges, we have a problem kernel that can be solved by brute force.

The current best worst-case time complexity for VC is due to Chen, Kanj, and
Xia [CKX06]. The algorithm is based on more sophisticated kernelization rules
and achieves a running time of O∗(1.273k). Further information on kernelization
can be found in Guo and Niedermeier’s survey [GN07].

Next we turn our attention to fixed-parameter intractability, to problems that are
believed to be not fixed-parameter tractable. Consider for example the following
parameterized independent set problem.

IS

Instance: A graph G = (V E) and a non-negative integer k.
Parameter: k.
Question: Is there a subset S ⊆ V of size at least k such that no edge
of G joins two vertices in S? (S is an independent set of G.)

No fixed-parameter algorithm for this problem is known, and there is strong
evidence to believe that no such algorithm exists [DF99]. For example, fixed-
parameter tractability of IS would imply the existence of an O∗(2o(n))-time algo-
rithm for the n-variable 3-SAT problem [FG06]. The assumption that the latter

Chapter 13. Fixed-Parameter Tractability 367

is not the case is known as the Exponential Time Hypothesis (ETH) [IPZ01]; see
Chapter 12 for an in-depth treatment of the ETH.

In fact, VC is fixed-parameter tractable, whereas IS is believed to be not.
Note however, that under classical polynomial-time many-to-one reductions, VC

and IS are equivalent for trivial reasons: a graph with n vertices has a vertex
cover of size k if and only if it has an independent set of size k′ = n − k. Hence,
to distinguish between fixed-parameter tractable and fixed-parameter intractable
problems, one needs a notion of reduction that restricts the way of how param-
eters are mapped to each other. An fpt-reduction from a parameterized decision
problem L to a parameterized decision problem L′ is an algorithm that transforms
an instance (I, k) of L into an instance (I ′, g(k)) of L′ in time O(f(k)‖I‖c) (f ,g
are arbitrary computable functions, c is an arbitrary constant), such that (I, k)
is a yes-instance of L if and only if (I ′, g(k)) is a yes-instance of L′. It is easy to
see that indeed, if L′ is fixed-parameter tractable and there is an fpt-reduction
from L to L′, then L is fixed-parameter tractable as well. Note that the reduction
from VC to IS as sketched above is not an fpt-reduction, since k′ = n − k and
so k′ is not a function of k alone.

The class of problems that can be reduced to IS under fpt-reductions is de-
noted by W[1]. A problem is called W[1]-hard if IS (and so every problem in W[1])
can be reduced to it by an fpt-reduction. A problem is called W[1]-complete if it
is W[1]-hard and belongs to W[1]. Thus, a problem is W[1]-complete if and only
if it is equivalent to IS under fpt-reductions. Similar terminology applies to other
parameterized complexity classes.

Consider the following parameterized hitting set problem (it is the basis for
several hardness results that we will consider in the remainder of this chapter).

HS

Instance: A family S of finite sets S1, . . . , Sm and a non-negative
integer k.
Parameter: k.
Question: Is there a subset R ⊆

⋃m
i=1 Si of size at most k such that

R ∩ Si 6= ∅ for all i = 1, . . . , m? (R is a hitting set of S.)

Observe that, indeed, a search tree algorithm as outlined above for VC does
not yield fixed-parameter tractability for HS: since the size of the sets Si is
unbounded, a search tree algorithm would entail an unbounded branching fac-
tor. If, however, the size of the sets Si is bounded by some constant q, then
the problem (known as q-HS) becomes fixed-parameter tractable. The obvi-
ous search tree algorithm has time complexity O∗(qk). For q = 3, Niedermeier
and Rossmanith [NR03] developed a fixed-parameter algorithm with running
time O∗(2.270k).

HS is W[1]-hard, but no fpt-reduction from HS to IS is known, and it is
believed that such a reduction does not exist. In other words, HS appears to be
harder than the problems in W[1]. The class of problems that can be reduced
to HS under fpt-reductions is denoted by W[2]. In fact, W[1] and W[2] form the
first two levels of an infinite chain of classes W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[P],
the so-called “weft hierarchy.” All inclusions are believed to be proper. There are
several sources of theoretical evidence for assuming that the classes of the weft

368 Chapter 13. Fixed-Parameter Tractability

hierarchy are distinct from FPT: accumulating evidence [Ces06], evidence based
on parameterized analogs of Cook’s Theorem [DF99], and evidence obtained by
proof complexity methods [DMS07a].

In recent years a further complexity class, M[1], has been subject of intensive
research. The class can be defined as the class of parameterized decision problems
that can be reduced to the following problem by fpt-reductions.

log-VC

Instance: A graph G = (V, E) and a non-negative integer k.
Parameter: ⌊k/ log(|V | + |E|)⌋.
Question: Does G have a vertex cover of size at most k?

It is known that FPT ⊆ M[1] ⊆ W[1]; the assumption FPT 6= M[1] is actually
equivalent to the Exponential Time Hypothesis [FG06].

Finally, let us mention the class XP consisting of those parameterized decision
problems that can be solved in polynomial time if the parameter is considered as
a constant (i.e., instances (I, k) can be solved in time O(‖I‖f(k)) for a computable
function f). FPT 6= XP is provably true [DF99, FG06]. Together with the classes
of the weft hierarchy, we have the following chain of inclusions:

FPT ⊆ M[1] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP.

13.3. Parameterized SAT

In this section we first explain our terminology for CNF formulas and truth assign-
ments, then we discuss parameterized optimization problems that are related to
satisfiability, such as Max-SAT, where the solution size is considered as parameter.
In the third part of this section we develop the framework for parameterized SAT
decision where the parameter represents structural information of the instances.
This framework will be used throughout the following sections.

13.3.1. CNF Formulas and Truth Assignments

Before discussing parameterizations of SAT, let us introduce some notation and
basic notions related to SAT. We consider propositional formulas in conjunctive
normal form (CNF), short CNF formulas or just formulas, represented as a finite
set of clauses. A clause is a finite set of literals, and a literal is a negated or
un-negated propositional variable. For a literal ℓ we denote by ℓ the literal of
opposite polarity, i.e., x = ¬x and ¬x = x. We also write x1 = x and x0 = ¬x.
Similarly, for a set L of literals, we put L = { ℓ : ℓ ∈ L }. We say that two
clauses C, D overlap if C ∩ D 6= ∅, and we say that C and D clash if C and D
overlap. For a clause C we denote by var(C) the set of variables that occur
(negated or un-negated) in C; for a formula F we put var(F) =

⋃

C∈F var(C).
We measure the size ‖F‖ of a formula F by its length

∑

C∈F |C|.
CNF formulas F and F ′ are isomorphic if they differ only in the name of

variables. That is, if F = {C1, . . . , Cm}, F ′ = {C′
1, . . . , C

′
m}, and there is a

one-to-one mapping f : var(F) → var(F ′) such that C′
i = { (f(x))ε : xε ∈ Ci,

x ∈ var(F), ε ∈ {0, 1} } holds for all 1 ≤ i ≤ m.

Chapter 13. Fixed-Parameter Tractability 369

CNF formulas F and F ′ are renamings of each other, if there exists a
set X ⊆ var(F) such that F ′ can be obtained from F by flipping the polarity
of all literals ℓ ∈ X ∪ X. That is, if F = {C1, . . . , Cm}, F ′ = {C′

1, . . . , C
′
m}, and

C′
i = { ℓ : ℓ ∈ Ci \ (X ∪ X) } ∪ { ℓ : ℓ ∈ Ci ∩ (X ∪ X) }.

A truth assignment is a mapping τ : X → {0, 1} defined on some set X of
variables. If X = {x} we denote τ simply by “x = 1” or “x = 0”. We extend τ
to literals by setting τ(¬x) = 1 − τ(x) for x ∈ X . F [τ] denotes the formula
obtained from F by removing all clauses that contain a literal ℓ with τ(ℓ) = 1
and by removing from the remaining clauses all literals ℓ′ with τ(ℓ′) = 0. F [τ]
is the restriction of F to τ . Note that var(F [τ]) ∩ X = ∅ holds for every truth
assignment τ : X → {0, 1} and every formula F . A truth assignment τ : X →
{0, 1} satisfies a clause C if τ(ℓ) = 1 for at least one literal ℓ ∈ C; τ satisfies
a formula F if it satisfies all clauses of F . Note that τ satisfies F if and only
if F [τ] = ∅. A formula F is satisfiable if there exists a truth assignment that
satisfies F ; otherwise F is unsatisfiable. A truth assignment τ : var(F) → {0, 1}
is called total for the formula F . A satisfying total truth assignment of F is called
a model of F . We denote the number of models of a formula F by #(F). Two
formulas are equisatisfiable if either both are satisfiable or both are unsatisfiable.
SAT is the problem of deciding whether a given formula is satisfiable. #SAT is
the problem of determining the number of models of a given formula.

Let x ∈ var(F) and ε ∈ {0, 1}. If {xε} ∈ F , then F and F [x = ε] are
equisatisfiable; F [x = ε] is said to be obtained from F by unit propagation. If
some clause of F contains xε but none contains x1−ε, then xε is called a pure
literal of F . If xε is a pure literal of F , then obviously F and F [x = ε] are
equisatisfiable. In that case we say that F [x = ε] is obtained from F by pure
literal elimination.

13.3.2. Optimization Problems

Max-SAT is the optimization version of the satisfiability problem, where, given a
CNF formula F and an integer k, one asks whether there is a truth assignment
that satisfies at least k clauses of F . In the classical setting Max-SAT is NP-
complete even if all clauses contain at most two literals (Max-2-SAT). What
happens if we consider k as the parameter?

Under this parameterization Max-SAT is easily seen to be fixed-parameter
tractable (we roughly follow [MR99]). Let (F, k) be an instance of Max-SAT.
For a truth assignment τ we write s(τ) for the number of clauses of F that
are satisfied by τ . Moreover, let τ∗ denote the extension of τ that includes all
variable assignments obtained by (iterated and exhaustive) application of pure
literal elimination. For example, if F = {{w, x}, {x, y, z}, {y, z}, {w, z}} and
τ = {(w, 1)}, then τ∗ = {(w, 1), (x, 1), (y, 0), (z, 0)}. We construct a binary search
tree T whose nodes are truth assignments. We start with the empty assignment
as the root and extend the tree downwards as follows. Consider a node τ of T .
If s(τ∗) ≥ k or if s(τ∗) < k and F [τ∗] = {∅}, then we do not add any children
to τ ; in the first case we label τ as “success leaf,” in the second case as “failure
leaf.” Otherwise, if s(τ∗) < k and F [τ∗] 6= {∅}, we pick a variable x ∈ F [τ∗] and
we add below τ the children τ0 = τ ∪ {(x, 0)} and τ1 = τ ∪ {(x, 1)}. Note that

370 Chapter 13. Fixed-Parameter Tractability

in this case both s(τ0) and s(τ1) are strictly greater than s(τ). It is easy to see
that there exists a total truth assignment τ of F that satisfies at least k clauses
if and only if T has a success leaf (for the only-if direction note that τ defines
a path from the root of T to a success leaf). Since at each branching step the
number of satisfied clauses increases, it follows that T is of depth at most k and
so has at most 2k leaves. Hence the search algorithm runs in time O∗(2k) which
renders Max-SAT fixed-parameter tractable for parameter k. By sophisticated
case distinctions one can make the algorithm significantly faster. The currently
fastest algorithm is due to Chen and Kanj [CK04] and runs in time O∗(1.3695k).

Note that one can always satisfy at least half of the clauses of a CNF formula
(the all-true or the all-false assignment will do). Thus, a more challenging param-
eter for Max-SAT is the number k − |F |/2 (this constitutes a parameterization
“above the guaranteed value” |F |/2). Indeed, by a result of Mahajan and Ra-
man [MR99], Max-SAT is fixed-parameter tractable also under this more general
setting. Further results on parameterizations above a guaranteed value can be
found in a recent paper by Mahajan et al. [MRS06].

One can consider an even more challenging approach, taking the dual param-
eter k′ = |F | − k; that is, to parameterize by the number of clauses that remain
unsatisfied. It is easy to see that for every constant k′ the problem is NP-complete
in general and polynomial-time solvable for 2CNF formulas (Max-2-SAT). It fol-
lows from recent results of Razgon and O’Sullivan [RO08] that Max-2-SAT is
fixed-parameter tractable for the dual parameter k′. We will return to this prob-
lem again in Section 13.4.1.

Apart from Max-SAT there are also other interesting optimization versions of
satisfiability. For example, Bounded-CNF-SAT asks whether a CNF formula can
be satisfied by setting at most k variables to true. With parameter k, Bounded-
CNF-SAT is W[2]-complete; Bounded-3-CNF-SAT, however, is easily seen to be
fixed-parameter tractable [DMS07b]. A similar problem, Weighted-CNF-SAT ,
asks for a satisfying assignment that sets exactly k variables to true. Weighted-
CNF-SAT is W[2]-complete; Weighted-c-CNF-SAT is W[1]-complete for every
constant c ≥ 2 [DF99].

13.3.3. Satisfiability Parameters

A satisfiability parameter is a computable function π that assigns to every for-
mula F a non-negative integer π(F). We assume that π(F) = π(F ′) if two
formulas F, F ′ are isomorphic (see Section 13.3.1), i.e., π is invariant with respect
to isomorphisms.

We are interested in satisfiability parameters that allow fixed-parameter trac-
tability of satisfiability decision for instances F with respect to the parameter k =
π(F). Accordingly, for a satisfiability parameter π we consider the following
parameterized problem.

SAT(π)
Instance: A formula F and a non-negative integer k such
that π(F) ≤ k.
Parameter: k.
Question: Is F satisfiable?

Chapter 13. Fixed-Parameter Tractability 371

The problem is formulated as a promise problem, the promise being π(F) ≤ k.
In general, we need to verify the promise. This verification can be stated as the
following parameterized problem.

VER(π)
Instance: A formula F and a non-negative integer k.
Parameter: k.
Question: Is π(F) ≤ k?

Note that the verification of the promise often includes the computation of
a certain witness for π(F) ≤ k in form of an auxiliary structure, which then is
provided as additional input to the algorithm that solves SAT(π).

The notion of dominance allows us to compare two satisfiability parameters π
and π′ with respect to their generality. We say that π dominates π′ if there exists
a computable function f such that for every formula F we have

π(F) ≤ f(π′(F)).

Furthermore, π strictly dominates π′ if π dominates π′ but not vice versa. Finally,
π and π′ are domination incomparable if neither dominates the other. If π strictly
dominates π′ we also say that π is more general than π′. Obviously, dominance
and strict dominance are transitive relations between satisfiability parameters.
Furthermore, since strict dominance is antisymmetric, it gives rise to a partial
ordering of satisfiability parameters. The next result follows directly from the
definitions.

Lemma 13.3.1. If π dominates π′, then there is an fpt-reduction from SAT(π′)
to SAT(π).

Thus, if SAT(π) is fixed-parameter tractable and π dominates π′, then
SAT(π′) is also fixed-parameter tractable. It is an important goal to find satis-
fiability parameters π that are as general as possible and for which both prob-
lems SAT(π) and VER(π) are fixed-parameter tractable. We conclude this sec-
tion with three trivial examples of satisfiability parameters.

Example 13.3.1. Let n(F) denote the number of variables of a formula F . The
verification problem VER(n) is trivial. The obvious algorithm that considers
all possible truth assignments of F runs in time O∗(2n(I)) and is therefore a
fixed-parameter algorithm with respect to n. Hence SAT(n) is fixed-parameter
tractable.

A satisfiability parameter π becomes an interesting one if every class Cπ
k

contains formulas with an arbitrarily large number of variables; i.e., if π is more
general than the satisfiability parameter n considered in the example above.

Example 13.3.2. Let ml(F) denote the maximum length of clauses in a SAT
instance F (with ml(F) = 0 if F = ∅). From the NP-completeness of 3SAT
if follows that SAT(ml) is not fixed-parameter tractable unless P = NP. So
SAT(ml) is probably not even in XP.

372 Chapter 13. Fixed-Parameter Tractability

Example 13.3.3. Let A be a deterministic polynomial-time algorithm that ap-
plies polynomial-time simplification and propagation rules to a formula without
changing its satisfiability. Say, the algorithm applies unit propagation and pure
literal elimination as long as possible (see Section 13.3.1 above), plus possibly
some further rules. For more powerful preprocessing rules see, e.g., the work of
Bacchus and Winter [BW04]. Let A(I) denote the instance obtained from I by
applying algorithm A, and let nA(I) denote the number of variables of A(I) (if
A(I) depends on a particular ordering of variables and clauses, let nA(I) denote
the largest number over all such orderings).

It is easy to see that the problem SAT(nA) is fixed-parameter tractable, since
after the polynomial-time preprocessing we are left with an instance A(I) whose
number of variables is bounded in terms of the parameter k, and therefore any
brute-force algorithm applied to A(I) is a fixed-parameter algorithm. In other
words, SAT(nA) is fixed-parameter tractable since the preprocessing provides a
kernelization. VER(nA) is easy, as we just need to count the number of variables
left after applying the polynomial-time preprocessing algorithm A. Clearly nA is
more general than n (Example 13.3.1) since one can easily find formulas where,
say, unit propagation eliminates an arbitrarily large number of variables.

13.4. Backdoor Sets

As outlined in the introduction, every satisfiability parameter π gives rise to the
hierarchy of classes

Cπ
0 ⊆ Cπ

1 ⊆ Cπ
2 ⊆ · · ·

where class Cπ
k contains all CNF formulas F with π(F) ≤ k. We call this hierarchy

the π-hierarchy and we refer to the class at the lowest level of the hierarchy as
the base class . The following are necessary conditions for a class C of CNF
formulas under which it could possibly act as the base class for the π-hierarchy of
some satisfiability parameter π such that both SAT(π) and VER(π) are fixed-
parameter tractable:

1. C is closed under isomorphism;
2. membership in C can be decided in polynomial time;
3. satisfiability of elements of C can be decided in polynomial time.

Some authors also require that a base class is self-reducible, that is, if F ∈ C
then F [x = 0], F [x = 1] ∈ C for all x ∈ var(F). Most natural base classes are
self-reducible.

Next we will see how one can define a π-hierarchy starting at an arbitrary
base class C by means of the notion of “backdoor sets” which was introduced
by Williams, Gomes, and Selman [WGS03] for analyzing the behavior of SAT
algorithms. Actually, with different terminology and context, backdoor sets have
already been studied by Crama, Elkin, and Hammer [CEH97]. Consider a CNF
formula F and a set B ⊆ var(F) of variables. B is called a strong C-backdoor
set of F if for every truth assignment τ : B → {0, 1} the restriction F [τ] belongs
to the base class C. We denote the size of a smallest strong C-backdoor set of F
by bC(F). For the sake of completeness we also introduce the notion of weak

Chapter 13. Fixed-Parameter Tractability 373

backdoor sets though it is less relevant for our considerations. B is called a weak
C-backdoor set of F if there exists truth assignment τ : B → {0, 1} such that the
restriction F [τ] is satisfiable and belongs to the base class C.

Example 13.4.1. Consider the base class Horn of Horn formulas (an instance is
Horn if each of its clauses contains at most one un-negated variable) and consider
the formula F =

{

{u, v, w}, {u, x, y}, {u, v, x, y}, {v, y, z}, {u, v, w, z}
}

. The
set B = {u, v}, is a strong Horn-backdoor set since F [τ] ∈ Horn for all four
truth assignments τ : B → {0, 1}.

Note that F is satisfiable if and only if at least one of the restrictions F [τ],
τ : B → {0, 1}, is satisfiable. Thus, if we know a strong C-backdoor set B
of F , we can decide the satisfiability of F by deciding the satisfiability of at
most 2|B| polynomial-time solvable formulas that belong to C (this is a O∗(2k)
fixed-parameter algorithm with respect to the parameter k = |B|). Of course
we can find a C-backdoor set of size at most k (or decide that it does not exist)
by trying all subsets B ⊆ var(F) with |B| ≤ k, and checking whether all F [τ],
τ : B → {0, 1}, belong to C; consequently VER(bC) ∈ XP. However, as we
shall see in the following section, VER(bC) can or cannot be fixed-parameter
tractable, depending on the base class C.

As mentioned above, a strong C-backdoor set of F of size k reduces the
satisfiability of F to the satisfiability of at most 2k instances in C. The notion of
backdoor trees [SS08] makes this reduction explicit. This allows a refined worst-
case estimation of the number of instances in C that need to be checked, which
can be exponentially smaller than 2k.

13.4.1. Horn, 2CNF, and Generalizations

Horn and 2CNF are two important base classes for which the detection of strong
backdoor sets is fixed-parameter tractable.

Theorem 13.4.1 (Nishimura, Ragde, and Szeider [NRS04]). For C ∈
{Horn, 2CNF} the problems SAT(bC) and VER(bC) are fixed-parameter
tractable.

The algorithms of Nishimura et al. rely on the concept of variable deletion.
For explaining this it is convenient to consider the following variant of backdoor
sets: A set B ⊆ var(F) is called a deletion C-backdoor set of F if F − B belongs
to C. Here F − B denotes the CNF formula {C \ (B ∪ B) : C ∈ F }, i.e., the
formula obtained from F by removing from the clauses all literals of the form ℓ
or ℓ for ℓ ∈ B. Let dbC(F) denote the size of a smallest deletion C-backdoor
set of F . For many important base classes C, deletion C-backdoor sets are also
strong C-backdoor sets. In particular, this is the case if the base class is clause
induced , i.e., if whenever F belongs to C, all subsets of F belong to C as well,
since F [τ] ⊆ F − B for every τ : B → {0, 1}.

Lemma 13.4.2. Let C be a clause-induced base class and let F be an arbitrary
formula. Then every deletion C-backdoor set of F is is also a strong C-backdoor
set of F .

374 Chapter 13. Fixed-Parameter Tractability

For example, the base classes Horn and 2CNF are clause induced. For these
two base classes even the converse direction of Lemma 13.4.2 holds.

Lemma 13.4.3 ([CEH97, NRS04]). Let C ∈ {Horn, 2CNF} and let F be an
arbitrary formula. Then the strong C-backdoor sets of F are exactly the deletion
C-backdoor sets of F .

Example 13.4.2. Consider the formula F of Example 13.4.1 and the strong
Horn-backdoor set B = {u, v} of F (note that B is also a strong 2CNF-backdoor
set of F). Indeed, F − B =

{

{w}, {x, y}, {x, y}, {y, z}, {w, z}
}

is a Horn
formula.

Nishimura et al. describe a fixed-parameter algorithm for the detection of
strong Horn-backdoor sets. Their algorithm is based on bounded search trees
similarly to the vertex cover algorithm described above. In fact, we can directly
use a vertex cover algorithm. To this end we associate with a formula F the
positive primal graph G. The vertices of G are the variables of F , and two
variables x, y are joined by an edge if and only if x, y ∈ C for some clause C of F
(negative occurrences of variables are ignored). Clearly the positive primal graph
can be constructed in time polynomial in the size of F . Now it is easy to see that
for sets B ⊆ var(F) the following properties are equivalent:

1. B is a strong Horn-backdoor set of F ;
2. B is a deletion Horn-backdoor set of F ;
3. B is a vertex cover of G.

Thus any vertex cover algorithm can be used to find a strong Horn-backdoor
set. In particular, the algorithm of Chen et al. [CKX06] solves VER(bHorn) in
time O∗(1.273k).

For the detection of strong 2CNF-backdoor sets one can apply a similar ap-
proach. Given a CNF formula F and a positive integer k, we want to determine
whether F has a strong 2CNF-backdoor set of size at most k. Let S be the set of
all size-3 subsets S of var(F) such that S ⊆ var(C) for some clause C of F . Evi-
dently, S can be constructed in polynomial time. Observe that a set B ⊆ var(F)
is a hitting set of S if and only if B is a deletion 2CNF-backdoor set of F . By
Lemma 13.4.3, the latter is the case if and only if B is a strong 2CNF-back-
door set of F . Thus, Niedermeier and Rossmanith’s algorithm for 3-HS [NR03]
solves VER(b2CNF) in time O∗(2.270k).

A generalization of backdoor sets, in particular Horn- and 2CNF-backdoor
sets, to quantified Boolean formulas has recently been proposed by taking the
variable dependencies caused by the quantifications into account [SS07b].

A significant improvement over Horn as the base class for strong backdoor
sets is the consideration of the class UP of CNF formulas that can be decided
by unit propagation. That is, a CNF formula F belongs to UP if and only if
after repeated application of unit propagation one is either left with the empty
formula (i.e., F is satisfiable), or with a formula that contains the empty clause
(i.e., F is unsatisfiable). Unfortunately, VER(bUP) turns out to be complete for
the class W[P]. This holds also true if one considers the base class PL of CNF
formulas decidable by pure literal elimination, and by the base class UP + PL of
CNF formulas decidable by a combination of unit propagation and pure literal

Chapter 13. Fixed-Parameter Tractability 375

elimination. Thus UP + PL contains exactly those formulas that can be decided
by the polynomial-time “subsolver” of the basic DPLL procedure [WGS03].

The following result provides strong evidence that the detection of strong
backdoor sets with respect to the base classes PL, UP, and UP + PL is not
fixed-parameter tractable.

Theorem 13.4.4 (Szeider [Sze05]). For C ∈ {PL, UP, UP + PL} the prob-
lem VER(bC) is W[P]-complete.

In view of this result, it appears to be very unlikely that one can find a size-k
strong backdoor set with respect to the base class of formulas decidable by DPLL
subsolvers significantly faster than by trying all sets of variables of size k. Also the
consideration of deletion backdoor sets do not offer an opportunity for overcoming
this limitation: the classes UP, PL, and UP+PL are not clause induced—indeed,
not every deletion backdoor set is a strong backdoor set with respect to these
classes.

However, the class RHorn of renamable Horn formulas is an interesting base
class that is clause induced. A formula is renamable Horn if some renaming of
it is Horn. It is well known that recognition and satisfiability of renamable Horn
formulas is feasible in polynomial time [Lew78]. Actually, a renamable Horn for-
mula is unsatisfiable if and only if we can derive the empty clause from it by unit
propagation; also, whenever we can derive from a formula the empty clause by
means of unit resolution, then some unsatisfiable subset of the formula is renam-
able Horn [KBL99]. Thus RHorn lies in a certain sense half way between UP
and Horn. Since RHorn is clause induced, both strong and deletion backdoor
sets are of relevance. In contrast to Horn, not every strong RHorn-backdoor set
is a deletion RHorn-backdoor set. Indeed, bRHorn is a more general satisfiability
parameter than dbRHorn as can be seen from Lemma 13.4.2 and the following
example.

Example 13.4.3. For 1 ≤ i ≤ n, let Fi =
{

{xi, yi, z}, {xi, yi, z}, {xi, yi},

{xi, yi}
}

, and consider F =
⋃n

i=1 Fi. Evidently {z} is a strong RHorn-backdoor

set of F , since each proper subset of
{

{xi, yi}, {xi, yi}, {xi, yi}, {xi, yi}
}

, 1 ≤ i ≤
n, is renamable Horn. However, every deletion RHorn-backdoor set of F must
contain at least one variable xi or yi for all 1 ≤ i ≤ n. Hence bRHorn(F) ≤ 1 and
dbRHorn(F) ≥ n, which shows that bRHorn is more general than dbRHorn.

Until recently the parameterized complexities of VER(bRHorn) and
VER(dbRHorn) were open. Razgon and O’Sullivan [RO08] have shown that
Max-2-SAT parameterized by the number of clauses that remain unsatisfied
is fixed-parameter tractable. This problem can be shown to be equivalent
to VER(dbRHorn) under fpt-reductions. On the other hand, there is an fpt-
reduction from Clique to VER(bRHorn), which shows W[1]-hardness of the lat-
ter problem.

Dilkina, Gomes, and Sabharwal [DGS07] suggest to strengthen the concept
of strong backdoor sets by means of empty clause detection. Let E denote the
class of all CNF formulas that contain the empty clause. For a base class C we
put C{} = C ∪ E ; we call C{} the base class obtained from C by adding empty
clause detection. Formulas can have much smaller strong C{}-backdoor sets than

376 Chapter 13. Fixed-Parameter Tractability

strong C-backdoor sets; Dilkina et al. give empirical evidence for this phenomenon
considering various base classes. Note that the addition of empty clause detec-
tion makes only sense for strong backdoor sets [DGS07], not for weak or deletion
backdoor sets. Dilkina et al. show that, given a CNF formula F and an inte-
ger k, determining whether F has a strong Horn

{}-backdoor set of size k is both
NP-hard and co-NP-hard (here k is considered only as part of the input and not
as a parameter). Thus, the non-parameterized complexity of the search problem
for strong Horn-backdoor sets gets harder when empty clause detection is added.
Also the parameterized complexity gets harder, which can be shown using results
from Fellows et al. [FSW06].

Theorem 13.4.5 (Szeider [Sze08]). For C ∈ {Horn
{}, 2CNF{},RHorn

{}} the
problem VER(bC) is W[1]-hard.

13.4.2. Hitting Formulas and Clustering-Width

Iwama [Iwa89] observed that one can determine the number of models of a CNF
formula in polynomial time if any two clauses of the formula clash; such formulas
are known as hitting formulas [KZ01]. Consider a hitting formula F with n
variables. If a total truth assignment τ : var(F) → {0, 1} does not satisfy a
clause C ∈ F , it satisfies all other clauses of F . Hence we can count the total
truth assignments that do not satisfy F by considering one clause after the other,
and the number of models is therefore exactly 2n −

∑

C∈F 2n−|C|. Of course, if
a formula is a variable-disjoint union of hitting formulas—we call such a formula
a cluster formula—we can still compute the number of models in polynomial
time by taking the product of the number of models for each component. Since
satisfiability (and obviously recognition) of cluster formulas can be established
in polynomial time, the class CLU of cluster formulas is a base class. CLU is
evidently clause induced.

Nishimura, Ragde, and Szeider [NRS07] consider the parameterized problem
of detecting CLU-backdoor sets.

Theorem 13.4.6. VER(bCLU) is W[2]-hard but VER(dbCLU) is fixed-
parameter tractable.

The hardness result is obtained by an fpt-reduction from the parameterized
hitting set problem HS. The FPT result is achieved by means of an algorithm
that systematically destroys certain obstructions that consist of pairs or triples
of clauses. To this end, the obstruction graph of a CNF formula F is considered.
The vertex set of this graph is the set of variables of F ; two variables x, y are
joined by an edge if and only if at least one of the following conditions hold:

1. F contains two clauses C1, C2 that do not clash, x ∈ var(C1 ∩ C2), and
y ∈ var(C1 \ C2);

2. F contains three clauses C1, C2, C3 such that C1 and C3 do not clash,
x ∈ var((C1 \ C3) ∩ C2), and y ∈ var((C3 \ C1) ∩ C2).

Vertex covers of obstruction graphs are closely related to backdoor sets: every
deletion CLU-backdoor set of a CNF formula F is a vertex cover of the obstruc-
tion graph of F . Conversely, every vertex cover of the obstruction graph of a

Chapter 13. Fixed-Parameter Tractability 377

CNF formula F is a strong CLU-backdoor set of F . The satisfiability parame-
ter clu(F), the clustering-width, is defined as the size of a smallest vertex cover of
the obstruction graph of F . The clustering width is more general than dbCLU(F)
and less general than bCLU(F).

Example 13.4.4. Consider formula F =
{

{u, v}, {s, u, v}, {u, v, w, r},

{r, w, x, y}, {x, y, z}, {y, z}, {s, t}, {t}, {t, w}
}

. The obstruction graph has the
edges rv, rx, ry, st, su, tw, uw, vw, xw, yw. The set B = {r, s, w} forms a
vertex cover of the obstruction graph; there is no vertex cover of size two. Hence
F has clustering-width 3. B is a deletion CLU-backdoor set and consequently
also a strong CLU-backdoor set of F . There is, however, the smaller strong
CLU-backdoor set B′ = {w, s}.

In view of the fixed-parameter tractability of VC, we obtain the following
theorem. Since clu is more general than dbCLU, it implies the second part of
Theorem 13.4.6.

Theorem 13.4.7 (Nishimura et al. [NRS07]). The problems SAT(clu)
and VER(clu) are fixed-parameter tractable.

Actually, the algorithm of Nishimura et al. outlined above can be used to
count the number #(F) of models of a given formula F . More generally, assume
that we have a base class C such that #(F) can be computed in polynomial time
for every F ∈ C (which is the case for CLU). Then, if we have a strong C-backdoor
set B of an arbitrary CNF formula F , we can compute #(F) by means of the
identity

#(F) =
∑

τ :B→{0,1}

2d(F,τ) #(F [τ])

where d(F, τ) = |var(F −B)\var(F [τ])| denotes the number of variables that dis-
appear from F [τ] without being instantiated. Thus determining #(F) reduces to
determining the number of models for 2|B| formulas of the base class C. In particu-
lar, the above considerations yield a fixed-parameter algorithm for model counting
parameterized by the clustering-width. Note, however, that for the classes Horn

and 2CNF, the model counting problem is #P-hard (even for monotone formu-
las) [Rot96]. Thus knowing a small strong backdoor set with respect to these
classes does not help to count the number of models efficiently.

13.5. Treewidth

Treewidth is an important graph invariant that measures the “tree-likeness” of a
graph. Many otherwise NP-hard graph problems such as Hamiltonicity and 3-
colorability are fixed-parameter tractable if parameterized by the treewidth of the
input graph. It is generally believed that many practically relevant problems ac-
tually do have low treewidth [Bod93]. For taking the treewidth of a CNF formula
one needs to represent the structure of a formula as a graph. Perhaps the most
prominent graph representation of a CNF formula F is the primal graph G(F).
The vertices of G(F) are the variables of F ; two variables x, y are joined by an
edge if they occur in the same clause, that is, if x, y ∈ var(C) for some C ∈ F .

378 Chapter 13. Fixed-Parameter Tractability

y

u

v

w

x

z

G(F)

C2
z

C5

x

C4
w

C3

v

C1

u

y

G∗(F)

C2

C5

C4 C3

C1

Gd(F)

Figure 13.1. Graphs associated with the CNF formula F = {C1, . . . , C5} with

C1 = {u,¬v,¬y}, C2 = {¬u, z}, C3 = {v,¬w}, C4 = {w,¬x}, C5 = {x, y,¬z}; the primal

graph G(F), the incidence graph G∗(F), and the dual graph Gd(F).

z

x

w

v

u

y

H(F)

C2

C5

C4 C3

C1

Hd(F)

Figure 13.2. The hypergraph H(F) and the dual hypergraph Hd(F) associated with the CNF

formula F of Figure 13.1.

Another important graph is the incidence graph G∗(F). The vertices of G∗(F)
are the variables and clauses of F ; a variable x and a clause C are joined by an
edge if x ∈ var(C). In analogy to the primal graph, one can also define the dual
graph Gd(F). The vertices of Gd(F) are the clauses of F ; two clauses C1, C2

are joined by an edge if there is a variable occurring in both of them, that is, if
x ∈ var(C1) ∩ var(C2) for some x ∈ var(F). Figure 13.1 shows the primal graph,
the incidence graph, and the dual graph of a CNF formula.

Hypergraphs generalize graphs in the sense that each edge may connect more
than just two vertices, i.e., the edges (called hyperedges) of a hypergraph are non-
empty sets of vertices. We associate to each CNF formula F its hypergraph H(F).
The vertices of H(F) are the variables of F and for each C ∈ F the set var(C) of
variables represents a hyperedge of H(F). The dual hypergraph Hd(F) is defined
symmetrically. The vertices of Hd(F) are the clauses of F ; for each variable x,
the set of clauses C with x ∈ var(C) forms a hyperedge. See Figure 13.2 for
examples.

Tree decompositions of graphs and the associated parameter treewidth were
studied by Robertson and Seymour in their famous Graph Minors Project. A
tree decomposition of a graph G = (V, E) is a tree T = (V ′, E′) together with a

Chapter 13. Fixed-Parameter Tractability 379

v, x, y, z

v, w, xu, v, y, z

y, C1, C5

C1, C4, C5

C1, C2, C5 C1, C3, C4

z, C1, C5

z, C1, C2

u, C1, C2

w, C1, C5

w, x, C4

v, w, C1w, x, C5

v, w, C3

(c)

(a)
(b)

Figure 13.3. Tree decompositions of the primal graph (a), the incidence graph (b), and the

dual graph (c)

labeling function χ : V ′ → 2V associating to each tree node t ∈ V ′ a bag χ(t) of
vertices in V such that the following three conditions hold:

1. every vertex in V occurs in some bag χ(t);
2. for every edge xy ∈ E there is a bag χ(t) that contains both x and y;
3. if χ(t1) and χ(t2) both contain x, then each bag χ(t3) contains x if t3 lies

on the unique path from t1 to t2.

The width of a tree decomposition is maxt∈V ′ |χ(t)|−1. The treewidth of a graph
is the minimum width over all its tree decompositions. The treewidth of a graph
is a measure for its acyclicity, i.e., the smaller the treewidth the less cyclic the
graph is. In particular, a graph is acyclic if and only if it has treewidth 1.

The above definition of a tree decomposition can be easily generalized to
hypergraphs by requiring in item (2) that all vertices in each hyperedge occur
together in some bag. Every tree decomposition of the primal graph G(F) of a
CNF formula F is a tree decomposition of the hypergraph H(F). Thus, if the
treewidth of the primal graph is k, the cardinality of each clause of F cannot be
larger than k + 1.

For CNF formulas F , we introduce the following notions of treewidth: the
(primal) treewidth tw of F is the treewidth of its primal graph G(F), the inci-
dence treewidth tw∗ of F is the treewidth of its incidence graph G∗(F), and the
dual treewidth twd of F is the treewidth of its dual graph Gd(F). Tree decom-
positions of the three graphs associated with formula F in Figure 13.1 are shown
in Figure 13.3. Since there are no tree decompositions of these graphs of smaller
width, we know that tw(F) = 3 and tw∗(F) = twd(F) = 2.

Kolaitis and Vardi [KV00] have shown that always tw∗(F) ≤ tw(F) + 1
and tw∗(F) ≤ twd(F) + 1. In other words, the incidence treewidth dominates
the primal treewidth and the dual treewidth. On the other hand, there exist
families of CNF formulas with incidence treewidth one and arbitrarily large primal
treewidth and dual treewidth, i.e., this domination is strict.

Example 13.5.1. Consider the two families Fn = {{x1, x2, . . . , xn}} and Gn =
{{x1, y}, {x2, y}, . . . , {xn, y}} of CNF formulas. Then tw∗(Fn) = tw∗(Gn) = 1

380 Chapter 13. Fixed-Parameter Tractability

while tw(Fn) = twd(Gn) = n − 1.

The intuitive idea of tree decompositions is to partition a graph into clus-
ters of vertices that can be organized as a tree. The smaller the width of a tree
decomposition, the more efficiently we can decide satisfiability of the correspond-
ing CNF formula by a bottom-up dynamic programming approach on the tree
decomposition. Thus, our aim is to construct a tree decomposition of width as
small as possible; in the optimal case a tree decomposition of minimal width, the
treewidth, can be found.

In general, computing the treewidth of a graph is NP-hard [ACP87]. How-
ever, since tree decompositions with large width do not help us in deciding sat-
isfiability efficiently, we are more interested in graphs with bounded treewidth.
Bodlaender [Bod96] has shown that it can be decided in linear time whether the
treewidth of a graph is at most k if k is a constant. This immediately implies fixed-
parameter tractability of the problems VER(tw), VER(tw∗), and VER(twd).
In Section 13.5.2 we will review algorithms for constructing tree decompositions.

13.5.1. Deciding Satisfiability

As mentioned above, if a tree decomposition of the primal graph, the incidence
graph, or the dual graph is given, we can decide satisfiability of the correspond-
ing CNF formula by a bottom-up dynamic programming approach on the tree
decomposition. The smaller the width of the given tree decomposition, the more
efficiently we can decide satisfiability. In particular, from Yannakakis’s algo-
rithm [Yan81] we obtain the following result as already observed by Gottlob et
al. [GSS02].

Theorem 13.5.1. The problem SAT(tw) is fixed-parameter tractable.

To see this, consider a tree decomposition of the primal graph of a given CNF
formula F and let k be the width of this tree decomposition. Note that the number
of nodes of the tree can be bounded by the length n = ‖F‖. Now, we associate
with each node t of the tree a table Mt with |χ(t)| columns and at most 2|χ(t)| rows.
Each row contains Boolean values encoding a truth assignment to the variables
in χ(t) that does not falsify any clause of F . The size of each table is therefore
bounded by 2k+1(k + 1) and all such tables can be computed in time O(2kkn2).
In this way we can transform our SAT problem into an equivalent constraint
satisfaction problem by a fixed-parameter algorithm with parameter treewidth.
This constraint satisfaction problem can now be solved by Yannakakis’s algorithm
in time O(4kkn). Yannakakis’s algorithm works as follows: for each node t of the
tree it is checked whether to each truth assignment in table Mt′ associated with t’s
parent t′ there exists a consistent truth assignment in table Mt. We remove
truth assignments in table Mt′ to which no such consistent truth assignment
in table Mt exists. The whole procedure works in a bottom-up manner, i.e., a
node is processed if all of its children have already been processed. The CNF
formula F is satisfiable if and only if some truth assignments are left in the table
associated with the root after termination of this procedure. Thus, in summary,
we can decide SAT(tw) in time O∗(4k). By using an improved algorithm, we
can decide SAT(tw) in time O∗(2k) [SS07a].

Chapter 13. Fixed-Parameter Tractability 381

0 0 0
1 0 0

1 1 0

1 1 1

v w xv, x, y, z

v, w, xu, v, y, z

0 0 0 0
0
0 0

0 1 0
1

10 0
1
0

yxv z

1 1 0 1
1 1
1 1 1

1 0
1

...
...

...
...

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

u v y z

t1 t2

t0

Figure 13.4. A fixed-parameter algorithm for SAT(tw)

Example 13.5.2. Consider the primal graph of the CNF formula F in Figure 13.1
and its tree decomposition in Figure 13.3(a). The tables associated with each
tree node are shown in Figure 13.4: there are 14 truth assignments in table Mt0

associated with the root t0, 10 in table Mt1 associated with the left child t1,
and 4 in table Mt2 associated with the right child t2. Now let us start with the
left child t1 and remove the rows 1010 and 1110 from table Mt0 since there are
no consistent truth assignments in table Mt1 . Then we consider the right child t2
and remove the rows 0100, 0101, 0110, and 0111 from table Mt0 since there are
no consistent truth assignments in table Mt2 . Since there are no further nodes to
be processed, we are finished and know that F is satisfiable.

The following result is stronger than Theorem 13.5.1.

Theorem 13.5.2. The problem SAT(tw∗) is fixed-parameter tractable.

Since incidence treewidth strictly dominates primal treewidth and dual tree-
width as already mentioned above, this result implies both Theorem 13.5.1 and
fixed-parameter tractability of SAT(twd). The situation is different for “general-
ized satisfiability” also known as “Boolean constraint satisfaction” where clauses
are replaced by Boolean relations. Generalized satisfiability is fixed-parameter
tractable for the parameter primal treewidth but W[1]-hard for the parameter
incidence treewidth [SS06].

Courcelle has shown that every graph property that can be expressed in
a certain formalism (monadic second-order logic, MSO) can be decided in lin-
ear time for graphs of bounded treewidth [Cou88]. This theorem applies to
many NP-hard graph properties such as 3-colorability and yield fixed-parameter
tractability for these problems with respect to parameter treewidth. Thus
MSO theory provides a very general and convenient tool for classifying prob-
lems parameterized by treewidth as fixed-parameter tractable. Using the gen-
eral methods of MSO theory one can easily establish fixed-parameter tractability
of SAT(tw∗) [CMR01, GS08, Sze04b]. However, the algorithms obtained via the
generic constructions are impractical.

382 Chapter 13. Fixed-Parameter Tractability

For more practical algorithms, however, one needs to use more closely the
combinatorial structure of the particular problem at hand. Fischer et al. [FMR08]
and Samer and Szeider [SS07a] presented practical fixed-parameter algorithms for
the more general problem #SAT(tw∗) of counting the number of models. This
trivially implies Theorem 13.5.2, since a CNF formula is satisfiable if and only if
it has at least one model. In the following we present the algorithm introduced by
Samer and Szeider. The algorithm is based on “nice” tree decompositions, which
are a special kind of tree decompositions. It is well known that one can transform
any tree decomposition of width k in linear time into a nice tree decomposition
of width at most k [BK96, Klo94].

For each node t, we write Xt and Ft to denote the set of all variables
and clauses occurring in χ(t′), respectively, for some node t′ in the subtree rooted
at t. Moreover, we use the shorthands χv(t) = χ(t)∩Xt and χc(t) = χ(t)∩Ft for
the set of variables and the set of clauses in χ(t) respectively. For each truth as-
signment α : χv(t) → {0, 1} and subset A ⊆ χc(t), we define N(t, α, A) as the set
of truth assignments τ : Xt → {0, 1} for which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χv(t) and
2. A is exactly the set of clauses of Ft that are not satisfied by τ .

Now, we associate with each node t of the tree a table Mt with |χ(t)| + 1
columns and 2|χ(t)| rows. The first |χ(t)| columns contain Boolean values encod-
ing α(x) for variables x ∈ χv(t), and membership of C in A for clauses C ∈ χc(t).
The last column contains the integer n(t, α, A) = |N(t, α, A)|. Given the tables
of the children of some node t, the table Mt can be computed in time O(4kkl),
where l is the cardinality of the largest clause. All the tables associated with tree
nodes can be computed in a bottom-up manner. The number of models of the
corresponding CNF formula F is then given by Σα:χv(r)→{0,1}n(r, α, ∅), where r

is the root of the tree. Thus, we can decide SAT(tw∗) in time O∗(4k).

Example 13.5.3. Consider the incidence graph of the CNF formula F in Fig-
ure 13.1 and its tree decomposition in Figure 13.3(b). A fragment of the corre-
sponding nice tree decomposition and the tables associated with each tree node
are shown in Figure 13.5. Note that we omit for simplicity those rows from the
tables where n = 0. We assume that the tables Mt4 and Mt5 associated with the
nodes t4 and t5 respectively have already been computed in a bottom-up man-
ner starting from the leaves. For example, the entries in table Mt4 mean that
(i) there exists exactly one truth assignment τ : Xt4 → {0, 1} such that τ(z) = 0
and τ satisfies all clauses in Ft4 except C1, (ii) there exists exactly one truth
assignment τ : Xt4 → {0, 1} such that τ(z) = 1 and τ satisfies all clauses in Ft4

except C5, and (iii) there exists exactly one truth assignment τ : Xt4 → {0, 1}
such that τ(z) = 1 and τ satisfies all clauses in Ft4 except C1 and C5. The next
step is to compute the tables Mt2 and Mt3 from tables Mt4 and Mt5 respectively.
Since t2 and t3 are forget nodes (the variable z has been forgotten in t2 and the
variable w has been forgotten in t3), this can be done according to the rule for
forget nodes as given in [SS07a]. Now we compute table Mt1 from tables Mt2

and Mt3 according to the rule for join nodes. Finally, we compute table Mt0

from table Mt1 according to the rule for introduce nodes. From table Mt0 we can
now see that there are exactly 12 truth assignments τ : Xt0 → {0, 1} such that τ

Chapter 13. Fixed-Parameter Tractability 383

0 1 4
0 0 2

1 0 4

C1 C5 n

1 1 2

y C1 C5 n

0 0 0 6
0 0 1 6
1 0 0 6
1 1 0 6

1 0 1
0 1 1

1 1 1

C1 C5 n

w C1 C5 n

0 0 1 1
0 1 1 1
1 1 0 1

1 1 1 1

1 0 1
0 1 1

1 1 2

C1 C5 n

z C1 C5 n

0 1 0 1
1 0 1 1
1 1 1 1

C1, C5

C1, C5

w, C1, C5

C1, C5

y, C1, C5

...
..
.

z, C1, C5

...

t0

t1

t5

t3

t4

t2

Figure 13.5. A fixed-parameter algorithm for #SAT(tw∗)

satisfies all clauses in Ft0 (for 6 of these truth assignments it holds that τ(y) = 0
and for 6 of them it holds that τ(y) = 1), where Xt0 = var(F) and Ft0 = F .
Consequently, the CNF formula F has exactly 12 models.

Bacchus, Dalmao, and Pitassi [BDP03] presented another fixed-parameter al-
gorithm for computing the number of models of a CNF formula F . The parameter
in their algorithm is the branch-width of the hypergraph H(F). Similar to tree
decompositions, branch decompositions and the corresponding branch-width were
introduced by Robertson and Seymour in their Graph Minors Project. It is well
known that a graph with treewidth k has branch-width at most k + 1 and that
a graph with branch-width k has treewidth at most 3k/2 [RS91]. Bacchus et al.
define a static ordering of the variables of F based on the branch decomposition
of H(F) and run a DPLL procedure with caching on this ordering. In partic-
ular, they decompose the input formula and intermediate formulas into disjoint
components; these components are cached when they are solved the first time,
which allows to truncate the search-tree of the DPLL procedure. The resulting
algorithm runs in time 2O(k)nc, where k is the branch-width, n is the number of
variables, and c is a constant.

13.5.2. Tree Decomposition Algorithms

As for most algorithms, also in the case of computing tree decompositions, there
has to be a tradeoff made between runtime, space requirement, and simplicity.
In the following, we use n to denote the number of vertices of the given graph.
The current fastest exact tree decomposition algorithm runs in time O∗(1.8899n)

384 Chapter 13. Fixed-Parameter Tractability

and is due to Fomin, Kratsch, and Todinca [FKT04] and Villanger [Vil06]. This
algorithm is based on the computation of potential maximal cliques. Bodlaender
et al. [BFK+06] developed a simpler algorithm based on a recursive divide-and-
conquer technique that requires polynomial space and runs in time O∗(4n). For
special classes of graphs, however, there exist exact tree decomposition algorithms
that run in polynomial (or even linear) time [Bod93].

Polynomial-time algorithms exist also in the case of bounded treewidth. In
fact, these algorithms are fixed-parameter algorithms: Reed’s algorithm [Bod93,
Ree92] decides in time O(n log n) whether the treewidth of a graph is at most k
and, if so, computes a tree decomposition of width at most 3k + 2. Bodlaender
and Kloks [BK96] developed an algorithm with the same asymptotic runtime as
Reed’s algorithm that decides whether the treewidth of a graph is at most k and,
if so, computes a tree decomposition of width at most k. Bodlaender [Bod96]
improved this result to a linear-time algorithm. The hidden constant factors in
the runtime of the latter two algorithms, however, are very large so that they are
only practical for very small k (e.g., up to k = 5) [BK96, Bod05].

Algorithms that approximate treewidth by finding tree decompositions of
nearly minimal width give a guarantee on the quality of the output. One such
guarantee is the relative performance ratio ρ (or performance ratio, for short),
which guarantees that the tree decomposition found by the approximation algo-
rithm has width at most ρ times the treewidth.The first such algorithm is due to
Bodlaender et al. [BGHK95]; it runs in polynomial time and has a performance
ratio of O(log n). Bouchitté et al. [BKMT04] and Amir [Ami01] improved this al-
gorithm to a performance ratio of O(log k). It is an open problem whether there
exists a polynomial time approximation algorithm for treewidth with constant
performance ratio.

In practice it often suffices to obtain tree decompositions of small width with-
out any guarantees. There exist several powerful tree decomposition heuristics
for this purpose. In the worst case, the width of tree decompositions obtained
by such heuristics can be far from treewidth; however, their width is often small
in practically relevant cases. An important class of tree decomposition heuristics
are based on finding an appropriate linear ordering of the vertices from which
a tree decomposition can be constructed [Bod05]. Minimum degree and min-
imum fill-in [Bod05], lexicographic breadth-first search [RTL76], and maximum
cardinality search [TY84] are well-known examples of such ordering heuristics.
Koster, Bodlaender, and van Hoesel [KBvH01a, KBvH01b] compared several tree
decomposition heuristics by empirical evaluation.

We refer the interested reader to Bodlaender’s excellent survey papers [Bod93,
Bod05] for a more extensive overview on tree decomposition algorithms.

13.5.3. Beyond Treewidth

Beside treewidth, other (more general) measures for the tractability of certain
computation problems with graph and hypergraph representations have been
proposed in the literature. One of the most prominent examples is clique-
width [CER93]. Intuitively, the clique-width of a graph is the smallest number of
colors required to construct the graph by means of certain operations that do not

Chapter 13. Fixed-Parameter Tractability 385

distinguish between vertices of the same color. Courcelle and Olariu [CO00] have
shown that a graph with treewidth k has clique-width at most 2k+1 + 1. On the
other hand, every clique on n ≥ 2 vertices has clique-width 2 but treewidth n−1.
Thus, clique-width strictly dominates treewidth.

For a CNF formula F , we define the clique-width cwd of F as the clique-
width of its incidence graph G∗(F). The following results show that clique-width
allows fixed-parameter tractable SAT decision; the known algorithms however
are impractical and of theoretical interest only. The fixed-parameter tractability
of SAT(cwd) follows from monadic second-order theory [CMR01] similarly as in
the case of treewidth. For VER(cwd), there exists a fixed-parameter approxi-
mation algorithm: Oum [Oum05] developed an algorithm that, for constant k,
runs in time O(n4) and decides whether the clique-width of the input graph is at
most k and, if so, constructs a decomposition of width at most 23k+2 − 1.

Generalizations of treewidth like hypertree-width [GLS02], spread-cut
width [CJG08], and fractional hypertree-width [GM06] are defined for hyper-
graphs in the context of constraint satisfaction and conjunctive database queries.
According to the current status of knowledge, they have no relevance for the satis-
fiability problem of CNF formulas [SS07a]. In particular, let F be a CNF formula
and x be a new variable not occurring in F . Now consider the CNF formula F ′

obtained from F by adding the two clauses C = var(F) ∪ {x} and C′ = {x}.
Since every variable of F ′ occurs in the single clause C, the associated hyper-
graph H(F ′) is acyclic [GLS02]. Thus, hypertree-width, spread-cut width, and
fractional hypertree-width of H(F ′) are one. However, satisfiability of F ′ is NP-
hard since F ′ is satisfiable if and only if F is satisfiable. A similar construction
can be made with respect to the dual hypergraph Hd(F) [SS07a].

13.6. Matchings

A matching in a graph is a set of edges such that every vertex is incident with at
most one edge of the matching. A CNF formula is called matched if its incidence
graph has a matching such that all clauses are incident with an edge of the
matching. Matched formulas are always satisfiable, since one can satisfy each
clause independently by choosing the right truth value for the variable that is
associated to it via the matching.

Example 13.6.1. Consider the CNF formula F = {C1, . . . , C4} with C1 =
{v, y, z}, C2 = {y, x}, C3 = {v, z, w}, C4 = {y, x, w}. The set M =
{vC1, yC2, zC3, xC4} is a matching in the incidence graph of F that covers all
clauses. Hence F is a matched formula and it is indeed satisfiable: we put τ(v) = 1
to satisfy C1, τ(y) = 0 to satisfy C2, τ(z) = 0 to satisfy C3, and τ(x) = 1 to
satisfy C4.

The notion of maximum deficiency (first used by Franco and Van
Gelder [FV03] in the context of CNF formulas) allows to gradually extend the
nice properties from matched formulas to more general classes of formulas. The
maximum deficiency of a formula F , denoted by md(F), is the number of clauses
remaining uncovered by a largest matching of the incidence graph of F . The

386 Chapter 13. Fixed-Parameter Tractability

parameters md and tw∗ are domination incomparable [Sze04b]. The term “max-
imum deficiency” is motivated by the equality

md(F) = max
F ′⊆F

d(F ′)

which follows from Hall’s Theorem. Here d(F ′) denotes the deficiency of F ′,
the difference |F ′| − |var(F ′)| between the number of clauses and the number of
variables. The problem VER(md) can be solved in polynomial time, since a
largest matching in a bipartite graph can be found in polynomial time by means
of Hopcroft and Karp’s algorithm [HK73, LP86] (and the number of uncovered
clauses remains the same whatever largest matching one considers).

Deficiency and maximum deficiency have been studied in the context of min-
imal unsatisfiable formulas, i.e., unsatisfiable formulas that become satisfiable
by removing any clauses. Let MU denote the recognition problem for minimal
unsatisfiable formulas. By a classic result of Papadimitriou and Wolfe [PW88],
the problem MU is DP-complete; DP is the class of problems that can be con-
sidered as the difference of two problems in NP and corresponds to the second
level of the Boolean Hierarchy [Joh90]. Kleine Büning [Kle00] initiated the study
of MU parameterized by the deficiency d. Since d(F) = md(F) ≥ 1 holds for
minimal unsatisfiable formulas F [AL86], algorithms for SAT(md) are of rel-
evance. Fleischner, Kullmann, and Szeider [FKS02] have shown that one can
decide the satisfiability of formulas with maximum deficiency bounded by a con-
stant in polynomial time. As a consequence, minimal unsatisfiable formulas with
deficiency bounded by a constant can be recognized in polynomial time. The
order of the polynomial that bounds the running time of Fleischner et al.’s al-
gorithm depends on k, hence it only establishes that SAT(md) and MU(d) are
in XP. Szeider [Sze04a] developed an algorithm that decides satisfiability and
minimal unsatisfiability of formulas with maximum deficiency k in time O∗(2k),
thus establishing the following result.

Theorem 13.6.1 (Szeider [Sze04a]). The problems SAT(md) and MU(d) are
fixed-parameter tractable.

Key for Szeider’s algorithm is a polynomial-time procedure that either decides
the satisfiability of a given formula F or reduces F to an equisatisfiable formula F ∗

with md(F ∗) ≤ md(F), such that

md(F ∗[x = 0]) < md(F ∗) and md(F ∗[x = 1]) < md(F ∗) for all x ∈ var(F ∗);

a formula F ∗ with this property is called md-critical. In particular, a formula
is md-critical if every literal of F ∗ occurs in at least two clauses and for every
non-empty set X of variables of F ∗ there are at least |X | + 2 clauses C of F ∗

such that var(C) ∩ X 6= ∅. The above reduction is applied at every node of a
(DPLL-type) binary search tree. Since at every step from a node to its child the
maximum deficiency of the formula gets reduced, it follows that the height of the
search tree is bounded in terms of the maximum deficiency of the given formula,
yielding the fixed-parameter tractability of SAT(md).

Let r be a non-negative integer and let Mr denote the class of formulas F
with md(F) ≤ r. Since both recognition and satisfiability of formulas in Mr

Chapter 13. Fixed-Parameter Tractability 387

can be solved in polynomial time and, since Mr is clause induced, it makes
sense to consider Mr as the base class for strong and deletion backdoor sets.
Szeider [Sze08] has shown the following hardness result.

Theorem 13.6.2. The problems VER(bMr
) and VER(dbMr

) are W[2]-hard
for every r ≥ 0.

13.7. Concluding Remarks

We close this chapter by briefly mentioning further research on the parameterized
complexity of problems related to propositional satisfiability.

For example, Fellows, Szeider and Wrightson [FSW06] have studied the prob-
lem of finding in a given CNF formula F a small unsatisfiable subset S param-
eterized by the number of clauses of S. The problem is W[1]-complete, but
fixed-parameter tractable for several classes of CNF formulas, including formulas
with planar incidence graphs and formulas with both clause size and occurrence of
variables bounded. Similar results are shown for a related parameter, the number
of resolution steps required to refute a given CNF formula.

Propositional proof complexity is a further area of research that is related to
satisfiability and admits parameterizations. In particular, one can study proofs
that establish that a given CNF formula cannot be satisfied by setting at most
k variables to true; k is considered as the parameter. Dantchev, Martin, and
Szeider [DMS07a] have studied the proof complexity of resolution for such “pa-
rameterized contradictions.”

We hope that this survey provides a stimulating starting point for further research
on satisfiability and related topics that fruitfully utilizes concepts of parameter-
ized complexity theory.

Acknowledgment

This work was supported by the EPSRC, project EP/E001394/1 “Fixed-Param-
eter Algorithms and Satisfiability.”

References

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM Journal on Algebraic
and Discrete Methods, 8(2):277–284, 1987.

[AL86] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hyper-
graphs and minimal unsatisfiable formulas. Journal of Combinatorial
Theory, Series A, 43(2):196–204, 1986.

[Ami01] Eyal Amir. Efficient approximations for triangulation of minimum
treewidth. In Proc. 17th Conference on Uncertainty in Artificial In-
telligence (UAI’01), pages 7–15. Morgan Kaufmann, 2001.

388 Chapter 13. Fixed-Parameter Tractability

[BDP03] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms
and complexity results for #SAT and Bayesian inference. In Proc.
44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’03), pages 340–351. IEEE Computer Society, 2003.

[BFK+06] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Di-
eter Kratsch, and Dimitrios M. Thilikos. On exact algorithms for
treewidth. In Proc. 14th Annual European Symposium on Algorithms
(ESA’06), volume 4168 of LNCS, pages 672–683. Springer-Verlag,
2006.

[BGHK95] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and
Ton Kloks. Approximating treewidth, pathwidth, frontsize, and
shortest elimination tree. Journal of Algorithms, 18(2):238–255, 1995.

[BK96] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algo-
rithms for the pathwidth and treewidth of graphs. Journal of Algo-
rithms, 21(2):358–402, 1996.

[BKMT04] Vincent Bouchitté, Dieter Kratsch, Heiko Müller, and Ioan Todinca.
On treewidth approximations. Discrete Applied Mathematics, 136(2-
3):183–196, 2004.

[Bod93] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cy-
bernetica, 11(1-2):1–22, 1993.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal of Computing,
25(6):1305–1317, 1996.

[Bod05] Hans L. Bodlaender. Discovering treewidth. In Proc. 31st Confer-
ence on Current Trends in Theory and Practice of Computer Science
(SOFSEM’05), volume 3381 of LNCS, pages 1–16. Springer-Verlag,
2005.

[BW04] Fahiem Bacchus and Jonathan Winter. Effective preprocessing
with hyper-resolution and equality reduction. In Proc. 6th Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing (SAT’03), Selected and Revised Papers, volume 2919 of LNCS,
pages 341–355. Springer-Verlag, 2004.

[CCDF97] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fel-
lows. Advice classes of parameterized tractability. Annals of Pure
and Applied Logic, 84(1):119–138, 1997.

[CEH97] Yves Crama, Oya Ekin, and Peter L. Hammer. Variable and term
removal from Boolean formulae. Discrete Applied Mathematics,
75(3):217–230, 1997.

[CER93] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-
rewriting hypergraph grammars. Journal of Computer and System
Sciences, 46(2):218–270, 1993.

[Ces06] Marco Cesati. Compendium of parameterized problems. URL:
http://bravo.ce.uniroma2.it/home/cesati/research/compen-

dium.pdf, September 2006.
[CJG08] David Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of

structural tractability for constraint satisfaction problems. Journal
of Computer and System Sciences, 74(5):721–743, 2008.

Chapter 13. Fixed-Parameter Tractability 389

[CK04] Jianer Chen and Iyad A. Kanj. Improved exact algorithms for MAX-
SAT. Discrete Applied Mathematics, 142(1-3):17–27, 2004.

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Fur-
ther observations and further improvements. Journal of Algorithms,
41(2):280–301, 2001.

[CKX06] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized
upper bounds for vertex cover. In Proc. 31st International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS’06),
volume 4162 of LNCS, pages 238–249. Springer-Verlag, 2006.

[CMR01] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the
fixed parameter complexity of graph enumeration problems definable
in monadic second-order logic. Discrete Applied Mathematics, 108(1-
2):23–52, 2001.

[CO00] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique-
width of graphs. Discrete Applied Mathematics, 101(1-3):77–114,
2000.

[Cou88] Bruno Courcelle. The monadic second-order logic of graphs: De-
finable sets of finite graphs. In Proc. 14th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG’88), volume
344 of LNCS, pages 30–53. Springer-Verlag, 1988.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complex-
ity. Springer-Verlag, 1999.

[DGS07] Bistra N. Dilkina, Carla P. Gomes, and Ashish Sabharwal. Trade-
offs in the complexity of backdoor detection. In Proc. 13th Inter-
national Conference on Principles and Practice of Constraint Pro-
gramming (CP’07), volume 4741 of LNCS, pages 256–270. Springer-
Verlag, 2007.

[DMS07a] Stefan Dantchev, Barnaby Martin, and Stefan Szeider. Parameter-
ized proof complexity. In Proc. 48th Annual Symposium on Founda-
tions of Computer Science (FOCS’07), pages 150–160. IEEE Com-
puter Society, 2007.

[DMS07b] Stefan Dantchev, Barnaby Martin, and Stefan Szeider. Parameter-
ized proof complexity: A complexity gap for parameterized tree-like
resolution. Technical Report TR07-001, Electronic Colloquium on
Computational Complexity (ECCC), January 2007.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer-Verlag, 2006.

[FKS02] Herbert Fleischner, Oliver Kullmann, and Stefan Szeider.
Polynomial-time recognition of minimal unsatisfiable formulas with
fixed clause-variable difference. Theoretical Computer Science,
289(1):503–516, 2002.

[FKT04] Fedor V. Fomin, Dieter Kratsch, and Ioan Todinca. Exact (expo-
nential) algorithms for treewidth and minimum fill-in. In Proc. 31st
International Colloquium on Automata, Languages and Programming
(ICALP’04), volume 3142 of LNCS, pages 568–580. Springer-Verlag,
2004.

[FMR08] Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Count-

390 Chapter 13. Fixed-Parameter Tractability

ing truth assignments of formulas of bounded tree-width or clique-
width. Discrete Applied Mathematics, 156(4):511–529, 2008. DOI:
10.1016/j.dam.2006.06.020.

[FSW06] Michael R. Fellows, Stefan Szeider, and Graham Wrightson. On find-
ing short resolution refutations and small unsatisfiable subsets. The-
oretical Computer Science, 351(3):351–359, 2006.

[FV03] John Franco and Allen Van Gelder. A perspective on certain poly-
nomial time solvable classes of satisfiability. Discrete Applied Math-
ematics, 125(2):177–214, 2003.

[GJ79] Michael R. Garey and David R. Johnson. Computers and Intractabil-
ity. W. H. Freeman and Company, 1979.

[GLS02] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree de-
compositions and tractable queries. Journal of Computer and System
Sciences, 64(3):579–627, 2002.

[GM06] Martin Grohe and Dániel Marx. Constraint solving via fractional
edge covers. In Proc. 17th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’06), pages 289–298. ACM Press, 2006.

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and
problem kernelization. ACM SIGACT News, 38(2):31–45, 2007.

[GS08] Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms
for artificial intelligence, constraint satisfaction, and database
problems. The Computer Journal, 51(3):303–325, 2008. DOI:
10.1093/comjnl/bxm056.

[GSS02] Georg Gottlob, Francesco Scarcello, and Martha Sideri. Fixed-
parameter complexity in AI and nonmonotonic reasoning. Artificial
Intelligence, 138(1-2):55–86, 2002.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for max-
imum matchings in bipartite graphs. SIAM Journal of Computing,
2(4):225–231, 1973.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
problems have strongly exponential complexity. Journal of Computer
and System Sciences, 63(4):512–530, 2001.

[Iwa89] Kazuo Iwama. CNF-satisfiability test by counting and polynomial
average time. SIAM Journal of Computing, 18(2):385–391, 1989.

[Joh90] David S. Johnson. A catalog of complexity classes. In J. van Leewen,
editor, Handbook of Theoretical Computer Science, volume A, chap-
ter 2, pages 67–161. Elsevier Science Publishers, 1990.

[KBL99] Hans Kleine Büning and Theodor Lettmann. Propositional logic:
Deduction and algorithms. Cambridge University Press, 1999.

[KBvH01a] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoe-
sel. Treewidth: Computational experiments. Technical Report ZIB
01-38, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2001.

[KBvH01b] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van
Hoesel. Treewidth: Computational experiments. Electronic Notes in
Discrete Mathematics, 8:54–57, 2001.

[Kle00] Hans Kleine Büning. On subclasses of minimal unsatisfiable formulas.
Discrete Applied Mathematics, 107(1–3):83–98, 2000.

Chapter 13. Fixed-Parameter Tractability 391

[Klo94] Ton Kloks. Treewidth: Computations and Approximations. Springer-
Verlag, 1994.

[KV00] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query contain-
ment and constraint satisfaction. Journal of Computer and System
Sciences, 61(2):302–332, 2000.

[KZ01] Hans Kleine Büning and Xishun Zhao. Satisfiable formulas closed
under replacement. Electronic Notes in Discrete Mathematics, 9:48–
58, 2001.

[Lew78] Harry R. Lewis. Renaming a set of clauses as a Horn set. Journal of
the ACM, 25(1):134–135, 1978.

[LP86] László Lovász and Michael D. Plummer. Matching Theory. Num-
ber 29 in Annals of Discrete Mathematics. North-Holland Publishing
Co., Amsterdam, 1986.

[MR99] Meena Mahajan and Venkatesh Raman. Parameterizing above
guaranteed values: MaxSat and MaxCut. Journal of Algorithms,
31(2):335–354, 1999.

[MRS06] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parame-
terizing MAX SNP problems above guaranteed values. In Proc. 2nd
International Workshop on Parameterized and Exact Computation
(IWPEC’06), volume 4169 of LNCS, pages 38–49. Springer-Verlag,
2006.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Num-
ber 31 in Oxford Lecture Series in Mathematics and Its Applications.
Oxford University Press, 2006.

[NR03] Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter
algorithm for 3-hitting set. Journal of Discrete Algorithms, 1(1):89–
102, 2003.

[NRS04] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting
backdoor sets with respect to Horn and binary clauses. In Proc. 7th
International Conference on Theory and Applications of Satisfiability
Testing (SAT’04), pages 96–103. Informal Proceedings, 2004.

[NRS07] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving
#SAT using vertex covers. Acta Informatica, 44(7-8):509–523, 2007.

[Oum05] Sang-il Oum. Approximating rank-width and clique-width quickly.
In Proc. 31st International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’05), volume 3787 of LNCS, pages 49–58.
Springer-Verlag, 2005.

[PW88] Christos H. Papadimitriou and David Wolfe. The complexity of facets
resolved. Journal of Computer and System Sciences, 37(1):2–13,
1988.

[Ree92] Bruce A. Reed. Finding approximate separators and computing tree-
width quickly. In Proc. 24th Annual ACM symposium on Theory of
Computing (STOC’92), pages 221–228. ACM Press, 1992.

[RO08] Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter
tractable. In Proc. 35th International Colloquium on Automata,
Languages and Programming (ICALP’08), Track A: Algorithms, Au-
tomata, Complexity, and Games, volume 5125 of LNCS, pages 551–

392 Chapter 13. Fixed-Parameter Tractability

562. Springer-Verlag, 2008.
[Rot96] Daniel Roth. On the hardness of approximate reasoning. Artificial

Intelligence, 82(1-2):273–302, 1996.
[RS91] Neil Robertson and Paul D. Seymour. Graph minors X. Obstructions

to tree-decomposition. Journal of Combinatorial Theory, Series B,
52(2):153–190, 1991.

[RTL76] Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic
aspects of vertex elimination on graphs. SIAM Journal of Computing,
5(2):266–283, 1976.

[SS06] Marko Samer and Stefan Szeider. Constraint satisfaction with
bounded treewidth revisited. Submitted for publication. Preliminary
version published in Proc. 12th International Conference on Princi-
ples and Practice of Constraint Programming (CP’06), volume 4204
of LNCS, pages 499–513. Springer-Verlag, 2006.

[SS07a] Marko Samer and Stefan Szeider. Algorithms for propositional model
counting. In Proc. 14th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR’07), volume
4790 of LNCS, pages 484–498. Springer-Verlag, 2007.

[SS07b] Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean
formulas. In Proc. 10th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’07), volume 4501 of LNCS,
pages 230–243. Springer-Verlag, 2007.

[SS08] Marko Samer and Stefan Szeider. Backdoor trees. In Proc. 23rd
AAAI Conference on Artificial Intelligence (AAAI’08), pages 363–
368. AAAI Press, 2008.

[Sze04a] Stefan Szeider. Minimal unsatisfiable formulas with bounded clause-
variable difference are fixed-parameter tractable. Journal of Com-
puter and System Sciences, 69(4):656–674, 2004.

[Sze04b] Stefan Szeider. On fixed-parameter tractable parameterizations of
SAT. In Proc. 6th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT’03), Selected and Revised Papers,
volume 2919 of LNCS, pages 188–202. Springer-Verlag, 2004.

[Sze05] Stefan Szeider. Backdoor sets for DLL subsolvers. Journal of Auto-
mated Reasoning, 35(1-3):73–88, 2005. Reprinted as Chapter 4 of the
book “SAT 2005 – Satisfiability Research in the Year 2005”, edited
by E. Giunchiglia and T. Walsh, Springer-Verlag, 2006.

[Sze08] Stefan Szeider. Matched formulas and backdoor sets. Journal on
Satisfiability, Boolean Modeling and Computation, 6:1–12, 2008.

[TY84] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs. SIAM Journal of Computing,
13(3):566–579, 1984.

[Vil06] Yngve Villanger. Improved exponential-time algorithms for treewidth
and minimum fill-in. In Proc. 7th Latin American Symposium on
Theoretical Informatics (LATIN’06), volume 3887 of LNCS, pages
800–811. Springer-Verlag, 2006.

[WGS03] Ryan Williams, Carla P. Gomes, and Bart Selman. On the con-

Chapter 13. Fixed-Parameter Tractability 393

nections between backdoors, restarts, and heavy-tailedness in com-
binatorial search. In Proc. 6th International Conference on Theory
and Applications of Satisfiability Testing (SAT’03), pages 222–230.
Informal Proceedings, 2003.

[Woe03] Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A
survey. In Proc. 5th International Workshop on Combinatorial Opti-
mization (AUSSOIS’01) — “Eureka, You Shrink!”, Revised Papers,
volume 2570 of LNCS, pages 185–208. Springer-Verlag, 2003.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes.
In Proc. 7th International Conference on Very Large Data Bases
(VLDB’81), pages 81–94. IEEE Computer Society, 1981.

	Fixed-Parameter Tractability

