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Abstract

The surprisingly good performance of modern satisfiability
(SAT) solvers is usually explained by the existence of a cer-
tain “hidden structure” in real-world instances. We introduce
the notion of backdoor trees as an indicator for the presence of
a hidden structure. Backdoor trees refine the notion of strong
backdoor sets, taking into account the relationship between
backdoor variables. We present theoretical and empirical re-
sults. Our theoretical results are concerned with the compu-
tational complexity of detecting small backdoor trees. With
our empirical results we compare the size of backdoor trees
against the size of backdoor sets for real-world SAT instances
and random 3SAT instances of various density. The results
indicate that backdoor trees amplify the properties that have
been observed for backdoor sets.

Introduction
Today’s state-of-the-art satisfiability (SAT) solvers routinely
solve huge real-world instances with hundreds of thousands
of variables. This successful performance of solvers is in
strong contrast to theoretical worst-case upper bounds: no
algorithm is known that solves n-variable SAT instances
in time 2o(n) and it is believed that no such algorithm ex-
its (Impagliazzo, Paturi, & Zane 2001). This wide gap be-
tween theoretical upper bounds and empirical data is usu-
ally explained by the presence of a certain “hidden struc-
ture” in real-world instances. The notion of backdoor
sets, introduced by Williams, Gomes, and Selman (2003a;
2003b) allows to make the rather vague notion of a hidden
structure precise and explicit. Basically, a backdoor set of a
SAT instance F is a (small) set B of variables that provide
the key for solving the instance. Backdoor sets are defined
with respect to a fixed base class of tractable instances. The
base class can be defined algorithmically (say, the class of
instances that can be decided by the polynomial-time sim-
plification and propagation methods of a SAT solver) or syn-
tactically (say, the class of all Horn instances). A set B
of variables is a weak backdoor set if F is satisfiable and
there exists a truth assignment to the variables in B that
puts the instance into the base class; B is a strong backdoor
set if all possible truth assignments to the variables in B
put the instance into the base class. We give more exact
definitions below.
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There is empirical evidence that real-world instances ac-
tually have small backdoor sets (see related work below).
Note that if we know a strong backdoor set of size k, then
we can decide the given instance by solving 2k tractable in-
stances that belong to the base class.

In this paper we propose a more refined view that takes
the interaction of variables that form a backdoor set into
account. We shift the focus from the size k of a backdoor
set to the actual number of tractable instances the strong
backdoor set produces, a number that can be considerably
smaller than 2k. We claim that this number gives a better
indication for the presence of structure than the plain back-
door set size.

As formal basis for our investigations we introduce the
concept of backdoor trees. Backdoor trees are binary de-
cision trees on backdoor variables whose leaves correspond
to instances of the base class. Every strong backdoor set
of size k gives rise to a backdoor tree with at least k + 1
and at most 2k leaves. It is reasonable to rank the hardness
of instances in terms of the number of leaves of backdoor
trees, thus gaining a more refined view than by just compar-
ing the size of backdoor sets. An appealing feature of strong
backdoor sets and backdoor trees is that they apply in the
same way to satisfiable and unsatisfiable instances (in con-
trast to some hardness parameters defined in terms of reso-
lution refutations).

In this paper we focus on the following fundamental base
classes: 2CNF, the class of CNF formulas with binary
clauses (each clause contains at most two literals); HORN,
the class of Horn formulas (each clause contains at most one
positive literal); RHORN, the class of renamable Horn for-
mulas (formulas that can be made Horn by “flipping” some
variables, i.e., by replacing all occurrences of x by ¬x and
all occurrences of ¬x by x, for all variables x belonging to
some fixed set X).

Our theoretical results are concerned with the computa-
tional complexity of backdoor tree detection: Given a CNF
formula F and an integer k > 0, decide whether F has
a backdoor tree with at most k leaves. We show that the
problem is NP-hard for the three fundamental base classes
mentioned above. Further we investigate whether the prob-
lem becomes easier if k is assumed to be a small inte-
ger; i.e., we investigate the fixed-parameter tractability of
the problem, where k is considered as the parameter (see
the next section for basic definitions). In fact, we show
that backdoor tree detection is fixed-parameter tractable for



the base classes 2CNF and HORN, extending the fixed-
parameter tractability results of Nishimura et al. (2004) for
backdoor set detection. We establish this result by means of
a polynomial-time preprocessing algorithm.

For our empirical investigations we use a search algo-
rithm that computes upper bounds on the number of leaves
of backdoor trees. We consider benchmark sets for logistic
planning as well as random instances of various density. The
search algorithm is parameterized by the depth of the search
tree explored. For depth 0 the computed upper bound is just
the trivial 2k bound obtained from the size k of a backdoor
set. Gradually increasing the depth reveals how backdoor
trees improve over backdoor sets.

We also compare theoretically and empirically the num-
ber of leaves of backdoor trees with the primal treewidth of
instances (an indicator for ‘tree likeness’, see, e.g., (Samer
& Szeider 2007b)).

Related Work. Backdoor sets were introduced by
William, Gomes, and Selman (2003a; 2003b) as an ana-
lytic tool for gaining insight into the heavy-tailed behav-
ior of complete backtrack-search methods. With different
terminology and context, this concept was also studied by
Crama, Elkin, and Hammer (1997). The dependency among
the variables of a minimal weak backdoor set was studied
by Ruan, Kautz, and Horvitz (2004). The size of backdoor
sets was empirically investigated by several authors, e.g.,
Interian (2003) (weak backdoor sets for random formulas),
Lynce and Marques-Silva (2004) (strong backdoor sets vs.
minimal unsatisfiable cores), Kilby, Slaney, Thiebaux, and
Walsh (2005) (weak backdoor sets vs. backbones), Dilk-
ina, Gomes, and Sabharwal (2007) (strong backdoor sets
and empty clause detection). The computational complex-
ity of finding small backdoor sets for various base classes
was studied by Nishimura, Ragde, and Szeider (2004; 2007)
(strong backdoor with respect to the base classes HORN
and 2CNF, hitting formulas) and Szeider (2005) (weak and
strong backdoor sets with respect to the base classes defined
via unit propagation and pure literal elimination). Samer
and Szeider (2007a) extended the notion of backdoor sets to
quantified Boolean formulas (QBFs).

Backdoor Sets and Backdoor Trees
We consider propositional formulas in conjunctive normal
form (CNF) represented by sets of clauses, e.g., F =
{{x,¬y}, {¬x, z}} represents the CNF formula (x ∨ ¬y) ∧
(¬x ∨ z). For a CNF formula F , var(F ) denotes the set of
variables occurring negated or unnegated in F . A (partial
truth) assignment is a mapping τ : X → {0, 1} (0 rep-
resenting false, 1 representing true) defined on a set X of
variables. We write var(τ) = X . If var(τ) = {x} then
we denote τ simply by ‘x = 1’ or ‘x = 0’. An assign-
ment τ extends in the obvious way to literals over var(τ)
via τ(¬x) = 1−τ(x). F [τ ] denotes the restriction of F to τ
(i.e., F [τ ] is the CNF formula obtained from F by remov-
ing all clauses that contain a literal that is true under τ , and
by removing from the remaining clauses all literals that are
false under τ ). A CNF formula F is satisfiable if F [τ ] = ∅
for some assignment τ . We also consider variable deletion

in the following form: If X is a set of variables and F a
CNF formula, then F − X denotes the CNF formula ob-
tained from F by removing from all clauses literals of the
form x or ¬x for x ∈ X .

Base Classes. A base class is a class of CNF formulas
for which both membership and satisfiability can be de-
cided in polynomial time. Throughout this paper we also
assume that self-reducibility holds for the considered base
classes C: For every F ∈ C and x ∈ var(F ) also F [x =
0], F [x = 1] ∈ C. A base class C is clause-induced if for
every F ∈ C and F ′ ⊆ F also F ′ ∈ C. Note that 2CNF,
HORN, and RHORN are all clause-induced.

Backdoor Sets. Let C be a base class, F a CNF formula,
and B ⊆ var(F ). Then B is a strong C-backdoor set of F
if F [τ ] ∈ C for every truth assignment τ : B → {0, 1} (there
is also the notion of a “weak backdoor set” which, however,
we will not consider in this paper). For each base class C we
consider the following problem:

STRONG C-BACKDOOR SET. Instance: A CNF for-
mula F and a non-negative integer k. Parameter: The in-
teger k. Question: Has F a C-backdoor set of cardinality at
most k?

Let B be a strong C-backdoor set of a CNF formula F . B
is smallest if F has no strong C-backdoor set that is smaller
than B; B is minimal if F has no strong C-backdoor set that
is a proper subset of B.

Note that if C is clause-induced, then every B ⊆ var(F )
with F −B ∈ C is a strong C-backdoor set of F . Let us call
such a set B a deletion C-backdoor set. It is not difficult to
see that for C ∈ {2CNF, HORN} every strong C-backdoor
set is also a deletion C-backdoor set (Crama, Ekin, & Ham-
mer 1997; Nishimura, Ragde, & Szeider 2004). This is not
the case for C = RHORN where the size of a smallest strong
RHORN-backdoor set can be exponentially smaller than
the size of a smallest deletion HORN-backdoor set (Dilk-
ina, Gomes, & Sabharwal 2007). The problem DELE-
TION C-BACKDOOR SET is defined similarly as STRONG
C-BACKDOOR SET.

From general results of Crama, Ekin, and Hammer (1997)
it follows that the problems STRONG C-BACKDOOR SET
and DELETION C-BACKDOOR SET are NP-hard for C ∈
{2CNF, HORN, RHORN}.

Parameterized Complexity. Some base classes allow an
efficient detection of strong backdoor sets if the size of
the backdoor sets is assumed to be small. Nishimura
et al. (2004) show that STRONG 2CNF-BACKDOOR SET
and STRONG HORN-BACKDOOR SET are fixed-parameter
tractable in the sense that one can detect a backdoor set
of size at most k in time O(f(k) nc), where f denotes
a computable function, n denotes the input size of the
given CNF formula, and c is a constant (independent of k
and n). For background on fixed-parameter tractability
see, e.g., (Downey & Fellows 1999; Flum & Grohe 2006;
Niedermeier 2006).

Until recently the parameterized complexities of
STRONG/DELETION RHORN-BACKDOOR SET were open.
Razgon and O’Sullivan (2008) show that MAX-2-SAT
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parameterized by the number of clauses that remain unsat-
isfied is fixed-parameter tractable, a problem known to be
equivalent to DELETION RHORN-BACKDOOR SET under
fpt-reductions. On the other hand, we recently found an fpt-
reduction from CLIQUE to STRONG RHORN-BACKDOOR
SET which makes fixed-parameter tractability of the latter
problem unlikely.

Decision Trees. A binary decision tree is a rooted binary
tree T . Every node of T is either a leaf or has exactly
two children. The nodes of T , except for the root, are la-
beled with literals such that the following conditions are sat-
isfied: (i) Two nodes v0 and v1 with the same parent are
labeled with complimentary literals x and ¬x, respectively;
and (ii) the labels of nodes on a path from the root to a leaf
do not contain the same literal twice, nor a complementary
pair of literals.

We write |T | for the number of leaves of T and define
its size s as the binary logarithm of its number of leaves,
i.e., s = log2 |T | (this definition is convenient for comparing
the sizes of backdoor trees and backdoor sets).

For a binary decision tree T we write var(T ) for the set
of variables occurring negated or unnegated as labels of T .
For a node v of T , varT (v) denotes the set of variables oc-
curring negated or unnegated as labels on the path from the
root to v; we will omit the subscript T if the context allows
it. We associate with each node v of a binary decision tree T
a truth assignment τv : var(v) → {0, 1} which sets exactly
those literals to true that appear as labels on the path from
the root to v.

Lemma 1. For every binary decision tree T , it holds
that |var(T )| ≤ |T | − 1.

Backdoor Trees. Let C be a base class, F a CNF for-
mula, and T a binary decision tree with var(T ) ⊆ var(F ).
Then T is a C-backdoor tree of F if F [τv] ∈ C for every
leaf v of T . A C-backdoor tree of F with the smallest num-
ber of leaves is a smallest C-backdoor tree of F .

For every base class C we consider the following parame-
terized problem:
C-BACKDOOR TREE. Instance: A CNF formula F and a

non-negative integer k. Parameter: The integer k. Question:
Has F a C-backdoor tree with at most k leaves?

Example 1. Consider the CNF formula F with vari-
ables x1, . . . , x2n, y1, . . . , yn, and z1, . . . , zn, consisting of
all clauses of the form

{yi,¬x1, . . . ,¬x2i−2, x2i−1,¬x2i, . . . ,¬x2n},
{yi,¬x1, . . . ,¬x2i−1, x2i,¬x2i+1, . . . ,¬x2n},
{¬yi, zi},

for 1 ≤ i ≤ n. The set B = {y1, . . . , yn} is a strong
HORN-backdoor set (in fact, B is the smallest possible).
However, every HORN-backdoor tree T with var(T ) =
{y1, . . . , yn} has 2n leaves; the following figure shows a tree
for n = 3:

On the other hand, the formula F has a HORN-back-
door tree T ′ with only 2n + 1 leaves where var(T ′) =
{x1, . . . , x2n}; the following figure shows a tree for n = 2:

Note that B = var(T ) and B′ = var(T ′) are strong
HORN-backdoor sets of F (in fact, B is the smallest pos-
sible). On the other hand, T ′ is a smallest HORN-back-
door tree, having exponentially fewer leaves than T . Thus,
when we want to minimize the number of leaves of back-
door trees, we must not restrict ourselves to variables of a
smallest strong backdoor set.

Complexity Results
Our first result gives a fundamental link between strong
backdoor sets and backdoor trees.
Lemma 2. Let C be a base class, F a CNF formula and T a
C-backdoor tree of F . Then var(T ) is a strong C-backdoor
set of F .
Proof. Let τ : var(T ) → {0, 1} be an arbitrarily chosen
truth assignment. Starting from the root we trace out a path
in T containing only nodes labeled with literals that are true
under τ ; let v be the leaf at the end of the path. Evidently τv

is the restriction of τ to var(v). Since T a C-backdoor tree
of F , F [τv] ∈ C, and since C is self-reducible, also F [τ ] ∈
C. Hence var(T ) is a strong C-backdoor set of F .

The next result is an immediate consequence of Lemma 1
and Lemma 2.
Proposition 3. Let C be a base class and F a CNF formula.
If B is a smallest strong C-backdoor set of F and T is a
smallest C-backdoor tree of F , then

|B|+ 1 ≤ |T | ≤ 2|B|.

Proposition 4. For C ∈ {2CNF, HORN, RHORN},
the (non-parameterized) problem C-BACKDOOR TREE
is NP-hard.
Proof. Case C = HORN. We reduce from the NP-hard ver-
tex cover problem. From a given graph G = (V,E) we con-
struct a monotone CNF formula F = { {u, v} : uv ∈ E }.
Nishimura et al. (2004) show that G has a vertex cover of
size k if and only if F has a strong HORN-backdoor set of
size k. Now we put F ′ = {C ′ : C ∈ F }, where C ′ =
C ∪ {¬x : x ∈ V \ C }. It is easy to see that F and F ′

have exactly the same strong HORN-backdoor sets. How-
ever, every strong HORN-backdoor set B of F ′ gives rise
to a HORN-backdoor tree with |B| + 1 leaves. In view of
Lemma 2, it follows that G has a vertex cover of size k if
and only if F ′ has a HORN-backdoor tree with k + 1 leaves.

Case C = RHORN. We proceed similarly as above and
obtain from F ′ the CNF formula F ′′ by adding for ev-
ery v ∈ V the clauses {¬v, xv} and {¬v,¬xv}, where xv is
a new variable. Now flipping the polarity of any variable v
introduces a non-Horn clause and we need to put v or xv

into the backdoor set. It follows that G has a vertex cover of
size k if and only if F ′′ has an RHORN-backdoor tree with
k + 1 leaves.

Case C = 2CNF. Let F ∗ denote the CNF formula ob-
tained from F by adding to every clause C = {u, v} a third
variable xC . Nishimura et al. (2004) show that G has a ver-
tex cover of size k if and only if F ∗ has a strong 2CNF-back-
door set of size k. We can use the same construction as in
the first case to extend this reduction to backdoor trees.

3



The above hardness results are contrasted if the number
of leaves of the backdoor tree is assumed to be small. We
show that the problem is fixed-parameter tractable for the
classes 2CNF and HORN. We need the following definitions
and lemmas. We say that a base class C admits a loss-free
kernelization1 if there exists a polynomial-time algorithm
that, given a CNF formula F and an integer k, either cor-
rectly decides that F has no strong C-backdoor set of size at
most k, or computes a set X ⊆ var(F ) such that the fol-
lowing conditions hold: (i) X contains all minimal strong
C-backdoor sets of F of size at most k; and (ii) the size of X
is bounded by a computable function that depends on k only.

Proposition 5. C-BACKDOOR TREE is fixed-parameter
tractable for every base class C that admits a loss-free ker-
nelization.

Proof. Let (F, k) be an instance of C-BACKDOOR TREE.
We may assume that k ≥ 2 since otherwise we only need
to check whether F ∈ C which can be done in polynomial
time by the definition of a base class. We apply loss-free ker-
nelization to (F, k − 1) and compute (in polynomial time)
the set X . If F has a C-backdoor tree T with at most k
leaves, then, by Lemma 2, var(T ) is a strong C-backdoor
set. In that case we have |var(T )| ≤ k − 1 by Lemma 1,
hence var(T ) ⊆ X . The number of binary decision trees T
that satisfy var(T ) ⊆ X is bounded by a computable func-
tion f of k since by definition of a loss-free kernelization
|X| is bounded in terms of k. Hence we need to check for
at most f(k) binary decision trees T whether T is a C-back-
door tree of F with at most k leaves. For each T this check
involves at most k times testing for membership in C and is
therefore feasible in polynomial time.

Next we show that the base classes HORN and 2CNF ad-
mit a loss free kernelization, and consequently BACKDOOR
TREE is fixed-parameter tractable for these two classes by
Proposition 5. For the loss-free kernelization we utilize a
general algorithm that kernelizes instances of the hitting set
problem. For that we need the following notions.

Let S = {X1, . . . , Xm} be a set of finite sets over a uni-
verse V (S) =

⋃m
i=1 Xi of elements. We will refer to S

as a set system. A set H ⊆ V (S) is a hitting set of S
if H ∩Xi 6= ∅ for all 1 ≤ i ≤ m.

Lemma 6. Let d, k ≥ 1 be integers. Given a set system S
with maxX∈S |X| ≤ d and |V (S)| = n, then algorithm A
of Figure 1 computes in timeO(nd) a set system S′ such that
(i) |V (S′)| ≤

∑d
i=1 ki, and (ii) every minimal hitting set H

of S with |H| ≤ k is a subset of V (S′).

Owing to space limitations we omit the proof.

Lemma 7. The base classes HORN and 2CNF admit loss-
free kernelizations (with loss-free kernels of size k2 + k and
k3 + k2 + k, respectively).

1We call the kernelization “loss-free” to distinguish it from ker-
nelizations usually considered in parameterized complexity where
one would have the following strictly weaker condition: (i’) If there
exists a strong C-backdoor set of F of size at most k, then there ex-
ists one that is a subset of X .

Algorithm A(S, d, k)
if d > 1 then for all x ∈ V (S) do

T (x) := {X ∈ S : x ∈ X }
S(x) := {X \ {x} : X ∈ T (x) }
S′(x) := A(S(x), d− 1, k)
T ′(x) := {X ∪ {x} : X ∈ S′(x) }
S := (S \ T (x)) ∪ T ′(x)

if |V (S)| ≤
∑d

i=1 ki then return S

else return {∅}

Figure 1: Algorithm for Lemma 6.

Proof. (Sketch.) Algorithm A of Figure 1 can be used to
compute loss-free kernelizations for HORN and 2CNF by
applying it to the set systems {X : X ⊆ var(C) with |X| =
3 for some C ∈ F } and { {u, v} : u, v ∈ C with u 6= v for
some C ∈ F }, respectively.

By combining Proposition 5 and Lemma 7 we get the
main result of this section.
Theorem 8. The problems HORN-BACKDOOR TREE and
2CNF-BACKDOOR TREE are fixed-parameter tractable.

Treewidth is a graph parameter that indicates in a certain
sense the ‘tree likeness’ of a graph. Bounding the treewidth
of instances is a general method for achieving tractability
and is used in many different areas, see, e.g., (Gottlob, Pich-
ler, & Wei 2006; Gottlob & Szeider 2006). Treewidth can be
applied to SAT via certain graphs associated with CNF for-
mulas, for example via the primal graph obtained by con-
sidering variables as vertices and by making two variables
adjacent if they occur (negated or unnegated) together in a
clause. Time and space requirements for solving instances
of primal treewidth k are similar to the respective require-
ments for instances with backdoor trees of size k (Samer &
Szeider 2007b).

The next result indicates that treewidth and the size of
backdoor sets/trees are orthogonal to each other.
Proposition 9. There are CNF formulas with arbitrar-
ily large primal treewidth that have HORN-backdoor sets
of constant size. Conversely, there are CNF formulas
with constant primal treewidth that require arbitrarily large
RHORN-backdoor trees.

Proof. (Sketch.) The first part follows, for example, by con-
sidering negative CNF formulas (all literals are negative).
For the second part consider the variable-disjoint union of
n formulas that are not renamable Horn and have constant
treewidth k. This gives a CNF formula of treewidth k that
has no RHORN-backdoor tree with fewer than n leaves.

Algorithms and Experiments
We have computed upper bounds for the minimal number of
leaves in backdoor trees for various benchmark sets using a
variant of algorithm HC given in Figure 2.

The algorithm calls as subroutine an algorithm SC that
computes an upper bound on the size of a smallest strong
C-backdoor set. With the parameter d one can bound the re-
cursion depth for HC ; if depth d is reached the generic upper
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bound provided by Proposition 3 is used (thus, if the algo-
rithm is called with d = 0, it returns 2SC(F )). Empty clause
detection (Dilkina, Gomes, & Sabharwal 2007) can be in-
cluded by adding the line “if ∅ ∈ F then return 1” on top.
Pure literal detection can be included similarly by the line
“if F contains a pure literal ` then return HC(F [` = 1]).”

We obtain SHORN and SRHORN by computing vertex cov-
ers in certain graphs that we associate with the given CNF
formula. With standard greedy and approximation tech-
niques one can compute quickly vertex covers that are not
far from optimal (Vazirani 2001); in fact, the graph asso-
ciated with RHORN contains a perfect matching and ad-
mits therefore better vertex cover approximations (Chen &
Kanj 2005). Therefore, the base classes HORN and RHORN
are particularly suited for the algorithmic framework pro-
vided by HC .

GF is the graph on the variables of F where two vari-
ables u, v are adjacent if and only if u, v ∈ var(C) for some
clause C ∈ F (GF is related to the set system SHORN as
considered in the previous section). G′

F is the graph on the
literals of F where two literals u, v are adjacent if and only if
they are complementary or u, v ∈ C for some clause C ∈ F .
The following two lemmas can be easily verified.
Lemma 10. A set B ⊆ var(F ) is a strong HORN-backdoor
set of F if and only if B is a vertex cover of GF .
Lemma 11. A set B ⊆ var(F ) is a deletion RHORN-back-
door set of F if and only if there exists a vertex cover VC
of G′

F such that B = {x ∈ var(F ) : x,¬x ∈ VC }.

Empirical Results. We have applied a variant of algo-
rithm HC to real-world SAT instances from car configura-
tion (Sinz, Kaiser, & Küchlin 2003) (these classes have also
been used by Dilkina et al. (2007)) and random 3SAT in-
stances of various clause/variable densities. In our imple-
mentation we use empty clause and pure literal detection
and we chose decision variables with preference to variables
that belong to small backdoor sets. The results of our exper-
iments are given in Figure 3.

Considering HORN as the base class we observe a dif-
ference of up to over 6% (relative to the total number of
instance variables) between the size of backdoor sets and
the size of backdoor trees, which is remarkable in view
of the logarithmic scale used for measuring the size of
backdoor trees. For random instances this set/tree differ-
ence ranges from 1.55% for low density instances to 0.43%
for high density instances. Considering RHORN as the
base class, where already backdoor sets are significantly
smaller than for HORN, also the set/tree differences are
smaller: between 0.66% and 1.62% for structured instances,
and between 0.57% and virtually 0% for random instances.
More specifically, for random instances the size of backdoor
sets and the size of backdoor trees appear to be both mono-
tonically increasing with the density, the latter faster than the
former; we cannot observe a threshold phenomenon. For
both structured as well as random instances, we observe a
significantly larger set/tree difference for base class HORN
than for base class RHORN.

For comparison we have also included upper bounds on
the primal treewidth (Samer & Szeider 2007b) (see the right-

Algorithm HC(F, d)
if SC(F ) = 0 or d = 0 then return 2SC(F )

else for all x ∈ var(F ) do
f(x) := SC(F [x = 0]) + SC(F [x = 1])

pick x ∈ var(F ) with minimal f(x)
return HC(F [x = 0], d− 1) + HC(F [x = 1], d− 1)

Figure 2: Algorithm that computes an upper bound on the
number of leaves of a smallest C-backdoor tree.

most column of the table in Figure 3). In view of the theoret-
ical orthogonality of the parameters as expressed in Propo-
sition 9, it is interesting to observe a strong positive correla-
tion between treewidth and the size of backdoor sets/trees in
the empirical data. This indicates that problem hardness is
reflected in several parametric dimensions.
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instance number of number of HORN HORN RHORN RHORN treewidth
set variables clauses bd set (%) bd tree (%) bd set (%) bd tree (%) (%)

S1: C168 FW SZ 1583 5646.80 15.36 9.21(-6.15) 3.06 2.40(-0.66) 6.25
S2: C168 FW UT 1804 7489.25 25.00 19.57(-5.43) 5.82 4.84(-0.98) 6.10
S3: C170 FR SZ 1528 4998.25 10.95 7.91(-3.03) 3.89 3.13(-0.76) 3.14
S4: C202 FS SZ 1556 6231.86 14.08 12.00(-2.09) 5.21 4.45(-0.76) 4.85
S5: C202 FW SZ 1561 8929.10 16.94 14.34(-2.61) 7.19 6.23(-0.96) 7.56
S6: C202 FW UT 1820 11352 23.79 21.37(-2.42) 8.52 7.57(-0.94) 5.38
S7: C208 FA SZ 1516 5285 11.21 9.89(-1.33) 4.86 4.18(-0.67) 3.17
S8: C208 FA UT 1805 7335.50 24.04 22.14(-1.90) 7.76 6.13(-1.62) 10.80
S9: C208 FC RZ 1513 5567 11.24 9.70(-1.54) 5.02 4.33(-0.69) 3.17
S10: C208 FC SZ 1513 5575 11.59 9.92(-1.66) 5.18 4.47(-0.71) 3.17
S11: C210 FS RZ 1607.33 5764.33 12.71 10.22(-2.49) 4.62 3.80(-0.82) 3.17
S12: C210 FS SZ 1607.14 5810.71 12.91 10.36(-2.54) 4.81 3.98(-0.83) 3.30
S13: C210 FW RZ 1628.33 7408.33 13.78 11.28(-2.50) 5.28 4.53(-0.75) 4.05
S14: C210 FW SZ 1628 7546.22 15.54 12.90(-2.64) 6.14 5.27(-0.87) 6.21
S15: C210 FW UT 1891 9720 22.18 19.62(-2.56) 7.88 6.88(-1.00) 5.00
S16: C220 FV SZ 1530 4882.50 11.63 10.33(-1.31) 3.62 2.79(-0.82) 6.88
R1: ρ = 2.0 800 1600 46.50 44.95(-1.55) 24.54 23.97(-0.57) 48.13
R2: ρ = 2.5 800 2000 49.75 48.54(-1.21) 30.25 29.81(-0.44) 54.29
R3: ρ = 3.0 800 2400 53.38 52.41(-0.97) 35.38 35.01(-0.37) 59.29
R4: ρ = 3.5 800 2800 56.58 55.90(-0.69) 40.92 40.72(-0.20) 63.46
R5: ρ = 4.0 800 3200 58.63 58.05(-0.57) 44.67 44.41(-0.25) 66.13
R6: ρ = 4.5 800 3600 60.17 59.71(-0.45) 48.00 47.78(-0.22) 69.13
R7: ρ = 5.0 800 4000 62.29 61.77(-0.52) 51.33 51.09(-0.24) 71.54
R8: ρ = 5.5 800 4400 63.96 63.49(-0.47) 54.21 54.00(-0.21) 73.75
R9: ρ = 6.0 800 4800 66.00 65.57(-0.43) 56.34 56.34(-0.00) 75.21

Figure 3: Experimental results for backdoor sets and backdoor trees of various classes of benchmark sets. S1-S16 are bench-
mark sets with structured instances from logistics planning, R1-R9 are benchmark sets with random 3CNF instances of fixed
clause/variable density ρ. Computed upper bounds on the size of backdoor sets and backdoor trees are shown as average per-
centage of the number of variables of the instance, the set/tree difference is given in parenthesis. For example, class S1 has, on
average, strong HORN-backdoor sets with 243 variables (≈ 15.36%), which reduces an instance (theoretically) to 2243 HORN
instances. Class S1 has, on average, HORN-backdoor trees with 2146 leaves (s = 146 ≈ 9.21%), which reduces an instance
(theoretically) to 2146 HORN instances. Backdoor trees are computed with a variant of algorithm HC and depth d = 10. The
last column provides upper bounds on the primal treewidth as average percentage of the number of variables of the instance.
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