
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Solving the Prize-Collecting
Steiner Tree Problem to

Optimality

Ivana Ljubi, René Weiskircher, Ulrich Pferschy,
Gunnar Klau, Petra Mutzel and Matteo

Fischetti

TR–186–1–04–01

8. Oktober 2004

Mathematical Programming manuscript No.
(will be inserted by the editor)

Ivana Ljubíc1 · Reńe Weiskircher1 · Ulrich Pferschy2 ·Gunnar Klau1 ·

Petra Mutzel1 ·Matteo Fischetti3

Solving the Prize-Collecting Steiner Tree Problem to

Optimality ?

Received: date / Revised version: date

Abstract. The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits

asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all

verticesnot contained in the subtree. PCST appears frequently in the design of utility networks where profit

generating customers and the network connecting them have to be chosen in the most profitable way.

Our main contribution is the formulation of an integer linear program on a directed graph model based on

connectivity inequalities corresponding to cuts in the graph. The main advantage of this model is the efficient

separation of sets of violated inequalities by a maximum flow algorithm.

The new approach manages to solve all benchmark instances from the literature to optimality, includ-

ing eight of them for which the optimum was not known. Compared to a recent algorithm by Lucena and

Resende [21], our new method is faster by more than two orders of magnitude. We also introduce two new

classes of more challenging instances and reach satisfying results for most of them.

Key words. Branch-and-Cut – Steiner Arborescence – Network Design

Vienna University of Technology, Favoritenstr. 9-11, A-1040 Vienna, Austria

University of Graz, Universiẗatsstr. 15, A-8010 Graz, Austria

University of Padova, via Gradenigo 6/a, I-35131 Padova, Italy

Mathematics Subject Classification (1991):20E28, 20G40, 20C20

? The first author’s research was supported by the Doctoral Scholarship Program of the Austrian Academy

of Sciences (DOC) and partially supported by the Austrian Science Fund (FWF), grant P16263-N04.

2 Ljubić et al.

1. Introduction

The recent deregulation of public utilities such as electricity and gas in Austria has

shaken up the classical business model of energy companies and opened up the way

towards new opportunities. Of particular interest in this field is the planning and ex-

pansion of district heating networks. This area of energy distribution is characterized

by extremely high investment costs but also by an unusually loyal customer base and

limited competition. Moreover, the required reduction of greenhouse emissions forces

many energy companies to seek ways of improving their ecological balance sheet. A

very attractive possibility to meet this goal is the use of biomass for heat generation.

The combination of these two factors has made the planning of heating networks one

of the major challenges for companies in this field [16].

In a typical planning scenario the input is a set of potential customers with known

or estimated heat demands (represented by discounted future profits), and a potential

network for laying the pipes (which is usually identical to the street network of the

district or town). Costs of the network are dominated by labor and right-of-way charges

for laying the pipes and the costs for building the heating plant.

Essentially, the decision process faced by a profit oriented company consists of two

parts: On one hand, a subset of particular profitable customers has to be selected, on the

other hand, a network has to be designed to connect all selected customers in a cost-

efficient way to the heating plant. The natural trade-off between maximizing the sum

of profits over all selected customers and minimizing the cost of the network leads to a

prize-collecting objective function.

The Prize-Collecting Steiner Tree Problem 3

We can formulate this problem as an optimization problem on an undirected graph

G = (V, E, c, p), where the verticesV are associated with profits,p : V → R≥0, and

the edgesE with costs,c : E → R≥0. The graph in our application corresponds to the

local street map, with the edges representing street segments and vertices representing

street intersections and the location of potential customers. The profitp associated with

a vertex is an estimate of the potential gain of revenue caused by that customer being

connected to the network and receiving its service. Vertices corresponding to street in-

tersections have profit zero. The costc associated with an edge is the cost of establishing

the connection, i.e., of laying the pipe on the corresponding street segment.

The formal definition of the problem can be given as follows:

Definition 1 (Prize-Collecting Steiner Tree Problem, PCST).Let G = (V, E, c, p)

be an undirected vertex- and edge-weighted graph as defined above. TheLinear Prize-

Collecting Steiner Tree problem(PCST) consists of finding a connected subgraphT =

(VT , ET) of G, VT ⊆ V , ET ⊆ E that maximizes

profit(T) =
∑

v∈VT

p(v)−
∑

e∈ET

c(e) . (1)

It is easy to see that every optimal solutionT will be a tree. Otherwise removing

any edge from a cycle inT would increaseprofit(T) without violating connectivity of

T . Throughout this paper we will distinguish betweencustomer vertices, defined as

R = {v ∈ V | p(v) > 0} ,

andnon-customer vertices(corresponding to street intersections) with the assumption

thatR 6= ∅. Figure 1 illustrates an example of a PCST instance and a feasible solution

for that instance.

4 Ljubić et al.

10

150

20

200

10

10

1

1
10

100

10
10

10

1

1

100

100

10

(a)

10

150

20

200

10

10

1

1

100

10

(b)

Fig. 1. Example of a PCST instance. Each connection has fixed costs, hollow circles and filled circles rep-

resent customer and non-customer vertices, respectively (Fig. 1(a)). Figure 1(b) shows a feasible, but not

optimal solution of PCST.

The profit function given above is known in the literature as a function describ-

ing theNet Worth MaximizationProblem (NW) [17]. In the so-calledGoemans and

Williamson MinimizationProblem (GW) [15] the goal is to find a subtreeT = (VT , ET)

that minimizes the following function:

GW (T) =
∑

v 6∈VT

p(v) +
∑

e∈ET

c(e) . (2)

Here,p(v) is interpreted as penalty fornot connecting a vertexv. As far as opti-

mization is concerned, the NW and GW formulations are equivalent, since for every

subtreeT of G, their objective functions add up to the total sum of profits inG. In this

paper we are going to concentrate on minimizing (2) as an objective function, as it has

been considered in the literature before (see [15,21,3]).

The Prize-Collecting Steiner Tree Problem 5

In practice, we often face additional side constraints. The planning problem of the

heating network clearly requires that the heating plant is connected to the network. This

can be modeled as a PCST by introducing a special vertex for the plant with a very high

profit. In general, therooted prize-collecting Steiner tree problem(RPCST), is defined

as a variant of PCST with an additional source vertexvs ∈ V (representing a depot or

repository) which must be part of every feasible solutionT .

In the next section we give a short overview of previous work on PCST and some

of its relatives. Preprocessing, which helps to significantly reduce the size of many

instances, is treated in Section 3. Different ILP models for PCST are presented and dis-

cussed in Section 4. In Section 5 we introduce our cut-based ILP model and describe

how it can be solved in a branch-and-cut framework in Section 6. Extensive computa-

tional experiments on instances from the literature and on new instances are reported

in Section 7. It turns out that all the former can be solved to optimality within a few

seconds while also the latter are successfully attacked.

2. Previous Work

In 1987, Segev [26] introduced the so calledNode Weighted Steiner Tree Problem

(NWST) – the Steiner tree problem with vertex weights in addition to regular edge

weights in which the sum of edge-costs and vertex-weights is minimized. His contri-

bution concerns a special case of NWST, called thesingle point weighted Steiner tree

problem (SPWST), where we are given a special vertex to be included in the solution.

The weights on the remaining vertices are non-positive profit values, while non-negative

weights on the edges reflect the costs incurred in obtaining or collecting these profits.

6 Ljubić et al.

Negating the vertex weights to make them positive and thus subtracting them from the

edge costs in the objective function, immediately yields the minimization version of (1).

Thus, the optimization of SPWST is equivalent to RPCST.

The PCST has been introduced by Bienstock et al. [2], where a factor 3 approx-

imation algorithm has been proposed. Several other approximation algorithms have

been developed. Goemans and Williamson presented in [15] an approximation algo-

rithm which runs inO(n3 log n) time (n := |V |), and yields solutions within a factor of

2− 1
n−1 of optimality. This has been improved in Johnson et al. [17], where a(2− 1

n−1)–

approximation algorithm withO(n2 log n) running time has been proposed. The new

algorithm of Feofiloff et al. [12] achieves a ratio of2− 2
n within the same time.

Recently, two metaheuristic approaches for PCST have been developed: Canuto et

al. [3] proposed a multi-start local-search-based algorithm with perturbations; Klau et

al. [18] developed an evolutionary algorithm with incorporated local improvement for

the problem.

2.1. Lower Bounds and Polyhedral Studies

Both Section 4 and 5 are devoted to ILP-formulations for PCST. Therefore, we will in

this section only point out references without going into details.

In [26], Segev presented single- and multi-commodity flow formulations for SP-

WST (cf. Section 4.2). Furthermore, the author developed two bounding procedures

based on Lagrangian relaxations of the corresponding flow formulations which were

embedded in a branch-and-bound procedure. In addition, heuristics to compute feasible

solutions were also included. Benchmark instances with up to 40 vertices were tested.

The Prize-Collecting Steiner Tree Problem 7

Fischetti [13] studied the facial structure of a generalization of the problem, the

so-calledSteiner arborescence(or directed Steiner tree) problem and pointed out that

the NWST can be transformed into it. The author considered several classes of valid

inequalities and introduced a new inequality class with arbitrarily large coefficients,

showing that all of them define distinct facets of the underlying polyhedron.

Goemans provided in [14] a theoretical study on the polyhedral structure of the

NWST and showed that this characterization is complete in case the input graph is

series-parallel. Here, SPWST, i.e. RPCST, appears as ther-tree problem.

Engevall et al. [11] proposed another ILP formulation for the NWST, based on the

shortest spanning treeproblem formulation, introduced originally by Beasley [1] for the

Steiner tree problem. In their formulation, besides the given root vertexr, an artificial

root vertex 0 is introduced, and an edge between vertex 0 andr is set. They searched for

a tree with additional constraints: each vertexv connected to vertex 0 must have degree

one. The solution is interpreted so that the vertices adjacent to vertex 0 are not taken as

a part of the final solution. For the description of the tree, the authors use a modification

of the generalized subtour elimination constraints (cf. Section 4.1). For finding good

lower bounds, the authors use a Lagrangian heuristic and subgradient procedure based

on the shortest spanning tree formulation. Experimental results done for instances with

up to 100 vertices indicated that the new approach outperformed Segev’s algorithm.

Lucena and Resende [21] presented a cutting plane algorithm for the PCST based

on generalized subtour elimination constraints (see again Section 4.1). Their algorithm

contains basic reduction steps similar to those already given by Duin and Volgenant [9],

and was tested on two groups of benchmark instances: the first group contains instances

8 Ljubić et al.

adopted from Johnson et al. [17], ranging from 100 vertices and 284 edges to 400 ver-

tices and 1 507 edges. The second group is derived from the Steiner problem instances

(series C and D) of the OR-Library1 with the size ranging from 500 vertices and 625

edges to 1 000 vertices and 25 000 edges. The proposed algorithm solved many of the

considered instances to optimality, but not all of them (cf. Section 7).

3. Preprocessing

In this section, we briefly describe reduction techniques adopted from the work of Duin

and Volgenant [9] for the NWST, which have been partially used also in [21]. From

the implementation point of view, we transform the graphG = (V,E, c, p) into a re-

duced graphG′ = (V ′, E′, c′, p′) by applying the steps described below and maintain

a backmappingfunction to transform each feasible solutionT ′ of G′ into a feasible

solutionT of G.

Least-Cost Test Let dij represent the shortest path length between any two vertices

i andj from V (considering only edge-costs). If∃e = (i, j) such thatdij < cij then

edgee can simply be discarded fromG.

Degree-l Test Consider a vertexv 6∈ R of degreel ≥ 3, connected to vertices from

Adj (v) = {v1, v2, . . . , vl}. For any subsetK ⊂ V , denote withMSTd(K), the mini-

mum spanning tree ofK with distancesdij . If

MSTd(K) ≤
∑

w∈K

cvw, ∀K ⊆ Adj (v), |K| ≥ 3, (3)

1 OR-library: J. E. Beasley, http://mscmga.ms.ic.ac.uk/info.html

The Prize-Collecting Steiner Tree Problem 9

thenv’s degree in an optimal solution must be zero or two. Hence, we can removev

from G by replacing each pair(vi, v), (v, vj) with (vi, vj) either by adding a new edge

e = (vi, vj) of cost ce = cviv + cvvj
− pv or in casee already exists, by defining

ce = min{ce, cviv + cvvj − pv}.

It is straightforward to apply a simplified version of this test to all verticesv ∈ V

with l = 1 andl = 2.

Minimum Adjacency Test This test is also known asV \K reduction testfrom [9].

If there are adjacent verticesi, j ∈ R such that:

min{pi, pj} − cij > 0 andcij = min
it∈E

cit,

theni andj can be fused into one vertex of weightpi + pj − cij .

Summary of the Preprocessing Procedure We apply the steps described above it-

eratively, as long as any of them changes the input graph. The total number of it-

erations is bounded by the number of edges inG. Each iteration is dominated by

the time complexity of the least-cost test, i.e., by the computation of all-pair shortest

paths, which isO(|E||V | + |V |2 log |V |). Thus, the preprocessing procedure requires

O(|E|2|V | + |E||V |2 log |V |) time in the worst case, in which the input graph would

be reduced to a single vertex. However, in practice, the running time is much lower,

as documented in Section 7. The space complexity of preprocessing does not exceed

O(|E|2).

10 Ljubić et al.

4. ILP Formulations of the Problem

In this section we present an ILP-formulation based on generalized subtour elimination

constraints and two flow formulations based on the representation of the solutions as

rooted trees.

For every formulation (P) the optimal solution value of the resulting LP-relaxation

will be denoted byc(LPP).

4.1. Formulation Based on Generalized Subtour Elimination Constraints

This formulation has been used in Lucena and Resende [21] and is based on the de-

scription of the tree structure of the solution. To every subtreeT ′ = (V ′
T , E′

T) of the

input graphG′ = (V ′, E′, c′, p′), we associate two incidence vectors:

Xij =





1 (i, j) ∈ E′
T

0 otherwise

∀(i, j) ∈ E′, yi =





1 i ∈ V ′
T

0 otherwise

∀i ∈ V ′

The PCST can be formulated as the following ILP (the edge-variables are denoted

by a capitalX to distinguish them from the variables for the directed formulations we

The Prize-Collecting Steiner Tree Problem 11

will introduce later):

(GSEC) min
∑

ij∈E′
c′ijXij +

∑

i∈V ′
p′i(1− yi) (4)

subject to
∑

ij∈E′
Xij =

∑

i∈V ′
yi − 1 (5)

∑

i,j∈S

Xij ≤
∑

i∈S\{k}
yi ∀S ⊆ V ′, |S| ≥ 2, ∀k ∈ S (6)

0 ≤ Xij ≤ 1 ∀(i, j) ∈ E′ (7)

0 ≤ yi ≤ 1 ∀i ∈ V ′ (8)

yi ∈ {0, 1} ∀i ∈ V ′ (9)

Constraints (5) and (6) describe the tree structure of the solution. Constraint (5) ex-

cludes the empty tree from the set of feasible solutions. However, the selection of any

isolated customer vertex dominates this trivial solution. Constraints (6) are calledgen-

eralized subtour eliminationconstraints. They have been studied also by Goemans [14],

and Margot et al. [22]. The validity of this formulation follows from Edmonds’ charac-

terization of the spanning tree polytope (see, for example, [10]).

4.2. Rooted Tree Flow-Formulations

Directed tree formulations rely on a transformation of the PCST to the problem of

finding a minimum subgraph in a related, directed graph as proposed by Fischetti [13].

We transform the reduced graphG′ = (V ′, E′, c′, p′) that results from the application

of preprocessing into the directed edge-weighted graphGSA = (VSA, ASA, c′′).

Transformation into the Steiner Arborescence ProblemThe vertex setVSA = V ′∪{r}

contains the vertices of the input graphG′ and an artificial root vertexr. The arc set

12 Ljubić et al.

ASA contains two directed arcs(i, j) and(j, i) for each edge(i, j) ∈ E′ plus a set of

arcs from the rootr to the customer verticesRSA = {i ∈ V ′ | p′i > 0}. We define the

cost vectorc′′ as follows:

c′′ij =





c′ij − p′j ∀(i, j) ∈ ASA, i 6= r

−p′j ∀(r, j) ∈ ASA .

An example of this transformation can be found in Figures 3 (a) and (b) on page 19.

A subgraphTSA of GSA that forms a directed tree rooted atr is called aSteiner ar-

borescence. It is easy to see that such a subgraph corresponds to a solution of the PCST

if r has degree 1 inGSA (feasible arborescence). In particular, a feasible arborescence

with minimal total edge cost corresponds to an optimal prize-collecting Steiner tree.

We model the problem of finding a minimum Steiner arborescenceTSA by means

of an integer linear program. Therefore, we introduce a variable vectorx ∈ {0, 1}|ASA|

with the following interpretation:

xij =





1 (i, j) ∈ TSA

0 otherwise

∀(i, j) ∈ ASA .

The small lettersx indicate arc variables in the directed model whereas capital letters

X were used in Section 4.1 for edges in the undirected case. Furthermore, to indicate

which of the vertices fromVSA \ {r} belong to the solution, we use a variable vector

y ∈ {0, 1}|VSA|−1 already introduced in the undirected formulation.

Single-Commodity Flow FormulationThis is one of the simplest ILP formulations of

the problem. Segev [26] used a very similar formulation for the single vertex-weighted

The Prize-Collecting Steiner Tree Problem 13

Steiner tree problem, under the nametree-type formulation. A related formulation for

the Steiner tree problem has been studied by several authors, see, e.g., [8].

This formulation describes the structure of a rooted arborescence by a flow using

the variablesfij for the amount of flow on arc(i, j) for all (i, j) ∈ ASA. One unit

of flow is sent from the root vertexr to every customer vertex in the solution tree

andfij represents the sum of all such flows via arc(i, j). In the optimal solution the

values ofxij indicate directed paths fromr to every selected vertex. The resulting ILP-

formulation can be written as follows:

(SF) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (10)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (11)

∑

ji∈ASA

fji −
∑

ij∈ASA

fij = yi ∀i ∈ RSA (12)

∑

ji∈ASA

fji −
∑

ij∈ASA

fij = 0 ∀i ∈ VSA \RSA, i 6= r (13)

0 ≤ fij ≤ (|VSA| − 1) · xij ∀(i, j) ∈ ASA (14)

∑

ri∈ASA

xri = 1 (15)

yi, xij ∈ {0, 1} ∀i ∈ VSA \ {r}, ∀(i, j) ∈ ASA (16)

The constant term in the objective function is added such that (SF) yields the desired

overall solution value (2). The so-calledin-degreeequation (11) guarantees that every

selected vertex has exactly one predecessor on its path from the root. The classical flow

preservation constraints are given by (12) and (13), where the former requires that every

selected vertex receives one unit of flow to be consumed in this vertex. Constraints (14)

14 Ljubić et al.

force the arcs which are used by any flow to be included in the final directed tree of paths

to the vertices. They resemble the so-called “big M” constraints which are known to be

computationally inefficient in the sense that the LP-solution value is likely to deviate

considerably from the optimal ILP value. Finally, the so-calledroot-degreeconstraint

(15) makes sure that the artificial rootr is connected only to a single vertex which is

crucial for the connectedness of the solution.

Multi-Commodity Flow Formulation A straightforward strengthening of the previous

formulation is the so-calledmulti-commodity flow formulationof the problem. Here, we

split the flow from (SF) into separate commodities for every selected customer vertex.

In this way the flowfk
ij of a single commodityk describes an arc(i, j) on the directed

path from the root vertexr to a selected customer vertexk ∈ RSA with yk = 1.

(MCF) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (17)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (18)

∑

ji∈ASA

f i
ji −

∑

ij∈ASA

f i
ij = yi ∀i ∈ RSA (19)

∑

ji∈ASA

fk
ji −

∑

ij∈ASA

fk
ij = 0 ∀i ∈ VSA \ {k, r}, ∀k ∈ RSA (20)

0 ≤ fk
ij ≤ xij ∀(i, j) ∈ ASA, ∀k ∈ RSA (21)

∑

ri∈ASA

xri = 1 (22)

yi, xij ∈ {0, 1} ∀i ∈ VSA \ {r}, ∀(i, j) ∈ ASA (23)

The meaning of the constraints is almost equivalent to the (SF) formulation. Of course

the flow preservation constraints are extended to hold for every single commodity in

The Prize-Collecting Steiner Tree Problem 15

(19) and (20). The former selects commodityi as the only possibility to deliver any flow

into vertexi. Conditions (21) force an arc to be included in the solution tree as soon as

the flow of any commodity traverses through. A multi-commodity flow formulation is

well known for the standard Steiner tree problem (see e.g. [24]) and it was applied to

the SPWST by Segev [26].

It is not surprising that (MCF) strictly dominates the (SF) formulation. This means

that every solution of the LP-relaxation of (MCF) can be mapped into an equivalent

LP-solution of (SF) by simply merging the commodities on every arc into a single flow.

Figure 3 (c) and (d) on page 19 shows an example wherec(LPMCF) > c(LPSF) holds,

and so the domination relation between the two formulations is strict.

5. Cut Formulation

A different ILP-formulation (introduced in [13] for the NWST) concentrates on the

connectedness of the solution. Therefore,cuts are introduced with the fairly simple

condition that for every selected vertex which is separated fromr by a cut there must

be an arc crossing this cut.

For convenience we introduce the following notation: A set of verticesS ⊂ VSA and

its complementS = VSA \ S induce two directed cuts:δ+(S) = {(i, j) | i ∈ S, j ∈ S}

andδ−(S) = {(i, j) | i ∈ S, j ∈ S}. We also writex(A) =
∑

ij∈A xij for any subset

of arcsA ⊂ ASA. The corresponding ILP model then reads as follows:

16 Ljubić et al.

(CUT) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (24)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (25)

x(δ−(S)) ≥ yk k ∈ S, r 6∈ S, ∀S ⊂ VSA (26)

∑

ri∈ASA

xri = 1 (27)

xij , yi ∈ {0, 1} ∀(i, j) ∈ ASA, ∀i ∈ VSA \ {r} (28)

The cut constraints (26) are also calledconnectivity inequalities. They guarantee

that for each vertexv in the solution, there must be a directed path fromr to v. Note

that disconnectivity would imply the existence of a cutS separatingr and v which

would clearly violate the corresponding cut constraint.

As already observed in [13], the connectivity inequalities (26) can be put in an LP

equivalent form by adding together−x(δ−(S)) ≤ −yk and the in-degree equations

∑
ji∈ASA

xji = yi for all i ∈ S, to produce the generalized subtour elimination con-

straint
∑

i,j∈S xij ≤
∑

i∈S\{k} yi, the directed counterpart of (6). Chopra and Rao [6]

have shown for the Steiner tree problem that directed GSECs dominate directed counter-

parts of several other facet defining inequalities of the undirected (GSEC) formulation.

This is also the reason why the directed formulation is preferable in practice.

The following theorem shows the equivalence of the LP-relaxations of (CUT) and

(MCF). Note that this fact has already been observed in a related setting for the classical

Steiner tree problem (see for example [8]).

Theorem 1.The polytopes of the LP-relaxations for (MCF) and (CUT) are identical.

The Prize-Collecting Steiner Tree Problem 17

Proof. Let xij be feasible for (MCF) and assume that there existS andk violating

(26) in (CUT), i.e.,x(δ−(S)) < yk. Considering (19) for the same vertexk, it follows

that there is a flow of valueyk from r to k in the directed network defined by the arc

capacitiesxij . The classical max-flow min-cut theorem implies that every cut separating

r andk must have a cut value at leastyk in contradiction to the assumption.

Let xij be feasible for (CUT). We want to construct a corresponding feasible multi-

commodity flow for (MCF). Ifyk = 0 we simply setfk
ij = 0 for all (i, j) ∈ ASA. For

yk > 0 consider the network with sourcer and sinkk′, wherek′ is connected only to

k by an arc(k, k′) with capacityyk and capacitiesxij for all other arcs(i, j) ∈ ASA.

The maximum flow in this network delivers the flow of commodityk. Its flow valuefk

is exactlyyk as required in (19). If this maximum flowfk were smaller thanyk, then

by the max-flow min-cut theorem there must exist a minimal cut betweenr andk with

capacity less thanyk thus violating (26). Exceeding the flow value ofyk is prevented

by the introduction of the artificial vertexk′ which cannot receive a larger inflow. The

feasibility of all other constraints in (MCF) is obvious. ut

5.1. Asymmetry Constraints

In order to create a bijection between arborescence and PCST solutions, we introduce

the so-calledasymmetry constraints:

yi ≤ xrj , ∀i < j, i ∈ R (29)

These inequalities assure that for each PCST solution the customer vertex adjacent to

root is the one with the smallest index. Figure 2 illustrates an example. Computational

18 Ljubić et al.

r

1

4

5

6

7
8

10

11

r

1

2

3
4

5

6

7
8

10

11

2

3

Fig. 2. Two feasible Steiner arborescences representing the same PCST solution. Using the asymmetry in-

equalities only the solution on the left-hand side is considered as feasible.

results have shown that they significantly reduce the computation time, because they

exclude many unnecessary solutions.

5.2. Strengthening the Formulation

Each feasible solution of the Steiner arborescence problem can be seen as a set of flows

sending one unit from the root to all customer verticesj with yj = 1.

Considering the tree structure of the solution it is obvious that in every non-customer

vertex, which is not a branching vertex in the Steiner arborescence, indegree and out-

degree must be equal, whereas in a branching non-customer vertex indegree is always

less than outgoing degree. Thus, we have:

∑

ji∈ASA

xji ≤
∑

ij∈ASA

xij , ∀i 6∈ R, i 6= r . (30)

These so-calledflow-balance constraintswere introduced by Koch and Martin in [20]

for the Steiner tree problem. They indeed represent a strengthening of the LP-relaxation

of (25)-(29), as can be shown by an example in Figures 3 (d) and (e). For the classical

Steiner tree problem, an analogous example can be found in [24].

The Prize-Collecting Steiner Tree Problem 19

2

2

22

2

2

1

1 1

100 100

100

non-customer vertices customer vertices

0

0

0

(a)

non-customer vertices customer vertices

-100

-100

-1000

0

0

1 1

11

1 1

2

2 2

2

2

2

2

22

2

2

2

-100 -100

-100

r

(b)

0.1

0.8

0.1

0.9

0.2

0.9

r

0 0

0

0

1

11

1

1

1

(c)

1 1

1

1

1

1 1

1

0.5

0.5

0.5

0.5 0.50.5

0.5

0.5 0.5

0.5

0.5

1

11

0.5

r

(d)

1 1

1

1

1

1

11 1 1

1

1

1

1

11

0

0

r

(e)

2

2

22
100 100

100

0

(f)

Fig. 3. (a) an input graphG; (b) after transformation into the Steiner arborescence problem; (c) solution

of (SF) LP-relaxation,c(LPSF) = 0. LP-values ofx andy variables are shown; (d) solution of (MCF)

LP-relaxation,c(LPMCF) = c(LPCUT) = 7.5; (e) solution of (CUT) LP-relaxation augmented with

flow-balance constraints has cost 8 and corresponds to the optimal solution (f).

20 Ljubić et al.

6. Branch-and-Cut Algorithm

To solve the proposed ILP formulation we use a branch-and-cut algorithm: At each node

of the branch-and-bound tree we solve the LP-relaxation (CUT), obtained by replacing

the integrality requirements (28) by the simple bounds:0 ≤ yi ≤ 1, ∀i ∈ VSA \ {r}

and0 ≤ xij ≤ 1,∀(i, j) ∈ ASA. For solving the LP-relaxations and as a generic im-

plementation of the branch-and-cut approach, we used the commercial packages ILOG

CPLEX and ILOG Concert Technology (version 8.1).

6.1. Initialization

There are exponentially many constraints of type (26), so we do not insert them at the

beginning but ratherseparatethem during the optimization process using the separation

procedure described below.

At the root node of the branch-and-bound tree, we start with in-degree, root-degree,

flow-balance and asymmetry constraints. Furthermore, we add the following group of

inequalities:

xij + xji ≤ yi, ∀i ∈ VSA \ {r}, (i, j) ∈ ASA (31)

These constraints express the trivial fact that every arc adjacent to a vertex in the

solution tree can be oriented only in one way. They are also a special case of the connec-

tivity constraints written in their equivalent GSEC form, a directed counterpart of (6),

with S := {i, j}. Although the LP may become large by adding all of these inequalities

at once they offer a tremendous speedup since they do not have to be separated implic-

itly during the branch-and-cut algorithm. Further details are discussed in Section 7.

The Prize-Collecting Steiner Tree Problem 21

6.2. Separation

During the separation phase which is applied at each node of the branch-and-bound

tree, we add constraints of type (26) that are violated by the current solution of the LP-

relaxation. Usually, this model is less dense than the equivalent directed (GSEC) model,

so it may be computationally preferable within the branch-and-cut implementation.

These violated cut constraints can be found in polynomial time using a maximum

flow algorithm on thesupport graphwith arc-capacities given by the current solution.

For finding the maximum flow in a directed graph, we used an adaptation of Goldberg’s

maximum flow algorithm [4]2.

The outline of the separation procedure is given in Algorithm 1. Given a support

graphGs = (VSA, ASA, x), we search for violated inequalities by calculating the maxi-

mum flow for all(r, i) pairs of vertices,i ∈ RSA, yi > 0. The maximum flow algorithm

f = MaxFlow(G, x′, r, i, Sr, Si) returns the flow valuef and two sets of vertices:

– SubsetSr ⊂ VSA contains root vertexr and induces a minimum cut closest tor, in

other words,x(δ+(Sr)) = f ;

– SubsetSi ⊂ VSA contains vertexi and induces a minimum cut closest toi, i.e.,

x(δ−(Si)) = f .

If f < yi, we insert the violated cutx(δ+(Sr)) ≥ yi into the LP. We then follow the

idea of the so-callednested cuts[20]: we iteratively add further violated constraints

induced by the minimum(r, i)-cut in the support graph in which the capacities of all

the arcs(u, v) ∈ δ+(Sr) are set to one. This iterative process is done as long as the

total number of the detected violated cuts is less thanMAXCUTS (100, in the default

2 Available athttp://www.avglab.com/andrew/CATS/maxflow_solvers.htm

22 Ljubić et al.

Data : A support graphGs = (VSA, ASA, x).
Result : A set of violated inequalities incorporated into the current LP.

for i ∈ RSA, yi > 0 do

x′ = x + EPS ;

repeat

f = MaxFlow(G, x′, r, i, Sr, Si);

Detect the cutδ+(Sr) such thatx′(δ+(Sr)) = f , r ∈ Sr ;

if f < yi then

Insert the violated cutx(δ+(Sr)) ≥ yi into the LP;

end

x′ij = 1,∀(i, j) ∈ δ+(Sr);

if BACKCUTS then

Detect the cutδ−(Si) such thatx′(δ−(Si)) = f , i ∈ Si;

if Si 6= Sr then

Insert the violated cutx(δ−(Si)) ≥ yi into the LP;

x′ij = 1,∀(i, j) ∈ δ−(Si);
end

end

until f ≥ yi or MAXCUTS constraints added;
end

Algorithm 1: Separation procedure.

implementation), or there are no more such cuts. By setting the capacities of the edges

in a cut to one, we are able to increase the number of violated inequalities found within

one cutting plane iteration. Note that the cuts are inserted only if they are violated by at

least someε (which was set to10−4 in the default implementation).

Chopra et al. [5] proposed the so-calledback-cuts, also used in [20], for the Steiner

tree problem. To speed up the process of detecting more violated cuts within the same

separation phase, we consider the reversal flow in order to find the cut “closest” toi,

for somei ∈ R, yi > 0. The advantage of Goldberg’s implementation is that only one

The Prize-Collecting Steiner Tree Problem 23

maximum flow calculation is needed in order to find both setsSr, r ∈ Sr andSi, i ∈ Si

defining the minimum cut of valuef . Note that back-cuts (controlled byBACKCUTS

parameter) are combined with nested cuts in our implementation.

Finally, we considered the possibility of adding the smallest cardinality cut by in-

creasing allxij values by some valueEPS . The smallest cardinality cuts may have

a great influence on the density of the underlying LP, however the running time of

the maximum flow calculations may also increase. Indeed, our computational results

(cf. Section 7) confirm that for most of our instances settingEPS to a positive value

increases the CPU time.

6.3. Primal Heuristic

The branch-and-cut framework of CPLEX calls the primal heuristic when the linear

program in a node of the tree is solved and no more violated inequalities are found just

before a branch is performed.

The basic idea of our primal heuristic is that we first fix a setS of vertices that will

be contained in the heuristic solution. Then we apply the standard minimum spanning

tree heuristic for the Steiner tree problem to the graphG = (V, E, c) with terminal set

S. Let T be the resulting tree. We solve the PCST onT optimally by the linear time

algorithm also used in [19].

For choosing the setS of terminal vertices, we use the values of they-variables in

the LP-solution of the current node in the branch-and-cut tree. We tried several strate-

gies: We used they-values as probabilities for inserting a vertex intoS or computed

for each vertex the average of its LP-value in the fractional solution and the best known

24 Ljubić et al.

feasible solution and used this value as the probability for choosing the vertex. But

the following non-randomized method produced the best results: Choose all verticesvi

where the value ofyi in the current fractional solution is at least1/2.

Having chosen the vertices inS, we compute thedistance networkGS for S where

GS = (S, S × S, dS). The lengthdS of an edge inGS is the length of the shortest path

connecting the two corresponding vertices inG. The length of a path is determined by

thex-variables of the edges on the path. We assign to each edge(i, j) in the problem

graph the cost1 − max{xij , xji} wherexij is the value of the corresponding edge-

variable in the fractional solution of the current branch-and-bound node. Thus, a path

is short if its edges have high LP-values.

We compute a minimum spanning treeT = (S,ET) in GS and define the setS′

of vertices inG as the union ofS and the set of all vertices on the shortest paths that

correspond to edges inET . Let GH = (S′, EH , c) be the subgraph ofG induced by

the vertex setS′. In this graph, the cost of each edge is again the original cost in the

problem instance.

This graph is connected and therefore we can compute a minimum spanning tree

T ′ = (S′, ET ′) for it. Finally, we use the linear time algorithm to solve the PCST op-

timally on the treeT ′. The resulting graph is our heuristic solution. The computational

results in Section 7 show that this heuristic can significantly improve the gap between

the lower bound and the best known feasible solution for our most challenging problem

instances.

The Prize-Collecting Steiner Tree Problem 25

7. Computational Results

We tested our new approach outlined in Section 6 extensively on the following groups

of instances:

– Johnson et al. [17] tested their approximation algorithm on two sets of randomly

generated instances. In the so-calledP class, instances are unstructured and de-

signed to have constant expected degree and profit to weight ratio. TheK group

comprises random geometric instances designed to have a structure somewhat sim-

ilar to street maps. A detailed description of the generators for these instances can

be found in [23]. In our tests, we considered a part of these instances with up to 400

vertices and 1 576 edges that have also been tested by Lucena and Resende [21] and

Canuto et al. [3].

– Canuto et al. [3] generated a set of 80 test problems derived from the Steiner prob-

lem instances of the well-known OR-Library3. For each of the 40 problems from

seriesC andD, two sets of instances were generated by assigning zero profits to

non-terminal vertices and randomly generated profits in the interval[1,maxprize] to

terminal vertices. Here,maxprize = 10 for problems in setA, andmaxprize = 100

for problems in setB. Instances of groupC contain 500 vertices, and between 625

and 12 500 edges, while instances of groupD contain 1 000 vertices and between

1 250 and 25 000 edges.

Following this schema, we generated an additional set of 40 larger benchmark in-

stances derived from seriesE of the Steiner problem instances in the OR-Library.

The new instances contain 2 500 vertices and between 3 125 and 62 500 edges.

3 OR-library: J. E. Beasley, http://mscmga.ms.ic.ac.uk/info.html

26 Ljubić et al.

– Rosseti et al. [25] proposed three new sets of artificially generated and very difficult

instances for the Steiner tree problem. We used the most difficult of them, the so-

calledhypercubes, to derive new test problems for the PCST.

Graphs in this series for the Steiner tree problem ared-dimensional hypercubes with

d ∈ {6, . . . , 12}. For each value ofd, the corresponding graph has2d vertices and

d ·2d−1 edges. These graphs are bipartite and the terminals are defined as one set of

the bipartition. The so-calledunperturbedinstances receive unit edge costs whereas

edges of the so-calledperturbedinstances receive random integral costs distributed

uniformly in the interval[100, 110].

We derived the PCST hypercubes by assigning zero profits to non-terminal vertices

and an integer profit randomly chosen from a uniform distribution over the inter-

val [1, 2] and[100, 220] for unperturbed and perturbed instances, respectively. Our

naming convention is as proposed in [25], thushcd[u|p] denotes an unperturbed

(u) or perturbed (p) d-dimensional hypercube instance.

Instance setsK,P,C andDof instances are available athttp://www.research.

att.com/˜mgcr/data/index.html . All other problem instances used in this

paper are available in our online database for PCST instances and solutions at the fol-

lowing URL: http://www.ads.tuwien.ac.at/pcst .

For groupsCandD, Tables 1 and 2 list the instance name, its number of edges|E|,

the size of the graph after the reductions described in Section 3 (|V ′|, |E′|) and the time

spent on this preprocessing procedure (tprep [s]). We compare our results against those

recently obtained by Lucena and Resende [21] (denoted by LR). For their approach, we

show the best obtained lower bounds (L. Bound) and the CPU times in seconds required

The Prize-Collecting Steiner Tree Problem 27

to prove optimality (t [s]). If the CPU time is not given, it means that the LR algorithm

terminated because of excessive memory consumption. For our new ILP approach, we

provide the following values: the provably optimal solution value (OPT), the total run-

ning time in seconds (t [s]) (not including preprocessing), the number of violated cuts

found by our separation procedure (#Cuts), the number of violated Gomory fractional

cuts automatically added by CPLEX (#G. Cuts) and the total running time of the same

algorithm without preprocessing (tnoprep [s]).

On all but 8 instances of groupsC andD lower bounds obtained by LR were equal

to known upper bounds obtained by Canuto et al. [3]. However, on 16 instances fromC

andD, the LR algorithm did not prove the optimality. Improving upon their results, our

new ILP approach solved all instances known from the literature to proven optimality.

The optimal solution values, that were not guaranteed to be optimal before, are marked

with an asterisk while new optimal values are given in bold face.

Comparing our running time data (achieved on a Pentium IV with 2.8 GHz, 2 GB

RAM, SPECint2000=1 204) with the results of Lucena and Resende [21] (done on

SGI Challenge Computer 28 196 MHz MIPS R10000 processors with 7.6 GB RAM,

each run used a single processor), the widely used SPECc© performance evaluation

(www.spec.org) does not provide a direct scaling factor. However, taking a com-

parison to the respective benchmark machines both for SPEC 95 and SPEC 2000 into

account, we obtain a scaling factor of 17.2. On the other side, in [7] the SGI machine

is assigned a factor of 114 and to our machine the factor 1 414, which gives 12.4 as

a scaling factor. Thus, we can argue by a conservative estimate that dividing the LR

running times by a factor of 20 gives a very reasonable basis of comparison to our data.

28 Ljubić et al.

The running time comparison for those instances where LR running times are known,

shows that our new approach is significantly faster (on average, by more than two orders

of magnitude!).

Tables 1 and 2 document also that our new approach is able to solve all the instances

to optimality within a very short time, even if preprocessing is turned off. However,

preprocessing is important for larger instances, like those of the groupE (see Table 3).

Both algorithms, LR and our new ILP approach, solved allPandK instances to opti-

mality. The LR algorithm needed 53 (369) seconds on average forP (K) instances, while

our new approach solved them in 0.2 (69.1) seconds to optimality. All the instances of

K,P,C andDgroups are solved in the root node of the branch-and-cut tree.

Table 3 presents the results of our new approach on the setE of benchmark in-

stances. As before, the instance name, the number of edges of the original graph and

the size of the instance after preprocessing as well as the preprocessing CPU time are

listed. On these more challenging instances we compare the performance of the algo-

rithm with and without preprocessing in more detail. The algorithm without preprocess-

ing is terminated by setting thecplexTimeLimit parameter to 2 000 seconds. The

results document that preprocessing can reduce the number of vertices and edges of the

original graph by about 30%, respectively, 50%, on average. Furthermore, the results

also show that preprocessing plays an important role when the size of the LPs increases.

For 3 out of 40 instances the algorithm did not find the optimal solution within the given

time limit if preprocessing is turned off. As before, the instances of this group are also

solved without branching.

The Prize-Collecting Steiner Tree Problem 29

Table 1. Results obtained by Lucena and Resende (LR) and our new results, on the instances from Steiner

seriesC. Running times in (LR) to be divided by 20 for comparison (cf. text above). Asterisk marks new

certificates of optimality for known values. New optimal solution values are given in bold face.

Orig. Preprocessing LR ILP

Instance |E| |V ′| |E′| tprep [s] L. Bound t [s] OPT t [s] # Cuts # G. Cuts tnoprep [s]

C1-A 625 116 214 1.2 18 0.1 18 0.0 0 0 0.1

C1-B 625 125 226 1.2 85 1.7 85 0.1 6 5 0.2

C2-A 625 109 207 1.1 50 0.1 50 0.0 0 0 0.1

C2-B 625 111 209 1.1 141 1.0 141 0.0 0 0 0.2

C3-A 625 160 277 1.1 414 1.2 414 0.0 0 0 0.1

C3-B 625 185 304 1.3 737 26.1 737 0.1 2 1 0.6

C4-A 625 178 300 1.2 618 1.7 618 0.1 2 12 1.0

C4-B 625 218 341 1.3 1 063 287.4 1 063 0.1 4 0 0.5

C5-A 625 163 274 1.2 1 080 80.4 1 080 0.3 0 0 11.4

C5-B 625 199 314 1.7 1 528 3 487.1 1 528 0.2 0 0 1.6

C6-A 1 000 355 822 2.1 18 0.9 18 0.1 0 0 0.1

C6-B 1 000 356 823 2.1 55 57.5 55 0.4 12 11 0.5

C7-A 1 000 365 842 2.6 50 1.3 50 0.1 0 0 0.1

C7-B 1 000 365 842 2.5 102 4.7 102 0.1 4 4 0.1

C8-A 1 000 367 849 2.7 361 33.4 361 0.1 0 0 0.6

C8-B 1 000 369 850 3.0 500 215.0 500 0.2 4 1 0.6

C9-A 1 000 387 877 2.4 533 84.1 533 2.7 20 30 1.8

C9-B 1 000 389 879 2.8 694 1 912.6 694 1.2 24 4 0.7

C10-A 1 000 359 841 3.3 859 160.3 859 0.8 8 0 2.3

C10-B 1 000 323 798 3.4 1 069 3 502.3 1 069 0.4 8 0 3.7

C11-A 2 500 489 2 143 9.4 18 3.4 18 0.2 0 0 0.2

C11-B 2 500 489 2 143 9.5 32 68.5 32 3.5 48 18 2.2

C12-A 2 500 484 2 186 6.8 38 37.0 38 0.2 4 1 0.2

C12-B 2 500 484 2 186 6.8 46 126.7 46 0.3 6 3 0.4

C13-A 2 500 472 2 113 9.8 236 332.5 236 0.6 2 1 2.6

C13-B 2 500 471 2 112 9.8 258 3 092.7 258 2.1 30 23 5.9

C14-A 2 500 466 2 081 7.5 293 1 749.8 293 0.4 2 0 0.5

C14-B 2 500 459 2 048 7.5 318 1 142.3 318 0.4 4 0 0.4

C15-A 2 500 406 1 871 6.5 501 54 223.3 501 1.1 4 2 9.7

C15-B 2 500 370 1 753 6.0 551 — *551 0.5 2 1 5.6

C16-A 12 500 500 4 740 2.4 11 204.5 11 1.6 10 14 2.3

C16-B 12 500 500 4 740 2.4 11 205.1 11 1.3 6 21 2.3

C17-A 12 500 498 4 694 2.4 18 250.3 18 1.2 6 13 3.0

C17-B 12 500 498 4 694 2.3 18 388.2 18 1.2 6 16 2.9

C18-A 12 500 469 4 569 2.6 111 20 031.8 111 1.5 4 15 18.0

C18-B 12 500 465 4 538 2.9 113 — *113 18.3 95 6 38.9

C19-A 12 500 430 3 982 2.9 146 152 217.1 146 0.6 4 0 1.5

C19-B 12 500 416 3 867 2.8 146 18 999.6 146 0.5 4 0 2.4

C20-A 12 500 241 1 222 6.1 265 — 266 0.1 2 0 236.0

C20-B 12 500 133 563 5.0 267 — *267 0.1 4 0 125.0

C-AVG 4 156.3 348.5 1 733.4 3.8 334.3 — 334.3 1.1 8.4 5.1 12.2

30 Ljubić et al.

Table 2. Results obtained by Lucena and Resende (LR) and our new results, on the instances from Steiner

seriesD. Running times in (LR) to be divided by 20 for comparison (cf. text above). Asterisk marks new

certificates of optimality for known values. New optimal solution values are given in bold face.

Orig. Preprocessing LR ILP

Instance |E| |V ′| |E′| tprep [s] L. Bound t [s] OPT t [s] # Cuts # G. Cuts tnoprep [s]

D1-A 1 250 231 440 4.9 18 0.4 18 0.1 0 0 0.1

D1-B 1 250 233 443 4.9 106 5.5 106 0.1 8 15 0.7

D2-A 1 250 257 481 4.9 50 0.7 50 0.0 0 0 0.1

D2-B 1 250 264 488 4.9 218 2.2 218 0.0 0 0 0.3

D3-A 1 250 301 529 5.5 807 12.2 807 0.1 0 0 0.8

D3-B 1 250 372 606 6.3 1 509 331.5 1 509 0.3 2 0 0.9

D4-A 1 250 311 541 5.6 1 203 51.5 1 203 0.5 2 0 3.6

D4-B 1 250 387 621 7.2 1 881 1 551.3 1 881 0.8 12 0 2.8

D5-A 1 250 348 588 7.6 2 157 597.5 2 157 0.9 6 0 115.5

D5-B 1 250 411 649 11.5 3 135 — *3 135 1.3 6 0 5.0

D6-A 2 000 740 1 707 14.4 18 2.6 18 0.1 0 0 0.2

D6-B 2 000 741 1 708 14.7 67 225.8 67 1.5 14 12 1.9

D7-A 2 000 734 1 705 11.3 50 4.3 50 0.1 0 0 0.2

D7-B 2 000 736 1 707 11.4 103 154.1 103 0.3 2 0 0.3

D8-A 2 000 764 1 738 11.7 755 170.7 755 5.8 20 8 8.2

D8-B 2 000 778 1 757 12.3 1 036 3 267.9 1 036 0.7 2 1 3.5

D9-A 2 000 752 1 716 17.9 1 070 1 346.7 1 070 11.4 8 10 92.8

D9-B 2 000 761 1 724 20.9 1 420 25 052.5 1 420 3.7 50 0 4.0

D10-A 2 000 694 1 661 14.6 1 671 62 590.0 1 671 6.4 8 2 62.6

D10-B 2 000 629 1 586 18.5 2 079 — *2 079 1.6 4 0 13.5

D11-A 5 000 986 4 658 27.7 18 33.9 18 1.2 2 0 0.4

D11-B 5 000 986 4 658 23.6 29 870.6 29 3.5 8 29 4.1

D12-A 5 000 991 4 639 23.1 42 281.7 42 1.8 10 10 1.9

D12-B 5 000 991 4 639 22.3 42 297.1 42 1.2 4 1 0.9

D13-A 5 000 966 4 572 27.7 445 24 689.7 445 3.5 16 3 23.4

D13-B 5 000 961 4 566 28.0 486 4 464.2 486 2.2 8 0 7.3

D14-A 5 000 946 4 500 35.5 602 — *602 4.3 14 0 80.4

D14-B 5 000 931 4 469 37.2 665 — *665 14.4 40 5 34.6

D15-A 5 000 832 4 175 47.1 1 040 — 1 042 11.3 12 1 18.9

D15-B 5 000 747 3 896 49.2 1 107 1691 918.5 1 108 2.6 6 0 55.8

D16-A 25 000 1 000 10 595 10.8 13 9 957.8 13 3.4 6 2 9.7

D16-B 25 000 1 000 10 595 10.8 13 6 129.7 13 4.5 8 3 7.4

D17-A 25 000 999 10 534 10.8 23 16 939.8 23 18.9 38 36 86.2

D17-B 25 000 999 10 534 10.7 23 13 742.4 23 17.2 44 29 23.3

D18-A 25 000 944 9 949 11.7 218 — *218 25.5 52 23 60.4

D18-B 25 000 929 9 816 12.0 223 — 223 6.3 12 0 16.1

D19-A 25 000 897 9 532 12.4 306 — 306 20.3 38 28 62.1

D19-B 25 000 862 9 131 13.1 310 — 310 18.2 40 78 19.8

D20-A 25 000 488 2 511 37.3 529 — 536 0.4 0 0 18.5

D20-B 25 000 307 1 383 32.9 530 — 537 0.2 2 0 18.3

D-AVG 8 312.5 705.2 3 793.7 17.4 650.4 — 650.9 4.9 12.6 7.4 21.7

The Prize-Collecting Steiner Tree Problem 31

In our default implementation we used nested cuts and back-cuts. The parameter

EPS was set to0.0, which means that we refrained from the calculation of smallest

cardinality cuts. Our computational experiments have shown that the usage of back-

cuts is crucial for our implementation. By omitting the back-cuts, some of the larger

instances (even of groupsCandD) could not be solved to proven optimality.

The role of parameterEPS within the separation is studied in Table 4 where we

show CPU times in seconds taken on average over each group of instances. All the runs

were limited to 1 000 seconds (except for groupE, where we set the limit to 2 000).

As the first two columns in Table 4 document, the usage of minimum cardinality cuts

within the separation plays the most important role for solving the instances in theK

group. In contrary, for solving the instances in theC, D andE groups, computing the

smallest cardinality cuts seems to be too expensive, i.e., there is a trade-off between

the time needed to solve the maximum-flow algorithm and the time for solving a single

LP-relaxation.

32 Ljubić et al.

Table 3.Results obtained on the instances derived from Steiner seriesE.

Orig. Preprocessing With preprocessing Without preprocessing

Instance |E| |V ′| |E′| tprep [s] OPT t [s] # Cuts # G. Cuts t [s] # Cuts # G. Cuts

E01-A 3 125 651 1 246 21.5 13 0.1 0 0 0.2 0 0

E01-B 3 125 655 1 250 21.8 109 0.4 12 38 1.9 12 8

E02-A 3 125 694 1 304 20.7 30 0.1 0 0 0.3 0 0

E02-B 3 125 697 1 307 20.7 170 0.3 2 0 2.1 6 5

E03-A 3 125 813 1 414 29.4 2 231 5.6 6 37 63.7 26 38

E03-B 3 125 962 1 572 30.9 3 806 3.6 6 0 14.3 116 1

E04-A 3 125 829 1 425 24.9 3 151 23.9 12 2 237.1 8 4

E04-B 3 125 980 1 588 26.2 4 888 7.3 8 0 17.7 6 0

E05-A 3 125 893 1 502 36.9 5 657 81.6 12 6 438.4 16 0

E05-B 3 125 1 029 1 644 45.0 7 998 16.0 6 0 794.0 132 2

E06-A 5 000 1 821 4 283 37.9 19 0.3 0 0 0.4 0 0

E06-B 5 000 1 821 4 283 37.6 70 1.6 6 14 3.5 4 12

E07-A 5 000 1 863 4 339 39.3 40 0.3 0 0 0.4 0 0

E07-B 5 000 1 865 4 341 39.4 136 2.4 6 8 3.4 4 8

E08-A 5 000 1 902 4 379 40.1 1 878 192.6 69 18 397.9 20 14

E08-B 5 000 1 911 4 387 50.4 2 555 6.8 8 0 15.3 14 2

E09-A 5 000 1 909 4 388 50.5 2 787 55.5 8 0 700.5 22 9

E09-B 5 000 1 918 4 397 54.7 3 541 13.5 4 2 25.0 8 3

E10-A 5 000 1 716 4 181 60.6 4 586 159.8 22 0 608.1 10 0

E10-B 5 000 1 594 4 045 84.6 5 502 51.9 34 1 381.2 78 2

E11-A 12 500 2 491 12 063 145.1 21 2.3 0 0 5.9 4 8

E11-B 12 500 2 491 12 063 146.2 34 7.1 2 4 6.3 2 0

E12-A 12 500 2 490 12 090 82.5 49 6.0 6 14 2.3 0 0

E12-B 12 500 2 490 12 090 85.5 67 13.5 14 2 16.0 16 20

E13-A 12 500 2 430 11 949 148.2 1 169 85.5 34 2 95.7 24 29

E13-B 12 500 2 407 11 915 146.7 1 269 37.0 18 11 25.9 8 0

E14-A 12 500 2 366 11 872 144.2 1 579 1 903.8 440 12 94.6 14 3

E14-B 12 500 2 311 11 737 145.7 1 716 60.9 36 1 357.4 269 4

E15-A 12 500 2 044 10 845 207.8 2 610 149.2 34 1 430.8 111 1

E15-B 12 500 1 864 10 264 234.3 2 767 1 375.3 652 1 243.4 42 9

E16-A 62 500 2 500 29 332 82.2 15 39.3 8 17 56.5 8 9

E16-B 62 500 2 500 29 332 81.9 15 31.6 8 22 53.7 10 16

E17-A 62 500 2 500 29 090 81.6 25 32.8 4 5 53.0 6 19

E17-B 62 500 2 500 29 090 81.8 25 32.0 10 19 60.3 10 13

E18-A 62 500 2 378 28 454 85.7 555 629.4 162 0 — — —

E18-B 62 500 2 347 28 269 86.9 564 1 746.1 388 1 2 025.0 192 2

E19-A 62 500 2 156 25 011 92.2 747 51.4 14 3 830.2 56 24

E19-B 62 500 2 085 23 641 94.0 758 19.1 8 3 594.2 42 2

E20-A 62 500 1 525 12 770 107.3 1 331 4.3 0 0 — — —

E20-B 62 500 861 3 881 231.5 1 342 1.2 2 0 — — —

E-AVG 20 781.3 1 781.5 10 325.8 82.1 1 645.6 171.3 51.5 6.1 — — —

The Prize-Collecting Steiner Tree Problem 33

Table 4 also documents the crucial role of using inequalities (31) within the initial-

ization procedure. This inequality says that each edge can only be used in one direction

in any feasible solution (see Section 6.1). The last two columns represent results ob-

tained by omitting inequalities (31) from the initialization.

It can be observed that the number of directed subtours of size two drastically in-

creases with the input size such that the algorithm is not able to solve many of the

instances within a given time limit. This negative effect can not be compensated by the

– sometimes considerable – improvement of running time brought about by the sepa-

ration with smallest cardinality cuts (in particular forK andP groups). The difficulties

usually arise when a customer vertexi is connected to a non-customer vertexj by an

edge with costc(i, j) < pi. In this case, the initial LP-solution contains a directed ar-

borescence rooted atj (note thatyj = 0, i.e., the in-degree ofj is zero), with an arc

(j, i) of negative cost. By addingxij ≤ yi, ∀i ∈ VSA \ {r} inequalities, instead of (31),

solutions of the initial LP contain subtours of size two on such pairs(i, j) of vertices.

We also applied our program to the hypercube instances mentioned earlier with

dimensions from 6 to 12 generated from the graphs used in [25]. The running time

of the program was limited to 1 800 seconds. For each instance, we provided an ini-

tial feasible solution computed by the heuristic algorithm described in [18]. As primal

heuristic for the branch-and-bound algorithm, we used the simple minimum spanning

tree heuristic described in Section 6.3 that uses the fractional solution at the current

branch-and-bound node to compute a feasible solution. Note that our preprocessing

method described in Section 3 did not manage to reduce these instances at all.

34 Ljubić et al.

Table 4. Comparison of average CPU times over all instances of a group for separation with or without

smallest cardinality cuts (EPS = 10−4 or EPS = 0, respectively) and for initialization with or without

(31) constraints.

Init. with (31) ineq. Init. without (31) ineq.

Group
EPS = 0 EPS = 10−4 EPS = 0 EPS = 10−4

K 69.1 10.0 100.5 4.7

P 0.2 0.3 25.5 2.9

C 1.1 0.8 — 22.6

D 4.9 10.0 — —

E 171.3 279.3 — —

Table 5 shows the results for our experiments with the hypercube instances. The

three instanceshc6u , hc6p andhc7u could be solved to optimality within the time

bound. For the instanceshc7p to hc10p , the gap between the best feasible solution

found and the best lower bound is between 1.44 and 10.70 percent. For the hypercubes

with dimensions 11 and 12, no lower bound could be found because the initial linear

program could not be solved before the end of the time limit.

The number of cuts separated grows with the size of the problem but than goes down

again when the linear programs become so big that the number of simplex iterations

in the time limit drops. Using our primal heuristic produced different results than the

version of the program without the heuristic only for two instances:hc8p andhc9p .

For instancehc8p , the version with the primal heuristic performs slightly worse

than the version without. The lower bound was the same in both cases but the best fea-

sible solution found was slightly worse than in the version without the primal heuris-

The Prize-Collecting Steiner Tree Problem 35

Table 5.Computational results for the hypercube instances with a time limit of 1 800 seconds.

Instance Number of Number of Number of Best Best Gap (%)Gap (%) w/o

Name G. cuts cuts B&B Nodes feasible bound heuristic

hc6p 4 1547 125 3908 3908 0.00 0.00

hc6u 3 2 0 36 36 0.00 0.00

hc7p 0 8003 289 7739 7628.99 1.44 1.44

hc7u 0 2135 12 72 72 0.00 0.00

hc8p 0 5122 44 15274 14995.9 2.15 1.85

hc8u 87 486 0 150 141 6.38 6.38

hc9p 0 1720 10 32401 29661.3 3.96 9.24

hc9u 86 451 0 301 279.356 7.75 7.75

hc10p 41 104 0 65186 58884.7 10.70 10.70

hc10u 96 174 0 594 552.655 7.48 7.48

tic. For this instance, the built-in heuristic of CPLEX found a better solution than our

heuristic.

For the instancehc9p , the gap between the best known feasible solution and the

lower bound is more than twice as large without our primal heuristic. The lower bound

was the same in both runs but our heuristic found a solution that CPLEX alone could

not find.

Our heuristic can only improve the result if the branch-and-bound tree has more than

one node, otherwise it is never called. It follows that it is not useful for easy instances

(where the problem can be solved in the root node) or very large instances (where

CPLEX cannot finish solving the linear program of the root node of the tree before the

time limit). So we conclude that the heuristic is of limited use and should only be tried

for instances where CPLEX without the heuristic has to branch.

36 Ljubić et al.

0

1000

2000

3000

4000

5000

6000

784 799 806 854 862 867 914 923 948 987 1035

number of edges

t
[s

] (MCF)

(CUT)

Fig. 4. CPU times of (CUT) and (MCF) formulations for 11K400 instances. The instances are sorted

according to their number of edges after preprocessing.

Finally, Figure 4 shows that the multi-commodity flow formulation is very ineffec-

tive in practice. The running times for the (MCF) formulation vary widely and consis-

tently exceed the running time for the (CUT) model by a huge margin.

8. Conclusions

The prize-collecting Steiner tree problem (PCST) formalizes in an intuitive way the

planning problem encountered in the design of utility networks such as gas and district

heating. Selecting the most profitable customers and connecting them by a least-cost

network immediately leads to the problem of computing a Steiner tree, where the ter-

minals are not fixed but can be chosen arbitrarily from a given set of vertices each one

contributing a certain profit.

The aim of this paper is the construction of an algorithmic framework to solve

large and difficult instances of PCST to optimality within reasonable running time. The

method of choice is a branch-and-cut approach based on an ILP formulation depending

The Prize-Collecting Steiner Tree Problem 37

on connectivity inequalities which can be written as cuts between an artificial root and

every selected customer vertex.

While the choice of the ILP model is essential for the success of our method, it

should also be pointed out that solving the basic ILP model by a default algorithm

is by no means sufficient to reach reasonable results. Indeed, our experiments show

that a satisfying performance can be achieved only by appropriate initialization and

strengthening of the original ILP formulation and in particular by a careful analysis of

the separation procedure.

Combining all these efforts, we manage to solve to optimality (even without the

usual preprocessing) all instances from the literature in a few seconds thereby deriving

new optimal solution values and new certificates of optimality for a number of problems

previously attacked.

For a number of new large instances constructed from Steiner tree instances, we also

derive optimal solutions within reasonable running time. For these instances with more

than 60 000 edges, our advanced preprocessing procedure proves to be an indispensable

tool for still finding the optimum without branching.

The so-called hypercube instances are the final performance test for our algorithm.

The built-in difficulty of these instances for the standard Steiner tree problem carries

over in a natural way to PCST. For these cases, we add a primal heuristic to our frame-

work to improve the upper bound in each node of the branch-and-cut tree. This heuristic

can improve the best feasible solutions found dramatically but can in other cases make

the solution slightly worse.

38 Ljubić et al.

Acknowledgments

The authors thank Andreas Moser and Philipp Neuner for their help in implementing

parts of the algorithmic framework.

References

1. J. E. Beasley. An SST-based algorithm for the Steiner problem in graphs.Networks, 19:1–16, 1989.

2. D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize-collecting

traveling salesman problem.Mathematical Programming, 59:413–420, 1993.

3. S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for the prize-

collecting Steiner tree problem in graphs.Networks, 38:50–58, 2001.

4. B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the maximum flow

problem.Algorithmica, 19:390–410, 1997.

5. S. Chopra, E. Gorres, and M. R. Rao. Solving a Steiner tree problem on a graph using a branch and cut.

ORSA Journal on Computing, 4:320–335, 1992.

6. S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions and extension of

facets.Mathematical Programming, 64:209–229, 1994.

7. J. J. Dongarra. Performance of various computers using standard linear equations software (linpack

benchmark report). Technical Report CS-89-85, University of Tennessee, 2004.

8. C. Duin. Steiner’s Problem in Graphs. PhD thesis, University of Amsterdam, 1993.

9. C. W. Duin and A. Volgenant. Some generalizations of the Steiner problem in graphs.Networks,

17(2):353–364, 1987.

10. J. Edmonds. Submodular functions, matroids and certain polyhedra. In R. Guy, H. Hanani, N. Sauer,

and J. Scḧonheim, editors,Combinatorial Structures and Their Application, pages 69–87. Gordon and

Breach, 1970.

11. S. Engevall, M. G̈othe-Lundgren, and P. V̈arbrand. A strong lower bound for the node weighted Steiner

tree problem.Networks, 31(1):11–17, 1998.

12. P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J.C. Pina. Primal-dual approximation algorithms for the

prize-collecting Steiner tree problem. 2003. submitted.

The Prize-Collecting Steiner Tree Problem 39

13. M. Fischetti. Facets of two Steiner arborescence polyhedra.Mathematical Programming, 51:401–419,

1991.

14. M. X. Goemans. The Steiner tree polytope and related polyhedra.Mathematical Programming, 63:157–

182, 1994.

15. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and its

application to network design problems. In D. S. Hochbaum, editor,Approximation algorithms for NP-

hard problems, pages 144–191. P. W. S. Publishing Co., 1996.

16. J. Hackner.Energiewirtschaftlich optimale Ausbauplanung kommunaler Fernwärmesysteme. PhD the-

sis, Vienna University of Technology, Austria, 2004.

17. D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner tree problem: Theory and

practice. InProceedings of 11th ACM-SIAM Symposium on Discrete Algorithms, pages 760–769, San

Francisco, CA, 2000.

18. G.W. Klau, I. Ljubíc, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, and R. Weiskircher. Combining

a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem. In

K. Deb, editor,Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004),

volume 3102 ofLNCS, pages 1304–1315. Springer-Verlag, 2004.

19. G.W. Klau, I. Ljubíc, P. Mutzel, U. Pferschy, and R. Weiskircher. The fractional prize-collecting Steiner

tree problem on trees. In G. Di Battista and U. Zwick, editors,ESA 2003, volume 2832 ofLNCS, pages

691–702. Springer-Verlag, 2003.

20. T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality.Networks, 32:207–232,

1998.

21. A. Lucena and M. G. C. Resende. Strong lower bounds for the prize-collecting Steiner problem in

graphs.Discrete Applied Mathematics, 141:277–294, 2004.

22. F. Margot, A. Prodon, and Th. M. Liebling. Tree polyhedron on 2-tree.Mathematical Programming,

63:183–192, 1994.

23. M. Minkoff. The prize-collecting Steiner tree problem. Master’s thesis, MIT, May, 2000.

24. T. Polzin and S. V. Daneshmand. A comparison of Steiner tree relaxations.Discrete Applied Mathemat-

ics, 112:241–261, 2001.

25. I. Rosseti, M. Poggi de Arago, C. C. Ribeiro, E. Uchoa, and R. F. Werneck. New benchmark instances for

the Steiner problem in graphs. InExtended Abstracts of the 4th Metaheuristics International Conference,

pages 557–561, 2001.

40 Ljubić et al.: The Prize-Collecting Steiner Tree Problem

26. A. Segev. The node-weighted Steiner tree problem.Networks, 17:1–17, 1987.

	cga_tr_example
	mpgReport

