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Abstract We propose an exact algorithm for counting the models of propo-
sitional formulas in conjunctive normal form (CNF). Our algorithm is based
on the detection of strong backdoor sets of bounded size; each instantia-
tion of the variables of a strong backdoor set puts the given formula into
a class of formulas for which models can be counted in polynomial time.
For the backdoor set detection we utilize an efficient vertex cover algorithm
applied to a certain “obstruction graph” that we associate with the given
formula. This approach gives rise to a new hardness index for formulas, the
clustering-width. Our algorithm runs in uniform polynomial time on formulas
with bounded clustering-width.

It is known that the number of models of formulas with bounded clique-
width, bounded treewidth, or bounded branchwidth can be computed in
polynomial time; these graph parameters are applied to formulas via certain
(hyper)graphs associated with formulas. We show that clustering-width and
the other parameters mentioned are incomparable: there are formulas with
bounded clustering-width and arbitrarily large clique-width, treewidth, and
branchwidth. Conversely, there are formulas with arbitrarily large clustering-
width and bounded clique-width, treewidth, and branchwidth.
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1 Introduction

1.1 Background

#SAT is the problem of determining the number of satisfying truth assign-
ments or models of a given propositional formula in conjunctive normal form
(CNF). This problem arises in several areas of artificial intelligence, in partic-
ular in the context of probabilistic reasoning [1,23]. However, since the prob-
lem is #P-complete (Valiant [28]), it is very unlikely that it can be solved in
polynomial time. #SAT remains #P-hard even for monotone 2CNF formulas
and Horn 2CNF formulas, and it is NP-hard to approximate the number of

models of a formula with n variables within 2n1−ǫ

for ǫ > 0. This approx-
imation hardness holds also for monotone 2CNF formulas and Horn 2CNF
formulas [23].

An alternative to restricting the language of formulas is to impose struc-
tural restrictions in terms of certain (hyper)graphs associated with formu-
las. In particular, graph parameters that restrict the structure of associated
primal graphs, incidence graphs, and formula hypergraphs have been consid-
ered; see Section 4 for definitions of the various graphs and graph parameters.
Bacchus, Dalmao, and Pitassi [1] propose an algorithm that solves #SAT in
time nO(1)2O(k) for formulas with n variables whose formula hypergraphs
have branchwidth k. The algorithm is based on the DPLL procedure and
uses caching techniques for an efficient reuse of solutions for subproblems.
A similar time complexity can be achieved by restricting the treewidth of
primal graphs and by dynamic programming on tree-decompositions; this
approach is described by Gottlob, Scarcello, and Sideri [12] for SAT and can
be extended to #SAT as explicated by Samer and Szeider [25]. Bounding the
clique-width of directed incidence graphs yields larger classes of formulas for
which #SAT is tractable: by combining Oum and Seymour’s approximation
algorithm for clique-width [22] with a general result of Courcelle, Makowsky,
and Rotics [5] on counting problems expressible in a certain fragment of
Monadic Second Order Logic, it can be shown that #SAT is fixed-parameter
tractable for formulas of clique-width at most k. Fischer, Makowsky, and
Ravve [8] improve the constants to obtain an algorithm that solves #SAT
in time nO(1)O(f(k)) for formulas with n variables whose directed incidence
graphs have clique-width k, where f is a simply exponential function. The
latter result is more general than the results for bounded treewidth and
branchwidth in the sense that every class of formulas with bounded treewidth
or bounded branchwidth also has bounded clique-width; however, there are
classes of formulas with bounded clique-width but unbounded treewidth and
unbounded branchwidth; see Section 4. Practical application of the clique-
width based algorithm is, however, very limited due to a huge hidden constant
in the estimation of its running time.

Note that the algorithms considered above are so-called fixed-parameter
algorithms, since the bound on the running time is, although exponential in
the parameter k, uniformly polynomial in n. The main advantage of fixed-
parameter algorithms is that the running time increases moderately when n
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becomes large, in contrast to algorithms with running time nO(k). We will
review the basic concepts of parameterized complexity in Section 2.2.

1.2 Our Approach: Backdoor Sets

The concept of strong backdoor sets with respect to a base class C of formulas
was introduced by Williams, Gomes, and Selman [29] as a tool for analyzing
the performance of local search SAT algorithms. Backdoor sets have recently
received a lot of attention in satisfiability research [15,17,19,21,24,27].

A set B of variables of a formula F is a strong C-backdoor set if for all
truth assignments τ : B → {0, 1}, the restriction F [τ ] of F to τ belongs
to the base class C. Note that if a strong C-backdoor set of size k is found,
then we can decide the satisfiability of the given formula by deciding the
satisfiability of 2k formulas that belong to the base class C. Based on this
concept, Nishimura, Ragde, and Szeider [21] propose algorithms for SAT
that search for strong backdoor sets of bounded size with respect to the base
classes HORN and 2CNF.

Another type of backdoor set can be defined by removing literals from
a formula associated with a set B of variables. We say that B is a deletion
C-backdoor set if F −B ∈ C, where F −B denotes the formula obtained from
F by removing all the literals x, x for x ∈ B from the clauses of F . In fact,
this definition forms the basis of the detection of strong HORN-backdoors
sets and strong 2CNF-backdoor sets, since B is a strong HORN-backdoor
set (strong 2CNF-backdoor set) of a formula F if and only if B is a deletion
HORN-backdoor set (deletion 2CNF-backdoor set, respectively). In general,
deletion C-backdoor sets are not necessarily strong C-backdoor sets. However,
if all subsets of a formula in C also belong to C (C is clause-induced), then
indeed deletion C-backdoor sets are strong C-backdoor sets.

In this paper we extend the algorithmic use of backdoor sets for SAT to
the counting problem #SAT. It is easy to see that the number of models of a
formula F equals the sum over the number of models of the restrictions F [τ ]
for all truth assignments τ : B → {0, 1} for a set B of variables of F . Hence,
if we can solve #SAT for the elements of a base class C in polynomial time,
then we can solve #SAT for a formula F in time 2knO(1) provided that we
know a strong C-backdoor set of F of size at most k. Hence, to convert the
above considerations into an algorithm for #SAT, we need to identify a base
class C for which the following holds:

1. #SAT can be solved in polynomial time for formulas in C, and
2. for a given formula F we can find strong C-backdoor sets of bounded size

efficiently.

The second condition can be relaxed to deletion C-backdoor sets if C is clause-
induced.

To this end, we introduce the clause-induced class CLU of cluster formu-
las. A cluster formula is a variable-disjoint union of so-called hitting formulas ;
any two clauses of a hitting formula clash in at least one literal. The known
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polynomial-time algorithm for computing the number of models of a hit-
ting formula [16] can be extended in a straight-forward way to compute the
number of models of a cluster formula.

A strong CLU-backdoor set of size k of a formula F with n variables
can obviously be found by exhaustive search, considering all O(nk) sets of k
variables. This approach does not yield a fixed-parameter algorithm and be-
comes inefficient for large n even if k is small. We show in Section 3.1 that
under a certain complexity theoretic assumption, there is no algorithm that
is significantly faster than exhaustive search (Theorem 4). We overcome this
limitation by restricting by k the size of a smallest deletion CLU-backdoor
set. In Theorem 10 we propose a fixed-parameter algorithm that for a given
formula either finds a deletion CLU-backdoor set of size at most k or decides
that the given formula has no deletion CLU-backdoor set of size at most k.

To develop such an algorithm, we proceed as follows. We associate with
every formula F a certain graph G(F ), the obstruction graph of F , which can
be obtained in polynomial time. The vertex set of G(F ) is the set of variables
of F . We show that every vertex cover of G(F ) is a strong CLU-backdoor
set of F ; recall that a vertex cover is a set S of vertices such that every
edge is incident with a vertex in S. Now we can apply known vertex cover
algorithms, e.g., the algorithm of Chen, Kanj, and Xia [4] for the detection
of strong CLU-backdoor sets. Of related interest is Gramm et al.’s work [14]
on a graph editing problem involving cluster graphs (i.e., disjoint unions of
cliques).

1.3 Clustering-Width

We define the clustering-width of a formula F as the size of a smallest vertex
cover of the obstruction graph of F . It follows from our results that the
clustering-width of a formula F is a lower bound on the size of a smallest
deletion CLU-backdoor set of F and an upper bound on the size of a smallest
strong CLU-backdoor set of F .

Finally, we exhibit a class of formulas of bounded clustering-width for
which all the parameters clique-width, branchwidth, and treewidth are un-
bounded. We also exhibit a class of formulas with unbounded clustering-
width for which all the parameters clique-width, branchwidth, and treewidth
are bounded. Theorem 16 establishes the incomparability of various param-
eters with clustering-width.

2 Preliminaries

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), rep-
resented as sets of clauses. That is, a literal is a (propositional) variable x
or a negated variable x; a clause is a finite set of literals not containing a
complementary pair x and x; a formula is a finite set of clauses. For a literal
ℓ = x we write ℓ = x; for a clause C we set C = { ℓ : ℓ ∈ C }. For a clause C,
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var(C) denotes the set of variables x with x ∈ C or x ∈ C. Similarly, for a
formula F we write var(F ) =

⋃
C∈F var(C).

We say that two clauses C, D overlap if C ∩ D 6= ∅; we say that C and
D clash if C and D overlap. Note that two clauses can clash and overlap at
the same time.

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1 − τ(x) for x ∈ X . F [τ ] denotes the formula obtained from F by removing
all clauses that contain a literal x with τ(x) = 1 and by removing from the
remaining clauses all literals y with τ(y) = 0; F [τ ] is the restriction of F to
τ . Note that var(F [τ ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1}
and every formula F . A truth assignment τ : X → {0, 1} satisfies a formula
F if F [τ ] = ∅. A truth assignment τ : var(F ) → {0, 1} that satisfies F is a
model of F . We denote by #(F ) the number of models of F . A formula F
is satisfiable if #(F ) > 0. The satisfiability problem SAT is the problem of
deciding whether a given formula is satisfiable. #SAT, the counting version
of SAT, is the problem of determining #(F ) for a given formula F . SAT
and #SAT are complete problems for the complexity classes NP and #P,
respectively.

The following concept of connectedness of formulas will be useful below.
We call a formula F connected if for any two clauses C, D ∈ F there exists
a sequence of clauses C1, . . . , Cr ∈ F such that C1 = C, Cr = D, and
var(Ci)∩var(Ci+1) 6= ∅ holds for all i ∈ {1, . . . , r−1}. A maximal connected
subset of a formula is a connected component.

2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important con-
cepts of parameterized complexity. For an in-depth treatment of the subject
we refer the reader to other sources [7,20].

The instances of a parameterized problem can be considered as pairs
(I, k) where I is the main part of the instance and k is the parameter of
the instance; the latter is usually a non-negative integer. A parameterized
problem is fixed-parameter tractable if instances (I, k) of size n (with respect
to some reasonable encoding) can be solved in time O(f(k)nc) where f is a
computable function and c is a constant independent of k.

The framework of parameterized complexity offers a completeness the-
ory, similar to the theory of NP-completeness, that allows the accumulation
of strong theoretical evidence that a parameterized problem is not fixed-
parameter tractable. This completeness theory is based on the weft hierarchy
of equivalence classes W[1], W[2], . . . , W[P] of certain parameterized decision
problems under parameterized reductions. A parameterized reduction is a
straightforward extension of a polynomial-time many-one reduction that en-
sures the parameter for one problem maps into the parameter for another
(see [7] for details).

Below we will refer to the following parameterized decision problem, which
is known to be W[2]-complete [7].
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hitting set

Instance: A family S of finite sets S1, . . . , Sm and an integer k ≥ 0.
Parameter: The integer k ≥ 0.
Question: Is there a subset R ⊆

⋃m

i=1 Si of size at most k such that
R ∩ Si 6= ∅ for all i = 1, . . . , m? (R is a hitting set of S)

2.3 Backdoor Sets

Consider a formula F and a set B of variables of F . A set B ⊆ var(F ) is
a strong backdoor set of F with respect to C (or strong C-backdoor set, for
short) if B ⊆ var(F ) and for every truth assignment τ : B → {0, 1} we have
F [τ ] ∈ C. For every formula F and every set B ⊆ var(F ) we have

#(F ) =
∑

τ :B→{0,1}

#(F [τ ]). (1)

Thus, if B is a strong C-backdoor set of a formula F , then determining #(F )
reduces to determining the number of satisfying assignments for 2|B| formulas
of the base class C.

Now consider a base class C of formulas for which the problems #SAT
and recognition can be solved in polynomial time. Thus, when we have found
a small strong C-backdoor set of F , we can compute #(F ) efficiently. A key
question is whether we can find a small backdoor set if it exists. To study
this question, we define for every base class C the following parameterized
problem.

strong C-backdoor

Input: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

For base classes that have a certain property, we can relax the problem
strong C-backdoor as follows. For a formula F and a set X of variables
let F − X denote the formula obtained from F by removing all literals x
and x from the clauses of F . We call a set B ⊆ var(F ) a deletion backdoor
set with respect to a base class C (or deletion C-backdoor set, for short) if
F −B ∈ C. Furthermore, we define a base class C to be clause-induced if for
every F ∈ C and every F ′ ⊆ F , also F ′ ∈ C.

Lemma 1 Let F be a formula and C a clause-induced base class. Every
deletion C-backdoor set of F is also a strong C-backdoor set.

Proof The result follows directly from the fact that F [τ ] ⊆ F − X holds for
every truth assignment τ : X → {0, 1}. ⊓⊔

For a base class C, smallest deletion backdoor sets can be larger than
smallest strong backdoor sets. However, if the detection of strong C-back-
door sets is fixed-parameter intractable, we can still hope that the detection
of deletion C-backdoor sets is fixed-parameter tractable. We state the corre-
sponding parameterized problem:
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deletion C-backdoor

Input: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a deletion C-backdoor set of size at most k?

2.4 Hitting Formulas and Cluster Formulas

A formula is a hitting formula if any two of its clauses clash (see [18]). A clus-
ter formula is the variable-disjoint union of hitting formulas. In other words,
a formula is a cluster formula if and only if all its connected components are
hitting formulas. We denote the class of all hitting formulas by HIT and the
class of all cluster formulas by CLU.

The next lemma is due to an observation of Iwama [16].

Lemma 2 A hitting formula F with n variables has exactly 2n −∑
C∈F 2n−|C| models.

Proof Let F be a hitting formula with n variables. For a clause C ∈ F let TC

denote the set of all truth assignments τ : var(F ) → {0, 1} that do not satisfy
C. Obviously |TC | = 2n−|C| since TC contains exactly those assignments that
set all literals in C to 0. Since F is a hitting formula, the sets TC and TC′ are
disjoint for any two distinct clauses C, C′ ∈ F . Hence the lemma follows. ⊓⊔

Lemma 3 #SAT can be solved in polynomial time for cluster formulas.

Proof If a formula F is the variable-disjoint union of formulas F1, . . . , Fq,
then #(F ) =

∏q

i=1 #(Fi). Thus the result follows directly from Lemma 2.
⊓⊔

By means of the previous lemma we can consider CLU as the base class
for a backdoor set approach to #SAT. Observe that CLU is clause-induced.

3 Clustering Formulas and Backdoor Sets

3.1 Finding Smallest Strong CLU-Backdoor Sets

In this section we show that the detection of strong CLU-backdoor sets is
fixed-parameter intractable.

We shall use the following construction. Let D be a directed graph. We
associate with D a formula FD where every arc a of D corresponds to a
variable xa of F , and every vertex v of D corresponds to a clause Cv of F .
There is an outgoing arc a from v if and only the clause Cv contains the
literal xa and there is an incoming arc b to v if and only if the clause Cv

contains the literal xb. Note that if D is the orientation of a complete graph,
then FD is a hitting formula.

Theorem 4 The problem strong CLU-backdoor is W[2]-hard.
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Proof We give a parameterized reduction from the W[2]-complete problem
hitting set as defined in Section 2.2. Let S = S1, . . . , Sm be an instance
of hitting set such that

⋃m

i=1 Si = {x1, . . . , xn}. Let D be an orientation
of a complete graph with r = (m + 1)(k + 1) vertices. Consider the hitting
formula FD. We partition FD into formulas F1, . . . , Fm, H such that each of
the partite sets contains exactly k + 1 clauses. For i = 1, . . . , m we let

F ′
i = {C ∪ Si : C ∈ Fi }.

Finally, we set C∗ = {x1, . . . , xn} and

F = {C∗} ∪
m⋃

i=1

F ′
i ∪ H.

We claim that S has a hitting set of size at most k if and only if F has a
strong CLU-backdoor set of size at most k.

Let R 6= ∅ be a hitting set of S and consider any truth assignment τ :
R → {0, 1}. If τ sets at least one variable to 0, then τ satisfies the clause C∗;
obviously F [τ ] is then a hitting formula. Now assume that τ sets all variables
of R to 1. Since R is a hitting set, it follows by definition of the sets F ′

i that τ
satisfies the formula

⋃m

i=1 F ′
i . Hence F [τ ] = {C}∪H for some subset C of C∗.

Thus F [τ ] is the variable disjoint union of the hitting formulas {C} and H .
We have shown that F [τ ] ∈ CLU for every truth assignment τ : R → {0, 1};
i.e., R is a strong CLU-backdoor set of F .

Conversely, let B be a strong CLU-backdoor set of F with |B| ≤ k. We
show that R = B∩{x1, . . . , xn} is a hitting set of S. Assume to the contrary
that there is some i0 ∈ {1, . . . , m} such that R∩ Si0 = ∅. Consider the truth
assignment τ : B → {1}. The restriction F [τ ] contains the clause C = C∗ \B
with Si0 ⊆ C. Since |B| ≤ k and |F ′

i0
| = k + 1, there is at least one clause

Ci0 ∈ F ′
i0

with var(Ci0)∩B = ∅. Hence Ci0 ∈ F [τ ]. We conclude similarly that
there is at least one clause CH ∈ H with var(CH) ∩ B = ∅; thus CH ∈ F [τ ].
Ci0 contains a variable xi for i ∈ {1, . . . , n}, hence Ci0 and C∗ clash. However,
since B ∩ var(Ci0 ) = ∅, xi /∈ B and so xi ∈ C. Moreover, Ci0 and CH clash
by the definition of F ; since var(Ci0) ∩ B = ∅ and var(CH) ∩ B = ∅, Ci0

and CH belong to F [τ ]. In summary, F [τ ] contains three distinct clauses C,
Ci0 , and CH with var(C) ∩ var(Ci0 ) 6= ∅ and var(Ci0) ∩ var(CH) 6= ∅, but
var(C)∩var(CH) = ∅. Thus C and CH are two clauses that do not clash but
belong to the same connected component of F [τ ]. Hence F [τ ] is not a cluster
formula, a contradiction. Whence R is indeed a hitting set of S. ⊓⊔

A parameterized problem gives rise to a traditional “non-parameterized”
problem where the parameter is taken as part of the input. The proof of
Theorem 4 gives a polynomial-time many-one reduction of the NP-hard non-
parameterized version of hitting set [10] to the non-parameterized version
of strong CLU-backdoor. This shows that the non-parameterized version
of strong CLU-backdoor is NP-hard.

We will show in sections below that the concept of deletion backdoor sets
can be used to find small strong backdoor sets with respect to CLU. Next
we give an example that shows that for the base class CLU, smallest deletion
backdoor sets can be larger that smallest strong backdoor sets.
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Consider the formula

F = {{x1, . . . , xn}, {x1, . . . , xn, y1, . . . , yn}, {y1, . . . , yn}}.

Note that each of the variables of F forms a strong CLU-backdoor set of F ;
e.g., B = {x1} is a strong CLU-backdoor set. However, we need to delete at
least n variables in order to obtain a cluster formula. Thus a smallest strong
CLU-backdoor set of F has size 1, but every deletion CLU-backdoor set of
F has size at least n.

3.2 Obstructions

In the following results, it is helpful to characterize cluster formulas in terms
of obstructions. An overlap obstruction is a formula {C1, C2} consisting of
two clauses that overlap but do not clash. With an overlap obstruction we
associate the following pair of sets of variables:

{var(C1 ∩ C2), var(C1 △C2)}.

Here C1 △C2 denotes the symmetric difference (C1 \ C2) ∪ (C2 \ C1) of C1

and C2. A clash obstruction is a formula {C1, C2, C3} where C1 and C2 clash
such that (C1 \C3) ∩C2 6= ∅, C2 and C3 clash such that (C3 \C1) ∩C2 6= ∅,
and C1 and C3 do not clash. (Any two of the three clauses may overlap.)
With a clash obstruction we associate the following pair of sets of variables:

{var((C1 \ C3) ∩ C2), var((C3 \ C1) ∩ C2)}.

We say that an overlap or clash obstruction F ′ is an obstruction of a formula
F if F ′ is a subset of F . A pair {X, Y } of sets of variables is a deletion pair
of F if the pair is associated with an overlap or clash obstruction of F . It
follows from the definitions of overlap and clash obstructions that the two
sets in a deletion pair are nonempty and disjoint.

Lemma 5 A formula is a cluster formula if and only if it has no overlap or
clash obstruction.

Proof If a formula F contains an overlap or clash obstruction, then there are
two clauses C, D ∈ F that belong to the same connected component of F
but do not clash. Hence F is not a cluster formula.

Conversely, consider a formula F that does not contain any overlap or
clash obstructions. We show that F is a cluster formula. Consider a connected
component F ′ of F . If |F ′| = 1 then F ′ is a hitting formula; hence assume
|F ′| > 1. We show that any two clauses of F ′ clash. Choose two arbitrary
clauses C, D ∈ F ′. Since F ′ is connected, there is a sequence of clauses
C1, . . . , Cr ∈ F such that C1 = C, Cr = D, and var(Ci) ∩ var(Ci+1) 6=
∅ holds for all i ∈ {1, . . . , r − 1}. We observe that Ci and Ci+1 clash for
all i ∈ {1, . . . , r − 1} since otherwise Ci and Ci+1 would form an overlap
obstruction. It now follows inductively that the clauses C1 and Ci clash for
all i ∈ {3, . . . , r} since otherwise either C1 and Ci would form an overlap
obstruction or the clauses C1, Ci−1, and Ci would form a clash obstruction.
Thus, indeed, C and D clash. Whence F ′ is a hitting formula. ⊓⊔
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Lemma 6 Let F be a formula and B ⊆ var(F ). If F−B is a cluster formula,
then X ⊆ B or Y ⊆ B holds for every deletion pair {X, Y } of F .

Proof Assume that F − B is a cluster formula and suppose to the contrary
that there is a deletion pair {X, Y } of F such that X \B 6= ∅ and Y \B 6= ∅.

First we consider the case that {X, Y } is the deletion pair of an overlap
obstruction {C1, C2} ⊆ F with X = var(C1 ∩C2) and Y = var(C1∆C2). Let
C′

1 = C1 \ (B ∪B) and C′
2 = C2 \ (B ∪B) and observe that C′

1, C
′
2 ∈ F −B.

Since C1 and C2 do not clash, also C′
1 and C′

2 do not clash. Since Y \B 6= ∅,
C′

1 and C′
2 are distinct; since X \B 6= ∅, C′

1 and C′
2 overlap. Hence {C′

1, C
′
2}

is an overlap obstruction of F −B, and so F −B is not a cluster formula by
Lemma 5, a contradiction.

Next we consider the case that {X, Y } is the deletion pair of a clash
obstruction {C1, C2, C3} ⊆ F with X = var((C1\C3)∩C2) and Y = var((C3\
C1)∩C2). For i = 1, 2, 3 we consider C′

i = Ci \ (B ∪B′) ∈ F −B. It follows,
similarly as in the first case above, that {C′

1, C
′
2, C

′
3} is a clash obstruction

of F − B, again a contradiction with Lemma 5.
We conclude that for every deletion pair {X, Y } of F either X ⊆ B or

Y ⊆ B must be the case. ⊓⊔

3.3 Finding Backdoor Sets Using Vertex Covers

For a formula F let GF denote the graph with vertex set var(F ); two variables
x and y are joined in GF by an edge if and only if there is a deletion pair
{X, Y } of F with x ∈ X and y ∈ Y . We call GF the obstruction graph
of F . Note that the obstruction graph of a formula can be constructed in
polynomial time.

We consider vertex covers of obstruction graphs. Recall that a vertex cover
of a graph is a set of vertices that contains at least one end of every edge
of the graph. It is NP-hard to determine, given a graph and an integer k,
whether the graph has a vertex cover of size at most k. Parameterized by the
size of the vertex cover, however, the problem is fixed-parameter tractable.
In fact, vertex cover is the best-studied problem in parameterized complexity
with a long history of improvements [3]. The current best worst-case time
complexity for the parameterized vertex cover problem is due to Chen, Kanj,
and Xia [4]:

Theorem 7 [4] Given a graph G on n vertices, one can find in time
O(1.273k + nk) (and in polynomial space) a vertex cover of G of size at
most k, or determine that no such vertex cover exists.

The next two lemmas relate backdoor sets and vertex covers of obstruction
graphs.

Lemma 8 Every deletion CLU-backdoor set of a formula F is a vertex cover
of the obstruction graph of F .
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Proof Let B be a deletion CLU-backdoor set of F . Let xy be any edge of the
obstruction graph GF . We show that either x or y is in B. By definition of
GF there is a deletion pair {X, Y } of F with x ∈ X and y ∈ Y . Since F −B
is a cluster formula, X ⊆ B or Y ⊆ B follows from Lemma 6. Thus x ∈ B
or y ∈ B follows. Whence B is indeed a vertex cover of GF . ⊓⊔

Lemma 9 Every vertex cover of the obstruction graph of a formula F is a
strong CLU-backdoor set of F .

Proof Let B be a vertex cover of the obstruction graph of a formula F .
Assume to the contrary that B is not a strong CLU-backdoor set of F .
Thus, there is an assignment τ : B → {0, 1} such that F [τ ] /∈ CLU. Let
B0 = { y ∈ B ∪ B : τ(y) = 0 }; i.e., B0 is the set of all literals over variables
of B that are mapped to 0 under τ . By Lemma 5, F [τ ] contains overlap or
clash obstructions.

First assume that F [τ ] contains an overlap obstruction. Thus F [τ ] con-
tains two clauses C1, C2 that overlap but do not clash. For the associated
obstruction pair {X, Y } with X = var(C1 ∩ C2) and Y = var(C1 △C2)
choose x ∈ X and y ∈ Y . By definition of F [τ ] it follows that F contains
clauses C′

1, C
′
2 with C1 = C′

1 \ B0 and C2 = C′
2 \ B0. It follows that C′

1 and
C′

2 overlap but do not clash, thus {C′
1, C

′
2} is an overlap obstruction of F .

We have x ∈ X ⊆ var(C′
1 ∩ C′

2) and y ∈ Y ⊆ var(C′
1 △C′

2). Thus xy is an
edge of GF . Since B is a vertex cover of GF , either x or y must belong to B.
This contradicts the fact that var(F [τ ]) ∩ B = ∅.

Next assume that F [τ ] contains a clash obstruction. Thus F [τ ] contains
three clauses C1, C2, C3 where C1 and C2 clash, C2 and C3 clash, and C1

and C3 do not clash. The corresponding obstruction pair is {X, Y } with X =
var((C1 \C3)∩C2) and Y = var((C3 \C1)∩C2). We choose x ∈ X and y ∈ Y .
Similarly as in the first case we conclude that F contains clauses C′

1, C
′
2, C

′
3

with Ci = C′
i \ B0 for i ∈ {1, 2, 3}. Obviously C′

1 and C′
2 clash, C′

2 and C′
3

clash, but C′
1 and C′

3 do not clash. Thus {C′
1, C

′
2, C

′
3} is a clash obstruction

of F . We have x ∈ X ⊆ var((C′
1 \C′

3)∩C′
2) and y ∈ Y ⊆ var((C′

3 \C′
1)∩C′

2).
Thus xy is an edge of GF . Since B is a vertex cover of GF either x or y must
belong to B. This contradicts the fact that var(F [τ ]) ∩ B = ∅.

Whence it follows that B is indeed a strong CLU-backdoor set of F . ⊓⊔

From Theorem 7 and the previous two lemmas we get immediately the
main result of this section.

Theorem 10 Given a formula with n variables together with its obstruc-
tion graph and an integer k, in time O(1.273k + nk) we can find a strong
CLU-backdoor set of F of size at most k, or decide that the size of every
deletion CLU-backdoor set of F exceeds k.

3.4 Clustering-width

In the following, we consider as a parameter any computable function p that
assigns to each formula F a non-negative integer p(F ). We assume that the
parameter is invariant under changing the names of variables.
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The following three parameters arise from the considerations of this paper.
We denote by strCLU(F ) the size of a smallest strong backdoor set of a
formula F with respect to CLU, and we denote by delCLU(F ) the size of a
smallest deletion backdoor set of F with respect to CLU. The clustering-width
clu(F ) of F is the size of a smallest vertex cover of the obstruction graph of
F . Consequently, HIT is the class of formulas with clustering-width 0. From
Lemmas 1 and 8 we know that for every formula F the following holds:

strCLU(F ) ≤ clu(F ) ≤ delCLU(F ). (2)

For a parameter p we consider the following generic parameterized problem.

#SAT(p)
Instance: A formula F and a non-negative integer k such that
p(F ) ≤ k.
Parameter: The integer k.
Question: What is the total number of models of F? (I.e., what is the
number #(F )?)

The definition of fixed-parameter tractability carries over from decision prob-
lems to counting problems in a natural way. Flum and Grohe [9] provide a
framework of intractability of parameterized counting problems.

Note that the above formulation of #SAT(p) is a “promise problem” in
the sense that we only need to consider instances (F, k) for which we can take
as granted that p(F ) ≤ k holds. However, for most parameters p considered in
the sequel for which #SAT(p) is fixed-parameter tractable, deciding whether
p(F ) ≤ k actually holds is also fixed-parameter tractable with respect to the
parameter k. An exception is the parameter delCLU; however, also in that
case we do not depend on the promise as will be discussed below.

By Theorem 10, deciding whether clu(F ) ≤ k is fixed-parameter
tractable; if clu(F ) ≤ k, then it is also fixed-parameter tractable to pro-
duce a strong CLU-backdoor set B of F of size at most k. We then compute
#(F ) as the sum of #(F [τ ]) over all truth assignments τ : B → {0, 1}.
Whence we have the following corollary to Theorem 10. The algorithm is
summarized below. The first step can be executed in polynomial time. The
fixed-parameter tractability of computing a vertex cover follows from Theo-
rem 7. Finally, each #F [τ ] can be computed in polynomial time, as each is
a clustering formula.

Algorithm: Input F , k
Step 1: Compute the obstruction graph GF .
Step 2: Compute a vertex cover B of size at most k of GF : if such a
vertex cover does not exist, stop and output “clu(F ) > k”.
Step 3: Compute s =

∑
τ :B→{0,1} #F [τ ] and output s.

Corollary 11 The problem #SAT(clu) is fixed-parameter tractable.

Note that the algorithm outlined above also checks whether the promise
clu(F ) ≤ k is true. Furthermore, from (2) it follows that every instance (F, k)
of #SAT(delCLU) is also an instance of #SAT(clu). Whence Corollary 11 also
implies fixed-parameter tractability of #SAT(delCLU).



Solving #SAT Using Vertex Covers 13

Corollary 12 The problem #SAT(delCLU) is fixed-parameter tractable.

Although we do not know whether deletion C-backdoor is fixed-
parameter tractable, we emphasize that the algorithm for Corollary 12 will
not produce an incorrect solution, even if the promise delCLU(F ) ≤ k does
not hold. Consider F and k with delCLU(F ) > k. The algorithm checks
whether clu(F ) ≤ k. If clu(F ) ≤ k, then the algorithm outputs the correct
solution #SAT(F ). If, however, clu(F ) > k, then we know by (2) that also
delCLU(F ) > k, hence the algorithm can reject the input.

4 Comparison with Other Parameters

4.1 Other Width Parameters

Several parameters are defined in terms of the following directed and undi-
rected graphs associated with a formula F . The primal graph P (F ) is the
graph whose vertices are the variables of F , and where two variables x and y
are joined by an edge if and only if F contains a clause C with x, y ∈ var(C).
The formula hypergraph H(F ) is the hypergraph whose vertices are the vari-
ables of F and whose hyperedges are the sets var(C) for clauses C of F . The
incidence graph I(F ) is the bipartite graph where one vertex class consists
of the variables of F , the other vertex class consists of the clauses of F ; a
variable x and a clause C are joined by an edge if and only if x ∈ var(C).
The directed or signed incidence graph Id(F ) arises from I(F ) by orienting
edges from C to x if x ∈ C, and from x to C if x ∈ C. The underlying
graph GD of a directed graph D is the undirected graph obtained from D
by “forgetting” the orientation of edges and by replacing parallel edges by
a single representative. Thus I(F ) is the underlying graph of Id(F ). For an
undirected graph G we consider its treewidth tw(G), its branchwidth bw(G),
and its clique-width cwd(G); clique-width is also defined for directed graphs.
These graph parameters are defined below; for more detailed discussion we
refer the reader to related work [1,2,5,6,13,26].

The notion of tree-width is derived from the decomposition of a graph as
a tree. Let G be a graph, T = (V, E) a tree, and χ a labeling of the vertices
of T by sets vertices of G. Then (T, χ) is a tree decomposition of G if the
following conditions hold:

(T1) Every vertex of G belongs to χ(t) for some vertex t of T ;
(T2) for every edge (v, w) of G there is some vertex t of T such that v, w ∈

χ(t);
(T3) for any vertices t1, t2, t3 of T , if t2 lies on a path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree decomposition (T, χ) is the maximum |χ(t)| − 1 over
all vertices t of T . The tree-width tw(G) of G is the minimum width over all
its tree-decompositions.

A branch decomposition is defined in terms of a hypergraph. Let H be
a hypergraph, T = (V, E) a ternary tree (i.e., all vertices of T have either
degree 0 or 3), and τ a bijection from the set of leaves of T to the set of
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hyperedges of H; (T, τ) is called a branch decomposition of H. The order of
an edge e of T is the number of vertices of H which are incident to hyperedges
τ(t1), τ(t2) such that t1 and t2 belong to different components of T − e. The
width of a branch decomposition (T, τ) is the maximum order of all edges
of T ; the branch-width bw(H) of a hypergraph H is the smallest width over
all its branch decompositions.

Finally, clique-width is defined as follows. For k a positive integer, a
k-graph is a graph whose vertices are labeled by integers from {1, . . . , k}. We
consider an arbitrary graph as a k-graph with all vertices labeled by 1. We call
the k-graph consisting of exactly one vertex v (say, labeled by i ∈ {1, . . . , k})
an initial k-graph and denote it by i(v). Let C(k) denote the class of k-graphs
which can be constructed from initial k-graphs by means of the following
three operations.

(C1) If G, H ∈ C(k) and V (G) ∩ V (H) = ∅, then the union of G and H ,
denoted by G ⊕ H , belongs to C(k).

(C2) If G ∈ C(k) and i, j ∈ {1, . . . , k}, then the k-graph ρi→j(G) obtained
from G by changing the labels of all vertices which are labeled by i to j
belongs to C(k).

(C3) If G ∈ C(k), i, j ∈ {1, . . . , k}, and i 6= j, then the k-graph ηi,j(G)
obtained from G by connecting all vertices labeled by i with all vertices
labeled by j belongs to C(k).

The clique-width cwd(G) of a graph G is the smallest integer k such that
G ∈ C(k).

By means of primal, incidence and directed incidence graphs, these
graph parameters apply to formulas as follows: For a formula F we call
tw(F ) = tw(P (F )) the primal treewidth of F , tw∗(F ) = tw(I(F )) the inci-
dence treewidth of F , bw(F ) = bw(H(F )) the branchwidth of F , cwd(F ) =
cwd(Id(F )) the clique-width of F .

4.2 Comparisons

In this section we introduce a general framework for comparing parameters
that allow fixed-parameter algorithms for #SAT.

We introduce the notion of dominance for the purpose of relating param-
eters with respect to fixed-parameter tractability, so that if p dominates q,
then #SAT(p) being fixed-parameter tractable implies that #SAT(q) is fixed-
parameter tractable and #SAT(q) being W-hard implies #SAT(p) is W-hard.
For two formula parameters p and q we say that p dominates q if there is a
computable function f such that p(F ) ≤ f(q(F )) holds for all formulas F ,
and that p strictly dominates q if p dominates q but q does not dominate p.
We say that p and q are incomparable if neither p dominates q nor q dom-
inates p. From known results it follows that clique-width strictly dominates
incidence treewidth, and that, in turn, incidence treewidth dominates primal
treewidth and branchwidth [26]. Whence, clique-width can be considered as
the most general parameter considered so far. The fixed-parameter tractabil-
ity of #SAT(cwd) follows from work of Courcelle, Makowsky, and Rotics [5]
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and that of Oum and Seymour [22], improved by Fischer, Makowsky, and
Ravve [8]. Samer and Szeider [25] present dynamic programming algorithms
for #SAT(tw) and #SAT(tw∗). By the above relationships among the var-
ious parameters, this result also implies the fixed-parameter tractability of
#SAT(tw∗), #SAT(tw), and #SAT(bw):

Theorem 13 [1,5,8,22,26] The problems #SAT(cwd), #SAT(tw∗),
#SAT(tw), and #SAT(bw), are fixed-parameter tractable.

The question arises how our new parameter, the clustering-width, is re-
lated to the other parameters. Does any of the above parameters dominate
clustering-width, or does clustering-width dominate any of the other parame-
ters? We will show that the answer to both questions is ‘no’: clustering-width
is incomparable with any of the other parameters.

Lemma 14 The class HIT has unbounded clique-width.

Proof Let n ≥ 3 be an integer and let G denote an n×n grid. That is, G is a
bipartite graph with n2 vertices vi,j , i, j ∈ {1, . . . , n}, where two vertices vi,j

and vi′,j′ are joined by an edge if and only if either i = i′ and |j − j′| = 1,
or |i − i′| = 1 and j = j′. Let V1, V2 be a bipartition of the vertex set of
G. We obtain a formula F with I(F ) = G by considering vertices in V1 as
variables and setting F = {N(vi,j) : vi,j ∈ V2 }; here N(vi,j) denotes the set
of neighbors of vi,j in G.

Consider a directed graph D whose underlying graph is the complete
graph Km for m = |V2|. We construct the hitting formula FD as described
at the beginning of Section 3.1; we assume that F and FD do not share
variables. Observe that |FD| = m; thus we can write F = {C1, . . . , Cm} and
FD = {C1,D, . . . , Cm,D}, ordering the clauses arbitrarily.

Let H be the formula {C1∪C1,D, . . . , Cm ∪Cm,D}. Clearly H is a hitting
formula since FD is a hitting formula. Golumbic and Rotics [11] show that the
clique-width of n × n grids, n ≥ 3, is exactly n + 1, hence cwd(G) = n + 1.
Note that I(F ) = G is isomorphic to a vertex-induced subgraph of I(H);
this implies that cwd(H) ≥ cwd(G) = n + 1 (see Courcelle and Olariu [6]).
Moreover, also noted by Courcelle and Olariu, the clique-width of a directed
graph is at least as large as the clique-width of its underlying graph; hence
we have cwd(Id(H)) ≥ cwd(I(H)) ≥ cwd(I(F )) = cwd(G) = n + 1. We
conclude that for every positive integer n there exists a hitting formula H
with cwd(H) > n. ⊓⊔

Lemma 15 The class of formulas with primal treewidth 1 has unbounded
clustering-width.

Proof Let C denote the class of formulas with primal treewidth 1. Let n be
an even positive integer and consider the formula

F = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}}.

The primal graph of F is a path. Since paths have treewidth 1, F ∈ C follows.
For every i = 1, . . . , n − 1, the formula F contains the overlap ob-

struction {{xi−1, xi}, {xi, xi+1}} with the corresponding deletion pair
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{{xi}, {xi−1, xi+1}}. There are no clash obstructions. The obstruction graph
is therefore a path P on the vertices x1, . . . , xn. Any vertex cover of P con-
tains at least n/2 vertices, hence clu(F ) ≥ n/2 follows.

As we can choose arbitrarily large n, C has unbounded clustering-width.
⊓⊔

In view of the relationships among the parameters cwd, tw∗, tw, and bw
stated above, the last two lemmas imply the following result.

Theorem 16 The parameters cwd, tw∗, tw, and bw, are all incomparable
with clustering-width.

5 Conclusion

Our main contributions include an exact algorithm for counting the models of
formulas in CNF as well as a resulting hardness index (clustering-width). The
approach used in our algorithm is that of detecting strong CLU-backdoor sets
of bounded size, applying a vertex cover algorithm to an obstruction graph
associated with the formula. Given a formula and its obstruction graph, for a
parameter k we can in O(1.273k+nk) time either find a strong CLU-backdoor
set of size at most k or decide that every deletion CLU-backdoor set of F
exceeds k, where n is the number of variables in the formula.

The clustering width of a formula is the size of a smallest vertex cover
of the obstruction graph of the formula. We demonstrate that this param-
eter is incomparable to the parameters clustering-width, primal treewidth,
treewidth, and branchwidth.

It would be interesting to complement our theoretical results with empiri-
cal evidence on the significance of our new parameter. In particular, it would
be interesting to know the clustering-width of CNF formulas that encode
real-world instances from different domains. However, one must choose the
encoding carefully in order to avoid a large clustering-width caused by the
gadgets of the encoding itself.

Finally, we observe that as a consequence of our results there is an efficient
algorithm to determine whether or not a CNF formula has small clustering-
width. For any #SAT algorithm on any type of inputs, we can use that
algorithm as subroutine in a variant of the algorithm, where the subroutine
is used to determine whether the clustering-width is small, and if so, to run
our #SAT algorithm.
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