Optimizing Over All Combinatorial Embeddings
of a Planar Graph
(Extended Abstract)

Petra Mutzel*! and René Weiskircher**2

! mutzel@mpi-sb.mpg.de
2 weiski@mpi-sb.mpg.de

Max—Planck—Institut fiir Informatik, Saarbriicken

Abstract. We study the problem of optimizing over the set of all com-
binatorial embeddings of a given planar graph. Our objective function
prefers certain cycles of G as face cycles in the embedding. The motiva-
tion for studying this problem arises in graph drawing, where the chosen
embedding has an important influence on the aesthetics of the drawing.
We characterize the set of all possible embeddings of a given biconnected
planar graph G by means of a system of linear inequalities with {0,1}-
variables corresponding to the set of those cycles in G which can appear
in a combinatorial embedding. This system of linear inequalities can be
constructed recursively using SPQR-trees and a new splitting operation.
Our computational results on two benchmark sets of graphs are surpris-
ing: The number of variables and constraints seems to grow only linearly
with the size of the graphs although the number of embeddings grows
exponentially. For all tested graphs (up to 500 vertices) and linear objec-
tive functions, the resulting integer linear programs could be generated
within 10 minutes and solved within two seconds on a Sun Enterprise
10000 using CPLEX.

1 Introduction

A graph is called planar when it admits a drawing into the plane without edge-
crossings. There are infinitely many different drawings for every planar graph,
but they can be divided into a finite number of equivalence classes. We call two
planar drawings of the same graph equivalent when the sequence of the edges in
clockwise order around each node is the same in both drawings. The equivalence
classes of planar drawings are called combinatorial embeddings. A combinatorial
embedding also defines the set of cycles in the graph that bound faces in a planar
drawing.

* Partially supported by DFG-Grant Mu 1129/3-1, Forschungsschwerpunkt “Effiziente
Algorithmen fiir diskrete Probleme und ihre Anwendungen”

** Supported by the Graduiertenkolleg “Effizienz und Komplexitdt von Algorithmen
und Rechenanlagen”

The complexity of embedding planar graphs has been studied by various
authors in the literature [5, 4, 6]. E.g., Bienstock and Monma have given poly-
nomial time algorithms for computing an embedding of a planar graph that
minimizes various distance functions to the outer face [5]. Moreover, they have
shown that computing an embedding that minimizes the diameter of the dual
graph is NP-hard.

In this paper we deal with the following optimization problem concerned with
embeddings: Given a planar graph and a cost function on the cycles of the graph.
Find an embedding IT such that the sum of the cost of the cycles that appear as
face cycles in IT is minimized. When choosing the cost 1 for all cycles of length
greater or equal to five and 0 for all other cycles, the problem is NP-hard [12].

Our motivation to study this optimization problem and in particular its inte-
ger linear programming formulation arises in graph drawing. Most algorithms for
drawing planar graphs need not only the graph as input but also a combinatorial
embedding. The aesthetic properties of the drawing often changes dramatically
when a different embedding is chosen.

Fig. 1. The impact of the chosen planar embedding on the drawing

Figure 1 shows two different drawings of the same graph that were generated
using the bend minimization algorithm by Tamassia [11]. The algorithm used
different combinatorial embeddings as input. Drawing 1(a) has 13 bends while
drawing 1(b) has only 7 bends. It makes sense to look for the embedding that
will produce the best drawing. Our original motivation has been the following.

In graph drawing it is often desirable to optimize some cost function over all
possible embeddings in a planar graph. In general these optimization problems
are NP-hard [9]. For example: The number of bends in an orthogonal planar
drawing highly depends on the chosen planar embedding. In the planarization
method, the number of crossings highly depends on the chosen embedding when

the deleted edges are reinserted into a planar drawing of the rest-graph. Both
problems can be formulated as flow problems in the geometric dual graph. A
flow between vertices in the geometric dual graph corresponds to a flow between
adjacent face cycles in the primal graph. Once we have characterized the set of all
feasible embeddings (via an integer linear formulation on the variables associated
with each cycle), we can use this in an ILP-formulation for the corresponding flow
problem. Here, the variables consist of ‘low variables’ and ‘embedding variables’.

This paper introduces an integer linear program whose set of feasible solu-
tions corresponds to the set of all possible combinatorial embeddings of a given
biconnected planar graph. One way of constructing such an integer linear pro-
gram is by using the fact that every combinatorial embedding corresponds to a
2-fold complete set of cycles (see MacLane [10]). The variables in such a program
are all simple cycles in the graph; the constraints guarantee that the chosen sub-
set of all simple cycles is complete and that no edge of the graph appears in
more than two simple cycles of the subset.

We have chosen another way of formulating the problem. The advantage
of our formulation is that we only introduce variables for those simple cycles
that form the boundary of a face in at least one combinatorial embedding of
the graph, thus reducing the number of variables tremendously. Furthermore,
the constraints are derived using the structure of the graph. We achieve this
by constructing the program recursively using a data structure called SPQR-
tree suggested by Di Battista and Tamassia ([2]) for the on-line maintenance
of triconnected components. The static variant of this problem was studied in
[?]. SPQR-trees can be used to code and enumerate all possible combinatorial
embeddings of a biconnected planar graph. Furthermore we introduce a new
splitting operation which enables us to construct the linear description recur-
sively.

Our computational results on two benchmark sets of graphs have been quite
surprising. We expected that the size of the linear system will grow exponentially
with the size of the graph. Surprisingly, we could only observe a linear growth.
However, the time for generating the system grows sub-exponentially; but for
practical instances it is still reasonable. For a graph with 500 vertices and 10'°
different combinatorial embeddings the construction of the ILP took about 10
minutes. Very surprising was the fact that the solution of the generated ILPs
took only up to 2 seconds using CPLEX.

Section 2 gives a brief description of the data structure SPQR-tree. In Sec-
tion 3 we describe the recursive construction of the linear constraint system using
a new splitting operation. Our computational results are described in Section 4.

2 SPQR-Trees

In this section, we give a brief description of the SPQR-tree data structure for
biconnected planar graphs. A connected graph is biconnected, if it has no cut
vertex. A cut vertez of a graph G = (V, E) is a vertex whose removal increases
the number of connected components. A connected graph that has no cut vertex

is called biconnected. A set of two vertices whose removal increases the number
of connected components is called a separation pair; a connected graph without
a separation pair is called triconnected.

SPQR-trees have been suggested by Di Battista and Tamassia ([2]). They
represent a decomposition of a planar biconnected graph according to its split
pairs. A split pair is a pair of nodes in the graph that is either connected by
an edge or has the property that its removal increases the number of connected
components. The split components of a split pair p are the maximal subgraphs of
the original graph, for which p is not a split pair. When a split pair p is connected
by an edge, one of the split components consists just of this edge together with
the incident nodes while the other one is the original graph without the edge.

The construction of the SPQR-tree works recursively. At every node v of the
tree, we split the graph into smaller edge-disjoint subgraphs. We add an edge to
each of them to make sure that they are biconnected and continue by computing
their SPQR-tree and making the resulting trees the subtrees of the node used
for the splitting. Every node of the SPQR-tree has two associated graphs:

— The skeleton of the node defined by a split pair p is a simplified version of the
whole graph where the split-components of p are replaced by single edges.

— The pertinent graph of a node v is the subgraph of the original graph that
is represented by the subtree rooted at v.

The two nodes of the split pair p that define a node v are called the poles
of v. For the recursive decomposition, a new edge between the poles is added
to the pertinent graph of a node which results in a biconnected graph that may
have multiple edges. The SPQR-tree has four different types of nodes that are
defined by the structure and number of the split components of its poles v, and
Up:

1. Q-node: The pertinent graph of the node is just the single edge e = {v,, v, }
. The skeleton consists of the two poles that are connected by two edges. One
of the edges represents the edge e and the other one the rest of the graph.

2. S-node: The pertinent graph of the node has at least one cut vertex (a node
whose removal increases the number of connected components). When we
have the cut vertices vy, vs to vy, they then split the pertinent graph into
the components Gy, G2 to Gg41. In the skeleton of the node, Gy to G411
are replaced by single edges and the edge between the poles is added. The
decomposition continues with the subgraphs G;, where the poles are v; and
vi11. Figure 2(a) shows the pertinent graph of an S-node together with the
skeleton.

3. P-node: v, and v in the pertinent graph have more than one split-components
G4 to Gy. In the skeleton, each G; is replaced by a single edge and the edge
between the poles is added. The decomposition continues with the subgraphs
G;, where the poles are again v, and vp. Figure 2(b) shows the pertinent
graph of a P-node with 3 split components and its skeleton.

4. R-node: None of the other cases is applicable, so the pertinent graph is
biconnected. The poles v, and v, are not a split pair of the pertinent graph.

In this case, the decomposition depends on the mazimal split pairs of the
pertinent graph with respect to the pair {v,,vy}. A split pair {vi, v} is
maximal with respect to {v,, vy}, if for every other split pair {v,v}}, there
is a split component that includes the nodes vy, v2, v, and v,. For each
maximal split pair p with respect to {v,,vs}, we define a subgraph G, of
the original graph as the union of all the split-components of p that do not
include v, and vy. In the skeleton, each subgraph G, is replaced by a single
edge and the edge between the poles is added. The decomposition proceeds
with the subgraphs defined by the maximal split pairs (see Fig. 2(c)).

Va V, V, V,
A A
v, A

A Vo

Vo Vo
(a) S-node (b) P-node
A < >
(¢) R-node

Fig. 2. Pertinent graphs and skeletons of the different node types of an SPQR-tree

The SPQR-tree of a biconnected planar graph G where one edge is marked
(the so-called reference edge) is constructed in the following way:

1. Remove the reference edge and consider the end-nodes of it as the poles of
the remaining graph G'. Depending on the structure of G’ and the number
of split components of the poles, choose the type of the new node v (S, P, R
or Q).

2. Compute the subgraphs G; to Gy as defined above for the different cases
and add an edge between the poles of each of the subgraphs.

3. Compute the SPQR-trees T to T} for the subgraphs where the added edge
is the reference edge and make the root of these trees the sons of v.

When we have completed this recursive construction, we create a new Q-node
representing the reference edge of G and make it the root of the whole SPQR-
tree by making the old root a son of the Q-node. This construction implies that
all leaves of the tree are Q-nodes and all inner nodes are S-, P-, or R-nodes.
Figure 3 shows a biconnected planar graph and its SPQR-tree where the edge
{1, 2} was chosen as the reference edge.

Fig. 3. A biconnected planar graph and its SPQR-tree

When we see the SPQR-tree as an unrooted tree, we get the same tree no
matter what edge of the graph was marked as the reference edge. The skeletons
of the nodes are also independent of the choice of the reference edge. Thus,
we can define a unique SPQR-tree for each biconnected planar graph. Another
important property of these trees is that their size (including the skeletons) is
linear in the size of the original graph and they can be constructed in linear time
([2])-

As described in [2], SPQR-trees can be used to represent all combinatorial
embeddings of a biconnected planar graph. This is done by choosing embeddings
for the skeletons of the nodes in the tree. The skeletons of S- and Q-nodes are
simple cycles, so they have only one embedding. The skeletons of R-nodes are
always triconnected graphs. In most publications, combinatorial embeddings are
defined in such a way, that only one combinatorial embedding for a triconnected
planar graph exists (note that a combinatorial embedding does not fix the outer
face of a drawing which realizes the embedding). Our definition distinguishes
between two combinatorial embeddings which are mirror-images of each other
(the order of the edges around each node in clockwise order is reversed in the
second embedding). When the skeleton of a P-node has k edges, there are (k—1)!
different embeddings of its skeleton.

Every combinatorial embedding of the original graph defines a unique com-
binatorial embedding for each skeleton of a node in the SPQR-tree. Conversely,
when we define an embedding for each skeleton of a node in the SPQR-tree, we

define a unique embedding for the original graph. The reason for this fact is that
each skeleton is a simplified version of the original graph where the split com-
ponents of some split pair are replaced by single edges. Thus, if the SPQR-tree
of G has r R-nodes and the P-nodes P, to P, where the skeleton of P; has L;
edges, than the number of combinatorial embeddings of G is exactly

k

27 (L — 1)

i=1

Because the embeddings of the R- and P-nodes determine the embedding of
the graph, we call these nodes the decision nodes of the SPQR-tree. In [3], the
fact that SPQR-trees can be used to enumerate all combinatorial embeddings of
a biconnected planar graph was used to devise a branch-and-bound algorithm for
finding a planar embedding and an outer face for a graph such that the drawing
computed by Tamassia’s algorithm has the minimum number of bends among
all possible orthogonal drawings of the graph.

3 Recursive Construction of the Integer Linear Program

3.1 The Variables of the Integer Linear Program

The skeletons of P-nodes are multi-graphs, so they have multiple edges between
the same pair of nodes. Because we want to talk about directed cycles, we can be
much more precise when we are dealing with bidirected graphs. A directed graph
is called bidirected if there exists a bijective function r : E — E such that for
every edge e = (v,w) with 7(e) = e® we have eft = (w,v) and r(ef*) = ¢ We can
turn an undirected graph into a bidirected graph by replacing each undirected
edge by two directed edges that go in opposite directions. The undirected graph
G that can be transformed in this way to get the bidirected graph G’ is called
the underlying graph of G'.

A directed cycle in the bidirected graph G = (V, E) is a sequence of edges of
the following form: ¢ = ((v1,v2), (v2,v3), - .-, (Vk,v1)) = (€1, €2, ..., e) with the
properties that every node of the graph is contained in at most two edges of ¢
and if £ = 2, then e; # es holds. We say a planar drawing of a bidirected graph
is the drawing of the underlying graph, so the embeddings of a bidirected graph
are identical with the embeddings of the underlying graph.

A face cycle in a combinatorial embedding of a bidirected planar graph is a
directed cycle of the graph, such that in any planar drawing that realizes the
embedding, the left side of the cycle is empty. Note that the number of face
cycles of a planar biconnected graph is m — n + 2 where m is the number of
edges in the graph and n the number of nodes.

Now we are ready to construct an integer linear program (ILP) in which the
feasible solutions correspond to the combinatorial embeddings of a biconnected
planar bidirected graph. The variables of the program are binary and they corre-
spond to directed cycles in the graph. As objective function, we can choose any

linear function on the directed cycles of the graph. With every cycle ¢ we asso-
ciate a binary variable z.. In a feasible solution of the integer linear program, a
variable x. has value 1 if the associated cycle is a face cycle in the represented
embedding and 0 otherwise. To keep the number of variables as small as possible,
we only introduce variables for those cycles that are a face cycle in at least one
combinatorial embedding of the graph.

3.2 Splitting an SPQR-Tree

We use a recursive approach to construct the variables and constraints of the ILP.
Therefore, we need an operation that constructs a number of smaller problems
out of our original problem such that we can use the variables and constraints
computed for the smaller problems to compute the ILP for the original problem.
This is done by splitting the SPQR-tree at some decision-node v. Let e be an
edge incident to v whose other endpoint is not a Q-node. Deleting e splits the
tree into two trees 77 and T>. We add a new edge with a Q-node attached to
both trees to replace the deleted edge and thus ensure that 77 and 75 become
complete SPQR-trees again. The edges corresponding to the new Q-nodes are
called split edges. For incident edges of v, whose other endpoint is a Q-node, the
splitting is not necessary. Doing this for each edge incident to v results in d + 1
smaller SPQR-trees, called the split-trees of v, where d is the number of inner
nodes adjacent to v . This splitting process is shown in Fig. 4. Since the new
trees are SPQR-trees, they represent planar biconnected graphs which are called
the split graphs of v. We will show how to compute the ILP for the original graph
using the ILPs computed for the split graphs.

Fig. 4. Splitting an SPQR-tree at an inner node

As we have seen, the number and type of decision-nodes in the SPQR-tree of
a graph determines the number of combinatorial embeddings. The subproblems

we generated by splitting the tree either have only one decision-node or at least
one fewer than the original problem.

3.3 The Integer Linear Program for SPQR-Trees with One Inner
Node

We observe that a graph whose SPQR-tree has only one inner node is isomorphic
to the skeleton of this inner node. So the split-tree of v which includes v, called
the center split-tree of v, represents a graph which is isomorphic to the whole
graph.

The ILPs for SPQR-trees with only one inner node are defined as follows:

— S-node: When the only inner node of the SPQR-tree is an S-node, the whole
graph is a simple cycle. Thus it has two directed cycles and both are face-
cycles in the only combinatorial embedding of the graph. So the ILP consists
of two variables, both of which must be equal to one.

— R-node: In this case, the whole graph is triconnected. According to our
definition of planar embedding, every triconnected graph has exactly two
embeddings, which are mirror-images of each other. When the graph has m
edges and n nodes, we have k = 2(m — n + 2) variables and two feasible
solutions. The constraints are given by the convex hull of the points in k-
dimensional space, that correspond to the two solutions.

— P-node: The whole graph consists only of two nodes connected by k edges
with & > 3. Every directed cycle in the graph is a face cycle in at least one
embedding of the graph, so the number of variables is equal to the number
of directed cycles in the graph. The number of cycles is I = 2(¥) because we
always get an undirected cycle by pairing two edges and, since we are talking
about directed cycles, we get twice the number of pairs of edges. As already
mentioned, the number of embeddings is (k — 1)!. The constraints are given
as the convex hull of the points in /-dimensional space that represent these
embeddings.

3.4 Construction of the ILP for SPQR-Trees with More than One
Inner Node

We define, how to construct the ILP of an SPQR-tree T from the ILPs of the
split-trees of a decision node v of T'. Let G be the graph that corresponds to T
and T4, ..., Ty the split-trees of v representing the graphs G to Gj,. We assume
that 77 is the center split-tree of v. Now we consider the directed cycles of G.
We can distinguish two types:

1. Local cycles are cycles of G that also appear in one of the graphs G, ..., G.
2. Global cycles of G are not contained in any of the Gj;.

Every split-tree of v except the center split-tree is a subgraph of the original
graph G with one additional edge (the split edge corresponding to the added
Q-node). The graph that corresponds to the center split-tree may have more

than one split edge. Note that the number of split edges in this graph is not
necessarily equal to the degree of v, because v may have been connected to Q-
nodes in the original tree. For every split edge e, we define a subgraph expand(e)
of the original graph G, which is represented by e. The two nodes connected by
a split edge always form a split pair p of G. When e belongs to the graph G;
represented by the split-tree T}, then expand(e) is the union of all the split
components of G that share only the nodes of p and no edge with G;.

For every directed cycle c in a graph GG; represented by a split-tree, we define
the set R(C) of represented cycles in the original graph . A cycle ¢’ of G is in
R(c), when it can be constructed from ¢ by replacing every split edge e = (v, w)
in ¢ by a simple path in expand(e) from v to w.

The variables of the ILPs of the split-trees that represent local cycles will also
be variables of the ILP of the original graph G. But we will also have variables
that correspond to global cycles of G. A global cycle ¢ in G will get a variable
in the ILP, when the following conditions are met:

1. There is a variable z., in the ILP of T} with ¢ € R(¢y)-
2. For every split-tree T; with 2 < ¢ < k where ¢ has at least one edge in G,
there is a variable z., in the ILP of T} such that ¢ € R(c;).

So far we have defined all the variables for the integer linear program of G.
The set C' of all constraints of the ILP of T is given by

C=CUC.UCqg

First we define the set C; which is the set of lifted constraints of T. Each of the
graphs Ty, ..., T} is a simplified versions of the original graph G. They can be
generated from G by replacing some split components of one or more split pairs
by single edges. When we have a constraint that is valid for a split graph, a
weaker version of this constraint is still valid for the original graph. The process
of generating these new constraints is called lifting because we introduce new
variables that cause the constraint to describe a higher dimensional half space

or hyper plane. Let
!
Z a;Te; = R
i=1

be a constraint in a split-tree, where = € {<,>,=} and let X be the set of all
variables of T'. Then the lifted constraint for the tree 7" is the following:

aj Z z. =R
1

c: cER(c;)NX

14

j=

We define C as the set of lifted constraints of all the split-trees. The number of
constraints in Cj is the sum of all constraints in all split-trees.

The set C. is the set of choice constraints. For a cycle ¢ in G;, which includes
a split edge, we have |R(c)| > 1. All the cycles in R(c) share either at least one

directed edge or they pass a split graph of the split node in the same direction.
Therefore, only one of the cycles in R(c¢) can be a face cycle in any combinatorial
embedding of G (proof omitted). For each variable z. in a split tree with |R(c)| >
1 we have therefore one constraint that has the following form:

Z e <1

c'€R(c)Nxa€X

The set C'¢ consists of only one constraint, called the center graph constraint.
Let F' be the number of face cycles in a combinatorial embedding of G, Cs the
set of all global cycles ¢ in G and C}, the set of all local cycles ¢ in G; then this

constraint is:
E z. = F
c € (CuuCHNC

This constraint is valid, because we can produce every drawing D of G by re-
placing all split edges in a drawing D; of G; with the drawings of subgraphs
of G. For each face cycle in Dy, there will be a face cycle in D, that is either
identical to the one in Dy (if it was a local cycle) or is a global cycle. This defines
the ILP for any biconnected planar graph.

3.5 Correctness of the ILP

Theorem 1. Every feasible solution of the generated ILP corresponds to a com-
binatorial embedding of the given biconnected planar graph G and vice versa:
every combinatorial embedding of G corresponds to a feasible solution for the
generated ILP.

Because the proof of the theorem is quite complex and the space is limited,
we can only give a sketch of the proof. The proof is split into three lemmas.

Lemma 1. Let G be a biconnected planar graph and let T be its SPQR-Tree.
Let p be a decision node in T with degree d, T1,...,Ty with d < d be the split
trees of p (T is the center split tree) and G4, .. .,Gg the associated split graphs.
Every combinatorial embedding I' of G defines a unique embedding for each G;.
On the other side, if we fix a combinatorial embedding I'; for each G;, we have
defined a unique embedding for G.

proof: (Sketch) To show the first part of the lemma, we start with a drawing
Z of G that realizes embedding I'. When G is the graph G; without its split
edge, we get a drawing Z; of G by replacing in Z the drawings of the G} with
2 < i < d' with drawings of single edges that are drawn inside the area of the
plane formerly occupied by the drawing of Gi. We can show that each drawing of
(G that we construct in this way realizes the same embedding I';. We construct
a planar drawing of each G; with 2 < i < d' by deleting all nodes and edges
from Z that are not contained in G; and drawing the split edge into the area
of the plane that was formerly occupied by the drawing of a path in G between

the poles of G; not inside GG;. Again we can show that all drawings produced in
this way realize the same embedding I;.

To show the second part of the lemma, we start with special planar drawings
Z; of the G; that realize the embeddings ;. We assume that Z; is a straight line
drawing (such a drawing always exists [8]) and that each Z; with 2 <14 < d' is
drawn inside an ellipse with the split edge on the outer face and the poles drawn
as the vertices on the major axis of the ellipse. Then we can construct a drawing
of G by replacing the drawings of the straight edges in Z; by the drawings Z;
of the GG; from which the split edges have been deleted. We can show that every
drawing Z we construct in this way realizes the same embedding I" of G.

|

To proof the main theorem, we first have to define the incidence vector of a
combinatorial embedding. Let C' be the set of all directed cycles in the graph
that are face cycles in at least one combinatorial embedding of the graph. Then
the incidence vector of an embedding I' is given as a vector in {0,1}/°! where
the components representing the face cycles in I' have value one and all other
components have value zero.

Lemma 2. Let I' = {¢1,c¢a,...,c} be a combinatorial embedding of the bicon-
nected planar graph G. Then the incidence vector x! satisfies all constraints of
the ILP we defined.

proof: (Sketch) We proof the lemma using induction over the number n of deci-
sion nodes in the SPQR-Tree T of G. The value x(c) is the value of the component
in y associated with the cycle c. We don’t consider the case n = 0, because G is
a simple cycle in this case and has only one combinatorial embedding.

1. n=1:
No splitting of the SPQR-tree is necessary, the ILP is defined directly by 7'.
The variables are defined as the set of all directed cycles that are face cycles
in at least one combinatorial embedding of G. Since the constraints of the
ILP are defined as the convex hull of all incidence vectors of combinatorial
embeddings of G, ! satisfies all constraints of the ILP.
2. n>1:

From the previous lemma we know that I" uniquely defines embeddings [
with incidence vectors x; for the split graphs G;. We will use the induction
basis to show that x! satisfies all lifted constraints. We know that the choice
constraints are satisfied by ! because in any embedding there can be only
on cycle passing a certain split pair in the same direction. When lifting
constraints, we replace certain variables by the sum of new variables and the
choice constraints guarantee that this sum is either 0 or 1. Using this fact
and the construction of the y; from y!, we can show that the sums of the
values of the new variables are always equal to the value of the old variable.
Therefore, all lifted constraints are satisfied.

To see that the center graph constraint is satisfied, we observe that any
embedding of the skeleton of the split node has F' faces. We can construct
any embedding of G from an embedding I of this skeleton by replacing

edges by subgraphs. The faces in I" that are global cycles are represented
by faces in I and the faces that are local cycles in G are also faces in I7.
Therefore the center graph constraint is also satisfied.

Lemma 3. Let G be a biconnected planar graph and x € {0, 1}‘0‘ a vector satis-
fying all constraints of the ILP. Then x is the incidence vector of a combinatorial
embedding I' of G.

proof: Again, we use induction on the number n of decision nodes in the SPQR-
tree T' of G and we disregard the case n = 0.

1. n=1:
Like in the previous lemma, our claim holds by definition of the ILP.
2.n>1:
The proof works in two stages: First we construct vectors y; for each split
graph from x and prove that these vectors satisfy the ILPs for the G;, and
are therefore incidence vectors of embeddings I'; of the GG; by induction basis.
In the second stage, we use the I'; to construct an embedding I" for G and
show that y is the incidence vector of I'.
The construction of the x; works as follows: When z is a variable in the
ILP of G; and the corresponding cycle is contained in G, then x gets the
value of the corresponding variable in x. Otherwise, we define the value of
z as the sum of the values of all variables in xy whose cycles are represented
by the cycle of z. This value is either 0 or 1 because x satisfies the choice
constraints.
Because x satisfies the lifted constraints, the x; must satisfy the original con-
straints and by induction basis we know that each y; represents an embed-
ding I; of GG;. Using these embeddings for the split graphs, we can construct
an embedding I" for G like in lemma 1.
To show that y is the incidence vector of I', we define x" as the incidence
vector of I and show that y and x! are identical. By construction of I" and
x!', the components in x!" and y corresponding to local cycles must be equal.
The number of global cycles whose variable in x has value 1 must be equal
to the number of faces in I" consisting of global cycles. This is guaranteed
by the center graph constraint. Using the fact that for all face cycle in I}
there must be a represented cycle in G' whose component in x and in x! is
1 we can show that both vectors agree on the values of the variables of the
global cycles, and thus must be identical.

4 Computational Results

In our computational experiments, we tried to get statistical data about the size
of the integer linear program and the times needed to compute it. OQur implemen-
tation works for biconnected planar graphs with maximal degree four, since we

"Generation Time | +

Seconds
N w
0 0
8 8
T T
i
R
b
I

o
o
S
T
i
FHEHE b

Fig. 5. Generation time for the ILP

Number of Embeddings |+

le+1s | +
"
1e+16 |-

le+1a | - P

+
b
R+

* -

et
A
b

HHH
e
e+
A+
oW+
AH
b E o+
G
Wb bR R
M+
bob s
+
WA
I

rts 4+

it +

o 100 200 300
Number of Nodes

Fig. 6. Number of embeddings

2500
Number of Constraints + +
-

2000 -

bR F
A b

++
R

(2o
W+
e
I

1500 |

FEOH
bt 4+
e
dAHE 4
N
+

o

1000 |

4
i
-
o+
r—
W
w4
HHE HE
I

LIS

) 100 200 300
Number of Nodes

Fig. 7. Number of constraints

are interested in improving orthogonal planar drawings. First we used a bench-
mark set of 11491 practical graphs collected by the group around G. Di Battista
in Rome ([1]). We have transformed these graphs into biconnected planar graphs
with maximal degree four using planarization, planar augmentation, and the ring
approach described in [7]. This is a commonly used approach getting orthogonal
drawings with a small number of bends [7]. The obtained graphs have up to 160
vertices; only some of them had more than 100 different combinatorial embed-
dings. The maximum number of embeddings for any of the graphs was 5000.

Nlmber of Variables 1+

NI
g 8
—
o+
e
4
HEHE
HHE HE
A
[T
4o EH 44
HHE
4o+t
+
HHEE 4
+ b
bbb
T
O b

P
P
o
e
|

Fig. 8. Number of variables

Solution Time |+

15 [-

Seconds
M
T
I

++

+ -
0s |- .

0:;§$%%§$%;—%§

300
Number of Nodes

n
oA
oAb b+

i
-+

Fig. 9. Solution time

The times for generating the ILPs have been below one minute; the ILPs were
quite small. CPLEX has been able to solve all of them very quickly.

In order to study the limits of our method, we started test runs on extremely
difficult graphs. We used the random graph generator developed by the group
around G. Di Battista in Rome that creates biconnected planar graphs with
maximal degree four with an extremely high number of embeddings (see [3] for
detailed information). We generated graphs with the number of nodes ranging
from 25 to 500, proceeding in steps of 25 nodes and generating 10 random graphs
for each number of nodes. For each of the 200 graphs, we generated the ILP and
measured the time needed to do this. The times are shown in Fig. 5. They
grow sub-exponentially and the maximum time needed was 10 minutes on a Sun
Enterprise 10000.

The number of embeddings of each graph is shown in Fig. 6. They grow
exponentially with the number of nodes, so we used a logarithmic scale for the
y-axis. There was one graph with more than 10'? combinatorial embeddings.
These numbers were computed by counting the number of R- and P-nodes in
the SPQR-tree of each graph. Each R-node doubles the number of combinatorial
embeddings while each P-node multiplies it by 2 or 6 depending on the number
of edges in its skeleton. Figures 7 and 8 show the number of constraints and

variables in each ILP. Surprisingly, both of them grow linearly with the number
of nodes. The largest ILP has about 2500 constraints and 1000 variables.

To test how difficult it is to optimize over the ILPs, we have chosen 10 random
objective functions for each ILP with integer coefficients between 0 and 100 and
computed a maximal integer solution using the mixed integer solver of CPLEX.
Figure 9 shows the maximum time needed for any of the 10 objective functions.
The computation time always stayed below 2 seconds.

Our future goal will be to extend our formulation such that each solution will
not only represent a combinatorial embedding but an orthogonal drawing of the
graph. This will give us a chance to find drawings with the minimum number of
bends or drawings with fewer crossings. Of course, this will make the solution of
the ILP much more difficult.

Acknowledgments We thank the group of G. Di Battista in Rome for giving
us the opportunity to use their implementation of SPQR-trees in GDToolkit, a
software library that is part of the ESPRIT ALCOM-IT project (work package
1.2), and to use their graph generator.

References

[1] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Comput. Geom.
Theory Appl., 7:303-326, 1997.

[2] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956-997, 1996.

[3] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal draw-
ings with the minimum number of bends. Lecture Notes in Computer Science,
1272:331-344, 1998.

[4] D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs.
Networks, 19(1):79-94, 1989.

[5] D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs
to minimize certain distance measures. Algorithmica, 5(1):93-109, 1990.

[6] J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journal
on Discrete Mathematics, 6(3):335-352, 1993.

[7] P. Eades and P. Mutzel. Algorithms and theory of computation handbook, chapter
9 Graph drawing algorithms. CRC Press, 1999.

[8] I. Fary. On straight line representing of planar graphs. Acta. Sci. Math.(Szeged),
11:229-233, 1948.

[9] A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. Lecture Notes in Computer Science, 894:286-297,
1995.

[10] S. MacLane. A combinatorial condition for planar graphs. Fundamenta Mathe-
maticae, 28:22-32, 1937.

[11] R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM Journal on Computing, 16(3):421-444, 1987.

[12] G. J. Woeginger. personal communications, 1998.

