Optimizing Over All
 Combinatorial Embeddings of a Planar Graph

Petra Mutzel René Weiskircher

December 1998

Author's Address

Max-Planck-Institut für Informatik
Im Stadtwald
66123 Saarbrücken
http://www.mpi-sb.mpg.de/~mutzel and http://www.mpi-sb.mpg.de/~weiski

Acknowledgements

We thank the group of G. Di Battista in Rome for giving us the opportunity to use their implementation of SPQR-trees in GDToolkit, a software library that is part of the ESPRIT ALCOM-IT project (work package 1.2), and to use their graph generator.

Abstract

We study the problem of optimizing over the set of all combinatorial embeddings of a given planar graph. Our objective function prefers certain cycles of G as face cycles in the embedding. The motivation for studying this problem arises in graph drawing, where the chosen embedding has an important influence on the aesthetics of the drawing.

We characterize the set of all possible embeddings of a given biconnected planar graph G by means of a system of linear inequalities with $\{0,1\}$ variables corresponding to the set of those cycles in G which can appear in a combinatorial embedding. This system of linear inequalities can be constructed recursively using the data structure of SPQR-trees and a new splitting operation.

Our computational results on two benchmark sets of graphs are surprising: The number of variables and constraints seems to grow only linearly with the size of the graphs although the number of embeddings grows exponentially. For all tested graphs (up to 500 vertices) and linear objective functions, the resulting integer linear programs could be generated within 600 seconds and solved within two seconds on a Sun Enterprise 10000 using CPLEX.

1 Introduction

A graph is called planar when it admits a drawing into the plane without edge-crossings. There are infinitely many different drawings for every planar graph, but they can be divided into a finite number of equivalence classes. We call two planar drawings of the same graph equivalent when the sequence of the edges in clockwise order around each node is the same in both drawings. The equivalence classes of planar drawings are called combinatorial embeddings. A combinatorial embedding also defines the set of cycles in the graph that bound faces in a planar drawing.

The complexity of embedding planar graphs has been studied by various authors in the literature [5, 4, 6]. E.g., Bienstock and Monma have given polynomial time algorithms for computing an embedding of a planar graph that minimizes various distance functions to the outer face [5]. Moreover, they have shown that computing an embedding that minimizes the diameter of the dual graph is NP-hard.

In this paper we deal with the following optimization problem concerned with embeddings: Given a planar graph and a cost function on the cycles of the graph. Find an embedding Π such that the sum of the cost of the cycles that appear as face cycles in Π is minimized. When choosing the cost 1 for all cycles of length greater or equal to five and 0 for all other cycles, the problem is NP-hard [13].

Our motivation to study this optimization problem and in particular its integer linear programming formulation arises in graph drawing. Most algorithms for drawing planar graphs need not only the graph as input but also a combinatorial embedding. The aesthetic properties of the drawing often changes dramatically when a different embedding is chosen.

Figure 1 shows two different drawings of the same graph that were generated using the bend minimization algorithm by Tamassia [12]. The algorithm used different combinatorial embeddings as input. Drawing 1(a) has 13 bends while drawing 1 (b) has only 7 bends. It makes sense to look for the embedding that will produce the best drawing. We conjecture that there are statistical dependencies between the length of the face cycles in the embedding and nice drawings. If we are able to solve the stated optimization problem efficiently for practical instances, we will be able to do extensive experiments in order to get insights into this. But our original motivation has been the following.

In graph drawing it is often desirable to optimize some cost function over all possible embeddings in a planar graph. In general these optimization problems are NP-hard [10]. For example: The number of bends in an orthogonal planar drawing highly depends on the chosen planar embedding. In the planarization method, the number of crossings highly depends on the chosen embedding when the deleted edges are reinserted into a planar drawing of the rest-graph. Both problems can be formulated as flow prob-

Figure 1: The impact of the chosen planar embedding on the drawing
lems in the geometric dual graph. A flow between vertices in the geometric dual graph corresponds to a flow between adjacent face cycles in the primal graph. Once we have characterized the set of all feasible embeddings (via an integer linear formulation on the variables associated with each cycle), we can use this in an ILP-formulation for the corresponding flow problem. Here, the variables consist of 'flow variables' and 'embedding variables'.

This paper introduces an integer linear program whose set of feasible solutions corresponds to the set of all possible combinatorial embeddings of a given biconnected planar graph. One way of constructing such an integer linear program is by using the fact that every combinatorial embedding corresponds to a 2 -fold complete set of circuits (see MacLane [11]). The variables in such a program are all simple cycles in the graph; the constraints guarantee that the chosen subset of all simple cycles is complete and that no edge of the graph appears in more than two simple cycles of the subset.

We have chosen another way of formulating the problem. The advantage of our formulation is that we only introduce variables for those simple cycles that form the boundary of a face in at least one combinatorial embedding of the graph, thus reducing the number of variables tremendously. Furthermore, the constraints are derived using the structure of the graph. We achieve this by constructing the program recursively using a data structure called SPQR-tree suggested by Di Battista and Tamassia ([2]). SPQR-trees can be used to code and enumerate all possible combinatorial embeddings of a biconnected planar graph. Furthermore we introduce a new splitting operation which enables us to construct the linear description recursively.

Our computational results on two benchmark sets of graphs have been quite surprising. We expected that the size of the linear system will grow exponentially with the size of the graph. Surprisingly, we could only observe a linear growth. However, the time for generating the system grows sub-
exponentially; but for practical instances it is still reasonable. For a graph with 500 vertices and 10^{19} different combinatorial embeddings the construction of the ILP took about 10 minutes. Very surprising was the fact that the solution of the generated ILPs took only up to 2 seconds using CPLEX.

Section 2 gives a brief description of the data structure SPQR-tree. In Section 3 we describe the recursive construction of the linear constraint system using a new splitting operation. Our computational results are described in Section 5.

2 SPQR-trees

In this section, we give a brief description of the SPQR-tree data structure for biconnected planar graphs. A connected graph is biconnected, if it has no cut vertex. A cut vertex of a graph $G=(V, E)$ is a vertex whose removal increases the number of connected components. A connected graph that has no cut vertex is called biconnected. A set of two vertices whose removal increases the number of connected components is called a separation pair; a connected graph without a separation pair is called triconnected.

SPQR-trees have been suggested by Di Battista and Tamassia ([2]). They represent a decomposition of a planar biconnected graph according to its split pairs. A split pair is a pair of nodes in the graph that is either connected by an edge or has the property that its removal increases the number of connected components. The split components of a split pair p are the maximal subgraphs of the original graph, for which p is not a split pair. When a split pair p is connected by an edge, one of the split components consists just of this edge together with the adjacent nodes while the other one is the original graph without the edge.

The construction of the SPQR-tree works recursively. At every node v of the tree, we split the graph into smaller edge-disjoint subgraphs. We add an edge to each of them to make sure that they are biconnected and continue by computing their SPQR-tree and making the resulting trees the subtrees of the node used for the splitting. Every node of the SPQR-tree has two associated graphs:

- The skeleton of the node defined by a split pair p is a simplified version of the whole graph where the split-components of p are replaced by single edges.
- The pertinent graph of a node v is the subgraph of the original graph that is represented by the subtree rooted at v.

The two nodes of the split pair p that define a node v are called the poles of v. For the recursive decomposition, a new edge between the poles is added to the pertinent graph of a node which results in a biconnected graph that may have multiple edges. The SPQR-tree has four different types of
nodes that are defined by the structure and number of the split components of its poles v_{a} and v_{b} :

1. Q-node: The pertinent graph of the node is just the single edge $e=$ $\left\{v_{a}, v_{n}\right\}$. The skeleton consists of the two poles that are connected by two edges. One of the edges represents the edge e and the other one the rest of the graph.
2. S-node: The pertinent graph of the node has at least one cut vertex (a node whose removal increases the number of connected components). When we have the cut vertices v_{1}, v_{2} to v_{k}, they then split the pertinent graph into the components G_{1}, G_{2} to G_{k+1}. In the skeleton of the node, G_{1} to G_{k+1} are replaced by single edges and the edge between the poles is added. The decomposition continues with the subgraphs G_{i}, where the poles are v_{i} and v_{i+1}. Figure $2(\mathrm{a})$ shows the pertinent graph of an S-node together with the skeleton.
3. P-node: v_{a} and v_{b} in the pertinent graph have more than one splitcomponents G_{1} to G_{k}. In the skeleton, each G_{i} is replaced by a single edge and the edge between the poles is added. The decomposition continues with the subgraphs G_{i}, where the poles are again v_{a} and v_{b}. Figure 2(b) shows the pertinent graph of a P-node with 3 split components and its skeleton.
4. R-node: None of the other cases is applicable, so the pertinent graph is biconnected. The poles v_{a} and v_{b} are not a split pair of the pertinent graph. In this case, the decomposition depends on the maximal split pairs of the pertinent graph with respect to the pair $\left\{v_{a}, v_{b}\right\}$. A split pair $\left\{v_{1}, v_{2}\right\}$ is maximal with respect to $\left\{v_{a}, v_{b}\right\}$, if for every other split pair $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$, there is a split component that includes the nodes v_{1}, v_{2}, v_{a} and v_{b}. For each maximal split pair p with respect to $\left\{v_{a}, v_{b}\right\}$, we define a subgraph G_{p} of the original graph as the union of all the split-components of p that do not include v_{a} and v_{b}. In the skeleton, each subgraph G_{p} is replaced by a single edge and the edge between the poles is added. The decomposition proceeds with the subgraphs defined by the maximal split pairs (see Fig. 2(c)).

The SPQR-tree of a biconnected planar graph G where one edge is marked (the so-called reference edge) is constructed in the following way:

1. Remove the reference edge and consider the end-nodes of it as the poles of the remaining graph G^{\prime}. Depending on the structure of G^{\prime} and the number of split components of the poles, choose the type of the new node $v(\mathrm{~S}, \mathrm{P}, \mathrm{R}$ or Q$)$.
2. Compute the subgraphs G_{1} to G_{k} as defined above for the different cases and add an edge between the poles of each of the subgraphs.

Figure 2: Pertinent graphs and skeletons of the different node types of an SPQR-tree
3. Compute the SPQR-trees T_{1} to T_{k} for the subgraphs where the added edge is the reference edge and make the root of these trees the sons of v.

When we have completed this recursive construction, we create a new Qnode representing the reference edge of G and make it the root of the whole SPQR-tree by making the old root a son of the Q-node. This construction implies that all leaves of the tree are Q-nodes and all inner nodes are S-, P-, or R-nodes. Figure 3 shows a biconnected planar graph and its SPQR-tree where the edge $\{1,2\}$ was chosen as the reference edge.

When we see the SPQR-tree as an unrooted tree, we get the same tree no matter what edge of the graph was marked as the reference edge. The skeletons of the nodes are also independent of the choice of the reference edge. Thus, we can define a unique SPQR-tree for each biconnected planar graph. Another important property of these trees is that their size (including the skeletons) is linear in the size of the original graph and they can be constructed in linear time ([2]).

As described in [2], SPQR-trees can be used to represent all combinatorial embeddings of a biconnected planar graph. This is done by choosing embeddings for the skeletons of the nodes in the tree. The skeletons of S- and

Figure 3: A biconnected planar graph and its SPQR-tree

Q-nodes are simple circles, so they have only one embedding. The skeletons of R-nodes are always triconnected graphs. In most publications, combinatorial embeddings are defined in such a way, that only one combinatorial embedding for a triconnected planar graph exists. Our definition distinguishes between two combinatorial embeddings which are mirror-images of each other (the order of the edges around each node in clockwise order is reversed in the second drawing). When the skeleton of a P-node has k edges, there are $(k-1)$! different embeddings of its skeleton.

Every combinatorial embedding of the original graph defines a unique combinatorial embedding for each skeleton of a node in the SPQR-tree. Conversely, when we define an embedding for each skeleton of a node in the SPQR-tree, we define a unique embedding for the original graph. The reason for this fact is that each skeleton is a simplified version of the original graph where the split components of some split pair are replaced by single edges. Thus, if the SPQR-tree of G has $r \mathrm{R}$-nodes and the P -nodes P_{1} to P_{k} where the skeleton of P_{i} has L_{i} edges, than the number of combinatorial embeddings of G is exactly

$$
2^{r} \sum_{i=1}^{k}\left(L_{i}-1\right)!
$$

Because the embeddings of the R - and P -nodes determine the embedding of the graph, we call these nodes the decision nodes of the SPQR-tree. In [3], the fact that SPQR-trees can be used to enumerate all combinatorial
embeddings of a biconnected planar graph was used to devise a branch-and-bound algorithm for finding a planar embedding and an outer face for a graph such that the drawing computed by Tamassia's algorithm has the minimum number of bends among all possible orthogonal drawings of the graph.

3 Recursive construction of the integer linear program

3.1 Intuition

The SPQR-tree represents the decomposition of a biconnected planar graph with respect to its triconnected components. All embeddings of the graph can be enumerated by enumerating all possible embeddings of these components in respect to the rest of the graph. Our approach uses the fact that each skeleton of a node in the SPQR-tree represents a simplified version of the original graph. By computing the integer linear programs (ILP) for these simple graphs and using a lifting procedure, we can compute an ILP for the original graph.

When we take a closer look at the skeleton of a node in the SPQR-tree, we observe that it can be constructed from the original graph by replacing one or several subgraphs by single edges, which we will later call split edges. We can think of such an edge as representing the set of all the simple paths in the original graph, that connect the two nodes of the split edge. So every circle in a skeleton that includes a split edge represents a set of circles in the original graph that we get by replacing the split edge with the paths represented by it.

The variables of our program correspond to directed circles in the graph that are face cycles in at least one planar embedding. We can guarantee this, because our recursive construction computes the set of variables for the original problem using the sets of variables from subproblems for which the ILP has already been computed. So we construct circles in the original graph from circles in the subproblems by replacing split edges with paths in the graph.

3.2 The variables of the integer linear program

The skeletons of P-nodes are multi-graphs, so they have multiple edges between the same pair of nodes. Because we want to talk about directed circles, we can be much more precise when we are dealing with bidirected graphs. A directed graph is called bidirected if there exists a bijective function $r: E \rightarrow E$ such that for every edge $e=(v, w)$ with $r(e)=e^{R}$ we have $e^{R}=(w, v)$ and $r\left(e^{R}\right)=e$ We can turn an undirected graph into a bidirected graph by replacing each undirected edge by two directed edges that
go in opposite directions. The undirected graph G that can be transformed in this way to get the bidirected graph G^{\prime} is called the underlying graph of G^{\prime} 。

A directed circle in the bidirected graph $G=(V, E)$ is a sequence of edges of the following form: $c=\left(\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{1}\right)\right)=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ with the properties that every node of the graph is contained in at most two edges of c and if $k=2$, then $e_{1} \neq e_{2}$ holds. We say a planar drawing of a bidirected graph is the drawing of the underlying graph, so the embeddings of a bidirected graph are identical with the embeddings of the underlying graph.

A face cycle in a combinatorial embedding of a bidirected planar graph is a directed circle of the graph, such that in any planar drawing that realizes the embedding, the left side of the circle is empty. Note that the number of face cycles of a planar biconnected graph is $m-n+2$ where m is the number of edges in the graph and n the number of nodes.

Now we are ready to construct an integer linear program (ILP) in which the feasible solutions correspond to the combinatorial embeddings of a biconnected planar bidirected graph. The variables of the program are binary and they correspond to directed circles in the graph. As objective function, we can choose any linear function on the directed circles of the graph. With every circle c we associate a binary variable x_{c}. In a feasible solution of the integer linear program, a variable x_{c} has value 1 if the associated circle is a face cycle in the represented embedding and 0 otherwise. To keep the number of variables as small as possible, we only introduce variables for those circles that are a face cycle in at least one combinatorial embedding of the graph.

3.3 Splitting an SPQR-tree

We use a recursive approach to construct the variables and constraints of the ILP. Therefore, we need an operation that constructs a number of smaller problems out of our original problem such that we can use the variables and constraints computed for the smaller problems to compute the ILP for the original problem. This is done by splitting the SPQR-tree at some decisionnode v. Let e be an adjacent edge of v whose other endpoint is not a Q-node. Deleting e splits the tree into two trees T_{1} and T_{2}. We add a new edge with a Q-node attached to both trees to replace the deleted edge and thus ensure that T_{1} and T_{2} become complete SPQR-trees again. The edges corresponding to the new Q-nodes are called split edges. For adjacent edges of v, whose other endpoint is a Q-node, the splitting is not necessary. Doing this for each edge adjacent to v results in $d+1$ smaller SPQR-trees, called the split-trees of v, where d is the number of inner nodes adjacent to v. This splitting process is shown in Fig. 4. Since the new trees are SPQR-trees, they represent planar biconnected graphs which are called the split graphs
of v. We will show how to compute the ILP for the original graph using the ILPs computed for the split graphs.

Figure 4: Splitting an SPQR-tree at an inner node

As we have seen, the number and type of decision-nodes in the SPQRtree of a graph determines the number of combinatorial embeddings. The subproblems we generated by splitting the tree either have only one decisionnode or at least one fewer than the original problem.

3.4 The integer linear program for SPQR-trees with one inner node

We observe that a graph whose SPQR-tree has only one inner node is isomorphic to the skeleton of this inner node. So the split-tree of v which includes v, called the center split-tree of v, represents a graph which is isomorphic to the whole graph.

The ILPs for SPQR-trees with only one inner node are defined as follows:

- S-node: When the only inner node of the SPQR-tree is an S-node, the whole graph is a simple circle. Thus it has two directed circles and both are face-cycles in the only combinatorial embedding of the graph. So the ILP consists of two variables, both of which must be equal to one.
- R-node: In this case, the whole graph is triconnected. According to our definition of planar embedding, every triconnected graph has exactly two embeddings, which are mirror-images of each other. When the graph has m edges and n nodes, we have $k=2(m-n+2)$ variables and two feasible solutions. The constraints are given by the convex hull of the points in k-dimensional space, that correspond to the two solutions.
- P-node: The whole graph consists only of two nodes connected by k edges with $k \geq 3$. Every directed circle in the graph is a face cycle
in at least one embedding of the graph, so the number of variables is equal to the number of directed circles in the graph. The number of circles is

$$
l=2\binom{k}{2}
$$

because we always get an undirected circle by pairing two edges and, since we are talking about directed circles, we get twice the number of pairs of edges. As already mentioned, the number of embeddings is $(k-1)$!. The constraints are given as the convex hull of the points in l-dimensional space that represent these embeddings.

3.5 Construction of the ILP for SPQR-trees with more than one inner node

We define, how to construct the ILP of an SPQR-tree T from the ILPs of the split-trees of a decision node v of T. Let G be the graph that corresponds to T and T_{1}, \ldots, T_{k} the split-trees of v representing the graphs G_{1} to G_{k}. We assume that T_{1} is the center split-tree of v. Now we consider the directed circles of G. We can distinguish two types:

1. Local circles are circles of G that also appear in one of the graphs G_{1}, \ldots, G_{k}.
2. Global circles of G are not contained in any of the G_{i}.

Every split-tree of v except the center split-tree is a subgraph of the original graph G with one additional edge (the split edge corresponding to the added Q-node). The graph that corresponds to the center split-tree may have more than one split edge. Note that the number of split edges in this graph is not necessarily equal to the degree of v, because v may have been connected to Q-nodes in the original tree. For every split edge e, we define a subgraph expand (e) of the original graph G, which is represented by e. The two nodes connected by a split edge always form a split pair p of G. When e belongs to the graph G_{i} represented by the split-tree T_{i}, then $\operatorname{expand}(e)$ is the union of all the split components of G that share only the nodes of p and no edge with G_{i}.

For every directed circle c in a graph G_{i} represented by a split-tree, we define the set $R(C)$ of represented circles in the original graph . A circle c^{\prime} of G is in $R(c)$, when it can be constructed from c by replacing every split edge $e=(v, w)$ in c by a simple path in $\operatorname{expand}(e)$ from v to w.

The variables of the ILPs of the split-trees that represent local circles will also be variables of the ILP of the original graph G. But we will also have variables that correspond to global circles of G. A global circle c in G will get a variable in the ILP, when the following conditions are met:

1. There is a variable $x_{c_{1}}$ in the ILP of T_{1} with $c \in R\left(c_{1}\right)$.
2. For every split-tree T_{i} with $2 \leq i \leq k$ where c has at least one edge in G_{i}, there is a variable $x_{c_{i}}$ in the ILP of T_{i} such that $c \in R\left(c_{i}\right)$.

So far we have defined all the variables for the integer linear program of G. The set C of all constraints of the ILP of T is given by

$$
C=C_{l} \cup C_{c} \cup C_{G} .
$$

First we define the set C_{l} which is the set of lifted constraints of T. Each of the graphs T_{1}, \ldots, T_{k} is a simplified versions of the original graph G. They can be generated from G by replacing some split components of one or more split pairs by single edges. When we have a constraint that is valid for a split graph, a weaker version of this constraint is still valid for the original graph. The process of generating these new constraints is called lifting because we introduce new variables that cause the constraint to describe a higher dimensional half space or hyper plane. Let

$$
\sum_{j=1}^{l} a_{j} x_{c_{j}} \doteq R
$$

be a constraint in a split-tree, where $\doteq \in\{\leq, \geq,=\}$ and let X be the set of all variables of T. Then the lifted constraint for the tree T is the following:

$$
\sum_{j=1}^{l} a_{j} \sum_{c: c \in R\left(c_{j}\right) \cap X} x_{c} \doteq R
$$

We define C_{l} as the set of lifted constraints of all the split-trees. The number of constraints in C_{l} is the sum of all constraints in all split-trees.

The set C_{c} is the set of choice constraints. For a circle c in G_{i}, which includes a split edge, we have $|R(c)|>1$. All the circles in $R(c)$ share either at least one directed edge or they pass a split graph of the split node in the same direction. Therefore, only one of the circles in $R(c)$ can be a face cycle in any combinatorial embedding of G (proof omitted). For each variable x_{c} in a split tree with $|R(c)|>1$ we have therefore one constraint that has the following form:

$$
\sum_{c^{\prime} \in R(c) \wedge x_{c^{\prime}} \in X} x_{c^{\prime}} \leq 1
$$

The set C_{G} consists of only one constraint, called the center graph constraint. Let F be the number of face cycles in a combinatorial embedding of G_{1}, C_{G} the set of all global circles c in G and C_{L} the set of all local circles c in G_{1} then this constraint is:

$$
\sum_{c \in\left(C_{g} \cup C_{l}\right) \cap C} x_{c}=F
$$

This constraint is valid, because we can produce every drawing D of G by replacing all split edges in a drawing D_{1} of G_{1} with the drawings of subgraphs of G. For each face cycle in D_{1}, there will be a face cycle in D, that is either identical to the one in D_{1} (if it was a local circle) or is a global circle. This defines the ILP for any biconnected planar graph.

4 The main theorem and its proof

Theorem 1 Every feasible solution of the generated ILP corresponds to a combinatorial embedding of the given biconnected planar graph G and vice versa: every combinatorial embedding of G corresponds to a feasible solution for the generated ILP.

Because the proof of the main theorem is quite complex, we have split it into three lemmas.

Lemma 1 Let G be a biconnected planar Graph and let T be its $S P Q R$-Tree. Let μ be a decision node in T with degree $d, T_{1}, \ldots, T_{d^{\prime}}$ with $d^{\prime} \leq d$ be the split trees of μ (T_{1} is the center split tree) and $G_{1}, \ldots, G_{d^{\prime}}$ the associated split graphs. Every combinatorial embedding E of G defines a unique embedding for each G_{i}. On the other side, if we fix a combinatorial embedding E_{i} for each G_{i}, we have defined a unique embedding for G.

Proof: First we will show how E defines a unique combinatorial embedding for G_{i} with $2 \leq i \leq d^{\prime}$. Let e be the split edge in G_{i} and G_{i}^{\prime} be the graph we get by deleting e from G_{i} and let Z be a drawing that realizes E. Then we can construct a planar drawing Z_{i}^{\prime} of G_{i}^{\prime} by deleting all the drawings of nodes and edges from Z that are not contained in G_{i}^{\prime}. To get a drawing Z_{i} of G_{i}, we have to add a drawing of e to Z_{i}^{\prime}. We have to prove, that every planar drawing we can construct in this way realizes the same embedding E_{i}.

First we show, that it is possible to add a drawing of e without losing planarity. Let u and v be the two nodes connected by e. Then $\{u, v\}$ is a split pair, and removing these nodes from G splits the graph in at least 2 components. One of these components is G_{i}^{\prime}. Since all split components are connected, there must be a path connecting u and v in each of them which proves that there is a path p in G connecting u and v that does not use any edge in G_{i}^{\prime}. Since Z is a planar drawing, we can get a planar drawing of G_{i} by drawing e as the same curve that represented p in Z.

To prove that every drawing of G_{i} that is constructed in this way realizes the same embedding E_{i}, we first observe that the embedding E_{i}^{\prime} of G_{i}^{\prime} realized by Z_{i}^{\prime} is unique. What is left to show is that there are not two different face cycles c_{1} and c_{2} in E_{i}^{\prime} that we can split by inserting the drawing of e. So we have to show that there is only one face in Z_{i}^{\prime} where we can insert e. If
there where two such face cycles c_{1} and c_{2}, then both must go through u and v. But then $\{u, v\}$ is a split pair of G_{i}^{\prime} which is not possible because of the way SPQR -trees are constructed. This proves that every embedding E of G defines a unique embedding E_{i} for each G_{i} with $2 \leq i \leq d^{\prime}$.

To prove that E defines a unique embedding E_{1} for G_{1}, we take any drawing Z of G that realizes E and replace the drawing of every subgraph G_{i}^{\prime} of G that is represented by a split edge $\{u, v\}$ in G_{1} by a single edge that is drawn as the same curve as some path connecting u and v in G_{i}^{\prime}. Thus we get a planar drawing Z_{1} and since the sequence of the edges around each node is fixed using this construction, the embedding E_{1} realized by Z_{1} is unique. Figure 5 shows how to construct drawings for the split graphs from a drawing of G.

G

G_{1}

Figure 5: Deriving drawings for the split graphs from a drawing of G

To prove the opposite direction, we have to show how combinatorial embeddings for each G_{i} define a unique combinatorial embedding for G. To do this, we show how to construct a drawing of G from drawings of the G_{i} that realize the embeddings E_{i} and that this drawing always realizes the same embedding E. For each G_{i} with $2 \leq i \leq d$, we generate a drawing that realizes E_{i} and has the following properties:

1. The split edge of G_{i} is on the outer face.
2. Let the two nodes u_{i} and v_{i} be connected by the split edge of G_{i}. Then there is an ellipse L_{i} with the property that the drawings of u_{i} and v_{i} form the vertices on the major axis of L_{i} and all other edges and nodes of the drawing are inside L_{i}.

It is always possible to generate a drawing with these properties that realizes any combinatorial embedding. Let Z_{2}, \ldots, Z_{d} be drawings of the G_{i}

Figure 6: Drawing a split graph into an ellipse
that have the two properties stated above and Z_{i}^{\prime} be the drawing we get by deleting the split edge from Z_{i}. Then each Z_{i}^{\prime} is a drawing of a subgraph of G that is represented by a single edge (a split edge) in G_{1}. Consider now any drawing Z_{1} of G_{1} that realizes E_{1} and where every edge is drawn as a straight line. We know that such a drawing exists ([9]). We get a planar drawing of G by replacing each drawing of a split edge in Z_{1} by the drawing Z_{i}^{\prime} of the associated split graph where we have removed the drawing of the split edge. Each drawing Z we generate in this way using the embeddings E_{1}, \ldots, E_{d} realizes the same embedding E because the sequence of the edges around each node in clockwise order is fixed by the construction method.

To proof the main theorem, we first have to define the incidence vector of a combinatorial embedding. Let C be the set of all directed circles in the graph that are a face cycle in at least one combinatorial embedding of the graph. Then the incidence vector of an embedding E is given as a vector in $\{0,1\}^{|C|}$ where the components representing the face cycles in C have value one and all other components have value zero.

Lemma 2 Let $E=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ be a combinatorial embedding of the biconnected planar graph G. Then the incidence vector χ_{E} satisfies all constraints of the ILP we defined.

Proof: We proof the lemma using induction over the number n of decision nodes in the SPQR-Tree T of G. The value $\chi(c)$ is the value of the component in χ associated with the circle c. We don't consider the case $n=0$, because G is a simple circle in this case and has only one combinatorial embedding.

1. $n=1$:

No splitting of the SPQR-tree is necessary, the ILP is defined directly by T. The variables are defined as the set of all directed circles that are face cycles in at least one combinatorial embedding of G. Since the constraints of the ILP are defined as the convex hull of all incidence vectors of combinatorial embeddings of G, χ_{e} satisfies all constraints of the ILP.
2. $n>1$:

Let μ be the node in T we used in the construction of the ILP to split T into the split trees T_{1}, \ldots, T_{d}. We split E into two subsets E_{G} and E_{L} such that E_{G} holds all global circles of E and E_{L} the local circles of E in respect to μ. Then every circle c in E_{L} is contained in some split graph G_{i} with $1 \leq i \leq d$. As we have seen in the previous lemma, the combinatorial embedding E defines uniquely a combinatorial embedding E_{i} for each G_{i}. Every local circle in E, that is contained in G_{i} is also contained in E_{i}. Apart from local circles that are contained in E, every E_{i} with $2 \leq i \leq d$ contains two more circles, that are not contained in E. This is true because every G_{i} has exactly one edge that is not contained in G, the split edge of G_{i}. In every embedding, each edge is contained in exactly two circles, so there are two circles in E_{i} that are not circles in E.

Consider now the choice constraints of the ILP for all circles c in a split graph of μ that include at least one split edge.

$$
\sum_{c^{\prime} \in R(c) \wedge c^{\prime} \in C} x_{c^{\prime}} \leq 1
$$

As we have already pointed out in the definition of the choice constraints, any two circles in R_{c} pass at least one edge of G in the same direction or pass at least one split graph of μ in the same direction. So they can't be face cycles in the same combinatorial embedding. Since E is a combinatorial embedding, χ_{E} must satisfy all choice constraints of the ILP.
We use this fact and the induction basis to prove that χ_{E} satisfies all lifted constraints. Because our claim holds for $n-1$, we know that the incidence vector $\chi_{E_{i}}$ satisfies all constraints of the ILP for G_{i} with $1 \leq i \leq d$. The lifted constraints of the ILP are constructed out of the constraints for the G_{i} by replacing each variable x_{c} in the constraint by the sum of the variables for G, that are associated with circles in $R(c)$. The right side of the constraint and the relation sign remain unchanged. So we have to show, that the left side of the constraint has the same value when we apply it to $\chi_{E_{i}}$ as when we lift it and apply it to χ_{E}. Because the choice constraints hold, this is equivalent with the claim

$$
\chi_{i}\left(c^{\prime}\right)=\sum_{c \in C \cap R\left(c^{\prime}\right)} \chi(c) \quad \forall \text { variables } x_{c^{\prime}} \text { of the ILP of } G_{i} \text {. }
$$

If c is a local circle, this is obvious, because we have $R\left(c^{\prime}\right)=c^{\prime}$ and c^{\prime} is a face cycle in E if and only if it is a face cycle in E_{i}. Now we assume that c is a global circle. Every split edge in G_{i} represents a
subgraph of G, and each face cycle of E_{i} was generated from a face cycle of E by collapsing some path into a single edge. So when x_{c} is zero, there can be no face cycle in E that is in the set $R(c)$ and when x_{c} is one, there must be exactly one circle in $R(c)$ that is a face cycle of E. So the left side of the constraint has the same value when we lift it and apply it to χ_{E} and the constraint is satisfied.
When C_{g} is the set of global circles in G, C_{l} the set of local circles in G_{1} and F the number of face cycles in any combinatorial embedding of G_{1}, then the center graph constraint has the following form:

$$
\sum_{c \in\left(C_{g} \cup C_{l}\right) \cap C} x_{c}=F
$$

The graph G_{1} is the skeleton of the split node. It is constructed by replacing all the split graphs in G by single edges. So if c is a face cycle of E and belongs to C_{l}, then it is also a face cycle of E_{1}. And if c is a global face cycle of E, the circle c^{\prime} in G_{1} that was generated by replacing some paths of c by single edge is a face cycle in E_{1}. On the other side, every face cycle of E_{1} is also a face cycle of E, if it contains no split edge and for every face cycle c of E_{1} that contains at least one split edge, there is a global face cycle in E that can be constructed from c by replacing the split edges with paths from the corresponding split graphs. And since $\left|E_{1}\right|=F$, the equality is satisfied by χ_{E}.

Lemma 3 If G is a biconnected planar graph and $\chi \in\{0,1\}^{|C|}$ a vector that satisfies all constraints of the ILP, than χ is the incidence vector of a combinatorial embedding E of G.

Proof: Again, we use induction over the number n of decision nodes in the SPQR-tree T of G and we disregard the case $n=0$ because G is only a simple circle in this case.

1. $n=1$:
T has only one decision node, and the skeleton of this node is isomorphic with G. The ILP is the convex hull of all incidence vectors of combinatorial embeddings and thus every $\{0,1\}$ vector that satisfies all constraints is the incidence vector of a combinatorial embedding.
2. $n>1$:

The proof works in two stages: First we construct vectors χ_{i} for each split graph out of χ and prove that these vectors satisfy the ILPs of the G_{i}, and are therefore incidence vectors of embeddings E_{i} of the G_{i} by induction basis. In the second stage, we use the E_{i} to construct an embedding E for G and show that χ is the incidence vector of E.

So first we construct the vectors χ_{i}. Let c be a circle in some G_{i} that is a face cycle in at least one embedding of G_{i}. If C is the set of circles in G that are face cycles in at least one embedding, we set:

$$
\chi_{i}(c)=\sum_{c^{\prime} \in C \cap R(c)} \chi\left(c^{\prime}\right)
$$

Because the choice constraints are satisfied, the value of this sum is always zero or one and so all components in χ_{i} will be either zero or one. To show that χ_{i} is the incidence vector of a combinatorial embedding E_{i}, it is sufficient to prove that χ_{i} satisfies all constraints of the ILP of G_{i}, because the induction basis guarantees that χ_{i} is an incidence vector of an embedding when all constraints are satisfied.

We know that χ satisfies all constraints that are lifted from constraints in the ILP of G_{i}. Now the right side of the constraints does not change during lifting. Consider the left side of an arbitrary constraint lifted from the constraints of G_{i}, when C_{i} is the set of circles in G_{i} that are associated with variables in the ILP of G_{i} :

$$
\sum_{c \in C_{i}}\left(\lambda_{c} \cdot \sum_{c^{\prime} \in R(c) \cap C} x_{c^{\prime}}\right) \quad\left(\lambda_{c} \in \mathbb{R}\right)
$$

The left side of the original constraint in the ILP of G_{i} is:

$$
\sum_{c \in C_{i}}\left(\lambda_{c} \cdot x_{c}\right)
$$

We constructed χ_{i} such that $\chi_{i}(c)=\sum_{c^{\prime} \in C \cap R(c)} \chi\left(c^{\prime}\right)$ and thus we know that all constraints of G_{i} are satisfied by χ_{i} and that it is the incidence vector of a combinatorial embedding E_{i} of G_{i}.

We have completed stage 1 of the proof and proceed to stage 2 , so we want to construct an embedding E for G from the E_{i} and show that χ is the incidence vector of E. We construct E as described in lemma 1. So every circle c in G_{i} for $1 \leq i \leq d$ which does not include a split edge is a face cycle in E if and only if it is a face cycle in E_{i}. Consider the way we have defined each χ_{i} :

$$
\chi_{i}(c)=\sum_{c^{\prime} \in C \cap R(c)} \chi\left(c^{\prime}\right)
$$

Since c does not include a split edge, we have $R(c)=\{c\}$. And so we have that $\chi(c)=1$ if and only if $c \in E$. We have now proven that χ and E agree about the local circles. It remains to show that they agree about the global circles.

First we show that the number of components with value 1 in χ that are associated with global circles is equal to the number of global circles in the set E. This is guaranteed by the center graph constraint:

$$
\sum_{c \in\left(C_{g} \cup C_{l}\right) \cap C} x_{c}=F
$$

Here C_{g} is the set of all global circles and C_{l} the set of all local circles in G_{1}. Since χ and E agree on all local circles, the number of global circles whose associated component in χ is 1 is $F-\left|C_{l} \cap E\right|$ which is equal to the number of global circles in E. We will now show that for all $c_{g} \in C_{g} \cap E$ we have $\chi\left(c_{g}\right)=1$ and thus prove the lemma.
Let c_{g} be any circle in $C_{g} \cap E$. Then there is exactly one circle $c_{1_{g}}$ in the center split graph G_{1} with $c_{g} \in R\left(c_{1_{g}}\right)$. We have $c_{1_{g}} \in E_{1}$ which follows from lemma 1. From that we can conclude that there is a circle c_{g}^{\prime} in G with $c_{g}^{\prime} \in R\left(c_{1_{g}}\right)$ such that $\chi\left(c_{g}^{\prime}\right)=1$ (from the construction of χ_{1} and E_{1}). So we have to show that $c_{g}^{\prime}=c_{g}$. Since $\left\{c_{g}^{\prime}, c_{g}\right\} \subseteq R\left(c_{1_{g}}\right)$, both circles are represented by the same circle $c_{1_{g}}$ in G_{1}. Consider now this circle $c_{1_{g}}$. It contains split edges and might also contain edges from G. When A_{1} is the set of edges in $E_{1_{g}}$ that are also edges in G and A_{2} the set of split edges in $c_{1_{g}}$, then the edges in A_{1} must be present in c_{g} and c_{g}^{\prime}. So both circles can only differ in the paths they take through the split graphs having the split edges from A_{2}. Let e be an edge in A_{2} and G_{e} be the split graph associated with this split edge. When p is the path of c_{g} that runs through G_{e}, then there is a circle c_{l} in E_{e} that consists of p and the split edge of G_{e}. This follows from the construction of E. If c_{g}^{\prime} took a path p^{\prime} different from p through G_{e}, we would have another circle in E_{e} passing through the split edge in the same direction as c_{l}. But in any embedding, there is only one circle that passes an edge in a certain direction. Therefor, p and p^{\prime} must be the same.
Since we can apply this argumentation to all split edges in the circle $c_{1_{g}}$, we can show that c_{g} and c_{g}^{\prime} are in fact the same circle. Thus we have $\chi\left(c_{g}\right)=1$ and it follows that χ is indeed the incidence vector of the combinatorial embedding E.

5 Computational results

In our computational experiments, we tried to get statistical data about the size of the integer linear program and the times needed to compute it. Our implementation works for biconnected planar graphs with maximal degree four, since we are interested in improving orthogonal planar drawings. First
we used a benchmark set of 11491 practical graphs collected by the group around G. Di Battista in Rome ([7]). We have transformed these graphs into biconnected planar graphs with maximal degree four using planarization, planar augmentation, and the ring approach described in [8]. This is a commonly used approach for getting orthogonal drawings with a small number of bends [1].

For each of the resulting graphs, we constructed the integer linear program. As objective function, we minimized the number of face cycles with more than five edges. This problem is NP-complete ([13]). Figure 7 shows that the time for generating the ILP grows sub-exponentially with the number of nodes of the graph. We were able to generate every ILP in less than 40 seconds. Figure 8 shows the number of combinatorial embeddings of each of the graphs. We noticed that only very few graphs of the test-suit had a large number of embeddings. The maximum number of embeddings for any graph was 4608.

The Figs. 9 and 10 show that the number of constraints and variables in the ILP grow linearly with the size of the graphs. The maximum number of constraints was 428 , while the maximum number of variables was 166 . Figure 11 shows the time in seconds needed by the mipopt-solver of CPLEX to solve the ILPs to optimality. There was no ILP in our test-suit that took more than 0.06 seconds to solve.

In order to study the limits of our method, we started a similar test-run on extremely difficult graphs. We used the random graph generator developed by the group around G. Di Battista in Rome that creates biconnected planar graphs with maximal degree four with an extremely high number of embeddings (see [3] for detailed information). We generated graphs with the number of nodes ranging from 25 to 500 , proceeding in steps of 25 nodes and generating 10 random graphs for each number of nodes. For each of the 200 graphs, we again generated the ILP and measured the time needed to do this. The times are shown in Fig. 12. They grow sub-exponentially and the maximum time needed was 10 minutes on a Sun Enterprise 10000.

The number of embeddings of each graph is shown in Fig. 13. They grow exponentially with the number of nodes, so we used a logarithmic scale for the y-axis. There was one graph with more than 10^{19} combinatorial embeddings. These numbers were computed by counting the number of Rand P-nodes in the SPQR-tree of each graph. Each R-node doubles the number of combinatorial embeddings while each P-node multiplies it by 2 or 6 depending on the number of edges in its skeleton. Figures 14 and 15 show the number of constraints and variables in each ILP. Both of them grow linearly with the number of nodes. The largest ILP has about 2500 constraints and 1000 variables.

To test how difficult it is to optimize over the ILPs, we have chosen 10 random objective functions for each ILP with integer coefficients between 0 and 100 and computed a maximal integer solution using the mixed integer
solver of CPLEX. Figure 16 shows the maximum time needed for any of the 10 objective functions. The computation time always stayed below 2 seconds.

Our future goal will be to extend our formulation such that each solution will not only represent a combinatorial embedding but an orthogonal drawing of the graph. This will give us a chance to find drawings with the minimum number of bends or drawings with fewer crossings. Of course, this will make the solution of the ILP much more difficult.

Figure 7: Generation time in the benchmark test-run

Figure 8: Number of embeddings in the benchmark test-run

Figure 9: Number of constraints in the benchmark test-run

Figure 10: Number of variables in the benchmark-test-run

Figure 11: Optimization time in the benchmark test-run

Figure 12: Generation time in the artificial test-run

Figure 13: Number of embeddings in the artificial test-run

Figure 14: Number of constraints in the artificial test-run

Figure 15: Number of variables in the artificial test-run

Figure 16: Optimization time in the artificial test-run

References

[1] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing. Prentice Hall, 1999.
[2] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing, 25(5):956-997, October 1996.
[3] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. Lecture Notes in Computer Science, 1272:331-344, 1998.
[4] D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs. Networks, 19(1):79-94, 1989.
[5] D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93109, 1990.
[6] J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journal on Discrete Mathematics, 6(3):335-352, 1993.
[7] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303-326, 1997.
[8] P. Eades and P. Mutzel. Algorithms and theory of computation handbook, chapter 9 Graph drawing algorithms. CRC Press, 1999.
[9] I. Fary. On straight line representing of planar graphs. Acta. Sci. Math.(Szeged), 11:229-233, 1948.
[10] A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. Lecture Notes in Computer Science, 894:286-297, 1995.
[11] S. MacLane. A combinatorial condition for planar graphs. Fundamenta Mathematicae, 28:22-32, 1937.
[12] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421-444, 1987.
[13] G. J. Woeginger. personal communications, July 1998.

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They are available by anonymous ftp from ftp.mpi-sb.mpg. de under the directory pub/papers/reports. Most of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Birgit Hofmann
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-018	F. Eisenbrand	A Note on the Membership Problem for the First Elementary Closure of a Polyhedron
MPI-I-98-2-017	M. Tzakova, P. Blackburn	Hybridizing Concept Languages
MPI-I-98-2-014	Y. Gurevich, M. Veanes	Partisan Corroboration, and Shifted Pairing
MPI-I-98-2-013	H. Ganzinger, F. Jacquemard, M. Veanes	Rigid Reachability
MPI-I-98-2-012	G. Delzanno, A. Podelski	Model Checking Infinite-state Systems in CLP
MPI-I-98-2-011	A. Degtyarev, A. Voronkov	Equality Reasoning in Sequent-Based Calculi
MPI-I-98-2-010	S. Ramangalahy	Strategies for Conformance Testing
MPI-I-98-2-009	S. Vorobyov	The Undecidability of the First-Order Theories of One Step Rewriting in Linear Canonical Systems
MPI-I-98-2-008	S. Vorobyov	AE-Equational theory of context unification is Co-RE-Hard
MPI-I-98-2-007	S. Vorobyov	The Most Nonelementary Theory (A Direct Lower Bound Proof)
MPI-I-98-2-006	P. Blackburn, M. Tzakova	Hybrid Languages and Temporal Logic
MPI-I-98-2-005	M. Veanes	The Relation Between Second-Order Unification and Simultaneous Rigid E-Unification
MPI-I-98-2-004	S. Vorobyov	Satisfiability of Functional+Record Subtype Constraints is NP-Hard
MPI-I-98-2-003	R.A. Schmidt	E-Unification for Subsystems of S4
MPI-I-98-1-028	A. Crauser, K. Mehlhorn, E. Althaus, K. Brengel, T. Buchheit, J. Keller, H. Krone, O. Lambert, R. Schulte, S. Thiel, M. Westphal, R. Wirth	On the performance of LEDA-SM
MPI-I-98-1-027	C. Burnikel	Delaunay Graphs by Divide and Conquer
MPI-I-98-1-026	K. Jansen, L. Porkolab	Improved Approximation Schemes for Scheduling Unrelated Parallel Machines
MPI-I-98-1-025	K. Jansen, L. Porkolab	Linear-time Approximation Schemes for Scheduling Malleable Parallel Tasks
MPI-I-98-1-024	S. Burkhardt, A. Crauser, P. Ferragina, H. Lenhof, E. Rivals, M. Vingron	q-gram Based Database Searching Using a Suffix Array (QUASAR)
MPI-I-98-1-023	C. Burnikel	Rational Points on Circles
MPI-I-98-1-022	C. Burnikel, J. Ziegler	Fast Recursive Division
MPI-I-98-1-021	S. Albers, G. Schmidt	Scheduling with Unexpected Machine Breakdowns
MPI-I-98-1-020	C. Rüb	On Wallace's Method for the Generation of Normal Variates

MPI-I-98-1-019

MPI-I-98-1-018	D. Dubhashi, D. Ranjan
MPI-I-98-1-017	A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, E. Ramos
MPI-I-98-1-016	P. Krysta, K. Loryś
MPI-I-98-1-015	M.R. Henzinger, S. Leonardi
MPI-I-98-1-014	U. Meyer, J.F. Sibeyn
MPI-I-98-1-013	G.W. Klau, P. Mutzel
MPI-I-98-1-012	S. Mahajan, E.A. Ramos, K.V. Subrahmanyam
MPI-I-98-1-011	G.N. Frederickson, R. Solis-Oba
MPI-I-98-1-010	R. Solis-Oba
MPI-I-98-1-009	D. Frigioni, A. Marchetti-Spaccamela, U. Nanni
MPI-I-98-1-008	M. Jünger, S. Leipert, P. Mutzel
MPI-I-98-1-007	A. Fabri, G. Giezeman, L. Kettner, S. Schirra, S. Schönherr
MPI-I-98-1-006	K. Jansen
MPI-I-98-1-005	K. Jansen
MPI-I-98-1-004	S. Schirra
MPI-I-98-1-003	S. Schirra
MPI-I-98-1-002	G.S. Brodal, M.C. Pinotti
MPI-I-98-1-001	T. Hagerup
MPI-I-97-2-012	L. Bachmair, H. Ganzinger, A. Voronkov
MPI-I-97-2-011	L. Bachmair, H. Ganzinger
MPI-I-97-2-010	S. Vorobyov, A. Voronkov
MPI-I-97-2-009	A. Bockmayr, F. Eisenbrand
MPI-I-97-2-008	A. Bockmayr, T. Kasper
MPI-I-97-2-007	P. Blackburn, M. Tzakova
MPI-I-97-2-006	S. Vorobyov
MPI-I-97-2-005	L. Bachmair, H. Ganzinger
MPI-I-97-2-004	W. Charatonik, A. Podelski
MPI-I-97-2-003	U. Hustadt, R.A. Schmidt
MPI-I-97-2-002	R.A. Schmidt
MPI-I-97-2-001	D.A. Basin, S. Matthews, L. Viganò
MPI-I-97-1-028	M. Lermen, K. Reinert

2nd Workshop on Algorithm Engineering WAE '98Proceedings

On Positive Influence and Negative Dependence
Randomized External-Memory Algorithms for Some Geometric Problems

New Approximation Algorithms for the Achromatic Number
Scheduling Multicasts on Unit-Capacity Trees and Meshes
Time-Independent Gossiping on Full-Port Tori
Quasi-Orthogonal Drawing of Planar Graphs
Solving some discrepancy problems in NC*

Robustness analysis in combinatorial optimization
2-Approximation algorithm for finding a spanning tree with maximum number of leaves

Fully dynamic shortest paths and negative cycle detection on diagraphs with Arbitrary Arc Weights
A Note on Computing a Maximal Planar Subgraph using PQ-Trees
On the Design of CGAL, the Computational Geometry Algorithms Library
A new characterization for parity graphs and a coloring problem with costs

The mutual exclusion scheduling problem for permutation and comparability graphs
Robustness and Precision Issues in Geometric Computation

Parameterized Implementations of Classical Planar Convex Hull Algorithms and Extreme Point Compuations
Comparator Networks for Binary Heap Construction
Simpler and Faster Static AC ${ }^{0}$ Dictionaries
Elimination of Equality via Transformation with Ordering Constraints
Strict Basic Superposition and Chaining
Complexity of Nonrecursive Logic Programs with Complex Values
On the Chvátal Rank of Polytopes in the $0 / 1$ Cube
A Unifying Framework for Integer and Finite Domain Constraint Programming
Two Hybrid Logics
Third-order matching in $\lambda \rightarrow$-Curry is undecidable
A Theory of Resolution
Solving set constraints for greatest models
On evaluating decision procedures for modal logic
Resolution is a decision procedure for many propositional modal logics
Labelled modal logics: quantifiers
The Practical Use of the \mathcal{A}^{*} Algorithm for Exact Multiple Sequence Alignment

