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Abstract

We study the problem of optimizing over the set of all combinatorial embed-
dings of a given planar graph. Our objective function prefers certain cycles
of G as face cycles in the embedding. The motivation for studying this prob-
lem arises in graph drawing, where the chosen embedding has an important
in
uence on the aesthetics of the drawing.

We characterize the set of all possible embeddings of a given biconnected
planar graph G by means of a system of linear inequalities with f0; 1g-
variables corresponding to the set of those cycles in G which can appear
in a combinatorial embedding. This system of linear inequalities can be
constructed recursively using the data structure of SPQR-trees and a new
splitting operation.

Our computational results on two benchmark sets of graphs are surprising:
The number of variables and constraints seems to grow only linearly with the
size of the graphs although the number of embeddings grows exponentially.
For all tested graphs (up to 500 vertices) and linear objective functions, the
resulting integer linear programs could be generated within 600 seconds and
solved within two seconds on a Sun Enterprise 10000 using CPLEX.



1 Introduction

A graph is called planar when it admits a drawing into the plane without
edge-crossings. There are in�nitely many di�erent drawings for every planar
graph, but they can be divided into a �nite number of equivalence classes.
We call two planar drawings of the same graph equivalent when the sequence
of the edges in clockwise order around each node is the same in both draw-
ings. The equivalence classes of planar drawings are called combinatorial

embeddings. A combinatorial embedding also de�nes the set of cycles in the
graph that bound faces in a planar drawing.

The complexity of embedding planar graphs has been studied by various
authors in the literature [5, 4, 6]. E.g., Bienstock and Monma have given
polynomial time algorithms for computing an embedding of a planar graph
that minimizes various distance functions to the outer face [5]. Moreover,
they have shown that computing an embedding that minimizes the diameter
of the dual graph is NP-hard.

In this paper we deal with the following optimization problem concerned
with embeddings: Given a planar graph and a cost function on the cycles
of the graph. Find an embedding � such that the sum of the cost of the
cycles that appear as face cycles in � is minimized. When choosing the cost
1 for all cycles of length greater or equal to �ve and 0 for all other cycles,
the problem is NP-hard [13].

Our motivation to study this optimization problem and in particular
its integer linear programming formulation arises in graph drawing. Most
algorithms for drawing planar graphs need not only the graph as input but
also a combinatorial embedding. The aesthetic properties of the drawing
often changes dramatically when a di�erent embedding is chosen.

Figure 1 shows two di�erent drawings of the same graph that were gen-
erated using the bend minimization algorithm by Tamassia [12]. The algo-
rithm used di�erent combinatorial embeddings as input. Drawing 1(a) has
13 bends while drawing 1(b) has only 7 bends. It makes sense to look for the
embedding that will produce the best drawing. We conjecture that there
are statistical dependencies between the length of the face cycles in the em-
bedding and nice drawings. If we are able to solve the stated optimization
problem e�ciently for practical instances, we will be able to do extensive
experiments in order to get insights into this. But our original motivation
has been the following.

In graph drawing it is often desirable to optimize some cost function
over all possible embeddings in a planar graph. In general these optimiza-
tion problems are NP-hard [10]. For example: The number of bends in an
orthogonal planar drawing highly depends on the chosen planar embedding.
In the planarization method, the number of crossings highly depends on
the chosen embedding when the deleted edges are reinserted into a planar
drawing of the rest-graph. Both problems can be formulated as 
ow prob-
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Figure 1: The impact of the chosen planar embedding on the drawing

lems in the geometric dual graph. A 
ow between vertices in the geometric
dual graph corresponds to a 
ow between adjacent face cycles in the primal
graph. Once we have characterized the set of all feasible embeddings (via
an integer linear formulation on the variables associated with each cycle),
we can use this in an ILP-formulation for the corresponding 
ow problem.
Here, the variables consist of `
ow variables' and `embedding variables'.

This paper introduces an integer linear program whose set of feasible
solutions corresponds to the set of all possible combinatorial embeddings of
a given biconnected planar graph. One way of constructing such an integer
linear program is by using the fact that every combinatorial embedding
corresponds to a 2-fold complete set of circuits (see MacLane [11]). The
variables in such a program are all simple cycles in the graph; the constraints
guarantee that the chosen subset of all simple cycles is complete and that
no edge of the graph appears in more than two simple cycles of the subset.

We have chosen another way of formulating the problem. The advantage
of our formulation is that we only introduce variables for those simple cycles
that form the boundary of a face in at least one combinatorial embedding
of the graph, thus reducing the number of variables tremendously. Fur-
thermore, the constraints are derived using the structure of the graph. We
achieve this by constructing the program recursively using a data structure
called SPQR-tree suggested by Di Battista and Tamassia ([2]). SPQR-trees
can be used to code and enumerate all possible combinatorial embeddings
of a biconnected planar graph. Furthermore we introduce a new splitting
operation which enables us to construct the linear description recursively.

Our computational results on two benchmark sets of graphs have been
quite surprising. We expected that the size of the linear system will grow
exponentially with the size of the graph. Surprisingly, we could only observe
a linear growth. However, the time for generating the system grows sub-
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exponentially; but for practical instances it is still reasonable. For a graph
with 500 vertices and 1019 di�erent combinatorial embeddings the construc-
tion of the ILP took about 10 minutes. Very surprising was the fact that
the solution of the generated ILPs took only up to 2 seconds using CPLEX.

Section 2 gives a brief description of the data structure SPQR-tree. In
Section 3 we describe the recursive construction of the linear constraint
system using a new splitting operation. Our computational results are de-
scribed in Section 5.

2 SPQR-trees

In this section, we give a brief description of the SPQR-tree data structure
for biconnected planar graphs. A connected graph is biconnected, if it has
no cut vertex. A cut vertex of a graph G = (V;E) is a vertex whose removal
increases the number of connected components. A connected graph that
has no cut vertex is called biconnected. A set of two vertices whose removal
increases the number of connected components is called a separation pair; a
connected graph without a separation pair is called triconnected.

SPQR-trees have been suggested by Di Battista and Tamassia ([2]).
They represent a decomposition of a planar biconnected graph according
to its split pairs. A split pair is a pair of nodes in the graph that is either
connected by an edge or has the property that its removal increases the
number of connected components. The split components of a split pair p are
the maximal subgraphs of the original graph, for which p is not a split pair.
When a split pair p is connected by an edge, one of the split components
consists just of this edge together with the adjacent nodes while the other
one is the original graph without the edge.

The construction of the SPQR-tree works recursively. At every node v of
the tree, we split the graph into smaller edge-disjoint subgraphs. We add an
edge to each of them to make sure that they are biconnected and continue
by computing their SPQR-tree and making the resulting trees the subtrees
of the node used for the splitting. Every node of the SPQR-tree has two
associated graphs:

� The skeleton of the node de�ned by a split pair p is a simpli�ed version
of the whole graph where the split-components of p are replaced by
single edges.

� The pertinent graph of a node v is the subgraph of the original graph
that is represented by the subtree rooted at v.

The two nodes of the split pair p that de�ne a node v are called the
poles of v. For the recursive decomposition, a new edge between the poles is
added to the pertinent graph of a node which results in a biconnected graph
that may have multiple edges. The SPQR-tree has four di�erent types of
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nodes that are de�ned by the structure and number of the split components
of its poles va and vb:

1. Q-node: The pertinent graph of the node is just the single edge e =
fva; vng . The skeleton consists of the two poles that are connected by
two edges. One of the edges represents the edge e and the other one
the rest of the graph.

2. S-node: The pertinent graph of the node has at least one cut vertex (a
node whose removal increases the number of connected components).
When we have the cut vertices v1, v2 to vk, they then split the pertinent
graph into the components G1, G2 to Gk+1. In the skeleton of the
node, G1 to Gk+1 are replaced by single edges and the edge between
the poles is added. The decomposition continues with the subgraphs
Gi, where the poles are vi and vi+1. Figure 2(a) shows the pertinent
graph of an S-node together with the skeleton.

3. P-node: va and vb in the pertinent graph have more than one split-
components G1 to Gk. In the skeleton, each Gi is replaced by a single
edge and the edge between the poles is added. The decomposition
continues with the subgraphs Gi, where the poles are again va and
vb. Figure 2(b) shows the pertinent graph of a P-node with 3 split
components and its skeleton.

4. R-node: None of the other cases is applicable, so the pertinent graph
is biconnected. The poles va and vb are not a split pair of the pertinent
graph. In this case, the decomposition depends on the maximal split

pairs of the pertinent graph with respect to the pair fva; vbg. A split
pair fv1; v2g is maximal with respect to fva; vbg, if for every other split
pair fv01; v

0
2g, there is a split component that includes the nodes v1, v2,

va and vb. For each maximal split pair p with respect to fva; vbg,
we de�ne a subgraph Gp of the original graph as the union of all the
split-components of p that do not include va and vb. In the skeleton,
each subgraph Gp is replaced by a single edge and the edge between
the poles is added. The decomposition proceeds with the subgraphs
de�ned by the maximal split pairs (see Fig. 2(c)).

The SPQR-tree of a biconnected planar graph G where one edge is
marked (the so-called reference edge) is constructed in the following way:

1. Remove the reference edge and consider the end-nodes of it as the poles
of the remaining graph G0. Depending on the structure of G0 and the
number of split components of the poles, choose the type of the new
node v (S, P, R or Q).

2. Compute the subgraphs G1 to Gk as de�ned above for the di�erent
cases and add an edge between the poles of each of the subgraphs.
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Figure 2: Pertinent graphs and skeletons of the di�erent node types of an
SPQR-tree

3. Compute the SPQR-trees T1 to Tk for the subgraphs where the added
edge is the reference edge and make the root of these trees the sons of
v.

When we have completed this recursive construction, we create a new Q-
node representing the reference edge of G and make it the root of the whole
SPQR-tree by making the old root a son of the Q-node. This construction
implies that all leaves of the tree are Q-nodes and all inner nodes are S-, P-,
or R-nodes. Figure 3 shows a biconnected planar graph and its SPQR-tree
where the edge f1; 2g was chosen as the reference edge.

When we see the SPQR-tree as an unrooted tree, we get the same tree
no matter what edge of the graph was marked as the reference edge. The
skeletons of the nodes are also independent of the choice of the reference
edge. Thus, we can de�ne a unique SPQR-tree for each biconnected planar
graph. Another important property of these trees is that their size (including
the skeletons) is linear in the size of the original graph and they can be
constructed in linear time ([2]).

As described in [2], SPQR-trees can be used to represent all combina-
torial embeddings of a biconnected planar graph. This is done by choosing
embeddings for the skeletons of the nodes in the tree. The skeletons of S- and
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Figure 3: A biconnected planar graph and its SPQR-tree

Q-nodes are simple circles, so they have only one embedding. The skeletons
of R-nodes are always triconnected graphs. In most publications, combina-
torial embeddings are de�ned in such a way, that only one combinatorial
embedding for a triconnected planar graph exists. Our de�nition distin-
guishes between two combinatorial embeddings which are mirror-images of
each other (the order of the edges around each node in clockwise order is
reversed in the second drawing). When the skeleton of a P-node has k edges,
there are (k � 1)! di�erent embeddings of its skeleton.

Every combinatorial embedding of the original graph de�nes a unique
combinatorial embedding for each skeleton of a node in the SPQR-tree.
Conversely, when we de�ne an embedding for each skeleton of a node in
the SPQR-tree, we de�ne a unique embedding for the original graph. The
reason for this fact is that each skeleton is a simpli�ed version of the original
graph where the split components of some split pair are replaced by single
edges. Thus, if the SPQR-tree of G has r R-nodes and the P-nodes P1 to
Pk where the skeleton of Pi has Li edges, than the number of combinatorial
embeddings of G is exactly

2r
kX
i=1

(Li � 1)! :

Because the embeddings of the R- and P-nodes determine the embedding
of the graph, we call these nodes the decision nodes of the SPQR-tree. In
[3], the fact that SPQR-trees can be used to enumerate all combinatorial
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embeddings of a biconnected planar graph was used to devise a branch-
and-bound algorithm for �nding a planar embedding and an outer face for
a graph such that the drawing computed by Tamassia's algorithm has the
minimum number of bends among all possible orthogonal drawings of the
graph.

3 Recursive construction of the integer linear pro-

gram

3.1 Intuition

The SPQR-tree represents the decomposition of a biconnected planar graph
with respect to its triconnected components. All embeddings of the graph
can be enumerated by enumerating all possible embeddings of these compo-
nents in respect to the rest of the graph. Our approach uses the fact that
each skeleton of a node in the SPQR-tree represents a simpli�ed version
of the original graph. By computing the integer linear programs (ILP) for
these simple graphs and using a lifting procedure, we can compute an ILP
for the original graph.

When we take a closer look at the skeleton of a node in the SPQR-tree,
we observe that it can be constructed from the original graph by replacing
one or several subgraphs by single edges, which we will later call split edges.
We can think of such an edge as representing the set of all the simple paths
in the original graph, that connect the two nodes of the split edge. So every
circle in a skeleton that includes a split edge represents a set of circles in
the original graph that we get by replacing the split edge with the paths
represented by it.

The variables of our program correspond to directed circles in the graph
that are face cycles in at least one planar embedding. We can guarantee
this, because our recursive construction computes the set of variables for
the original problem using the sets of variables from subproblems for which
the ILP has already been computed. So we construct circles in the original
graph from circles in the subproblems by replacing split edges with paths in
the graph.

3.2 The variables of the integer linear program

The skeletons of P-nodes are multi-graphs, so they have multiple edges be-
tween the same pair of nodes. Because we want to talk about directed
circles, we can be much more precise when we are dealing with bidirected

graphs. A directed graph is called bidirected if there exists a bijective func-
tion r : E ! E such that for every edge e = (v; w) with r(e) = eR we have
eR = (w; v) and r(eR) = e We can turn an undirected graph into a bidi-
rected graph by replacing each undirected edge by two directed edges that
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go in opposite directions. The undirected graph G that can be transformed
in this way to get the bidirected graph G0 is called the underlying graph of
G0.

A directed circle in the bidirected graph G = (V;E) is a sequence of edges
of the following form: c = ((v1; v2); (v2; v3); : : : ; (vk; v1)) = (e1; e2; : : : ; ek)
with the properties that every node of the graph is contained in at most two
edges of c and if k = 2, then e1 6= e2 holds. We say a planar drawing of a
bidirected graph is the drawing of the underlying graph, so the embeddings
of a bidirected graph are identical with the embeddings of the underlying
graph.

A face cycle in a combinatorial embedding of a bidirected planar graph is
a directed circle of the graph, such that in any planar drawing that realizes
the embedding, the left side of the circle is empty. Note that the number
of face cycles of a planar biconnected graph is m � n + 2 where m is the
number of edges in the graph and n the number of nodes.

Now we are ready to construct an integer linear program (ILP) in which
the feasible solutions correspond to the combinatorial embeddings of a bi-
connected planar bidirected graph. The variables of the program are binary
and they correspond to directed circles in the graph. As objective function,
we can choose any linear function on the directed circles of the graph. With
every circle c we associate a binary variable xc. In a feasible solution of the
integer linear program, a variable xc has value 1 if the associated circle is a
face cycle in the represented embedding and 0 otherwise. To keep the num-
ber of variables as small as possible, we only introduce variables for those
circles that are a face cycle in at least one combinatorial embedding of the
graph.

3.3 Splitting an SPQR-tree

We use a recursive approach to construct the variables and constraints of the
ILP. Therefore, we need an operation that constructs a number of smaller
problems out of our original problem such that we can use the variables and
constraints computed for the smaller problems to compute the ILP for the
original problem. This is done by splitting the SPQR-tree at some decision-
node v. Let e be an adjacent edge of v whose other endpoint is not a
Q-node. Deleting e splits the tree into two trees T1 and T2. We add a new
edge with a Q-node attached to both trees to replace the deleted edge and
thus ensure that T1 and T2 become complete SPQR-trees again. The edges
corresponding to the new Q-nodes are called split edges. For adjacent edges
of v, whose other endpoint is a Q-node, the splitting is not necessary. Doing
this for each edge adjacent to v results in d+ 1 smaller SPQR-trees, called
the split-trees of v, where d is the number of inner nodes adjacent to v . This
splitting process is shown in Fig. 4. Since the new trees are SPQR-trees,
they represent planar biconnected graphs which are called the split graphs
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of v. We will show how to compute the ILP for the original graph using the
ILPs computed for the split graphs.

T1

T2 T3

v

Q

Q Q

Q

v

Q

Q Q

Q

Q

Q Q
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Q

Q
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Q
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Split

Figure 4: Splitting an SPQR-tree at an inner node

As we have seen, the number and type of decision-nodes in the SPQR-
tree of a graph determines the number of combinatorial embeddings. The
subproblems we generated by splitting the tree either have only one decision-
node or at least one fewer than the original problem.

3.4 The integer linear program for SPQR-trees with one in-

ner node

We observe that a graph whose SPQR-tree has only one inner node is isomor-
phic to the skeleton of this inner node. So the split-tree of v which includes
v, called the center split-tree of v, represents a graph which is isomorphic to
the whole graph.

The ILPs for SPQR-trees with only one inner node are de�ned as follows:

� S-node: When the only inner node of the SPQR-tree is an S-node, the
whole graph is a simple circle. Thus it has two directed circles and
both are face-cycles in the only combinatorial embedding of the graph.
So the ILP consists of two variables, both of which must be equal to
one.

� R-node: In this case, the whole graph is triconnected. According to our
de�nition of planar embedding, every triconnected graph has exactly
two embeddings, which are mirror-images of each other. When the
graph has m edges and n nodes, we have k = 2(m � n+ 2) variables
and two feasible solutions. The constraints are given by the convex
hull of the points in k-dimensional space, that correspond to the two
solutions.

� P-node: The whole graph consists only of two nodes connected by k

edges with k � 3. Every directed circle in the graph is a face cycle
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in at least one embedding of the graph, so the number of variables is
equal to the number of directed circles in the graph. The number of
circles is

l = 2

�
k

2

�

because we always get an undirected circle by pairing two edges and,
since we are talking about directed circles, we get twice the number
of pairs of edges. As already mentioned, the number of embeddings is
(k � 1)!. The constraints are given as the convex hull of the points in
l-dimensional space that represent these embeddings.

3.5 Construction of the ILP for SPQR-trees with more than

one inner node

We de�ne, how to construct the ILP of an SPQR-tree T from the ILPs of the
split-trees of a decision node v of T . Let G be the graph that corresponds to
T and T1; : : : ; Tk the split-trees of v representing the graphs G1 to Gk. We
assume that T1 is the center split-tree of v. Now we consider the directed
circles of G. We can distinguish two types:

1. Local circles are circles of G that also appear in one of the graphs
G1; : : : ; Gk.

2. Global circles of G are not contained in any of the Gi.

Every split-tree of v except the center split-tree is a subgraph of the
original graph G with one additional edge (the split edge corresponding to
the added Q-node). The graph that corresponds to the center split-tree may
have more than one split edge. Note that the number of split edges in this
graph is not necessarily equal to the degree of v, because v may have been
connected to Q-nodes in the original tree. For every split edge e, we de�ne a
subgraph expand(e) of the original graph G, which is represented by e. The
two nodes connected by a split edge always form a split pair p of G. When
e belongs to the graph Gi represented by the split-tree Ti, then expand(e)
is the union of all the split components of G that share only the nodes of p
and no edge with Gi.

For every directed circle c in a graph Gi represented by a split-tree, we
de�ne the set R(C) of represented circles in the original graph . A circle c0

of G is in R(c), when it can be constructed from c by replacing every split
edge e = (v; w) in c by a simple path in expand(e) from v to w.

The variables of the ILPs of the split-trees that represent local circles
will also be variables of the ILP of the original graph G. But we will also
have variables that correspond to global circles of G. A global circle c in G

will get a variable in the ILP, when the following conditions are met:

1. There is a variable xc1 in the ILP of T1 with c 2 R(c1).
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2. For every split-tree Ti with 2 � i � k where c has at least one edge in
Gi, there is a variable xci in the ILP of Ti such that c 2 R(ci).

So far we have de�ned all the variables for the integer linear program of
G. The set C of all constraints of the ILP of T is given by

C = Cl [ Cc [ CG :

First we de�ne the set Cl which is the set of lifted constraints of T . Each of
the graphs T1; : : : ; Tk is a simpli�ed versions of the original graph G. They
can be generated from G by replacing some split components of one or more
split pairs by single edges. When we have a constraint that is valid for a split
graph, a weaker version of this constraint is still valid for the original graph.
The process of generating these new constraints is called lifting because
we introduce new variables that cause the constraint to describe a higher
dimensional half space or hyper plane. Let

lX
j=1

ajxcj
:
= R

be a constraint in a split-tree, where
:
= 2 f�;�;=g and let X be the set of

all variables of T . Then the lifted constraint for the tree T is the following:

lX
j=1

aj
X

c: c2R(cj)\X

xc
:
= R

We de�ne Cl as the set of lifted constraints of all the split-trees. The number
of constraints in Cl is the sum of all constraints in all split-trees.

The set Cc is the set of choice constraints. For a circle c in Gi, which
includes a split edge, we have jR(c)j > 1. All the circles in R(c) share either
at least one directed edge or they pass a split graph of the split node in the
same direction. Therefore, only one of the circles in R(c) can be a face cycle
in any combinatorial embedding of G (proof omitted). For each variable xc
in a split tree with jR(c)j > 1 we have therefore one constraint that has the
following form: X

c02R(c)^xc02X

xc0 � 1

The set CG consists of only one constraint, called the center graph con-

straint. Let F be the number of face cycles in a combinatorial embedding of
G1, CG the set of all global circles c in G and CL the set of all local circles
c in G1 then this constraint is:

X
c 2 (Cg[Cl)\C

xc = F
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This constraint is valid, because we can produce every drawing D of G
by replacing all split edges in a drawing D1 of G1 with the drawings of
subgraphs of G. For each face cycle in D1, there will be a face cycle in D,
that is either identical to the one in D1 (if it was a local circle) or is a global
circle. This de�nes the ILP for any biconnected planar graph.

4 The main theorem and its proof

Theorem 1 Every feasible solution of the generated ILP corresponds to a

combinatorial embedding of the given biconnected planar graph G and vice

versa: every combinatorial embedding of G corresponds to a feasible solution

for the generated ILP.

Because the proof of the main theorem is quite complex, we have split
it into three lemmas.

Lemma 1 Let G be a biconnected planar Graph and let T be its SPQR-Tree.

Let � be a decision node in T with degree d, T1; : : : ; Td0 with d0 � d be the
split trees of � (T1 is the center split tree) and G1; : : : ; Gd0 the associated split

graphs. Every combinatorial embedding E of G de�nes a unique embedding

for each Gi. On the other side, if we �x a combinatorial embedding Ei for

each Gi, we have de�ned a unique embedding for G.

Proof: First we will show how E de�nes a unique combinatorial embedding
for Gi with 2 � i � d0. Let e be the split edge in Gi and G0

i be the graph
we get by deleting e from Gi and let Z be a drawing that realizes E. Then
we can construct a planar drawing Z 0

i of G
0
i by deleting all the drawings of

nodes and edges from Z that are not contained in G0
i. To get a drawing Zi

of Gi, we have to add a drawing of e to Z 0
i. We have to prove, that every

planar drawing we can construct in this way realizes the same embedding
Ei.

First we show, that it is possible to add a drawing of e without losing
planarity. Let u and v be the two nodes connected by e. Then fu; vg is a
split pair, and removing these nodes from G splits the graph in at least 2
components. One of these components is G0

i. Since all split components are
connected, there must be a path connecting u and v in each of them which
proves that there is a path p in G connecting u and v that does not use any
edge in G0

i. Since Z is a planar drawing, we can get a planar drawing of Gi

by drawing e as the same curve that represented p in Z.
To prove that every drawing of Gi that is constructed in this way realizes

the same embeddingEi, we �rst observe that the embeddingE
0
i ofG

0
i realized

by Z 0
i is unique. What is left to show is that there are not two di�erent face

cycles c1 and c2 in E0
i that we can split by inserting the drawing of e. So

we have to show that there is only one face in Z 0
i where we can insert e. If
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there where two such face cycles c1 and c2, then both must go through u

and v. But then fu; vg is a split pair of G0
i which is not possible because of

the way SPQR-trees are constructed. This proves that every embedding E
of G de�nes a unique embedding Ei for each Gi with 2 � i � d0.

To prove that E de�nes a unique embedding E1 for G1, we take any
drawing Z of G that realizes E and replace the drawing of every subgraph
G0
i of G that is represented by a split edge fu; vg in G1 by a single edge that

is drawn as the same curve as some path connecting u and v in G0
i. Thus

we get a planar drawing Z1 and since the sequence of the edges around each
node is �xed using this construction, the embedding E1 realized by Z1 is
unique. Figure 5 shows how to construct drawings for the split graphs from
a drawing of G.

G1

7G’ 2G’

4G’ 5G’

6G’

7G’ 2G’

3G’

3G’

4G’ 5G’

6G’

G

Figure 5: Deriving drawings for the split graphs from a drawing of G

To prove the opposite direction, we have to show how combinatorial
embeddings for each Gi de�ne a unique combinatorial embedding for G. To
do this, we show how to construct a drawing of G from drawings of the Gi

that realize the embeddings Ei and that this drawing always realizes the
same embedding E. For each Gi with 2 � i � d, we generate a drawing that
realizes Ei and has the following properties:

1. The split edge of Gi is on the outer face.

2. Let the two nodes ui and vi be connected by the split edge of Gi. Then
there is an ellipse Li with the property that the drawings of ui and
vi form the vertices on the major axis of Li and all other edges and
nodes of the drawing are inside Li.

It is always possible to generate a drawing with these properties that
realizes any combinatorial embedding. Let Z2; : : : ; Zd be drawings of the Gi
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Figure 6: Drawing a split graph into an ellipse

that have the two properties stated above and Z 0
i be the drawing we get by

deleting the split edge from Zi. Then each Z 0
i is a drawing of a subgraph of

G that is represented by a single edge (a split edge) in G1. Consider now
any drawing Z1 of G1 that realizes E1 and where every edge is drawn as a
straight line. We know that such a drawing exists ([9]). We get a planar
drawing of G by replacing each drawing of a split edge in Z1 by the drawing
Z 0
i of the associated split graph where we have removed the drawing of the

split edge. Each drawing Z we generate in this way using the embeddings
E1; : : : ; Ed realizes the same embedding E because the sequence of the edges
around each node in clockwise order is �xed by the construction method.

�
To proof the main theorem, we �rst have to de�ne the incidence vector

of a combinatorial embedding. Let C be the set of all directed circles in the
graph that are a face cycle in at least one combinatorial embedding of the
graph. Then the incidence vector of an embedding E is given as a vector in
f0; 1gjCj where the components representing the face cycles in C have value
one and all other components have value zero.

Lemma 2 Let E = fc1; c2; : : : ; ckg be a combinatorial embedding of the

biconnected planar graph G. Then the incidence vector �E satis�es all con-

straints of the ILP we de�ned.

Proof: We proof the lemma using induction over the number n of de-
cision nodes in the SPQR-Tree T of G. The value �(c) is the value of the
component in � associated with the circle c. We don't consider the case
n = 0, because G is a simple circle in this case and has only one combina-
torial embedding.

1. n = 1:
No splitting of the SPQR-tree is necessary, the ILP is de�ned directly
by T . The variables are de�ned as the set of all directed circles that
are face cycles in at least one combinatorial embedding of G. Since the
constraints of the ILP are de�ned as the convex hull of all incidence
vectors of combinatorial embeddings of G, �e satis�es all constraints
of the ILP.
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2. n > 1:
Let � be the node in T we used in the construction of the ILP to
split T into the split trees T1; : : : ; Td. We split E into two subsets EG

and EL such that EG holds all global circles of E and EL the local
circles of E in respect to �. Then every circle c in EL is contained
in some split graph Gi with 1 � i � d. As we have seen in the
previous lemma, the combinatorial embedding E de�nes uniquely a
combinatorial embedding Ei for each Gi. Every local circle in E, that
is contained in Gi is also contained in Ei. Apart from local circles that
are contained in E, every Ei with 2 � i � d contains two more circles,
that are not contained in E. This is true because every Gi has exactly
one edge that is not contained in G, the split edge of Gi. In every
embedding, each edge is contained in exactly two circles, so there are
two circles in Ei that are not circles in E.

Consider now the choice constraints of the ILP for all circles c in a
split graph of � that include at least one split edge.

X
c02R(c)^c02C

xc0 � 1

As we have already pointed out in the de�nition of the choice con-
straints, any two circles in Rc pass at least one edge of G in the same
direction or pass at least one split graph of � in the same direction. So
they can't be face cycles in the same combinatorial embedding. Since
E is a combinatorial embedding, �E must satisfy all choice constraints
of the ILP.

We use this fact and the induction basis to prove that �E satis�es all
lifted constraints. Because our claim holds for n � 1, we know that
the incidence vector �Ei

satis�es all constraints of the ILP for Gi with
1 � i � d. The lifted constraints of the ILP are constructed out of the
constraints for the Gi by replacing each variable xc in the constraint
by the sum of the variables for G, that are associated with circles in
R(c). The right side of the constraint and the relation sign remain
unchanged. So we have to show, that the left side of the constraint
has the same value when we apply it to �Ei

as when we lift it and
apply it to �E. Because the choice constraints hold, this is equivalent
with the claim

�i(c
0) =

X
c2C\R(c0)

�(c) 8 variables xc0 of the ILP of Gi.

If c is a local circle, this is obvious, because we have R(c0) = c0 and
c0 is a face cycle in E if and only if it is a face cycle in Ei. Now we
assume that c is a global circle. Every split edge in Gi represents a
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subgraph of G, and each face cycle of Ei was generated from a face
cycle of E by collapsing some path into a single edge. So when xc is
zero, there can be no face cycle in E that is in the set R(c) and when
xc is one, there must be exactly one circle in R(c) that is a face cycle
of E. So the left side of the constraint has the same value when we
lift it and apply it to �E and the constraint is satis�ed.

When Cg is the set of global circles in G, Cl the set of local circles in
G1 and F the number of face cycles in any combinatorial embedding
of G1, then the center graph constraint has the following form:

X
c 2 (Cg[Cl)\C

xc = F

The graph G1 is the skeleton of the split node. It is constructed by
replacing all the split graphs in G by single edges. So if c is a face
cycle of E and belongs to Cl, then it is also a face cycle of E1. And if
c is a global face cycle of E, the circle c0 in G1 that was generated by
replacing some paths of c by single edge is a face cycle in E1. On the
other side, every face cycle of E1 is also a face cycle of E, if it contains
no split edge and for every face cycle c of E1 that contains at least one
split edge, there is a global face cycle in E that can be constructed
from c by replacing the split edges with paths from the corresponding
split graphs. And since jE1j = F , the equality is satis�ed by �E.

�

Lemma 3 If G is a biconnected planar graph and � 2 f0; 1gjCj a vector

that satis�es all constraints of the ILP, than � is the incidence vector of a

combinatorial embedding E of G.

Proof: Again, we use induction over the number n of decision nodes in
the SPQR-tree T of G and we disregard the case n = 0 because G is only a
simple circle in this case.

1. n = 1:
T has only one decision node, and the skeleton of this node is isomor-
phic with G. The ILP is the convex hull of all incidence vectors of
combinatorial embeddings and thus every f0; 1g vector that satis�es
all constraints is the incidence vector of a combinatorial embedding.

2. n > 1:
The proof works in two stages: First we construct vectors �i for each
split graph out of � and prove that these vectors satisfy the ILPs of
the Gi, and are therefore incidence vectors of embeddings Ei of the Gi

by induction basis. In the second stage, we use the Ei to construct an
embedding E for G and show that � is the incidence vector of E.
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So �rst we construct the vectors �i. Let c be a circle in some Gi that
is a face cycle in at least one embedding of Gi. If C is the set of circles
in G that are face cycles in at least one embedding, we set:

�i(c) =
X

c02C\R(c)

�(c0)

Because the choice constraints are satis�ed, the value of this sum is
always zero or one and so all components in �i will be either zero
or one. To show that �i is the incidence vector of a combinatorial
embedding Ei, it is su�cient to prove that �i satis�es all constraints
of the ILP of Gi, because the induction basis guarantees that �i is an
incidence vector of an embedding when all constraints are satis�ed.

We know that � satis�es all constraints that are lifted from constraints
in the ILP of Gi. Now the right side of the constraints does not change
during lifting. Consider the left side of an arbitrary constraint lifted
from the constraints of Gi, when Ci is the set of circles in Gi that are
associated with variables in the ILP of Gi:X

c2Ci

(�c �
X

c02R(c)\C

xc0) (�c 2 R)

The left side of the original constraint in the ILP of Gi is:

X
c2Ci

(�c � xc)

We constructed �i such that �i(c) =
P

c02C\R(c) �(c
0) and thus we

know that all constraints of Gi are satis�ed by �i and that it is the
incidence vector of a combinatorial embedding Ei of Gi.

We have completed stage 1 of the proof and proceed to stage 2, so we
want to construct an embedding E for G from the Ei and show that �
is the incidence vector of E. We construct E as described in lemma 1.
So every circle c in Gi for 1 � i � d which does not include a split
edge is a face cycle in E if and only if it is a face cycle in Ei. Consider
the way we have de�ned each �i:

�i(c) =
X

c02C\R(c)

�(c0)

Since c does not include a split edge, we have R(c) = fcg. And so we
have that �(c) = 1 if and only if c 2 E. We have now proven that
� and E agree about the local circles. It remains to show that they
agree about the global circles.
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First we show that the number of components with value 1 in � that
are associated with global circles is equal to the number of global circles
in the set E. This is guaranteed by the center graph constraint:

X
c 2 (Cg[Cl)\C

xc = F

Here Cg is the set of all global circles and Cl the set of all local circles
in G1. Since � and E agree on all local circles, the number of global
circles whose associated component in � is 1 is F � jCl \ Ej which is
equal to the number of global circles in E. We will now show that for
all cg 2 Cg \E we have �(cg) = 1 and thus prove the lemma.

Let cg be any circle in Cg \ E. Then there is exactly one circle c1g
in the center split graph G1 with cg 2 R(c1g ). We have c1g 2 E1

which follows from lemma 1. From that we can conclude that there
is a circle c0g in G with c0g 2 R(c1g ) such that �(c0g) = 1 (from the
construction of �1 and E1). So we have to show that c0g = cg. Since
fc0g; cgg � R(c1g ), both circles are represented by the same circle c1g
in G1. Consider now this circle c1g . It contains split edges and might
also contain edges from G. When A1 is the set of edges in E1g that are
also edges in G and A2 the set of split edges in c1g , then the edges in
A1 must be present in cg and c

0
g. So both circles can only di�er in the

paths they take through the split graphs having the split edges from
A2. Let e be an edge in A2 and Ge be the split graph associated with
this split edge. When p is the path of cg that runs through Ge, then
there is a circle cl in Ee that consists of p and the split edge of Ge. This
follows from the construction of E. If c0g took a path p0 di�erent from
p through Ge, we would have another circle in Ee passing through the
split edge in the same direction as cl. But in any embedding, there is
only one circle that passes an edge in a certain direction. Therefor, p
and p0 must be the same.

Since we can apply this argumentation to all split edges in the circle
c1g , we can show that cg and c0g are in fact the same circle. Thus we
have �(cg) = 1 and it follows that � is indeed the incidence vector of
the combinatorial embedding E.

�

5 Computational results

In our computational experiments, we tried to get statistical data about the
size of the integer linear program and the times needed to compute it. Our
implementation works for biconnected planar graphs with maximal degree
four, since we are interested in improving orthogonal planar drawings. First
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we used a benchmark set of 11491 practical graphs collected by the group
around G. Di Battista in Rome ([7]). We have transformed these graphs
into biconnected planar graphs with maximal degree four using planariza-
tion, planar augmentation, and the ring approach described in [8]. This is
a commonly used approach for getting orthogonal drawings with a small
number of bends [1].

For each of the resulting graphs, we constructed the integer linear pro-
gram. As objective function, we minimized the number of face cycles with
more than �ve edges. This problem is NP-complete ([13]). Figure 7 shows
that the time for generating the ILP grows sub-exponentially with the num-
ber of nodes of the graph. We were able to generate every ILP in less than
40 seconds. Figure 8 shows the number of combinatorial embeddings of each
of the graphs. We noticed that only very few graphs of the test-suit had a
large number of embeddings. The maximum number of embeddings for any
graph was 4608.

The Figs. 9 and 10 show that the number of constraints and variables
in the ILP grow linearly with the size of the graphs. The maximum number
of constraints was 428, while the maximum number of variables was 166.
Figure 11 shows the time in seconds needed by the mipopt-solver of CPLEX
to solve the ILPs to optimality. There was no ILP in our test-suit that took
more than 0.06 seconds to solve.

In order to study the limits of our method, we started a similar test-run
on extremely di�cult graphs. We used the random graph generator devel-
oped by the group around G. Di Battista in Rome that creates biconnected
planar graphs with maximal degree four with an extremely high number of
embeddings (see [3] for detailed information). We generated graphs with
the number of nodes ranging from 25 to 500, proceeding in steps of 25 nodes
and generating 10 random graphs for each number of nodes. For each of the
200 graphs, we again generated the ILP and measured the time needed to
do this. The times are shown in Fig. 12. They grow sub-exponentially and
the maximum time needed was 10 minutes on a Sun Enterprise 10000.

The number of embeddings of each graph is shown in Fig. 13. They
grow exponentially with the number of nodes, so we used a logarithmic
scale for the y-axis. There was one graph with more than 1019 combinatorial
embeddings. These numbers were computed by counting the number of R-
and P-nodes in the SPQR-tree of each graph. Each R-node doubles the
number of combinatorial embeddings while each P-node multiplies it by 2
or 6 depending on the number of edges in its skeleton. Figures 14 and 15
show the number of constraints and variables in each ILP. Both of them
grow linearly with the number of nodes. The largest ILP has about 2500
constraints and 1000 variables.

To test how di�cult it is to optimize over the ILPs, we have chosen 10
random objective functions for each ILP with integer coe�cients between 0
and 100 and computed a maximal integer solution using the mixed integer
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solver of CPLEX. Figure 16 shows the maximum time needed for any of
the 10 objective functions. The computation time always stayed below 2
seconds.

Our future goal will be to extend our formulation such that each solu-
tion will not only represent a combinatorial embedding but an orthogonal
drawing of the graph. This will give us a chance to �nd drawings with the
minimum number of bends or drawings with fewer crossings. Of course, this
will make the solution of the ILP much more di�cult.
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