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Abstract. We study the two-layer planarization problems that have ap-
plications in Automatic Graph Drawing. We are searching for a two-layer
planar subgraph of maximumweight in a given two-layer graph. Depend-
ing on the number of layers in which the vertices can be permuted freely,
that is, zero, one or two, di�erent versions of the problems arise. The
latter problem was already investigated in [11] using polyhedral combi-
natorics. Here, we study the remaining two cases and the relationships
between the associated polytopes.
In particular, we investigate the polytope P1 associated with the two-
layer planarization problem with one �xed layer. We provide an overview
on the relationships between P1 and the polytope Q1 associated with the
two-layer crossing minimization problem with one �xed layer, the linear
ordering polytope, the two-layer planarization problem with zero and
two layers �xed. We will see that all facet-de�ning inequalities in Q1

are also facet-de�ning for P1. Furthermore, we give some new classes of
facet-de�ning inequalities and show how the separation problems can be
solved. First computational results are presented using a branch-and-cut
algorithm. For the case when both layers are �xed, the two-layer pla-
narization problem can be solved in polynomial time by a transforma-
tion to the heaviest increasing subsequence problem. Moreover, we give
a complete description of the associated polytope P2, which is useful in
our branch-and-cut algorithm for the one-layer �xed case.

1 Introduction

A bipartite graph is a graph G = (A;B;E) with vertex sets A and B, called
upper and lower layer, and an edge set E connecting a vertex in A with a vertex
in B. There are no edges between two vertices in the same layer. A bipartite
graph is two-layer planar G = (A;B;E) if it can be drawn in such a way that all
the vertices in A appear on a line (the upper line), the vertices in B appear on
the lower line, and the edges are drawn as straight lines without crossing each
other. The di�erence between a planar bipartite graph and a two-layer planar
bipartite graph is obvious. For example, the graph shown in Fig. 1 is a planar
bipartite graph, but not a two-layer planar graph.

Depending on the number of layers in which the permutation of the vertices
is �xed, di�erent problems arise:

{ The permutations �A and �B of both layers A and B are �xed: Given a
two-layer graph G = (A;B;E; �A; �B) with weights we > 0 on the edges,



(a) (b)

Fig. 1. (a) A planar bipartite graph that is (b) not 2-layer planar

the two-layer planarization problem (2 layers �xed) is to extract a subgraph
G0 = (A;B; F; �A; �B), F � E, of maximum weight, i.e., the sum

P
e2F we

is maximum, which contains no crossings with respect to the given permu-
tations �A and �B .

{ The permutation �A of one layer A is �xed: Given a two-layer graph G =
(A;B;E; �A; �) with weightswe > 0 on the edges, the two-layer planarization
problem (1 layer �xed) is to extract a subgraph G0 = (A;B; F; �A; �), F � E,
of maximum weight, which contains no crossings with respect to the given
permutation �A of the upper layer.

{ Both layers can be permuted: Given a two-layer graph G = (A;B;E; �; �)
with weights we > 0 on the edges, the two-layer planarization problem (none
layer �xed) is to extract a two-layer planar subgraph G0 = (A;B; F; �; �),
F � E, of maximum weight.

To our knowledge, only the unweighted (we = 1 for all e 2 E) two-layer
planarization problems have been considered in the literature so far. Eades and
Whitesides [4] showed NP-hardness for the latter two versions of the planariza-
tion problem and showed that the two layer �xed version can be solved by
transforming it to a longest increasing subsequence problem. The none layer
�xed version was �rst mentioned in [15]. The authors introduced the problem
in the context of graph drawing. Recently, the weighted two-layer planarization
problem has been attacked, in which the layers are allowed to be permuted freely
[11]. The computational results are encouraging.

Directed graphs are widely used to represent structures in many �elds such
as economics, social sciences, mathematics and computer science. A good visu-
alization of structural information allows the reader to focus on the information
content of the diagram.

A common method for drawing directed graphs has been introduced by
Sugiyama et al. [14] and Carpano [2]. In the �rst step, the vertices are partitioned
into a set of k layers, and in the second step, the vertices within each layer are
permuted in such a way that the number of crossings is small. In practice, this is
done layerwise. Keep the permutation of one layer �x while permuting the other
one, such that the number of crossings is reduced. We suggest an alternative
approach for the second step.

Already for two-layer graphs the straight-line crossing minimization problem
is NP-hard [6] even if one layer is �xed [5]. Exact algorithms based on branch and
bound have been suggested by various authors (see, e.g., [9]). For k � 2, a vast



amount of heuristics has been published in the literature (see, e.g., [14] and [3]).
A new approach is to remove a minimal set of edges such that the remaining
k-layer graph can be drawn without edge crossings. In the �nal drawing, the
removed edges are reinserted. Since the insertion of each edge may produce
many crossings, the �nal drawing may be far from an edge-crossing minimal
drawing.

(a)
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2321 29 28 25 26 27 20

1 1112 9

1722 30

(b)

4 6 73 5 8 14 2 12 15

2321 29 28 26 25 27 20

1 119 13

1722 30

Fig. 2. A graph (a) drawn using k-planarization and (b) drawn with the minimal
number of crossings computed by the algorithm in [9]

Figure 2(a) shows a drawing of a graph obtained by two-layer planarization,
whereas Fig. 2(b) shows the same graph drawn with the minimal number of
edge crossings (using the exact algorithm given in [9]). Although the drawing
in Fig. 2(a) has 34 crossings, that is 41% more crossings than the drawing in
Fig. 2(b) (24 crossings), the reader will not recognize this fact. This encourages
us to study the k-layer planarization problem. We decided to �rst study the case
k = 2 in order to learn for the general case k � 3.

In Sect. 2 we de�ne the polytope P1 associated with the set of all possible
two-layer planar subgraphs with respect to a given �xed permutation �A. We
then point out the relationships to related polytopes. This gives us hints about
the structure of P1. In Sect. 3 we give a complete description of the polytope as-
sociated with all two-layer planar subgraphs when both permutations are �xed.
This description is useful in the algorithm for solving the two-layer planariza-
tion problem (1 layer �xed case). Moreover, it provides a di�erent polynomial
time algorithm for solving the two-layer planarization problem (2 layers �xed).
In Sect. 4, we investigate the structure of the polytope P1. We present an irre-
dundant integer linear programming formulation and obtain additional classes
of inequalities that tighten the associated LP-relaxation. In particular, besides
some new classes of facets, we can show that all facet-de�ning inequalities of the



linear ordering polytope transmit to the new polytope P1. In order to get practi-
cal use out of these inequalities, we have to solve the \separation problem". This
question will be addressed in Sect. 5, where we also discuss a branch-and-cut
algorithm based on those results. First computational results with a branch-and-
cut algorithm are presented in Sect. 6. In this extended abstract we omit the
proofs for most of the theorems.

2 The Polytope P1 and Its Related Polyhedra

Let us consider the two-layer planarization problem with one �xed layer more
precisely: Given a two-layer planar graph G = (A;B;E; �A; �) with a �xed
permutation �A of the vertices in A, we are looking for a permutation �B
of the vertices in B, and a subset F of edges in E such that the subgraph
G0 = (A;B; F; �A; �B) is two-layer planar under the given permutations �A and
�B of the sets A and B, respectively.

We introduce variables yuv for 1 � u < v � jBj representing the permutation
�B of the vertices in B. That is, yuv = 1 i� vertex u is before vertex v in �B
and yuv = 0 otherwise. We denote the (row) vector �y = (y1;2; y1;3; : : : ; yL) with

L =
�
B
2

�
. (Vectors are row vectors throughout the paper.) Moreover, we introduce

variables xe for 1 � e � jEj representing the subgraph induced by F . Variable
xe takes value 1 i� e 2 F and value 0 otherwise. For any tuple (�B ; F ), where

�B is a permutation and F � E, we de�ne an incidence vector �(�B;F ) 2 RL+jEj

with the i-th component �(�B;F )(ei) getting value 1 i� ei 2 F and 0 if ei 62 F for
i > L, and the j-th component �(�B;F )(yuv) getting value 1 if vertex u is before
vertex v in �B and 0 otherwise for j � L.

Now, we can de�ne the two-layer planar subgraph polytope

P1 = P1(A;B;E; �A; �) = conv
n
�(�B;F ) j �B is a linear ordering and

G0 = (A;B; F; �A; �B) is a two-layer planar subgraph of G
o

as the convex hull of all incidence vectors �(�B ;F ) that represent a two-layer
planar subgraph G0 = (A;B; F; �A; �B) with respect to the valid orderings �A
and �B .

For solving the two-layer crossing minimization problem with one �xed layer,
we consider the polytope Q1 (see [9]). Again, we introduce variables yij 2 f0; 1g

representing the permutation of the vertices in B. The incidence vector ��B 2 RL

has the j-th component ��B (yuv) value 1 if vertex u is before v and 0 otherwise.
The polytope

Q1 = Q1(A;B;E; �A; �) = conv
n
��B j �B is a permutation of the vertices inB

o

is identical to the linear ordering polytope that has been studied in [7]. If we

denote the points in P1 by (�y; �x), where �y 2 RL, �x 2 RjEj, we have the fol-
lowing relationship between the two polytopes P1 and Q1: Q1

�= P1 \ f�x = 0g.



This fact will lead us to investigate the hereditary property of the facet-de�ning
inequalities in Q1 for P1.

The polytope P0 associated with the two-layer planarization problem with
two free layers (none �xed) has been introduced in [11]. Again, we denote an
incidence vector �F 2 RE having the i-th component �F (xe) value 1 if xe 2 F

and value 0 if xe 62 F .

P0 = P0(A;B;E; �; �) = conv
n
�F j There exist orderings �A and �B such that

G0 = (A;B; F; �A; �B) is a two-layer planar subgraph of G
o
=

= conv
n
�F j G0 = (A;B; F; �; �) is a two-layer planar subgraph of G

o

We can use our knowledge of the studied polyhedra Q1 and P0 for our inves-
tigation of P1. In particular, all facet-de�ning inequalities of Q1 and P0 are still
valid inequalities for P1. Moreover, we will see that all facet-de�ning inequalities
of Q1 are still facet-de�ning for P1.

Let us consider the two-layer planarization problem when the permutations
of both layers are �xed. We de�ne

P2 = P2(A;B;E; �A; �B) = conv
�
�F j F � E is a two-layer planar subgraph of
G with respect to the orderings �A and �B

	

We have P1 \ f�y = 0g � P2. In the following Section we will consider the
structure of the polytope P2.

3 A Complete Description of the Polytope P2

In this Section we will consider the two-layer planarization problem when both
layers are �xed. The set of all two-layer planar subgraph ofG = (A;B;E; �A; �B)
de�nes an independence system IP (G) = (E; fF j F � E induces a two-layer
planar graphg) on E. Let us examine the circuits and the cliques of this inde-
pendence system. Circuits are the minimal dependent sets in (E; I) with respect
to set inclusion. An independence set is called k-regular if each of its circuits is
of size k. The set F � E is a clique of (E; I), ifjF j � k and all

�
jF j
k

�
k-subsets

of F are circuits of (E; I). In [12] it is shown that a maximal clique F � E in a
k-regular independence system (E; I) gives a facet-de�ning inequality, namely,
the clique inequality X

e2F

xe � k � 1; (1)

for PI , the polytope associated with (E; I). The set of circuits in our system
I(G) is

S = ff(p; v); (q; u)g j �A(p) < �A(q); �B(u) < �B(v); (p; v); (q; u) 2 Eg:

Hence, I(G) is a 2-regular independence system. The maximal cliques in I(G) are
the maximal sets of pairwise intersecting edges (with respect to set inclusion). We



show, that the associated maximal clique inequalities and the trivial inequalities
de�ne the polytope P2.

Theorem 1. The maximal clique inequalities of I(G) together with the inequal-
ities xe � 1 that are not contained in any clique and the trivial inequalities
0 � xe for e = 1; : : : ; jEj, give a complete irredundant description of the two-
layer planar subgraph polytope P2 (both layers �xed).

Proof. (sketch) To proof the claim, we build a directed graph R with a single
source s and a single sink t where every node apart of s and t corresponds to
an edge in E. When every node has the capacity given by the corresponding
component of a vector x in [0; 1]jEj, than x belongs to polytope P2 if and only
if there is no path in R from s to t where the sum of the capacities of the nodes
is greater than 1. Every path from s to t corresponds to a maximal clique in
(E; I) and so a path where the sum of the capacities exceeds one corresponds
to a violated clique inequality.

Every vector in P2 corresponds to a capacity function on the nodes of R such
that there is no path from s to t where the sum of the capacities is greater than
one. By shifting capacities in R, we can show that for every weighting of the
edges in E and for every vector x in P2, there is another vector x

0 in P2 with the
property that every component is either 0 or 1 and the sum of the weights of the
edges whose nodes in R have capacity 1 is at least as large as the corresponding
sum for x. Thus, we have a complete description of P2.

Since the separation problem for the clique inequalities can be solved in
polynomial time (see Sect. 5), this yields a polynomial time algorithm for the
two-layer planarization problem via the Ellipsoid method.

There is also a combinatorial algorithm for solving the problem. Eades and
Whitesides [4] give a transformation of the unweighted two-layer planarization
problem to the longest increasing subsequence problem. A similar transformation
to the heaviest increasing subsequence problem works for the weighted version
of the problem.

Lemma 1. By transforming the two-layer planarization problem to an instance
of the heaviest increasing subsequence problem, it can be solved in time
O(jEj log jEj).

Both theorems are not surprising, since there are similar results for the trace
polytope T2 on two sequences that has been introduced in [13] in the context
of multiple sequence alignment. The set of circuits in the independence system
IT (G) is

S [ ff(p; u); (p; v)g j �B(u) < �B(v); (p; u) 2 E; (p; v) 2 Eg

[ ff(p; u); (q; u)g j �A(p) < �A(q); (p; u) 2 E; (q; u) 2 Eg:

In the following, we investigate the relations between the two-layer planar
subgraph polytope P2 and the trace polytope T2.



Lemma 2. Let G = (V;E) be a graph. There exist transformations from G to
G0 = (V 0; E0) and G00 = (V 00; E00) with E0 �= E �= E00, jV 0j = jV 00j = 2jEj, and

P2(G) �= P2(G
0) �= T2(G

0) and T2(G) �= T2(G
00) �= P2(G

00):

4 The Structure of the Polytope P1

First, we give an integer linear programming formulation for the two-layer pla-
narization problem with one �xed layer. The notation is based on the previous
Section. Let G = (A;B;E; �A; �) be a two-layer graph and let �w 2 NjEj be the
cost vector on the edges. Then, the two-layer planarization problem is to solve

maxf �w�xT j (�y; �x) 2 P1; �y 2 RL; �x 2 RjEjg:

We are interested in the integer points of P1.

Theorem 2. The integer points of the two-layer planar subgraph polytope P1 =
P1(A;B;E; �A; �) are characterized by the following system of inequalities:

�yuv � yvw + yuw � 0 1 � u < v < w � jBj (2)

yuv + yvw � yuw � 1 1 � u < v < w � jBj (3)

0 � yuv � 1 1 � u < v < w � jBj (4)

yuv integral 1 � u < v < w � jBj (5)

yuv + x(p;u) + x(q;v) � 2 u < v; �A(q) < �A(p); (p; u); (q; v) 2 E (6)

�yuv + x(p;u) + x(q;v) � 1 u < v; �A(p) < �A(q); (p; u); (q; v) 2 E (7)

0 � xe � 1 1 � e � jEj (8)

xe integral 1 � e � jEj (9)

Proof. The inequalities (2)-(5) require the variables to represent a linear ordering
�B . Inequalities (6)-(9) are responsible for introducing no crossing with respect
to the ordering �B given by the vector �y. In particular, inequalities (6) and
(7) link together the subgraph variables �x and the linear ordering vertices �y. A
crossing between two edges (p; u) and (q; v) occurs either if �A(q) < �A(p) and
u is before v in the ordering �B given by �y, or if �A(p) < �A(q) and v is before
u in �B .

Next, we address the question if the description given in Theorem 2 is tight.

Theorem 3. The description given in Theorem 2 is an irredundant description
of the two-layer planar subgraph polytope P1 = P1(A;B;E; �A; �). In particular,
the inequalities (2)-(4) and (6)-(8) are facet-de�ning for P1.

In order to prove the facet-de�ning property of the inequalities, it is essential
to know the dimension of the polytope.

Lemma 3. The dimension of the two-layer planar subgraph polytope
P1 = P1(A;B;E; �A; �) is L+ jEj, where L =

�
B
2

�
.



Proof. We know from [7] that the linear ordering polytope is full dimensional.
For every ordering of the nodes, a two-layer graph with only one edge is two-layer
planar. So we can easily construct a set of L+ jEj a�nely independent vectors
that correspond to two-layer planar graphs.

In Sect. 2 we have seen that P1 is closely related to the linear ordering
polytope Q1. The following theorem gives us the possibility to use the knowledge
of the well-studied polytope Q1 for P1.

Theorem 4. Let �c�yT � c0 be a facet-de�ning inequality of the linear ordering
polytope Q1 = Q1(A;B;E; �A; �). Then �c�yT � c0 is also facet-de�ning for the
two-layer planar subgraph polytope P1 = P1(A;B;E; �A; �).

For the rest of this Section we will concentrate on new facet-de�ning inequal-
ities for P1. Our practical experiments have supported the need for inequalities
containing only �x-Variables.

We de�ne a blocker B = (u; l; r) to be a subgraph of G = (A;B;E; �A; �)
containing the edges (l; u) and (r; u) with �A(l) < �A(r). We use the notation
x(B) = x(l;u)+x(r;u). A blocker forbids certain edges. An edge e = (p; w) crosses
blocker B = (u; l; r) i� �A(l) < �A(p) < �A(r) and w 6= u. This fact leads to
e-blocker inequalities which are valid and in some cases facet-de�ning for P1.
Figure 3 shows some examples of con�gurations leading to these inequalities.

w

(a)

p p

(b)

w

Fig. 3. Examples for support graphs of facet-de�ning e-blocker inequalities

Theorem 5. Let B1; : : : ; Bk be a set of blockers Bi = (ui; li; ri) with ui 6= uj
for i; j = 1; : : : ; k, i 6= j, and let e = (p; w) 2 E be an edge which crosses all
blockers Bi. Then, the e-blocker inequality

kX
i=1

x(Bi) + xe � k + 1 (10)

is valid for P1(A;B;E; �A; �). If li = lj and ri = rj for i; j = 1; : : : ; k, it is
facet-de�ning for P1(A;B;E; �A; �) (even for k = 1).

5 The Algorithm and Separation Routines

The separation problem is to decide for a given vector �x and a polytope P ,
whether �x 2 P , and, if �x 62 P , �nd a vector �d and a scalar d0 such that the
inequality �d�xT � d0 is valid with respect to P and �d�xT > d0.



Lemma 4. The separation problems for the inequalities (2)-(4),(6)-(8), and
(10) can be solved in polynomial time.

For the two-layer planarization problem with one �xed layer, we implemented
a branch-and-cut algorithm using the ABACUS-System [10]. Because of space
limits, we cannot describe our branch-and-cut algorithm in more detail. We use
separation routines for the inequalities given in Lemma 4 in order to get good
upper bounds. Moreover, we try to use some information given to us by fractional
solutions in order to get good lower bounds.

Our studies of the two-layer �x planarization problem is useful in two ways:
For getting good lower bounds, we frequently use the combinatorial algorithm for
the two-layer �x version given in Lemma 1. The upper bounds can be improved
using the following strategy: In every branching step on variables in �y, we select
a variable yuv and set it to either 0 or 1. In the subproblems below this branching
node, we have decided on a partial order for the vertices in B. For the partially
ordered subsets, we can use the inequalities given by the complete description for
P2 (see Sect. 3). Next, we will see that the separation problem for the inequalities
(1) can be solved in polynomial time.

Theorem 6. For the maximal clique inequalities, the separation problem can be
solved in polynomial time by computing at most jEj shortest path problems.

According to earlier results (e.g., [8]), we can optimize a linear objective
function over a polytope in polynomial time if and only if we can solve the
separation problem in polynomial time. Hence, Theorem 6 gives us a polynomial
time algorithm for solving the two-layer planarization problem when both layers
are �xed.

6 Computational Results

To test the performance of our branch-and-cut algorithm for the two-layer pla-
narization problem (1 layer �xed), we worked with the graphs from [1] that are
called the North DAGs. These directed acyclic graphs have 10 to 100 nodes.
We distributed them into sets Gi with i running form 1 to 9 such that the set
Gi holds the graphs where the number of nodes is at least 10i and at most
10(i+ 1)� 1. We worked on 12 randomly chosen graphs out of each of the sets
Gi. For each of the graphs, we distributed the nodes into pairwise disjoint sets
Lj (called layers) such that for all edges the start-node is on a layer with smaller
index than the end-node. This can be done using topological sorting.

After Inserting some dummy nodes, we get for each graph a number of bi-
partite graphs that consist of the nodes on two neighboring layers and the edges
between these nodes. For a graph with k layers, we get k�1 bipartite graphs B1

to Bk�1 where Bi consists of the layers Li and Li+1. We used B1 as input for
our algorithm for solving the two-layer planarization problem (none layer �xed)
resulting in a permutation for the layers L1 and L2. Then we applied the algo-
rithm for the problem with one �xed layer to the rest of the problems beginning



with B2. Every optimization was stopped after 5 minutes if no optimum solution
was found before. The following tabular shows for each set Gi the average op-
timization time (in seconds) for each layer and the maximum time used in any
of the graphs of the set on a Sun Ultra Sparc 2/2x200. In all the 108 graphs we
tested, there were only 4 graphs for which a planarization-problem could not be
solved to optimality in 5 minutes computation time.

Nodes 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

Average 0.17 7.07 19.96 1.73 1.37 150.61 12.64 73.07 5.83
Maximum 1.1 17.0 78.53 14.1 27.04 300.16 116.8 300.14 50.16
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