
Bend Minimization in Orthogonal Drawings

Using Integer Programming

Petra Mutzel and Ren�e Weiskircher

Vienna University of Technology
Favoritenstra�e 9-11 E186, A-1040 Vienna, Austria

fmutzel|weiskircherg@ads.tuwien.ac.at

Abstract. We consider the problem of minimizing the number of bends
in an orthogonal planar graph drawing. While the problem can be solved
via network ow for a given planar embedding of a graph G, it is NP-
hard if we consider the set of all planar embeddings of G. Our approach
combines an integer linear programming (ILP) formulation for the set
of all embeddings of a planar graph with the network ow formulation
for �xed embeddings. We report on computational experiments on a
benchmark set containing hard problem instances that was already used
for testing the performance of a previously published branch & bound
algorithm for solving the same problem. Our new algorithm is about
twice as fast as the branch & bound approach for the graphs of the
benchmark set.

1 Introduction

Drawing graphs is important in many scienti�c and economic areas. Applica-
tions include the drawing of UML diagrams in software engineering and busi-
ness process modeling as well as in the visualization of databases. A popular
way of drawing graphs is representing the vertices as boxes and the edges as
sequences of horizontal and vertical line segments connecting the boxes. This
drawing style is called orthogonal drawing. A point where two segments of an
edge meet is called a bend.

A well known approach for drawing general graphs is the topology-shape-
metrics method. In the �rst step, the topology of the drawing is computed. The
objective in this phase is to minimize the number of edge crossings. In the second
step, the shape of the drawing is calculated. In the case of orthogonal drawings,
the angles and the bends of the edges are computed. The objective is to minimize
the number of bends for the given topology. Finally, the metrics of the drawing
is computed while trying to achieve short edge lengths and small area for the
given shape. In this paper, we focus on the bend minimization step (the seconds
step). Given a planar graph, the task is to compute an orthogonal representation
with the minimum number of bends.

The in�nite set of di�erent planar drawings of a graph can be partitioned into
a �nite set of equivalence classes called embeddings of a graph. An embedding de-
�nes the topology of a planar drawing without assigning lengths or shapes to the



edges or �xing the shapes and positions of vertices. A combinatorial embedding

�xes the sequence of incident edges around each vertex in clockwise order. This
also �xes the list of faces of a drawing. The faces are the connected regions of
the plane de�ned by a planar drawing. A planar embedding additionally de�nes
the outer (unbounded) face of a planar drawing. Orthogonal representations are
equivalence classes of orthogonal drawings, that �x the planar embedding and
the bends and angles in an orthogonal drawing.

There are some results in the literature on the topic of optimizing certain
functions over the set of all embeddings of a graph. Bienstock and Monma have
studied the complexity of covering vertices by faces [?] and minimizing certain
distance measures on the faces of a graph with respect to the outer face [?,?].
Garg and Tamassia have shown that optimizing the number of bends in an
orthogonal drawing over the set of all embeddings of a planar graph is NP-
hard [?].

Bertolazzi et al. [?] have devised a branch & bound algorithm for solving
the bend minimization problem over the set of all embeddings of a planar graph
using SPQR-trees. In this paper, we attack the same problem using integer linear
programming. To do this, we combine our integer linear program describing the
set of all combinatorial embeddings of a planar biconnected graph [?,?] with a
linear program that describes the set of all orthogonal representations of a planar
graph with a �xed embedding. The result is a mixed integer linear program that
represents the set of all orthogonal representations for a planar biconnected
graph over the set of all embeddings. We use this new mixed integer linear
program to optimize the number of bends in an orthogonal drawing over the set
of all embeddings of a planar graph. Solving this program using a commercial
solver (CPLEX) is signi�cantly faster for large and diÆcult graphs than the
branch & bound approach of Bertolazzi et al . as our computational results
show.

Section 2 introduces SPQR-trees and summarizes the recursive construction
of the integer linear program that describes the combinatorial embeddings of a
graph. The linear program describing the orthogonal representations of a graph
for a �xed embedding is the topic of Section 3. This is basically the formula-
tion as a linear program of a minimum cost ow problem in a special network
constructed from the graph and the embedding. In Section 4, we present the
new mixed integer linear program that is the result of merging the integer linear
program describing the embeddings of a graph with the linear program that de-
scribes the orthogonal representations for a graph where the embedding is �xed.
The topic of Section 5, is the algorithm that we use to compute an orthogonal
representation of a graph with the minimum number of bends over the set of all
embeddings. The computational results we obtained by applying the algorithm
to a set of hard benchmark graphs are given in Section 6. We compare the al-
gorithm with a well known heuristic and with the branch & bound algorithm
of Bertolazzi et al. The conclusion (Section 7) summarizes the main results and
contains possible starting points for future work.



2 The ILP-Formulation Describing the Set of All

Embeddings

The integer linear program (ILP) suggested in [?] describing the set of all com-
binatorial embeddings of a planar graph is constructed recursively using the
SPQR-tree data structure. Because SPQR-trees are only de�ned for biconnected
graphs, the same is true for the ILP. A graph is biconnected, if the number of
its connected components can not be increased by deleting a vertex.

SPQR-trees have been de�ned by Di Battista and Tamassia [?]. They repre-
sent a decomposition of a biconnected graph into its triconnected components. A
connected graph is triconnected, if there is no pair of vertices in the graph whose
removal splits the graph into two or more components. An SPQR-tree has four
types of nodes (Q-nodes, S-nodes, R-nodes and P -nodes) and with each node
we associate a biconnected graph which is called the skeleton of that node. This
graph can be seen as a simpli�ed version of the original graph and its vertices
are vertices of the original graph. The edges in a skeleton represent subgraphs
of the original graph.

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P or R-
nodes. When we see the SPQR-tree as an unrooted tree, then it is unique for
every biconnected planar graph. Another important property of these trees is
that their size (including the skeletons) is linear in the size of the original graph
and that they can be constructed in linear time [?,?]. As described in [?], SPQR-
trees can be used to represent the set of all combinatorial embeddings of a
biconnected planar graph. Every combinatorial embedding of the original graph
de�nes a unique combinatorial embedding for each skeleton of a node in the
SPQR-tree. Conversely, when we de�ne an embedding for each skeleton of a
node in the SPQR-tree, we de�ne a unique embedding for the original graph.

The variables of the ILP correspond to directed cycles of the graph. Our
recursive construction of the ILP guarantees that we only compute variables for
cycles that form the boundary of a face in at least one embedding of the graph.
So we generate the minimum set of variables needed to describe all embeddings.
While the number of directed cycles in a graph grows exponentially with the size
of the graph, our computational experiments in Section 6 show that the number
of variables in our ILP grows only linearly.

We construct the program by splitting the SPQR-tree into smaller SPQR-
trees, recursively constructing ILPs for these smaller trees, and then merging
them into an ILP for the original graph. The basis of the recursive construction
are SPQR-trees that have only one inner node. These graphs have a very sim-
ple structure and ILPs that describe their combinatorial embeddings are easy
to construct. One type of constraints, similar to the subtour elimination con-
straints used in ILPs for the asymmetric travelings salesman problem (ATSP),
are not explicitly added to the ILP because the number of these constraints is
exponential. Instead we separate them in the optimization procedure using the
same methods used for solving ATSP-problems with integer programming. We
construct the ILPs of more complex graphs by merging the ILPs of the graphs



generated by the splitting procedure and adding additional glue constraints. Us-
ing structural induction, we can show that the resulting ILP is correct and that
the variables correspond exactly to the set of cycles that are face cycles in at
least one embedding of the graph.

3 The Linear Program Describing Orthogonal

Representations for a Fixed Embedding

Orthogonal representations not only �x the embedding of a graph but also the
number, type and sequence of the bends on each edge in an orthogonal draw-
ing. They do not �x the lengths of the edge segments in the drawing. The �rst
eÆcient algorithm for computing an orthogonal representation of a graph with
the minimum number of bends for a �xed planar embedding was presented by
Tamassia [?]. This algorithm constructs a ow network using the planar embed-
ding and then computes a minimum cost ow in this network. This ow can
be translated into an orthogonal representation of the graph with the minimum
number of bends for the �xed embedding.

The drawback of the original method of Tamassia is that it can not deal
with vertices of degree greater than four. Some modi�cations of the algorithm
have been published that get over this constraint. The approach that we use
implements the podevsnef drawing convention (planar orthogonal drawings with
equal vertex size and non-empty faces) �rst mentioned in [?]. According to this
convention, the vertices are drawn as boxes of the same size and the edges are
positioned on a �ner grid then the vertices. Because of this modi�cation, more
than one edge can be incident to each of the four sides of a vertex (see Fig. 1 for
an example).

Bertolazzi et al. describe a minimum cost ow network N that can be used to
compute an orthogonal representation in a simpli�ed podevsnef model with the
minimum number of bends for a �xed embedding [?]. The network for G contains
one node for every vertex of G (called v-nodes) and one vertex for every face
cycle of the given embedding (called c-nodes).

Let f be the bijection that maps the vertices of G to the v-nodes of N and
the face cycles of the planar embedding to the c-nodes. Then there is an arc
between the v-node v1 and the c-node v2 if the vertex f�1(v1) is on the cycle
f�1(v2). This arc is directed towards v2 if the degree of f

�1(v1) is at most four
and towards v1 otherwise. There is an arc from the c-node v3 to the c-node v4 if
the two cycles f�1(v3) and f�1(v4) share an edge.

The ow on arcs connecting v-nodes with c-nodes determines the angles
between edges incident to the same vertex while the ow on arcs connecting two
c-nodes determines the bends. Flow on an arc from a c-node to a v-node implies
a zero-degree angle at the corresponding vertex between two incident edges and
causes a bend on one of the edges. The amount of ow that each vertex in N

produces or consumes together with the capacities for the edges guarantee that
every feasible ow corresponds to an orthogonal representation. The cost per
unit of ow on the arcs of the network are de�ned in such a way, that the cost of



0

1

2

3

4

5

6 7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899

100

101102

103

104

105106107

108

109

110

111

112113

114 115

116

117118

119

120

121 122

123124125126127

128 129

Fig. 1. A podevsnef drawing of a graph.

each feasible ow is equal to the number of bends in the represented orthogonal
representation.

We used this network and transformed it into a linear program. There is one
variable for each arc in the network that represents the amount of ow routed
via this arc. One constraint for each vertex in the network makes sure that the
number of incoming amount of ow minus the number of outgoing amount is
equal to the demand of the node (some nodes have negative demand). We have
one constraint for each arc that sets upper and lower bounds for the ow on the
arc. The objective function minimizes the sum of the amount of ow over each
arc multiplied by the cost of the arc. An optimal solution represents a minimum
cost ow in N and thus an orthogonal representation with the minimum number
of bends. Because of space constraints, we do not present the LP here, but the
constraints are all contained in the mixed integer linear program of Section 4,
that is used to compute an orthogonal representation with the minimum number
of bends over all embeddings.

4 The Mixed Integer Linear Program Describing the Set

of All Orthogonal Representations of a Graph

The ow network N of the last section describing the set of orthogonal repre-
sentations of a graph with a �xed embedding contains one c-node for every face
of the embedding. When we want to optimize over the set of all embeddings of
a graph, we do not know which cycles will be face cycles in an optimal solution.
Therefore, we construct a new network N 0, where we have one c-node for every



cycle in the graph, that is a face cycle in at least one embedding. The set of
these cycles corresponds to the set of variables in our ILP from Section 2 that
describes the set of all embeddings of a graph.

In a solution of the embedding ILP, the variables of the cycles that are face
cycles in the represented embedding have value one while all other variables have
value zero. Let A be the set of edges incident to the c-node for cycle c in N 0 and
the variable for c in the embedding ILP be zero. Then all arcs in A must have
ow zero. Therefore, the ow on the arcs of the network N 0 incident to c-nodes
corresponding to cycles in G whose variable in the ILP is zero must also be zero.

To achieve this, we take the variables of the ILP into account when we com-
pute the capacities of the edges and the amount of ow that each c-node con-
sumes or produces. We �rst compute the capacities of the arcs and the demand
of each c-node analogously to the corresponding values in the network N . Then
we multiply the amount of ow produced or consumed by a c-node with the value
of the corresponding variable in the ILP. This ensures that vertices in N 0 that
correspond to cycles in G that are not face cycles do not produce or consume
ow, because the corresponding variable in the ILP is zero.

Any arc that starts or ends at a c-node has capacity zero if the c-node corre-
sponds to a cycle whose ILP-value is zero. If the capacity of the edge is limited
even if the corresponding cycle is a face cycle, we can just multiply this limit with
the ILP-value of the cycle. The arcs in the network N that connect two c-nodes
have unlimited capacity. But we can easily compute an upper bound fmax for
the ow produced in N 0 (we get a trivial upper bound by adding the supply of
all nodes). This value can be used as the upper bound for the ow on any arc.
For each arc a in N 0 connecting two c-nodes v1 and v2, we set the capacity to
the minimum of the two products fmaxxi where xi is the the binary variable in
the embedding ILP for the cycle corresponding to node vi. This guarantees that
the ow on a is zero if at least one of the cycles represented by the nodes vi is
not a face cycle in the chosen embedding.

The result is the network N 0, where the capacities of the edges and the
amount of ow produced and consumed by the vertices depend on the values of
the cycle variables in the ILP. We transform this network into a linear program
and merge it with the ILP that represents the embeddings of the graph. The
result is a mixed integer linear program (MILP), where an optimal solution
corresponds to an orthogonal representation with the minimum number of bends
over the set of all embeddings of the input graph.

MILP 1 is the resulting mixed integer linear program. We omitted the con-
straints that de�ne the embedding because they are de�ned recursively and are
not the main topic of this paper. The set C is the set of cycles in G that are
face cycles in at least one embedding. The variable xc is one if cycle c is a face
cycle and variable oc is one if it is the outer face cycle. The set Ecc is the set of
arcs that connect two c-nodes. Arcs in Evc start in a v-node and end in a c-node
while the arcs in Ecv have the opposite direction. The expression len(c) denotes
the number of edges in cycle c.



MILP 1

min
X

e2EN

cost(e) � fe

subject to

X

c2C

oc = 1

xc � oc � 0 8c 2 CX

e=(v;w)2EN

fe �
X

e=(w;v)2EN

fe = 4� deg(v) 8v 2 V

X

e=(c;w)2EN

fe �
X

e=(w;c)2EN

fe = xc(4� len(c))� 8oc 8c 2 C

fe � xc(4� deg(v)) 8e = (v; c) 2 Evc

fe � xc 8e = (c; v) 2 Ecv

fe � xc1fmax 8e = (c1; c2) 2 Ecc

fe � xc2fmax 8e = (c1; c2) 2 Ecc

fe � 0 8e 2 EN

xc; oc 2 f0; 1g 8c 2 C

5 The Algorithm for Minimizing the Number of Bends

The algorithm �rst computes the recursive ILP describing the set of all combina-
torial embeddings of the graph. This also gives us the set of cycles of the graph
that are face cycles in at least one embedding. This information is then used
for computing the network N 0 and the corresponding MILP. We use CPLEX
(version 6.5) to compute a solution and then separate subtour elimination con-
straints from the embedding ILP and re-optimize if necessary. When we have
found a feasible solution, we transform it into an orthogonal representation of
the graph.

To improve the performance of the algorithm, we modi�ed the MILP slightly.
For example, we only need outer face variables for half of the cycles. The orthogo-
nal representations we exclude in this way are mirror images of other orthogonal
representations that can still be represented. We also hard-coded a complete
description of the set of embeddings for P -node skeletons with less than �ve
vertices into our program to reduce the need for separating constraints.

6 Computational Results

Since we wanted to compare the performance of our approach with the branch & bound
method for bend minimization by Bertolazzi [?], we used the same set of graphs



0

50

100

150

200

10 20 30 40 50 60 70 80 90 100
1

10

100

1000

10000

100000

1e+06

1e+07

S
ec

on
ds

E
m

be
dd

in
gs

Number of vertices

B&B
Milp

Embeddings

Fig. 2.Run time comparison with the branch & bound algorithm (linear scale) together
with the average number of embeddings (logscale)

that they used for testing the performance of their algorithm. This set consists of
500 randomly generated graphs, 50 di�erent graphs for each number of vertices
from 10 to 100 in steps of 10.

Our algorithm and the branch & bound algorithm have the same limitations:
They can only be applied to planar biconnected graphs, because they both use
SPQR-trees. All the graphs in the benchmark set have these properties.

First, we compared the optimal results produced by our algorithm with the
results computed by a popular heuristic. This heuristic chooses an arbitrary
embedding for the graph and then computes a minimum cost ow in the network
of section 3.

Let h be the number of bends in the orthogonal representation computed by
the heuristic and o the number of bends in an orthogonal representation with the
minimum number of bends. For each graph in the benchmark set, we computed
the following value: h�o

h
100%. This is the percentage of the improvement we get

using an optimal algorithm. Almost half of all graphs (246 out of 500) show a
signi�cant improvement (greater than 10%). The greatest absolute di�erence in
the number of bends that we observed from the heuristic solution to the optimal
solution was 12 bends. The average number of saved bends per graph using
the optimal algorithm was 2.26. The average improvement over all graphs was
17.43%.

We compared the average running time for graphs with the same number of
vertices of our new algorithm (MILP) and the branch & bound algorithm (B&B)
from [?]. Both algorithms were tested on a Sun Enterprise 450 Model 4400 with
4GB main memory. The running time of MILP includes the time needed for the
recursive construction of the ILP that describes the embeddings of a graph.

Figure 2 shows the average running time of both algorithms. The x-axis
shows the number of vertices in the graphs and the y-axis on the left the average
running time in seconds for all graphs in the benchmark set with that number



0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

V
ar

ia
bl

es

C
on

st
ra

in
ts

Number of vertices

Total constraints
Total variables

Fig. 3. The average number of constraints and variables grows only linearly with the
size of the graphs

of vertices. The plot shows that our new algorithm needs on average only half
the time needed by the branch & bound algorithm to compute the drawing with
the minimum number of bends. The same plot contains the curve showing the
average number of embeddings for graphs with the same number of vertices. As
expected, the average number of embeddings grows exponentially with the size
of the graphs (note that the y-axis on the right is logarithmic). However, the
average number of constraints and variables in our mixed integer linear program
grows only linearly with the size of the graphs (see Figure 3).

We also applied the branch & bound algorithm and our new algorithm to
a set of 11529 graphs derived from graphs used in industrial applications. We
created these graphs by planarizing the graphs in the benchmark set used in [?]
and then adding edges to make them planar and biconnected. Because of space
considerations, we can only mention a few statistics. The branch & bound al-
gorithm failed to provide an optimal solution in one hour of computation time
for 197 of the graphs, while our new algorithm exceeded this time limit for only
25 graphs. While the branch & bound algorithm is slightly faster on average
for the graphs in the set with less than about 120 vertices, our algorithm has a
signi�cant speed advantage for the graphs with more than 150 vertices.

7 Conclusion

Using methods of integer linear programming to minimize the number of bends
in an orthogonal drawing seems to be a promising approach. The main drawback
is that at the moment, the algorithm only works for biconnected graphs. The
reason is that SPQR-trees are only de�ned for biconnected graphs. A possible
approach to get rid of this limitation is to work with the block tree of biconnected
components of the graph. If it can be used to describe the set of all embeddings



of a connected graph as an ILP, our approach can be easily extended to deal
with any planar graph.

Acknowledgment

We thankWalter Didimo for providing the code of the branch & bound algorithm
and the benchmark graphs.


