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Abstract. We study the problem of optimizing over the set of all com-
binatorial embeddings of a given planar graph. At IPCO' 99 we pre-
sented a �rst characterization of the set of all possible embeddings of
a given biconnected planar graph G by a system of linear inequalities.
This system of linear inequalities can be constructed recursively using
SPQR-trees and a new splitting operation. In general, this approach may
not be practical in the presence of high degree vertices.
In this paper, we present an improvement of the characterization which
allows us to deal eÆciently with high degree vertices using a separation
procedure. The new characterization exposes the connection with the
asymmetric traveling salesman problem thus giving an easy proof that
it is NP-hard to optimize arbitrary objective functions over the set of
combinatorial embeddings.
Computational experiments on a set of over 11000 benchmark graphs
show that we are able to solve the problem for graphs with 100 vertices
in less than one second and that the necessary data structures for the
optimization can be build in less than 12 seconds.

1 Introduction

A graph is called planar if it admits a drawing into the plane without edge-
crossings (planar drawing). We call two planar drawings of the same graph
equivalent when the circular sequence of the edges around each vertex is the
same in both drawings. The equivalence classes of planar drawings are called
combinatorial embeddings. A combinatorial embedding also de�nes the set of
cycles in the graph that bound faces in a planar drawing.

The complexity of embedding planar graphs has been studied by various
authors in the literature [5, 4, 6]. In this paper we deal with the following opti-
mization problem concerning embeddings: Given a planar biconnected graph and
a cost function on the cycles of the graph, �nd an embedding � such that the
sum of the cost of the cycles that appear as face cycles in � is minimized. The
objective function is chosen only to demonstrate the feasibility of the approach in
computational experiments. However, our description of the set of combinatorial

? Partially supported by DFG-Grant Mu 1129/3-1, Forschungsschwerpunkt \EÆziente
Algorithmen f�ur diskrete Probleme und ihre Anwendungen"



embeddings of a planar graph as an Integer Linear Program (ILP) makes some
important NP-hard problems arising in graph drawing accessible to ILP-based
optimization methods.

One example is the minimization of the number of bends in an orthogonal
planar drawing of a graph. This number highly depends on the chosen planar em-
bedding. Whereas bend minimization of a planar graph is NP-hard ([9], a branch
and bound algorithm for the problem is given in [3]), it can be solved in polyno-
mial time for a �xed embedding ([13]). Figure 1 shows two di�erent orthogonal
drawings of the same graph that were generated using the bend minimization
algorithm by Tamassia ([13]). The algorithm used di�erent combinatorial em-
beddings as input. Drawing 1(a) has 13 bends while drawing 1(b) has only 7
bends.
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Fig. 1. The impact of the chosen planar embedding on the drawing

For a �xed embedding, the bend minimization problem can be formulated
as a ow problem in the geometric dual graph. This is the point where we plan
to use our description: Once we have characterized the set of all embeddings
via an integer linear formulation on the variables associated with cycles of the
graph, we can combine this formulation with the ow problem to solve the bend
minimization problem over all embeddings.

In [12] we introduced an integer linear program (ILP) whose set of feasible
solutions corresponds to the set of all possible combinatorial embeddings of a
given biconnected planar graph. The program is constructed recursively with the
advantage that we only introduce variables for those simple cycles in the graph
that form the boundary of a face in at least one combinatorial embedding of the
graph, thus reducing the number of variables tremendously. The constraints are
derived using the structure of the graph. We use a data structure called SPQR-
tree suggested by Di Battista and Tamassia ([2]) for the on-line maintenance of
triconnected components. SPQR-trees can be used to code and enumerate all
possible combinatorial embeddings of a biconnected planar graph.



The problem of our original formulation was that it may be ineÆcient for
graphs with high-degree vertices, because it requires to compute the convex
hull of a number of points that may be exponential in the degree of a vertex.
When looking for a solution to this problem, we discovered a connection of the
embedding problem with the asymmetric traveling salesman problem (ATSP)
enabling us to apply the same machinery used for solving the ATSP-problem to
the problem of �nding an optimal embedding for a planar biconnected graph.

Our computational results on a set of more than 11000 benchmark graphs
show that our new approach preserves the positive properties of our �rst ap-
proach while making it possible to deal eÆciently with high degree vertices. As
in our �rst version, the size of the integer linear system computed for the bench-
mark graphs grows only linearly with the size of the problem and the computed
systems can be solved fast using a mixed integer program solver. There are only
a few graphs with high degree vertices for which we need to apply our separation
procedure and we never need more than three separation steps.

Section 2 gives a brief overview of SPQR-trees. In Section 3 we sketch the
recursive construction of the linear constraint system using a splitting operation
on the SPQR-tree. Section 4 introduces the connection of our problem with
the ATSP problem and describes the separation procedure. Our computational
results are described in Section 5.

2 SPQR-Trees

In this section, we give a brief overview of the SPQR-tree data structure for bi-
connected graphs. SPQR-trees have been suggested by Di Battista and Tamassia
([2]). They represent a decomposition of a biconnected graph into triconnected
components. A connected graph is triconnected, if there is no pair of vertices in
the graph whose removal splits the graph into two or more components.

An SPQR-tree has four types of nodes and with each node is associated a
biconnected graph which is called the skeleton of that node. This graph can
be seen as a simpli�ed version of the original graph and its vertices are also
contained in the original graph. The edges in a skeleton represent subgraphs of
the original graph. The node types and their skeletons are as follows:

1. Q-node: The skeleton consists of two vertices that are connected by two
edges. One of the edges represents an edge e of the original graph and the
other one the rest of the graph.

2. S-node: The skeleton is a simple cycle with at least 3 vertices.
3. P -node: The skeleton consists of two vertices connected by at least three

edge.
4. R-node: The skeleton is a triconnected graph with at least four vertices.

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-,P or R-
nodes. When we see the SPQR-tree as an unrooted tree, then it is unique for
each biconnected planar graph. Another important property of these trees is



that their size (including the skeletons) is linear in the size of the original graph
and that they can be constructed in linear time [2].

As described in [2], SPQR-trees can be used to represent all combinatorial
embeddings of a biconnected planar graph. This is done by choosing embeddings
for the skeletons of the nodes in the tree. The skeletons of S- and Q-nodes are
simple cycles, so they have only one embedding. Therefore, we only have to look
at the skeletons of R- and P -nodes. The skeletons of R-nodes are triconnected
graphs. Our de�nition of combinatorial embeddings distinguishes between two
combinatorial embeddings of a triconnected graph, which are mirror-images of
each other (the circular order of the edges around each vertex in clockwise order
is reversed in the second embedding). The number of di�erent embeddings of a
P -node skeleton is (k � 1)! where k is the number of edges in the skeleton.

Every combinatorial embedding of the original graph de�nes a unique com-
binatorial embedding for each skeleton of a node in the SPQR-tree. Conversely,
when we de�ne an embedding for each skeleton of a node in the SPQR-tree, we
de�ne a unique embedding for the original graph. Thus, if the SPQR-tree of G
has r R-nodes and the P -nodes P1 to Pk where the skeleton of Pi has Li edges,
then the number of combinatorial embeddings of G is exactly

2r
kY

i=1

(Li � 1)! :

Because the embeddings of the R- and P -nodes determine the embedding of the
graph, we call these nodes the decision nodes of the SPQR-tree.

3 Recursive Construction of the Integer Linear Program

3.1 The Variables of the Integer Linear Program

A face cycle in a combinatorial embedding of a planar graph is a directed cycle
of the graph with the following property: In any planar drawing realizing the
embedding, the left side of the cycle is empty. Note that the number of face
cycles of a planar biconnected graph with m edges and n vertices is m� n+ 2.

We construct an integer linear program (ILP) where the feasible solutions
correspond to the combinatorial embeddings of a graph. The variables of the
program are the same as in [12]. They are binary and represent directed cycles
in the graph. In a feasible solution of the ILP, a variable xc has value 1 if the
associated cycle c is a face cycle in the represented embedding and 0 otherwise.
To keep the number of variables as small as possible, we only introduce variables
for those cycles that are indeed face cycles in a combinatorial embedding of the
graph.

3.2 Splitting an SPQR-Tree

We construct the variables and constraints of the ILP recursively. Therefore,
we need an operation that constructs a number of smaller problems from our



original problem such that we can use the variables and constraints computed
for the smaller problems to compute the ILP for the original problem. This is
done by splitting the SPQR-tree at some decision-node v.

The splitting operation deletes all edges in the SPQR-tree incident to v whose
other endpoint is not a Q-node, thus producing smaller trees. Then we attach
new Q-nodes to all nodes that were incident to deleted edges to make sure that
the trees we produce are again SPQR-trees. The new edges we use to attach the
Q-nodes are called split-edges and the trees we produce split-trees. The graphs
represented by the split-trees are called split-graphs. The new tree containing
v is the center split-tree and the associated graph the center split-graph. The
split-trees either have only one decision node (like the center split-tree) or at
least one less than the original tree. The splitting process is depicted in Fig. 2.
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Fig. 2. Splitting an SPQR-tree at an inner node

3.3 Construction of the ILP for SPQR-Trees

Since this topic is treated in detail in [12] and [11], we only give a short sketch of
our approach. Let T be the SPQR-tree of a biconnected planar graph G, v the
node used for splitting the tree and T1; : : : ; Tk the split-trees of v. We assume
that T1 is the center split-tree and that the graph Gi is the split-graph belonging
to split-tree Ti. We can distinguish two types of directed cycles in G:

1. Local cycles are contained in one of the graphs G1; : : : ; Gk.
2. Global cycles of are not contained in any of the Gi.

We assume that we have already computed the ILP Ii for each Ti. The variables
in Ii that represent local cycles will also be variables in the ILP for T . We
compute the global cycles of G for which we need variables by combining cycles
in the split-graphs that are represented by variables in the Ii.

The set C of all constraints of the ILP of T is given by C = Cl [ Cc [ Cg . Cl

is the set of lifted constraints. For each constraint contained in Ii, we compute



a constraint that is valid for T by replacing each variable xc by the sum of the
variables in R(xc) (The set of variables for T whose associated cycles have been
constructed using c).

The set Cc is the set of choice constraints. They state that for each variable
xc computed for Ti, the sum of the variables in the set R(xc) can be at most
one. This is true because all of the cycles in R(xc) either pass an edge or one
of the split-graphs in the same direction and therefore at most one of the cycles
can be a face cycle in any embedding. The proof is omitted but can be found in
[11].

The only element of Cg is the center graph constraint, which states that the
number of global face-cycles in any feasible solution plus the number of local
face-cycles contained in G1 is equal to the number of faces of G1. This is true,
because any drawing of G can be generated from a drawing of G1 by replacing
some edges by subgraphs. In this process, the face cycles of G1 may be replaced
by global cycles or are preserved (if they are local cycles of G).

We observe that a graph G whose SPQR-tree has only one inner node is
isomorphic to the skeleton of this node. Therefore, the ILP for an SPQR-tree
with only one inner node is de�ned as follows:

{ S-node: When the only inner node of the SPQR-tree is an S-node, G is a
simple cycle. Thus it has two directed cycles and both are face-cycles in the
only combinatorial embedding of G. So the ILP consists of two variables,
both of which must be equal to one.

{ R-node: G is triconnected and according to our de�nition of combinatorial
embeddings, every triconnected graph has exactly two embeddings, which
are mirror-images of each other. When G has m edges and n vertices, we
have k = 2(m� n+ 2) variables and two feasible solutions. The constraints
are given by the convex hull of the two points in k-dimensional space that
correspond to the solutions.

{ P -node: The ILP for graphs whose only inner node in the SPQR-tree is a P -
node is described in detail in Section 4 because this is where the connection
to the asymmetric travelings salesman problem (ATSP) is used.

The proof of correctness di�ers from the proof given in [12] and more detailed
in [11] only in the treatment of the skeletons of P -nodes, so we only look at the
treatment of P -node skeletons in more detail in the next section.

4 P -Node Skeletons and the ATSP

A P -node skeleton P consists of two vertices va and vb connected by k � 3 edges
and has therefore (k � 1)! di�erent combinatorial embeddings. Every directed
cycle in P is a face cycle in at least one embedding of P , so we need k2 � k

variables in an ILP description of all combinatorial embeddings.
Let C be the set of variables in the ILP and c : C ! R a weight function on C.

We consider the problem of �nding the embedding of P that minimizes the sum
of the weights of the cycles that are face cycles. We will show that this problem



can be stated as the problem of �nding a Hamiltonian cycle with minimum
weight in the complete directed graph B = (V;E) with k vertices or simply
as the asymmetric traveling salesman problem (ATSP). The transformation we
will show here also works in the opposite direction thus showing NP-hardness
of optimizing over all embeddings. But we show here the reduction to ATSP
because this is what our algorithm does when it computes the ILP.

The complete directed graph B has one vertex for every edge of P . Let e1
and e2 be two edges in P and v1 and v2 the corresponding vertices in B. Then
the edge (v1; v2) corresponds to the cycle in P that traverses edge e1 from va to
vb and edge e2 from vb to va. The edge (v2; v1) corresponds to the same cycle
in the opposite direction. In this way, we de�ne a bijection b : C ! E from the
cycles in P to the edges in B. This bijection de�nes a linear function c0 : E ! R

on the edges of B such that c0(e) = c(b�1(e)).

Now it is not hard to see that each embedding of P corresponds to a Hamilto-
nian cycle in B and vice versa. If the Hamiltonian cycle is given by the sequence
(v1; v2; : : : ; vk) of vertices, then the sequence of the edges in P in the correspond-
ing embedding in counter-clockwise order around va is (e1; e2; : : : ; ek). Figure 3
shows an example of a P -node skeleton with four edges and the corresponding
ATSP-graph. The embedding of the P -node skeleton on the left corresponds
to the Hamiltonian cycle marked in the ATSP-graph. The marked edges corre-
spond to the face cycles in the embedding of the P -node skeleton. The sequence
of the edges in P in counter-clockwise order around vertex va corresponds to the
sequence of the vertices in the Hamiltonian cycle of the ATSP-graph.

e1 e2 e3 e4

v1 v2

v3 v4

va

vb

Fig. 3. A P -node skeleton and its corresponding ATSP-graph

The sum of the weights of all edges on the Hamiltonian cycle is equal to the
sum of the weights of the cycles of P that are face cycles in this embedding. So
�nding an embedding of P that minimizes the sum of the weights of the face
cycles is equivalent to �nding a traveling salesman tour with minimum weight in
B. Since we can easily construct a corresponding P -node embedding problem for
any ATSP-problem, we have a simple proof that optimizing over all embeddings
of a graph is in general NP-hard.

It also enables us to use the same ILP used for ATSP for the ILP that
describes all combinatorial embeddings of a P -node skeleton. The formulation
for the ATSP ILP found in [7] has two types of constraints.



1. The degree constraints state that each vertex must have exactly one incoming
edge and one outgoing edge in every solution.

2. The subtour elimination constraints state that the number of edges with
both endpoints in a nonempty subset S of the set of all vertices can be at
most jSj � 1.

The number of degree constraints is linear in the number of edges in a P -node
skeleton, while the number of subtour elimination constraints is exponential.
Therefore, we de�ne the ILP for a graph whose SPQR-tree has a P -node as
the only inner node just as the set of degree constraints for the corresponding
ATSP-problem.

To cope with the subtour elimination constraints, we store for each P -node
skeleton the corresponding ATSP-graph. For each edge in the ATSP-graph we
store the corresponding cycle in the P -node skeleton. During the recursive con-
struction, we update the set of corresponding cycles for each edge in the ATSP-
graph, so that we always know the list of cycles represented by an edge in the
ATSP-graph. This is done in the same way as the construction of the lifted
constraints in subsection 3.3.

When the construction of the recursive ILP is �nished, we use a mixed integer
programming solver to �nd an integer solution. Then we check if any subtour
elimination constraint is violated. We do this by �nding a minimum cut in each
ATSP-graph. The weight of each edge in the ATSP graph is de�ned as the sum
of the values of the variables representing the cycles associated with the edge.
If the value of this minimum cut is smaller than one, we have found a violated
subtour elimination constraint and add it to the ILP. As we will show in the
next section, separation of the subtour elimination constraint is rarely necessary.

5 Computational Results

In our computational experiments, we used a benchmark set of 11491 graphs
collected by the group around G. Di Battista in Rome ([1]). Since some of these
graphs are not planar, we �rst computed a planar subgraph using the algorithm
from [10]. Then we made the resulting graphs biconnected while preserving pla-
narity using the algorithm from [8]. For the resulting graphs, we �rst computed
the recursive part of our ILP and then used a branch and cut algorithm with
CPLEX as integer program solver to optimize randomly chosen linear functions
over the set of all combinatorial embeddings of the graph. After each optimiza-
tion phase, we checked if there was a violated subtour elimination constraint and
if this was the case, we added the found constraint and re-optimized the ILP.
Our experiments ran on a Sun Enterprise 10000.

Figure 4(a) shows that the number of embeddings can vary greatly for graphs
with similar size. One graph with 97 vertices and 135 edges had 2,359,296 com-
binatorial embeddings while another one with 100 vertices and 131 edges had
only 64 embeddings (note that the y-axis in the �gure is logarithmic).

Figure 4(b) shows that the number of constraints and variables of our formu-
lation grows roughly linear with the size of the graphs which is surprising when
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Fig. 4. The number of embeddings of the tested graphs and the number of variables
and constraints

we consider the growth of the number of embeddings. Our ILP always has more
constraints than variables. Figure 5(a) shows the time needed for building the
recursive ILP and the time needed for optimization including separation. Opti-
mization is very fast and the longest time we needed was 0.75 seconds. The time
needed for building the ILP grows sub-exponential with the number of vertices
and never exceeded 11 seconds.

Figure 5(b) shows that separation was rarely necessary and in the cases
where we separated constraints, the number of the separation steps was small.
The boxes show the number of graphs that needed 0, 1, 2 or 3 separation steps,
e.g. 1, 2, 3 or 4 optimization rounds (note that the y-axis is logarithmic). We
needed at most three separation steps and this was only the case for one of the
11,491 graphs. For 11,472 of the graphs, no re-optimization was necessary.

Our future goal will be to extend our formulation such that each solution
will correspond to an orthogonal representation of the graph. This will enable
us to �nd drawings with the minimum number of bends over all embeddings. Of
course, this will make the solution of the ILP much more diÆcult.
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