
Solving the Prize-Collecting Steiner Tree Problem
to Optimality ?

Ivana Ljubíc1, Reńe Weiskircher1, Ulrich Pferschy2, Gunnar Klau1,
Petra Mutzel1, and Matteo Fischetti3

1 Vienna University of Technology, Favoritenstr. 9-11, A-1040 Vienna, Austria
2 University of Graz, Universiẗatsstr. 15, A-8010 Graz, Austria

3 University of Padova, via Gradenigo 6/a, I-35131 Padova, Italy

Abstract. The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits asks
for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all verticesnot
contained in the subtree. PCST appears in the design of utility networks (eg. fiber optics or district heating) where
profit generating customers and the network connecting them have to be chosen in the most profitable way.
Our main contribution is an efficient implementation using a directed graph model and connectivity inequalities
corresponding to cuts in the graph. This enables us to efficiently separate sets of violated inequalities using a
maximum flow algorithm.
Our implementation solves all benchmark instances from the literature to optimality, including eight for which the
optimum was not known. We also present optimal results on very large real world instances that represent fiber
optic networks in a German city.

1 Introduction

Recent advances in technology have made fiber optic connections for households economically feasible.
In a typical planning scenario the input is a set of potential customers together with the discounted future
profits they would generate, and a potential network for laying the fiber. Costs of the network are dominated
by labor and right-of-way charges for laying the fiber. The situation is similar for other utilities like gas or
district heating.

Essentially, the decision process faced by a profit oriented company consists of two parts: On one hand, a
subset of particular profitable customers has to be selected, on the other hand, a network has to be designed to
connect all selected customers in a cost-efficient way to the existing network. The natural trade-off between
maximizing the sum of profits over all selected customers and minimizing the cost of the network leads to a
prize-collecting objective function.

We can formulate this problem mathematically as follows:

Definition 1 (Prize-Collecting Steiner Tree Problem, PCST).Let G = (V, E, c, p) be an undirected
graph with vertex- and edge-weights as defined above. ThePrize-Collecting Steiner Tree problem(PCST)
consists of finding a connected subgraphT = (VT , ET) ofG, VT ⊆ V , ET ⊆ E that minimizes the objective
functionc(T) =

∑
v 6∈VT

p(v) +
∑

e∈ET
c(e) .

It is easy to see that every optimal solutionT will be a tree. Throughout this paper we will distinguish
betweencustomer vertices, defined asR = {v ∈ V | p(v) > 0}, andnon-customer vertices(corresponding
to street intersections) with the assumption thatR 6= ∅. Figure 1(a) illustrates an example of a PCST instance
and Figure 1(d) a feasible solution for that instance.

? This work has been partly supported by the RTN ADONET 504438. The first author’s research was supported by the Doctoral
Scholarship Program of the Austrian Academy of Sciences (DOC) and partially supported by the Austrian Science Fund (FWF),
grant P16263-N04.

When planning an augmentation of a network by a set of new customers, we model the problem as a
rootedPCST: We shrink the existing network (connected or not) into a single vertex that must be contained
in the solution.

The primary focus of this paper is a construction of an efficient algorithmic implementation rather than a
theoretical study of the problem. In the next section we give a short overview of previous work on PCST and
some of its relatives. In Section 3 we introduce our cut-based ILP model and describe how it can be solved
in a branch-and-cut framework in Section 4. Extensive computational experiments on instances known from
the literature are reported in Section 5. It turns out that the new approach can solve all of them to proven
optimality (including eight for which optimum was not known) within a short running time. We also present
results on fiber optic networks of a German city that show that our exact method is applicable in practice as
well.

2 Previous Work

In 1987, Segev [21] introduced the so calledNode Weighted Steiner Tree Problem(NWST) – the Steiner tree
problem with vertex weights in addition to regular edge weights in which the sum of edge-costs and vertex-
weights is minimized. His contribution concerns a special case of NWST, called thesingle point weighted
Steiner treeproblem (SPWST), where we are given a special vertex that must be included in the solution.

The PCST has been introduced by Bienstock et al. [3], where a factor 3 approximation algorithm has
been proposed. Several other approximation algorithms have been developed. Goemans and Williamson
presented in [13] an approximation algorithm which runs inO(n3 log n) time (n := |V |), and yields so-
lutions within a factor of2 − 1

n−1 of optimality. This has been improved in Johnson et al. [14], where a
(2− 1

n−1)–approximation algorithm withO(n2 log n) running time has been proposed. The new algorithm
of Feofiloff et al. [11] achieves a ratio of2− 2

n within the same time.
Recently, two meta-heuristic approaches for PCST have been developed: Canuto et al. [4] proposed

a multi-start local-search-based algorithm with perturbations; Klau et al. [16] developed an evolutionary
algorithm with incorporated local improvement for the problem.

Lower Bounds and Polyhedral Studies Fischetti [12] studied the facial structure of a generalization of
the problem, the so-calledSteiner arborescence(or directed Steiner tree) problem and pointed out that
the NWST can be transformed into it. Engevall et al. [10] proposed another ILP formulation for the NWST,
based on theshortest spanning treeproblem formulation, introduced originally by Beasley [2] for the Steiner
tree problem.

Lucena and Resende [18] presented a cutting plane algorithm for the PCST based on generalized subtour
elimination constraints. Their algorithm contains basic reduction steps similar to those already given by
Duin and Volgenant [9], and was tested on 114 benchmark instances – all but 16 of them have been solved
to proven optimality.

3 ILP Formulation of the Problem

In order to achieve a tighter LP-relaxation, we transform the original problem defined on an undirected graph
into a problem on a directed graph thus obtaining a Steiner arborescence problem. Chopra and Rao showed
that the LP-relaxation for the directed graph is superior to the formulation on the undirected graph (see [7]).

The vertex setVSA = V ∪ {r} contains the vertices of the input graphG and an artificial root vertex
r. The arc setASA contains two directed arcs(i, j) and(j, i) for each edge(i, j) ∈ E plus a set of arcs

2

from the rootr to the customer verticesRSA = {i ∈ V | pi > 0}. We define the cost vectorc′ as follows:
Each arc(r, j) has costs−pj while all other arcs(i, j) with i 6= r have costscij − pj . An example of this
transformation can be found in Figures 1 (a) and (b).

A subgraphTSA of GSA that forms a directed tree rooted atr is called aSteiner arborescence. It is
easy to see that such a subgraph corresponds to a solution of the PCST ifr has degree 1 inGSA (feasible
arborescence). In particular, a feasible arborescence with minimal total edge cost corresponds to an optimal
prize-collecting Steiner tree.

We model the problem of finding a minimum Steiner arborescenceTSA by means of an integer linear
program. Therefore, we introduce a variable vectorx ∈ {0, 1}|ASA| where the component for an arc inASA

is one if and only if it is inTSA and zero otherwise. Furthermore, to indicate which of the vertices from
VSA \ {r} belong to the solution, we use a variable vectory ∈ {0, 1}|VSA|−1.

Our ILP-formulation (introduced in [12] for the NWST) concentrates on the connectedness of the solu-
tion. Therefore,cutsare introduced with the fairly simple condition that for every selected vertex which is
separated fromr by a cut there must be an arc crossing this cut.

For convenience we introduce the following notation: A set of verticesS ⊂ VSA and its complement
S = VSA \ S induce the directed cutδ−(S) = {(i, j) | i ∈ S, j ∈ S}. We also writex(A) =

∑
ij∈A xij for

any subset of arcsA ⊂ ASA. The corresponding ILP model then reads as follows:

(CUT) min
∑

ij∈ASA

c′ijxij +
∑

i∈VSA

pi (1)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (2)

x(δ−(S)) ≥ yk k ∈ S, r 6∈ S,∀S ⊂ VSA (3)∑

ri∈ASA

xri = 1 (4)

xij , yi ∈ {0, 1} ∀(i, j) ∈ ASA, ∀i ∈ VSA \ {r} (5)

The cut constraints (3) are also calledconnectivity inequalities. They guarantee that for each vertexv in
the solution, there must be a directed path fromr to v. Note that disconnectivity would imply the existence
of a cutS separatingr andv which would clearly violate the corresponding cut constraint. The so-called
in-degreeequation (2) guarantees that every selected vertex has exactly one predecessor on its path from the
root. Finally, the so-calledroot-degreeconstraint (4) is relevant only for the unrooted PCST and it makes
sure that the artificial rootr is connected only to a single vertex which is crucial for the connectedness of
the solution.

Asymmetry Constraints In order to create a bijection between arborescence and PCST solutions, we
introduce the so-calledasymmetry constraints:

yi ≤ xrj , ∀i < j, i ∈ R (6)

For the unrooted PCST, these inequalities assure that for each PCST solution the customer vertex adjacent
to the artificial root is the one with the smallest index. Without this constraint, the same solution withn
customers can be represented byn different solution vectors that just differ in the choice of the customer
connected to the artificial rootr. Computational results have shown that these inequalities significantly
reduce the computation time, because they exclude many redundant solutions.

3

Strengthening the Formulation Each feasible solution of the Steiner arborescence problem can be seen as
a set of flows sending one unit from the root to all customer verticesj with yj = 1.

Considering the tree structure of the solution it is obvious that in every non-customer vertex, which is
not a branching vertex in the Steiner arborescence, in-degree and out-degree must be equal, whereas in a
branching non-customer vertex, the in-degree is always less than the outgoing degree. Thus, we have:

∑

ji∈ASA

xji ≤
∑

ij∈ASA

xij , ∀i 6∈ R, i 6= r . (7)

These so-calledflow-balance constraintswere introduced by Koch and Martin in [17] for the Steiner tree
problem. They indeed represent a strengthening of the LP-relaxation of (2)-(6), as can be shown by an
example in Figures 1 (d) and (e). For the classical Steiner tree problem, an analogous example can be found
in [20].

4 Branch-and-Cut Algorithm

To solve the proposed ILP formulation we use a branch-and-cut algorithm: At each node of the branch-and-
bound tree we solve the LP-relaxation (CUT), obtained by replacing the integrality requirements (5) by the
simple bounds:0 ≤ yi ≤ 1, ∀i ∈ VSA \ {r} and0 ≤ xij ≤ 1, ∀(i, j) ∈ ASA. For solving the LP-relaxations
and as a generic implementation of the branch-and-cut approach, we used the commercial packages ILOG
CPLEX (version 8.1) and ILOG Concert Technology (version 1.3).

Initialization There are exponentially many constraints of type (3), so we do not insert them at the be-
ginning but ratherseparatethem during the optimization process using the separation procedure described
below.

At the root node of the branch-and-bound tree, we start with in-degree, root-degree, flow-balance and
asymmetry constraints. Furthermore, we add the following group of inequalities:

xij + xji ≤ yi, ∀i ∈ VSA \ {r}, (i, j) ∈ ASA (8)

These constraints express the trivial fact that every arc incident to a vertex in the solution tree can be
oriented only in one way. Although the LP may become large by adding all of these inequalities at once they
offer a tremendous speedup for some instances since they do not have to be separated implicitly during the
branch-and-cut algorithm. Further details are discussed in Section 5.

Separation During the separation phase which is applied at each node of the branch-and-bound tree, we
add constraints of type (3) that are violated by the current solution of the LP-relaxation.

These violated cut constraints can be found in polynomial time using a maximum flow algorithm on the
support graphwith arc-capacities given by the current solution. For finding the maximum flow in a directed
graph, we used an adaptation of Goldberg’s maximum flow algorithm [5]4.

We outline the separation procedure in Algorithm 1. Given a support graphGs = (VSA, ASA, x),
we search for violated inequalities by calculating the maximum flow for all pairs of vertices(r, i), with
i ∈ RSA, yi > 0. The maximum flow algorithmf = MaxFlow(G, x′, r, i, Sr, Si) returns the flow valuef
and two sets of vertices:

4 Available athttp://www.avglab.com/andrew/CATS/maxflow_solvers.htm

4

2

2

22

2

2

1

1 1

100 100

100

non-customer vertices customer vertices

0

0

0

(a)

non-customer vertices customer vertices

-100

-100

-1000

0

0

1 1

11

1 1

2

2 2

2

2

2

2

22

2

2

2

-100 -100

-100

r

(b)

1 1

1

1

1

1 1

1

0.5

0.5

0.5

0.5 0.50.5

0.5

0.5 0.5

0.5

0.5

1

11

0.5

r

(c)

1 1

1

1

1

1

11 1 1

1

1

1

1

11

0

0

r

(d)

Fig. 1. (a) An input graphG. Each connection has fixed costs, hollow circles and filled circles represent customer and non-customer
vertices, respectively. (b) Graph after transformation into the Steiner arborescence problem; (c) solution of (CUT) LP-relaxation,
c(LPCUT) = 7.5. LP-values ofx andy variables are shown; (d) solution of (CUT) LP-relaxation augmented with flow-balance
constraints has cost 8 and corresponds to an optimal solution.

– SubsetSr ⊂ VSA contains root vertexr and induces a minimum cutδ+(S) = {(i, j) | i ∈ S, j ∈ S}
closest tor, in other words,x(δ+(Sr)) = f ;

– SubsetSi ⊂ VSA contains vertexi and induces a minimum cutδ−(S) = {(i, j) | i ∈ S, j ∈ S} closest
to i, i.e.,x(δ−(Si)) = f .

If f < yi, we insert the violated cutx(δ+(Sr)) ≥ yi into the LP. We then follow the idea of the so-called
nested cuts[17]: we iteratively add further violated constraints induced by the minimum(r, i)-cut in the
support graph in which the capacities of all the arcs(u, v) ∈ δ+(Sr) are set to one. This iterative process is
done as long as the total number of the detected violated cuts is less thanMAXCUTS (100, in the default
implementation), or there are no more such cuts. By setting the capacities of the edges in a cut to one,
we are able to increase the number of violated inequalities found within one cutting plane iteration. Note
that the cuts are inserted only if they are violated by at least someε (which was set to10−4 in the default
implementation).

5

Data : A support graphGs = (VSA, ASA, x).
Result : A set of violated inequalities incorporated into the current LP.

for i ∈ RSA, yi > 0 do
x′ = x;
repeat

f = MaxFlow(G, x′, r, i, Sr, Si);
Detect the cutδ+(Sr) such thatx′(δ+(Sr)) = f , r ∈ Sr;
if f < yi then

Insert the violated cutx(δ+(Sr)) ≥ yi into the LP;
x′ij = 1,∀(i, j) ∈ δ+(Sr);
if BACKCUTS then

Detect the cutδ−(Si) such thatx′(δ−(Si)) = f , i ∈ Si;
if Si 6= Sr then

Insert the violated cutx(δ−(Si)) ≥ yi into the LP;
x′ij = 1, ∀(i, j) ∈ δ−(Si);

end
end

end

until f ≥ yi or MAXCUTS constraints added;
end

Algorithm 1: Separation procedure.

Chopra et al. [6] proposed the so-calledback-cuts, also used in [17], for the Steiner tree problem. To
speed up the process of detecting more violated cuts within the same separation phase, we consider the
reversal flow in order to find the cut “closest” toi, for somei ∈ R, yi > 0. The advantage of Goldberg’s
implementation is that only one maximum flow calculation is needed in order to find both setsSr, r ∈ Sr

and Si, i ∈ Si defining the minimum cut of valuef . Note that back-cuts (controlled byBACKCUTS
parameter) are combined with nested cuts in our implementation.

5 Computational Results

In this section we show our computational study on two sets of problem instances:

– The instances of the first set5 have been used by Lucena and Resende in [18] to test their lower bounding
procedure denoted in the sequel by LR. These instances can be divided into four groups:K,P,C and
D. GroupsK andP have been generated by Johnson et al. [14]. A detailed description of the generators
for these instances can be found in [19]. We consider instances with up to 400 vertices and 1 576 edges
that have also been tested in [4]. Canuto et al. [4] generated a set of 80 test problems derived from the
Steiner problem instances of groupsCandD from well-known OR-Library6.

– The second set of 35 instances is based on real-world examples that have been used in the design of
fiber optic networks for a German city [1]7. The instances are generated according to GIS data bases:
connections and positions of vertices are based on real infrastructures, but, for reasons of data protection,
the choice of customers and their prizes are slightly changed. Our instances are divided in two groups:
Cologne1 andCologne2 , and their basic properties, like the number of vertices|V |, the number of
edges|E| and the number of customers|R|, are shown in Table 5. The instances are divided in small

5 Instances are available athttp://www.research.att.com/˜mgcr/data/index.html .
6 OR-library: J. E. Beasley,http://mscmga.ms.ic.ac.uk/info.html .
7 Instances are available athttp://www.ads.tuwien.ac.at/pcst .

6

Table 1.Properties of two groups of real-world instances,Cologne1 andCologne2 .

Cologne1 Cologne2

Group |V | |E| |R| |E′| # of inst. Group |V | |E| |R| |E′| # of inst.

i01 768 69077 10 6332 3 i01 1819 213973 9 16743 4
i02 769 69140 11 6343 3 i02 1820 213915 7 16740 4
i03 771 69100 13 6343 3 i03 1825 214095 12 16762 4
i04 761 68907 3 6293 3 i04 1817 213859 4 16719 4
i05 761 68934 3 6296 3 i05 1826 214013 13 16794 4

x104

14

14

14

5.8

5.8

3.6

3.6

2.7

2.7

2.1

2.1

1.7

1.7

(a)

x104

28

28

28

12

12

7.3

7.3

5.3

5.3

4.2

4.2

3.5

3.5

(b)

Fig. 2.Examples of two instances fromCologne1 group. Optimal solution of (a)i02M2 ; (b) i04M3 . Shadowed vertices represent
customers, while non-shadowed vertices belong to the existing network. Grid lines in the background determine customers’ prizes.

subgroups containing graphs of the same size. The number of instances of each subgroup is also shown
in the table.
These real-world instances contain an existing network that needs to be augmented by new customers.
The existing network can be shrunken into a single vertex, by replacing multiple edges by a cheapest
connection and discarding self-loops. The problem is than considered as the rooted PCST problem, with
the shrunk vertex as a root. Two examples of these instances are shown in Figure 2.
To remove redundant edges from these very dense graphs, we applied the least-cost test [9, 18] and, as
Table 5 in column|E′| documents, savings in the number of edges are greater than 90%.

Comparing LR with our results Both algorithms, LR and our new ILP approach, solved allP and K
instances to optimality. LR approach did not prove optimality for 16 (out of 80) instances of groupsC and
D. Improving upon their results, our new ILP approach solved all instances were known from the literature
to proven optimality. All instances were solved in the root node of the branch-and-cut tree.

In our default implementation we used nested cuts and back-cuts. Our computational experiments have
shown that the initialization with constraints (8) and the usage of back-cuts are crucial for our implementa-

7

Table 2.Comparison of running-time speed-up factors over all instances of a group: average, minimal and maximal factor are given.

tLR/(20 · tILP) new status of optimalityGroup
AVG MIN MAX proven new value tILP < 0.2

K 0.1 0.1 0.3 - - 4
P 11.0 3.0 27.2 - - 6
C 218.7 0.1 5073.9 3 1 6
D 83.8 0.3 1516.1 5 7 2

tion. If we did not use both, some of the larger instances (of groupsC andD) could not be solved to proven
optimality. More details of our experiments can be found in our technical report [15].

Comparing our running time data (achieved on a Pentium IV with 2.8 GHz, 2 GB RAM, SPECint2000
= 1204) with the LR results (done on SGI Challenge Computer 28 196 MHz MIPS R10000 processors
with 7.6 GB RAM, each run used a single processor), the widely used SPECc© performance evaluation
(www.spec.org) does not provide a direct scaling factor. However, taking a comparison with the respec-
tive benchmark machines both for SPEC 95 and SPEC 2000 into account, we obtain a scaling factor of 17.2.
On the other side, in [8] the SGI machine is assigned a factor of 114 and our machine the factor 1 414, which
gives 12.4 as a scaling factor. Thus, we can argue by a conservative estimate that dividing the LR running
times by a factor of 20 gives a very reasonable basis of comparison to our data.

Table 2 summarizes our experimental results and contains the following values for each groupK,P,C
andD: for each instance where the LR algorithm proved optimality, and whose running time in seconds
tILP ≥ 0.2, we calculate thespeed-up factortLR/tILP . We then present the average (AVG), minimum
(MIN) and maximum (MAX) value of this factor per group. We also count the number of instances where
we proved optimality for values that were not guaranteed to be optimal by LR (but the upper bounds found
in [4] were equal to lower bounds obtained by LR), and also the number of instances where optimal solution
were not known before. The last column shows the number of instances for which our ILP approach needed
less than 0.2 seconds to solve them.

If we assume the conservative hardware speed-up factor of 20, the results of Table 2 show that:

– our algorithm is about 14 times on average slower for the instances of groupK. However, all of them
could be solved to optimality by both LR and our algorithm within a short running time (within 1000
seconds, in the worst case).

– on the remaining instances that could be solved to optimality by the LR algorithm, our new approach is
significantly faster, and the average running time speed-up factor lies between 11 and 218.

– our new approach is able to solve all the instances to optimality within a very short time, even if prepro-
cessing (used by Lucena and Resende [18]) is turned off. For a more exhaustive study on results with
and without preprocessing, see our technical report [15].

Testing real-world instances Table 3 shows the performance of our ILP approach on the real-world in-
stances. We compare two approaches based on the initialization of the LP with and without (8), i.e. general-
ized subtour elimination constraints of size two. The results document that all the instances ofCologne1
group could be solved to optimality in less than 2 400 seconds. For instances ofCologne2 group, we
present the percentage of the gap between lower bound and optimum after two hours computation time:
%-gap = (OPT − LB)/OPT . We also show total running times in seconds (t [s]) needed to prove opti-
mality (the time limit was set to 45 000 seconds). Finally, we also provide optimal values inOPT columns.

8

Table 3.Results on two groups of real-world instances. We compare two ILP approaches, where the initialization is done with and
without constraints (8). All instances ofCologne1 group are solved to optimality, while for theCologne2 group, we show the
gap in percent obtained after the time limit of 2 hours was exceeded.

Cologne1 Cologne2

Without (8) With (8) Without (8) With (8)Instance
t [s] t [s] OPT

Instance
%-gap t [s] %-gap t [s] OPT

i01M1 0.5 2.9 109271.5 i01M2 0.0 2.1 0.0 5.1 355467.7
i01M2 252.3 487.8 315925.3 i01M3 1.9 31025.7 1.7 27331.9 628833.6
i01M3 1371.4 1195.8 355625.4 i01M4 2.1 45002.1 3.9 40927.5 773398.3
i02M1 0.5 2.9 104065.8 i02M2 0.0 107.0 0.0 110.7 288946.8
i02M2 431.8 598.2 352538.8 i02M3 0.5 9034.4 2.4 14173.6 419184.2
i02M3 2353.6 1810.9 454365.9 i02M4 2.1 13322.0 4.7 19124.3 430034.3
i03M1 0.5 3.1 139749.4 i03M2 0.0 907.1 0.0 855.9 459918.9
i03M2 362.6 326.8 407834.2 i03M3 3.3 37416.1 5.7 42150.0 643062.0
i03M3 1140.2 755.9 456125.5 i03M4 3.7 42752.0 5.6 42237.7 677733.1
i04M1 0.5 2.8 25282.6 i04M2 0.0 2.5 0.0 5.4 161700.5
i04M2 20.0 22.6 89920.8 i04M3 0.0 5095.1 2.1 13259.2 245287.2
i04M3 42.1 77.7 97148.8 i04M4 0.0 4298.1 0.1 8700.1 245287.2
i05M1 0.5 2.8 26717.2 i05M2 0.0 2107.0 0.0 2568.7 571031.4
i05M2 94.7 122.9 100269.6 i05M3 0.1 11852.9 1.0 19655.4 672403.1
i05M3 443.8 399.4 110351.2 i05M4 0.5 16203.8 0.8 16343.5 713973.6

While constraints (8) have shown to be very advantageous for the previous instances known from the
literature, Table 3 documents that for the real-world instances there is a trade-off between the size of the
underlying LP and the number of separation calls that can be saved. This can be explained by a very small
percentage of customer vertices, which is less than 2% and 1%, forCologne1 andCologne2 groups,
respectively. The number of subtours of size two usually depends on the number of negative edges which
directly corresponds to the number of customer vertices. On the other side, using (8), we insert2 · |ASA| in-
equalities in the initialization phase, which obviously represents a disadvantage for such very large instances
with only few customer vertices. All*M1 instances ofCologne2 group could be solved to optimality in
less than 30 seconds, and they always represent single-vertex solutions, thus we omit them from Table 3.

6 Conclusions

The prize-collecting Steiner tree problem (PCST) formalizes the planning problem encountered in the de-
sign of utility networks such as fiber optic, gas or district heating. Selecting the most profitable customers
and connecting them by a least-cost network leads to the problem of computing a Steiner tree, where the
terminals are not fixed but can be chosen arbitrarily from a given set of vertices each one contributing a
certain profit.

The aim of our contribution is the construction of an algorithmic framework to solve large and difficult
instances, known from the literature and also those appearing in practice, to optimality within reasonable
running time. The method of choice is a branch-and-cut approach based on an ILP formulation depending on
connectivity inequalities which can be written as cuts between an artificial root and every selected customer
vertex.

While the choice of the ILP model is essential for the success of our method, it should also be pointed
out that solving the basic ILP model by a default algorithm is by no means sufficient to reach reasonable

9

results. Indeed, our experiments show that a satisfying performance can be achieved only by appropriate
initialization and strengthening of the original ILP formulation and in particular by a careful analysis of the
separation procedure.

Combining all these efforts, we manage to solve to optimality all instances from the literature in a few
seconds, deriving new optimal solution values and new certificates of optimality for a number of problems
previously attacked. We also show that our exact method is applicable in praxis as well: for a set of 35 very
large real-world instances used in the design of fiber optic networks (with up to 1 825 vertices and 214 095
edges) we derive provably optimal solutions.

Acknowledgments

The authors thank Andreas Moser and Philipp Neuner for their help in implementing parts of the algorithmic
framework.

References

1. P. Bachhiesl, M. Prossegger, G. Paulus, J. Werner, and H. Stögner. Simulation and optimization of the implementation costs
for the last mile of fiber optic networks.Networks and Spatial Economics, 3(4):467–482, 2003.

2. J. E. Beasley. An SST-based algorithm for the Steiner problem in graphs.Networks, 19:1–16, 1989.
3. D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize-collecting traveling salesman problem.

Mathematical Programming, 59:413–420, 1993.
4. S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for the prize-collecting Steiner tree

problem in graphs.Networks, 38:50–58, 2001.
5. B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the maximum flow problem.Algorithmica,

19:390–410, 1997.
6. S. Chopra, E. Gorres, and M. R. Rao. Solving a Steiner tree problem on a graph using a branch and cut.ORSA Journal on

Computing, 4:320–335, 1992.
7. S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions and extension of facets.Mathematical

Programming, 64:209–229, 1994.
8. J. J. Dongarra. Performance of various computers using standard linear equations software (linpack benchmark report). Tech-

nical Report CS-89-85, University of Tennessee, 2004.
9. C. W. Duin and A. Volgenant. Some generalizations of the Steiner problem in graphs.Networks, 17(2):353–364, 1987.

10. S. Engevall, M. G̈othe-Lundgren, and P. V̈arbrand. A strong lower bound for the node weighted Steiner tree problem.Networks,
31(1):11–17, 1998.

11. P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J.C. Pina. Primal-dual approximation algorithms for the prize-collecting Steiner
tree problem. 2003. submitted.

12. M. Fischetti. Facets of two Steiner arborescence polyhedra.Mathematical Programming, 51:401–419, 1991.
13. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and its application to network

design problems. In D. S. Hochbaum, editor,Approximation algorithms for NP-hard problems, pages 144–191. P. W. S.
Publishing Co., 1996.

14. D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner tree problem: Theory and practice. InProceedings of
11th ACM-SIAM Symposium on Discrete Algorithms, pages 760–769, San Francisco, CA, 2000.

15. G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, and R. Weiskircher. Solving the prize-collecting Steiner tree
problem to optimality. Technical Report TR-186-1-04-01, Vienna University of Technology, 2004.

16. G.W. Klau, I. Ljubíc, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, and R. Weiskircher. Combining a memetic algorithm with
integer programming to solve the prize-collecting Steiner tree problem. In K. Deb, editor,Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004), LNCS. Springer-Verlag, 2004. to appear.

17. T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality.Networks, 32:207–232, 1998.
18. A. Lucena and M. G. C. Resende. Strong lower bounds for the prize-collecting Steiner problem in graphs.Discrete Applied

Mathematics, 2003. to appear.
19. M. Minkoff. The prize-collecting Steiner tree problem. Master’s thesis, MIT, May, 2000.
20. T. Polzin and S. V. Daneshmand. A comparison of Steiner tree relaxations.Discrete Applied Mathematics, 112:241–261, 2001.
21. A. Segev. The node-weighted Steiner tree problem.Networks, 17:1–17, 1987.

10

