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Abstract. The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits

asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all

vertices not contained in the subtree. PCST appears frequently in the design of utility networks where profit

generating customers and the network connecting them have to be chosen in the most profitable way.

Our main contribution is the formulation and implementation of a branch-and-cut algorithm based on a directed

graph model where we combine several state-of-the-art methods previously used for the Steiner tree problem.

Our method outperforms the previously published results on the standard benchmark set of problems.

We can solve all benchmark instances from the literature to optimality, including some of them for which the

optimum was not known. Compared to a recent algorithm by Lucena and Resende, our new method is faster by

more than two orders of magnitude. We also introduce a new class of more challenging instances and present

computational results for them. Finally, for a set of large-scale real-world instances arising in the design of fiber

optic networks, we also obtain optimal solution values.
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1 Introduction

The recent deregulation of public utilities such as electricity and gas in Europe has shaken up the classical business

model of energy companies and opened up the way towards new opportunities. Of particular interest in this field

is the planning and expansion of district heating networks. This area of energy distribution is characterized by

extremely high investment costs but also by an unusually loyal customer base and limited competition. Moreover,

the required reduction of greenhouse emissions forces many energy companies to seek ways of improving their

ecological balance sheet. A very attractive possibility to meet this goal is the use of biomass for heat generation.

The combination of these two factors has made the planning of heating networks one of the major challenges for
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companies in this field [17]. Another area that has recently gained in importance is the extension of fiber optic

networks to cover the “last mile” reaching private households.

In a typical planning scenario the input is a set of potential customers with known or estimated demands

(represented by discounted future profits), and a potential network for laying the pipes or cables (which is usually

identical to the street network of the district or town). Costs of the network are dominated by labor and right-of-way

charges for putting the connections into the ground.

Essentially, the decision process faced by a profit oriented company consists of two parts: On one hand, a subset

of particular profitable customers has to be selected, on the other hand, a network has to be designed to connect all

selected customers in a cost-efficient way to the existing infrastructure. The natural trade-off between maximizing

the sum of profits over all selected customers and minimizing the cost of the network leads to a prize-collecting

objective function.

We can formulate this problem as an optimization problem on an undirected graphG = (V, E, c, p), where

the verticesV are associated with profits,p : V → R≥0, and the edgesE with costs,c : E → R≥0. The graph

in our application corresponds to the local street map, with the edges representing street segments and vertices

representing street intersections and the location of potential customers. The profitp associated with a vertex is an

estimate of the potential gain of revenue caused by that customer being connected to the network and receiving its

service. Vertices corresponding to street intersections have profit zero. The costc associated with an edge is the

cost of establishing the connection, i.e., of laying the pipe or cable on the corresponding street segment.

The formal definition of the problem can be given as follows:

Definition 1 (Prize-Collecting Steiner Tree Problem, PCST).Let G = (V, E, c, p) be an undirected vertex-

and edge-weighted graph as defined above. TheLinear Prize-Collecting Steiner Tree problem(PCST) consists of

finding a connected subgraphT = (VT , ET ) of G, VT ⊆ V , ET ⊆ E that maximizes

profit(T ) =
∑

v∈VT

p(v)−
∑

e∈ET

c(e) . (1)

It is easy to see that every optimal solutionT will be a tree. Throughout this paper we will distinguish between

customer vertices, defined as

R = {v ∈ V | p(v) > 0} ,

andnon-customer vertices(corresponding to street intersections) with the assumption thatR 6= ∅. Figure 1 illus-

trates an example of a PCST instance and its feasible solution.
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Fig. 1. Example of a PCST instance. Each connection has fixed costs, hollow circles and filled circles represent customer and
non-customer vertices, respectively (Fig. 1(a)). Figure 1(b) shows a feasible, but not optimal solution of PCST.

The profit function given above is known in the literature as a function describing theNet Worth Maximization

Problem (NW) [18]. In the so-calledGoemans and Williamson MinimizationProblem (GW) [15] the goal is to find

a subtreeT = (VT , ET ) that minimizes the following function:

GW (T ) =
∑

v 6∈VT

p(v) +
∑

e∈ET

c(e) . (2)

Here,p(v) is interpreted as penalty fornot connecting a vertexv. As far as optimization is concerned, the NW

and GW formulations are equivalent, since for every subtreeT of G, their objective functions add up to the total

sum of profits inG. In this paper we are going to concentrate on minimizing (2) as an objective function, as it has

been considered in the literature before (see [15, 22, 5]).

In practice, we often face additional side constraints. The planning problem of the heating network clearly

requires that the heating plant is connected to the network. This can be modeled as a PCST by introducing a special

vertex for the plant with a very high profit. In general, therooted prize-collecting Steiner tree problem(RPCST),

is defined as a variant of PCST with an additional source vertexvs ∈ V (representing a depot or repository) which

must be part of every feasible solutionT . This approach can also be used to guarantee the connection to existing

infrastructure by shrinking all the corresponding vertices into a single vertex that forms the source vertex for the

rooted problem.

In the next section we give a short overview of previous work on PCST and some of its relatives. Some of the

results we report have their roots in the study of the symmetric and asymmetric traveling salesman problem and of

some of its “non-spanning” variants, and are addressed, e.g., in the recent book [16]. Preprocessing, which helps
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to significantly reduce the size of many instances, is treated in Section 3. In Section 4 we propose a transformation

of the input graph into a rooted digraph. We also introduce the cut-based ILP model and describe how it can be

solved in a branch-and-cut framework in Section 5. Extensive computational experiments on instances from the

literature and on new instances are reported in Section 6. It turns out that all the former can be solved to optimality

within a few seconds while also the latter are successfully attacked.

2 Previous Work

In 1987, Segev [24] introduced the so calledNode Weighted Steiner Tree Problem(NWST) – the Steiner tree

problem with vertex weights in addition to regular edge weights in which the sum of edge-costs and vertex-

weights is minimized. His contribution concerns a special case of NWST, called thesingle point weighted Steiner

tree problem (SPWST), where we are given a special vertex to be included in the solution. The weights of the

remaining vertices are non-positive profit values, while non-negative weights of the edges reflect the costs incurred

for obtaining or collecting these profits. Negating the vertex weights to make them positive and thus subtracting

them from the edge costs in the objective function, immediately yields the minimization version of (1). Thus, the

optimization of SPWST is equivalent to RPCST.

The PCST has been introduced by Bienstock et al. [4], where a factor 3 approximation algorithm has been pro-

posed. Several other approximation algorithms have been developed. Goemans and Williamson presented in [15]

an approximation algorithm which runs inO(n3 log n) time (n := |V |), and yields solutions within a factor of

2− 1
n−1 of optimality. This has been improved in Johnson et al. [18], where a(2− 1

n−1 )–approximation algorithm

with O(n2 log n) running time has been proposed. The new algorithm of Feofiloff et al. [12] achieves a ratio of

2− 2
n within the same time.

Recently, two metaheuristic approaches for PCST have been developed: Canuto et al. [5] proposed a multi-start

local-search-based algorithm with perturbations; Klau et al. [19] developed a memetic algorithm with incorporated

local improvement that used a previous version of the exact algorithm described in this paper as a subroutine.

2.1 Lower Bounds and Polyhedral Studies

In [24], Segev presented single- and multi-commodity flow formulations for SPWST. Furthermore, the author

developed two bounding procedures based on Lagrangian relaxations of the corresponding flow formulations which

were embedded in a branch-and-bound procedure. In addition, heuristics to compute feasible solutions were also

included. Benchmark instances with up to 40 vertices were tested.

Fischetti [13] studied the facial structure of a generalization of the problem, the so-calledSteiner arborescence

(or directed Steiner tree) problem and pointed out that the NWST can be transformed into it. The author consid-
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ered several classes of valid inequalities and introduced a new inequality class with arbitrarily large coefficients,

showing that all of them define distinct facets of the underlying polyhedron.

Goemans provided in [14] a theoretical study on the polyhedral structure of the NWST and showed that this

characterization is complete in case the input graph is series-parallel. Here, SPWST, i.e. RPCST, appears as the

r-tree problem.

Engevall et al. [11] proposed another ILP formulation for the NWST, based on theshortest spanning tree

problem formulation, introduced originally by Beasley [3] for the Steiner tree problem. In their formulation, besides

the given root vertexr, an artificial root vertex 0 is introduced, and an edge between vertex 0 andr is set. They

searched for a tree with additional constraints: each vertexv connected to vertex 0 must have degree one. The

solution is interpreted so that the vertices adjacent to vertex 0 are not taken as a part of the final solution. For

the description of the tree, the authors use a modification of the generalized subtour elimination constraints. For

finding good lower bounds, the authors use a Lagrangian heuristic and subgradient procedure based on the shortest

spanning tree formulation. Experimental results done for instances with up to 100 vertices indicated that the new

approach outperformed Segev’s algorithm.

Lucena and Resende [22] presented a cutting plane algorithm for the PCST based on generalized subtour

elimination constraints. Their algorithm contains basic reduction steps similar to those given by Duin and Vol-

genant [10], and was tested on two groups of benchmark instances proposed in [18, 5]. The proposed algorithm

solved many of the considered instances to optimality, but not all of them (cf. Section 6).

3 Preprocessing

In this section, we briefly describe reduction techniques adopted from the work of Duin and Volgenant [10] for

the NWST, which have been partially used also in [22]. ¿From the implementation point of view, we transform

the graphG = (V,E, c, p) into a reduced graphG′ = (V ′, E′, c′, p′) by applying the steps described below and

maintain abackmappingfunction to transform each feasible solutionT ′ of G′ into a feasible solutionT of G.

Least-Cost Test Let dij represent the shortest path length between any two verticesi andj from V (considering

only edge-costs). If∃e = (i, j) such thatdij < cij then edgee can simply be discarded fromG.

Degree-l Test Consider a vertexv 6∈ R of degreel ≥ 3, connected to vertices fromAdj (v) = {v1, v2, . . . , vl}.
For any subsetK ⊂ V , denote withMSTd(K), the minimum spanning tree ofK with distancesdij . If

MSTd(K) ≤
∑

w∈K

cvw, ∀K ⊆ Adj (v), |K| ≥ 3, (3)
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thenv’s degree in an optimal solution must be zero or two. Hence, we can removev from G by replacing each pair

(vi, v), (v, vj) with (vi, vj) either by adding a new edgee = (vi, vj) of costce = cviv + cvvj
− pv or in casee

already exists, by definingce = min{ce, cviv + cvvj − pv}.
It is straightforward to apply a simplified version of this test to all verticesv ∈ V with l = 1 andl = 2. In [25]

Uchoa generalized the least cost test and the degree-l test for the PCST such that both tests can also be used for

customer vertices. This is not implemented in the framework described here.

Minimum Adjacency Test This test is also known asV \K reduction testfrom [10]. If there are adjacent vertices

i, j ∈ R such that:

min{pi, pj} − cij > 0 andcij = min
it∈E

cit,

theni andj can be fused into one vertex of weightpi + pj − cij .

Summary of the Preprocessing ProcedureWe apply the steps described above iteratively, as long as any of them

changes the input graph. The total number of iterations is bounded by the number of edges inG. Each iteration is

dominated by the time complexity of the least-cost test, i.e., by the computation of all-pair shortest paths, which

is O(|E||V |+ |V |2 log |V |). Thus, the preprocessing procedure requiresO(|E|2|V |+ |E||V |2 log |V |) time in the

worst case, in which the input graph would be reduced to a single vertex. However, in practice, the running time is

much lower, as documented in Section 6. The space complexity of preprocessing does not exceedO(|E|2).

4 Cut Formulation

In this section we show the integer linear program formulation we use. It is defined on a directed graph model and

uses connectivity inequalities corresponding to minimum weight cuts in the graph to guarantee connectivity of the

solution.

4.1 Transformation into the Steiner Arborescence Problem

The directed tree formulation of PCST relies on a transformation of the PCST to the problem of finding a min-

imum subgraph in a related, directed graph as proposed by Fischetti [13]. Hence, we transform the reduced

graphG′ = (V ′, E′, c′, p′) resulting from the application of preprocessing into the directed edge-weighted graph

GSA = (VSA, ASA, c′′).

The vertex setVSA = V ′ ∪ {r} contains the vertices of the input graphG′ and an artificial root vertexr. The

arc setASA contains two directed arcs(i, j) and(j, i) for each edge(i, j) ∈ E′ plus a set of arcs from the rootr to
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the customer verticesRSA = {i ∈ V ′ | p′i > 0}. We define the cost vectorc′′ as follows:

c′′ij =

{
c′ij − p′j ∀(i, j) ∈ ASA, i 6= r

−p′j ∀(r, j) ∈ ASA .

An example of this transformation can be found in Figures 3 (a) and (b) on page 9.

A subgraphTSA of GSA that forms a directed tree rooted atr is called aSteiner arborescence. It is easy to see

that such a subgraph corresponds to a solution of the PCST ifr has degree 1 inGSA (feasible arborescence). In

particular, a feasible arborescence with minimal total edge cost corresponds to an optimal prize-collecting Steiner

tree.

We model the problem of finding a minimum Steiner arborescenceTSA by means of an integer linear program.

Therefore, we introduce variable vectorsx ∈ {0, 1}|ASA| andy ∈ {0, 1}|VSA|−1 with the following interpretation:

xij =

{
1 (i, j) ∈ TSA

0 otherwise
∀(i, j) ∈ ASA, yi =

{
1 i ∈ TSA

0 otherwise
∀i ∈ VSA, i 6= r .

Our ILP-formulation concentrates on the connectedness of the solution. Therefore,cutsare introduced with

the fairly simple condition that for every selected vertex which is separated fromr by a cut there must be an

arc crossing this cut. Analogous formulations were used by Wong [26] and Fischetti in [13] for the NWST. An

undirected ILP-formulation using cuts was already introduced by Aneja [1] who modelled the collection of all cut

constraints as a set covering problem and studied the resulting branch and cut approach.

For convenience we introduce the following notation: A set of verticesS ⊂ VSA and its complementS = VSA \ S

induce two directed cuts:δ+(S) = {(i, j) | i ∈ S, j ∈ S} andδ−(S) = {(i, j) | i ∈ S, j ∈ S}. We also write

x(A) =
∑

ij∈A xij for any subset of arcsA ⊂ ASA. The corresponding ILP model then reads as follows:

(CUT ) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (4)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (5)

x(δ−(S)) ≥ yk k ∈ S, r 6∈ S,∀S ⊂ VSA (6)
∑

ri∈ASA

xri = 1 (7)

xij , yi ∈ {0, 1} ∀(i, j) ∈ ASA,∀i ∈ VSA \ {r} (8)

The cut constraints (6) are also calledconnectivity inequalities. They guarantee that for each vertexv in the

solution, there must be a directed path fromr to v. Note that disconnectivity would imply the existence of a cutS

separatingr andv which would clearly violate the corresponding cut constraint.
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As already observed in [13], the connectivity inequalities (6) can be put in an LP equivalent form by adding

together−x(δ−(S)) ≤ −yk and the in-degree equations
∑

ji∈ASA
xji = yi for all i ∈ S, to produce the generalized

subtour elimination constraint (GSEC):
∑

i,j∈S

xij ≤
∑

i∈S\{k}
yi .

Note that the lower bounding procedure for PCST presented in [22] is based on undirected GSECs. However,

Chopra and Rao [8] have shown for the Steiner tree problem that directed GSECs dominate directed counterparts

of several other facet defining inequalities of the undirected (GSEC) formulation. This is also the reason why the

directed GSEC (and also min-cut) formulation is preferable in practice.

4.2 Asymmetry Constraints

In order to create a bijection between arborescence and PCST solutions, we introduce the so-calledasymmetry

constraints:

xrj ≤ 1− yi, ∀ i < j, i ∈ R (9)

These inequalities assure that for each PCST solution the customer vertex adjacent to root is the one with the

smallest index. Figure 2 illustrates an example. Although we insert
(
R
2

)
new constraints, computational results show

that they significantly reduce the computation time, because they exclude separation of many cuts that correspond

to symmetric solutions.
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Fig. 2. Two feasible Steiner arborescences representing the same PCST solution. Using the asymmetry inequalities only the
solution on the right-hand side is considered as feasible.
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4.3 Strengthening the Formulation

Each feasible solution of the Steiner arborescence problem can be seen as a set of flows sending one unit from the

root to all customer verticesj with yj = 1.

Considering the tree structure of the solution it is obvious that in every non-customer vertex, which is not

a branching vertex in the Steiner arborescence, indegree and outdegree must be equal, whereas in a branching

non-customer vertex indegree is always less than outgoing degree. Thus, we have:

∑

ji∈ASA

xji ≤
∑

ij∈ASA

xij , ∀i 6∈ R, i 6= r . (10)
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Fig. 3.(a) an input graphG; (b) after transformation into the Steiner arborescence problem; (c) solution of (CUT) LP-relaxation,
c(LPCUT ) = 7.5; LP-values ofx andy variables are shown; (d) the solution of (CUT) LP-relaxation augmented with flow-
balance constraints has cost 8 and corresponds to the optimal solution.
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These so-calledflow-balance constraintswere introduced by Koch and Martin in [20] for the Steiner tree

problem. In contrast to the Steiner tree problem where flow-balance constraints are added for all Steiner vertices,

in PCST we can only apply them to non-customer vertices. They indeed represent a strengthening of the LP-

relaxation of (5)-(9), as can be shown by an example in Figures 3 (c) and (d).

5 Branch-and-Cut Algorithm

To solve the proposed ILP formulation we use a branch-and-cut algorithm, whose non-standard ingredients are

outlined next. At each node of the branch-and-bound tree we solve the LP-relaxation (CUT), obtained by replacing

the integrality requirements (8) by0 ≤ yi ≤ 1, ∀i ∈ VSA \ {r} and0 ≤ xij ≤ 1, ∀(i, j) ∈ ASA. For solving the

LP-relaxations and as a generic implementation of the branch-and-cut approach, we used the commercial packages

ILOG CPLEX and ILOG Concert Technology 8.1.

5.1 Initialization

There are exponentially many constraints of type (6), so we do not insert them at the beginning but ratherseparate

them during the optimization process using the separation procedure described below.

At the root node of the branch-and-bound tree, we start with in-degree, root-degree, flow-balance and asym-

metry constraints. Furthermore, we add the following group of inequalities:

xij + xji ≤ yi, ∀i ∈ VSA \ {r}, (i, j) ∈ ASA (11)

These constraints express the trivial fact that every arc adjacent to a vertex in the solution tree can be oriented

only in one way. They are also a special case of the connectivity constraints written in their equivalent GSEC form.

Although the LP may become large by adding all of these inequalities at once they offer a tremendous speedup

since they do not have to be separated implicitly during the branch-and-cut algorithm. Further details are discussed

in Section 6.

5.2 Separation

During the separation phase which is applied at each node of the branch-and-bound tree, we add constraints of

type (6) that are violated by the current solution of the LP-relaxation. Usually, this model is less dense than the

equivalent directed (GSEC) model, so it may be computationally preferable within the branch-and-cut implemen-

tation.
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These violated cut constraints can be found in polynomial time using a maximum flow algorithm on thesupport

graphwith arc-capacities given by the current LP solution. For finding the maximum flow in a directed graph, we

used an adaptation of Cherkassky and Goldberg’s maximum flow algorithm [6]4.

Data: A support graphGs = (VSA, ASA, x).
Result: A set of violated inequalities incorporated into the current LP.

for i ∈ RSA, yi > 0 do
x′ = x + EPS ;
repeat

f = MaxFlow(G, x′, r, i, Sr, Si);
Detect the cutδ+(Sr) such thatx′(δ+(Sr)) = f , r ∈ Sr;
if f < yi then

Insert the violated cutx(δ+(Sr)) ≥ yi into the LP;
end
x′ij = 1,∀(i, j) ∈ δ+(Sr);
if BACKCUTS then

Detect the cutδ−(Si) such thatx′(δ−(Si)) = f , i ∈ Si;
if Si 6= Sr then

Insert the violated cutx(δ−(Si)) ≥ yi into the LP;
x′ij = 1,∀(i, j) ∈ δ−(Si);

end
end

until f ≥ yi or MAXCUTS constraints added;
end

Algorithm 1: Separation procedure.

The outline of the separation procedure is given in Algorithm 1. Given a support graphGs = (VSA, ASA, x),

we search for violated inequalities by calculating the maximum flow for all(r, i) pairs of vertices,i ∈ RSA, yi > 0.

The maximum flow algorithmf = MaxFlow(G, x′, r, i, Sr, Si) returns the flow valuef and two sets of vertices:

– SubsetSr ⊂ VSA contains root vertexr and induces a minimum cut closest tor, in other words,x(δ+(Sr)) = f ;

– SubsetSi ⊂ VSA contains vertexi and induces a minimum cut closest toi, i.e.,x(δ−(Si)) = f .

If f < yi, we insert the violated cutx(δ+(Sr)) ≥ yi into the LP. We then follow the idea of the so-callednested

cuts [20]: we iteratively add further violated constraints induced by the minimum(r, i)-cut in the support graph

in which the capacities of all the arcs(u, v) ∈ δ+(Sr) are set to one. This iterative process is performed as long

as the total number of the detected violated cuts is less thanMAXCUTS (100, in the default implementation),

or there are no more such cuts. By setting the capacities of the edges in a cut to one, we are able to increase the

number of violated inequalities found within one cutting plane iteration. Note that the cuts are inserted only if they

are violated by at least someε (which was set to10−4 in the default implementation).

4 Available athttp://www.avglab.com/andrew/CATS/maxflow_solvers.htm
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Chopra et al. [7] proposed the so-calledback-cuts, also used in [20], for the Steiner tree problem. To speed up

the process of detecting more violated cuts within the same separation phase, we consider the reversal flow in order

to find the cut “closest” toi, for somei ∈ R, yi > 0. The advantage of Goldberg’s implementation is that only one

maximum flow calculation is needed in order to find both setsSr, r ∈ Sr andSi, i ∈ Si defining the minimum

cut of valuef . Note that back-cuts (controlled byBACKCUTS parameter) are combined with nested cuts in our

implementation.

Finally, we considered the possibility of adding the smallest cardinality cut by increasing allxij values by

some valueEPS . The smallest cardinality cuts may have a great influence on the density of the underlying LP,

however the running time of the maximum flow calculations may also increase. Indeed, our computational results

(cf. Section 6) confirm that for most of our instances settingEPS to a positive value increases the CPU time.

6 Computational Results

We tested our new approach outlined in Section 5 extensively on the following groups of instances:

– Johnson et al. [18] tested their approximation algorithm on two sets of randomly generated instances. In the

so-calledPclass, instances are unstructured and designed to have constant expected degree and profit to weight

ratio. TheK group comprises random geometric instances designed to have a structure somewhat similar to

street maps. A detailed description of the generators for these instances can be found in [23]. In our tests, we

considered 11 instances of groupP and 23 instances of groupK with up to 400 vertices and 1 576 edges that

have also been tested by Lucena and Resende [22] and Canuto et al. [5].

– Canuto et al. [5] generated a set of 80 test problems derived from the Steiner problem instances of the well-

known OR-Library5. For each of the 40 problems from seriesC andD, two sets of instances were generated

by assigning zero profits to non-terminal vertices and randomly generated profits in the interval[1,maxprize]

to terminal vertices. Here,maxprize = 10 for problems in setA, andmaxprize = 100 for problems in set

B. Instances of groupC contain 500 vertices, and between 625 and 12 500 edges, while instances of groupD

contain 1 000 vertices and between 1 250 and 25 000 edges.

Following this scheme, we generated an additional set of 40 larger benchmark instances derived from series

E of the Steiner problem instances in the OR-Library. The new instances contain 2 500 vertices and between

3 125 and 62 500 edges.

All problem instances used in this paper are available in our online database for PCST instances and solutions

at the following URL:http://www.ads.tuwien.ac.at/pcst .

5 OR-library: J. E. Beasley, http://mscmga.ms.ic.ac.uk/info.html
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For groupsC andD, Tables 1 and 2 list the instance name, its number of edges|E|, the size of the graph after

the reductions described in Section 3 (|V ′|, |E′|) and the time spent on this preprocessing procedure (tprep [s]).

We compare our results against those recently obtained by Lucena and Resende [22] (denoted by LR). For their

approach, we show the best obtained lower bounds (L. Bound) and the CPU times in seconds required to prove

optimality (t [s]). If the CPU time is not given, it means that the LR algorithm terminated because of excessive

memory consumption. For our new ILP approach, we provide the following values: the provably optimal solution

value (OPT ), the total running time in seconds (t [s]) (not including preprocessing), the number of violated cuts

found by our separation procedure (#Cuts), the number of violated Gomory fractional cuts automatically added

by CPLEX (#G. Cuts) and the total running time of the same algorithm on the original istances without running

preprocessing (tnoprep [s]).

On all but 8 instances of groupsC andD lower bounds obtained by LR were equal to known upper bounds

obtained by Canuto et al. [5]. However, on 16 instances fromCandD, the LR algorithm did not prove the optimality.

Improving upon their results, our new ILP approach solved all instances known from the literature to proven

optimality. The optimal solution values, that were not guaranteed to be optimal before, are marked with an asterisk

while new optimal values are given in bold face.

Comparing our running time data (achieved on a Pentium IV with 2.8 GHz, 2 GB RAM, SPECint2000=1 204)

with the results of Lucena and Resende [22] (done on SGI Challenge Computer 28 196 MHz MIPS R10000

processors with 7.6 GB RAM, each run used a single processor), the widely used SPECc© performance evaluation

(www.spec.org ) does not provide a direct scaling factor. However, taking a comparison to the respective bench-

mark machines both for SPEC 95 and SPEC 2000 into account, we obtain a scaling factor of 17.2. On the other

side, in [9] the SGI machine is assigned a factor of 114 and to our machine the factor 1 414, which gives 12.4 as a

scaling factor. Thus, we can argue by a conservative estimate that dividing the LR running times by a factor of 20

gives a very reasonable basis of comparison to our data. The running time comparison for those instances where

LR running times are known, shows that our new approach is significantly faster (on average, by more than two

orders of magnitude).

Tables 1 and 2 document also that our new approach is able to solve all the instances to optimality within a

very short time, even if preprocessing is turned off.

Both algorithms, LR and our new ILP approach, solved allP andK instances to optimality. Thus, we omit the

corresponding tables here and refer to Table 3 and the next subsection where we analyze the running time of our

algorithm. All the instances ofK,P,C andDgroups are solved in the root node of the branch-and-cut tree.
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Table 1. Results obtained by Lucena and Resende (LR) and our new results, on the instances from Steiner seriesC. Running
times in (LR) to be divided by 20 for comparison (cf. text above). Asterisk marks new certificates of optimality for known
values. New optimal solution values are given in bold face.

Orig. Preprocessing LR ILP
Instance |E| |V ′| |E′| tprep [s] L. Bound t [s] OPT t [s] # Cuts # G. Cutstnoprep [s]

C1-A 625 116 214 1.2 18 0.1 18 0.1 0 0 0.1
C1-B 625 125 226 1.2 85 1.7 85 0.0 6 6 0.2
C2-A 625 109 207 1.1 50 0.1 50 0.0 0 0 0.1
C2-B 625 111 209 1.1 141 1.0 141 0.0 0 0 0.1
C3-A 625 160 277 1.1 414 1.2 414 0.1 0 0 0.3
C3-B 625 185 304 1.3 737 26.1 737 0.1 4 1 0.4
C4-A 625 178 300 1.2 618 1.7 618 0.2 2 6 0.9
C4-B 625 218 341 1.3 1063 287.4 1063 0.2 4 0 0.6
C5-A 625 163 274 1.2 1080 80.4 1080 0.2 0 0 8.6
C5-B 625 199 314 1.7 1528 3487.11528 0.2 0 0 2.0
C6-A 1000 355 822 2.1 18 0.9 18 0.1 0 0 0.1
C6-B 1000 356 823 2.1 55 57.5 55 0.3 8 12 0.6
C7-A 1000 365 842 2.6 50 1.3 50 0.1 0 0 0.1
C7-B 1000 365 842 2.5 102 4.7 102 0.2 4 9 0.2
C8-A 1000 367 849 2.7 361 33.4 361 0.2 0 0 0.6
C8-B 1000 369 850 3.0 500 215.0 500 0.3 4 1 0.6
C9-A 1000 387 877 2.4 533 84.1 533 1.2 12 16 0.9
C9-B 1000 389 879 2.8 694 1912.6 694 1.0 14 23 1.1
C10-A 1000 359 841 3.3 859 160.3 859 0.8 8 0 2.5
C10-B 1000 323 798 3.4 1069 3502.31069 0.6 10 0 4.3
C11-A 2500 489 2143 9.4 18 3.4 18 0.2 2 0 0.2
C11-B 2500 489 2143 9.5 32 68.5 32 4.2 48 25 3.2
C12-A 2500 484 2186 6.8 38 37.0 38 0.3 4 0 0.3
C12-B 2500 484 2186 6.8 46 126.7 46 0.6 12 8 0.6
C13-A 2500 472 2113 9.8 236 332.5 236 0.7 4 1 2.1
C13-B 2500 471 2112 9.8 258 3092.7 258 2.9 56 22 5.4
C14-A 2500 466 2081 7.5 293 1749.8 293 0.6 2 0 0.6
C14-B 2500 459 2048 7.5 318 1142.3 318 0.6 4 0 0.6
C15-A 2500 406 1871 6.5 501 54223.3 501 1.1 12 1 6.4
C15-B 2500 370 1753 6.0 551 — ∗551 0.6 4 0 4.4
C16-A 12500 500 4740 2.4 11 204.5 11 1.4 6 9 3.7
C16-B 12500 500 4740 2.4 11 205.1 11 1.4 6 9 3.6
C17-A 12500 498 4694 2.4 18 250.3 18 2.4 12 30 2.8
C17-B 12500 498 4694 2.3 18 388.2 18 1.7 8 15 2.8
C18-A 12500 469 4569 2.6 111 20031.8 111 1.6 2 2 5.3
C18-B 12500 465 4538 2.9 113 — ∗113 3.3 14 3 25.7
C19-A 12500 430 3982 2.9 146 152217.1 146 0.7 2 0 3.9
C19-B 12500 416 3867 2.8 146 18999.6 146 0.6 2 0 4.1
C20-A 12500 241 1222 6.1 265 — 266 0.2 2 0 22.6
C20-B 12500 133 563 5.0 267 — ∗267 0.1 2 0 51.8
C-AVG 4 156.3348.5 1 733.4 3.8 334.3 — 334.3 0.7 7.0 5.0 4.4
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Table 2. Results obtained by Lucena and Resende (LR) and our new results, on the instances from Steiner seriesD. Running
times in (LR) to be divided by 20 for comparison (cf. text above). Asterisk marks new certificates of optimality for known
values. New optimal solution values are given in bold face.

Orig. Preprocessing LR ILP
Instance |E| |V ′| |E′| tprep [s] L. Bound t [s] OPT t [s] # Cuts # G. Cutstnoprep [s]

D1-A 1250 231 440 4.9 18 0.4 18 0.1 0 0 0.2
D1-B 1250 233 443 4.9 106 5.5 106 0.1 8 8 0.5
D2-A 1250 257 481 4.9 50 0.7 50 0.1 0 0 0.2
D2-B 1250 264 488 4.9 218 2.2 218 0.1 0 0 0.3
D3-A 1250 301 529 5.5 807 12.2 807 0.2 0 0 1.1
D3-B 1250 372 606 6.3 1509 331.5 1509 0.4 2 0 0.9
D4-A 1250 311 541 5.6 1203 51.5 1203 0.4 0 0 3.0
D4-B 1250 387 621 7.2 1881 1551.3 1881 0.8 8 0 2.5
D5-A 1250 348 588 7.6 2157 597.5 2157 1.0 6 0 93.8
D5-B 1250 411 649 11.5 3135 —∗3135 1.4 6 0 7.3
D6-A 2000 740 1707 14.4 18 2.6 18 0.2 0 0 0.2
D6-B 2000 741 1708 14.7 67 225.8 67 1.2 20 4 3.0
D7-A 2000 734 1705 11.3 50 4.3 50 0.2 0 0 0.2
D7-B 2000 736 1707 11.4 103 154.1 103 0.3 2 1 0.4
D8-A 2000 764 1738 11.7 755 170.7 755 3.6 24 0 9.5
D8-B 2000 778 1757 12.3 1036 3267.9 1036 0.9 2 1 3.1
D9-A 2000 752 1716 17.9 1070 1346.7 1070 14.3 24 15 30.7
D9-B 2000 761 1724 20.9 1420 25052.5 1420 4.2 104 0 3.5
D10-A 2000 694 1661 14.6 1671 62590.0 1671 4.2 8 0 30.4
D10-B 2000 629 1586 18.5 2079 —∗2079 2.4 8 0 25.5
D11-A 5000 986 4658 27.7 18 33.9 18 1.4 2 4 0.5
D11-B 5000 986 4658 23.6 29 870.6 29 4.5 14 41 4.8
D12-A 5000 991 4639 23.1 42 281.7 42 1.4 10 2 1.6
D12-B 5000 991 4639 22.3 42 297.1 42 1.0 4 3 1.3
D13-A 5000 966 4572 27.7 445 24689.7 445 6.8 26 4 18.9
D13-B 5000 961 4566 28.0 486 4464.2 486 3.4 12 0 3.3
D14-A 5000 946 4500 35.5 602 — ∗602 3.7 12 0 60.2
D14-B 5000 931 4469 37.2 665 — ∗665 4.7 14 1 22.4
D15-A 5000 832 4175 47.1 1040 —∗1042 16.9 24 14 146.8
D15-B 5000 747 3896 49.2 1107 1691918.51108 4.9 10 1 24.2
D16-A 25000 1000 10595 10.8 13 9957.8 13 3.5 8 4 19.3
D16-B 25000 1000 10595 10.8 13 6129.7 13 4.5 2 3 10.1
D17-A 25000 999 10534 10.8 23 16939.8 23 4.5 6 27 38.0
D17-B 25000 999 10534 10.7 23 13742.4 23 4.6 6 35 27.0
D18-A 25000 944 9949 11.7 218 — ∗218 49.4 60 2 16.1
D18-B 25000 929 9816 12.0 223 — 223 5.7 10 0 15.8
D19-A 25000 897 9532 12.4 306 — 306 11.6 20 42 49.3
D19-B 25000 862 9131 13.1 310 — 310 11.4 28 2 105.5
D20-A 25000 488 2511 37.3 529 — 536 0.7 0 0 48.3
D20-B 25000 307 1383 32.9 530 — 537 0.3 2 0 122.1
D-AVG 8 312.5705.2 3 793.7 17.4 650.4 — 650.9 4.6 12.3 5.4 23.8
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6.1 Summarizing Results onK,P,C and DGroups

In Table 3 we summarize experimental results of the branch-and-cut algorithm without running the reduction

procedures proposed in Section 3. We represent the following values for each groupK,P,C and D: for each

instance where the LR algorithm proved optimality, and whosetILP > 0.2, we calculate thespeed-up factor

tLR/tILP . We then present the average (AVG), minimum (MIN) and maximum (MAX) value of this factor per

group. We also count the number of instances where we proved optimality for values that were not guaranteed to

be optimal by LR, and also the number of instances where optimal solution were not known before. The last two

columns show the number of instances for which our ILP approach needed not more than 0.2 seconds to solve

them and the total number of instances per group, respectively.

If we assume the conservative hardware speed-up factor of 20, the results of Table 3 show that:

– our algorithm is on average about 30 times slower for the instances of groupK. However, all of them could be

solved to optimality by both LR and our algorithm within a short running time (within 1000 seconds, in the

worst case).

– on the remaining instances that could be solved to optimality by the LR algorithm, our new approach is

significantly faster, and the average running time speed-up factor lies between 11 and 156.

– our new approach is able to solve all instances from groupsK,P,C andD to optimality within a very short

time, even if preprocessing (used also by Lucena and Resende [22]) is turned off.

Table 3.Comparison of running-time speed-up factors over all instances of a group: average, minimal and maximal factors for
each group are given.

tLR/(20 · tnoprep) new status of optimalityGroup
AVG MIN MAX proven new value tnoprep ≤ 0.2 # of inst.

K 0.1 0.03 0.2 - - 7 23
P 11.9 3.3 28.7 - - 6 11
C 116.9 0.1 1961.6 3 1 11 40
D 155.7 0.2 3498.6 5 7 12 40

6.2 The Advantage of Preprocessing for the Branch-and-Cut Algorithm

The preprocessing techniques still play an important role in solving larger instances to optimality. This can be seen

in Table 4 where the results of our new approach on the setE of benchmark instances with and without prepro-

cessing are compared. As before, the instance name, the number of edges of the original graph and the size of the
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instance after preprocessing as well as the preprocessing CPU time are listed. For these more challenging instances

both variants of the algorithm are terminated by setting thecplexTimeLimit parameter to 2 000 seconds. The

results indicate the advantage of preprocessing when the size of the LPs increases. The results document that pre-

processing can reduce the number of vertices and edges of the original graph by about 30%, respectively, 50%,

on average. For 5 out of 40 instances the algorithm did not find the optimal solution within the given time limit

when preprocessing was turned off. Owing to Gomory cuts, the instances of this group are also solved without

branching.

6.3 Tuning the Separation Strategy

In our default implementation we used nested cuts and back-cuts. The parameterEPS was set to0.0, which means

that we did not calculate the smallest cardinality cuts. Our computational experiments have shown that the usage of

back-cuts is crucial for our implementation. When we omitted the back-cuts, some of the larger instances (even of

groupsCandD) could not be solved to proven optimality - the algorithm terminated because of excessive memory

consumption.

The role of the parameterEPS within the separation is studied in Table 5 where we show CPU times in seconds

averaged over each group of instances. All the runs were limited to 1 000 seconds (except for groupE, where we

set the limit to 2 000). As the first two columns in Table 5 document, the usage of minimum cardinality cuts within

the separation plays the most important role for solving the instances in theK group. On the other hand, when

solving the instances in theC, DandE groups, computing the smallest cardinality cuts seems to be too expensive,

i.e., there is a trade-off between the time needed to solve the maximum-flow problem and the time for solving a

single LP-relaxation. Figures 4(a) and (b) depict the running time performance of the branch-and-cut algorithm

with and without smallest cardinality cuts for the largest 24 instances of groupsD andE, respectively. Although

there are some instances where the usage of smallest cardinality cuts may reduce the total running time, the overall

performance is getting worse. For two largest groups,DandE, the usage of smallest cardinality cuts increases the

running time by more than a factor of two.

Table 5 also documents the crucial role of using inequalities (11) within the initialization procedure. These

inequalities say that each edge can only be used in one direction in any feasible solution (see Section 5.1) and

only if one of its incident vertices is in the solution. The last two columns represent results obtained by omitting

inequalities (11) from the initialization.

These inequalities that forbid subtours of size two play the most important role in our implementation. By

separating these inequalities instead of inserting them in the initialization phase already, the algorithm is not able

to solve many of the instances within a given time limit. This negative effect can not be compensated by the –
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Table 4.Results obtained on the instances derived from Steiner seriesE.

Orig. Preprocessing With preprocessing Without preprocessing
Instance |E| |V ′| |E′| tprep [s] OPT t [s] # Cuts # G. Cuts t [s] # Cuts # G. Cuts

E01-A 3125 651 1246 21.5 13 0.1 0 0 0.5 0 0
E01-B 3125 655 1250 21.8 109 0.9 10 21 1.6 6 9
E02-A 3125 694 1304 20.7 30 0.1 0 0 0.5 0 0
E02-B 3125 697 1307 20.7 170 0.4 4 4 1.6 6 5
E03-A 3125 813 1414 29.4 2231 5.3 6 18 25.7 26 5
E03-B 3125 962 1572 30.9 3806 4.0 6 0 16.6 14 6
E04-A 3125 829 1425 24.9 3151 14.3 8 2 288.9 18 12
E04-B 3125 980 1588 26.2 4888 7.1 8 0 20.2 6 0
E05-A 3125 893 1502 36.9 5657 41.6 14 2 — — —
E05-B 3125 1029 1644 45.0 7998 16.6 2 0 133.8 16 0
E06-A 5000 1821 4283 37.9 19 0.5 0 0 0.7 0 0
E06-B 5000 1821 4283 37.6 70 1.4 2 5 3.6 4 11
E07-A 5000 1863 4339 39.3 40 0.5 0 0 0.7 0 0
E07-B 5000 1865 4341 39.4 136 2.6 6 15 3.8 4 12
E08-A 5000 1902 4379 40.1 1878 56.5 10 19 79.2 10 8
E08-B 5000 1911 4387 50.4 2555 10.5 14 2 22.4 22 2
E09-A 5000 1909 4388 50.5 2787 60.2 10 5 587.5 20 3
E09-B 5000 1918 4397 54.7 3541 14.7 6 2 23.8 10 3
E10-A 5000 1716 4181 60.6 4586221.8 96 2 538.7 12 0
E10-B 5000 1594 4045 84.6 5502 27.7 10 0 351.0 145 2
E11-A 12500 2491 12063 145.1 21 2.6 0 0 5.8 0 0
E11-B 12500 2491 12063 146.2 34 8.1 2 8 8.8 2 16
E12-A 12500 2490 12090 82.5 49 4.2 2 4 2.1 0 0
E12-B 12500 2490 12090 85.5 67 14.7 22 21 22.9 32 24
E13-A 12500 2430 11949 148.2 1169 24.6 12 3 97.6 20 2
E13-B 12500 2407 11915 146.7 1269 30.1 14 7 27.3 10 1
E14-A 12500 2366 11872 144.2 1579420.3 200 0 71.2 32 1
E14-B 12500 2311 11737 145.7 1716305.9 166 6 139.8 160 1
E15-A 12500 2044 10845 207.8 2610276.4 150 0 313.0 54 1
E15-B 12500 1864 10264 234.3 2767342.4 136 4 694.1 112 5
E16-A 62500 2500 29332 82.2 15 28.4 8 17 80.2 16 27
E16-B 62500 2500 29332 81.9 15 30.6 8 23 103.3 18 22
E17-A 62500 2500 29090 81.6 25 80.7 20 19 145.9 26 27
E17-B 62500 2500 29090 81.8 25 31.8 10 18 244.3 44 23
E18-A 62500 2378 28454 85.7 555 725.6 170 0 — — —
E18-B 62500 2347 28269 86.9 564 600.0 143 0 — — —
E19-A 62500 2156 25011 92.2 747 234.9 96 5 — — —
E19-B 62500 2085 23641 94.0 758 134.7 70 41145.9 84 7
E20-A 62500 1525 12770 107.3 1331 21.6 16 11232.2 48 3
E20-B 62500 861 3881 231.5 1342 1.1 2 0 — — —
E-AVG 20 781.31 781.5 10 325.8 82.11 645.6 95.1 36.5 5.9 — — —
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Fig. 4. Running time comparison of separation with and without smallest cardinality cuts,EPS = 0.0001 andEPS = 0.0,
respectively. The largest 24 instances of the groupD (a) andE (b) are shown: fromD09-A to D20-B , and fromE09-A to
E20-B , respectively. The total running time of the branch-and-cut algorithm (without preprocessing time) is shown.
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Table 5. Comparison of average CPU times over all instances of a group for separation with or without smallest cardinality
cuts (EPS = 10−4 or EPS = 0, respectively) and for initialization with or without constraints (11). Preprocessing times are
omitted.

Init. with ineq. (11) Init. without ineq. (11)Group
EPS = 0 EPS = 10−4 EPS = 0 EPS = 10−4

K 48.8 7.6 88.8 2.9
P 0.2 0.3 21.4 2.2
C 0.8 0.9 — 0.8
D 4.5 9.6 — —
E 95.1 199.1 — —

sometimes considerable – improvement in running time caused by the separation with smallest cardinality cuts (in

particular forK andP groups).

The difficulties with subtours of size two usually arise when a customer vertexi is connected to a non-customer

vertexj by an edge with costcij < pi. In this case, the initial LP-solution contains a directed arborescence rooted

at j (note thatyj = 0, i.e., the in-degree ofj is zero), with an arc(j, i) of negative cost. By adding the inequalities

statingxij ≤ yi, ∀i ∈ VSA\{r}, instead of (11), solutions of the initial LP contain subtours of size two on such pairs

(i, j) of vertices. Figure 5 illustrates examples of fractional LP-solutions immediately after initialization, i.e. before

any separation is called. Similarly, the problems appear also if two customer verticesi andj are connected by an

edge whosecij < min{pi, pj}.

Although the number of these inequalities is linear in number of edgesO(|ASA|), they usually do not slow down

the performance of solving a single LP-relaxation. On the other side, they may save a huge number of separation

calls.

6.4 Testing Real-World Instances

In this section we consider a set of 35 instances based on real-world examples that have been used in the design

of fiber optic networks for some German cities [2]6. The instances are generated according to GIS data bases:

connections and positions of vertices are based on real infrastructures, but, for reasons of data protection, the

choice of customers and their prizes are slightly changed. Our instances are divided in two groups:Cologne1

andCologne2 . Basic properties of these instances, like the number of vertices|V |, the number of edges|E| and

the number of customers|R| are shown in Table 6. For each of the two groups there are 5 subgroups, each of which

contains a number of equal-sized instances. The number of instances of each subgroup is also shown in the table.

6 Instances are available athttp://www.ads.tuwien.ac.at/pcst .
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Fig. 5. The advantage of explicit initialization with constraints (11) can be seen when comparing LP-solutions obtained imme-
diately after initialization: (a) Given instance with edge costs and vertex prizes; (b) LP-solution when we omit inequalities (11).
LP-values of edges and vertices are shown,c(LP ) = 150; (c) LP-solution ifxij ≤ yi, ∀i ∈ VSA\{r} are used in initialization.
c(LP ) = 300; (d) LP-solution when (11) are added explicitly in the initialization.c(LP ) = 1650, the solution is already
optimal, no separation needed.
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These instances contain an existing subnetwork that needs to be augmented to serve new customers. This

subnetwork can be shrunk into a single vertex, by replacing multiple edges by cheapest connections and discarding

self-loops. After this transformation, we only need to consider the rooted PCST problem, with the shrunk vertex

as a root. Two examples of these instances are shown in Figure 6.
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Fig. 6. Examples of two instances fromCologne1 group. Optimal solution of (a)i02M2 ; (b) i04M3 . Shadowed vertices
represent customers, while bold lines belong to the existing network. Grid lines in the background determine customers’ prizes.

Since the instances are typically very dense (i.e. they are almost complete graphs), it does not pay to apply

degree-n test. Our experiments have shown that because the number of customers is typically very small, the

minimum adjacency test does not reduce the instances at all. Hence, we applied only the least-cost test, and, as

shown in column|E′| of Table 6, the savings obtained in that way are greater than 90%.
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Table 6.Properties of two groups of real-world instances,Cologne1 andCologne2 .

Cologne1 Cologne2
Group |V | |E| |R| |E′| # of inst. Group |V | |E| |R| |E′| # of inst.

i01 768 69077 10 6332 3i01 1819 213973 9 16743 4
i02 769 69140 11 6343 3i02 1820 213915 7 16740 4
i03 771 69100 13 6343 3i03 1825 214095 12 16762 4
i04 761 68907 3 6293 3i04 1817 213859 4 16719 4
i05 761 68934 3 6296 3i05 1826 214013 13 16794 4

Table 7 shows the performance of our ILP approach on the real-world instances. We compare two approaches

based on the initialization of the LP with and without (11), i.e. generalized subtour elimination constraints of size

two. The results document that all instances of theCologne1 group could be solved to optimality in less than

40 minutes. For instances of theCologne2 group running times of up to 12 hours may occur. However, as it is

usually the case for branch and cut algorithms, the optimal solution was found much earlier, usually in less than 2

hours. Finally, we also provide optimal values in theOPT columns.

While constraints (11) were shown to be highly advantageous for the previous instances from the literature,

Table 7 documents that for these specific real-world instances there is a trade-off between the size of the underlying

LP and the number of separation calls that can be saved. The reason is the very small percentage of customer

vertices, which is less than 2% and 1%, for theCologne1 andCologne2 groups, respectively. The number of

subtours of size two usually depends on the number of negative edges which directly corresponds to the number of

customer vertices. On the other side, using (11), we insert2 · |ASA| inequalities in the initialization phase, which

represents a disadvantage for these very large instances with only few customer vertices. All*M1 instances of the

Cologne2 group could be solved to optimality in less than 30 seconds, and they always represent single-vertex

solutions, thus we omit them from Table 7.

We can conclude that our ILP approach shows that it can be used within real-world applications to solve

instances that appear in practice. The approach is able to solve very large graphs (with up to 1 825 vertices and

214 095 edges) to proven optimality within less than 12 hours, in the worst case. Since we are dealing with off-line

network design problems, such a running time is still reasonable.

7 Conclusions

The prize-collecting Steiner tree problem (PCST) formalizes in an intuitive way the planning problem encountered

in the design of utility networks such as district heating and fiber optic networks. Selecting the most profitable cus-

tomers and connecting them by a least-cost network immediately leads to the problem of computing a Steiner tree,
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Table 7.Results on two groups of real-world instances. We compare two ILP approaches, where the initialization is done with
and without constraints (11) (faster running times are shown in boldface). All instances are solved to optimality.

Cologne1 Cologne2
Without (11) With (11) Without (11) With (11)Instance

t [s] t [s] OPT
Instance

t [s] t [s] OPT

i01M1 0.5 2.9 109271.5 i01M2 2.1 5.1 355467.7
i01M2 252.3 487.8 315925.3 i01M3 31025.7 27331.9 628833.6
i01M3 1371.4 1195.8 355625.4 i01M4 45002.1 40927.5 773398.3
i02M1 0.5 2.9 104065.8 i02M2 107.0 110.7 288946.8
i02M2 431.8 598.2 352538.8 i02M3 9034.4 14173.6 419184.2
i02M3 2353.6 1810.9 454365.9 i02M4 13322.0 19124.3 430034.3
i03M1 0.5 3.1 139749.4 i03M2 907.1 855.9 459918.9
i03M2 362.6 326.8 407834.2 i03M3 37416.1 42150.0 643062.0
i03M3 1140.2 755.9 456125.5 i03M4 42752.0 42237.7 677733.1
i04M1 0.5 2.8 25282.6 i04M2 2.5 5.4 161700.5
i04M2 20.0 22.6 89920.8 i04M3 5095.1 13259.2 245287.2
i04M3 42.1 77.7 97148.8 i04M4 4298.1 8700.1 245287.2
i05M1 0.5 2.8 26717.2 i05M2 2107.0 2568.7 571031.4
i05M2 94.7 122.9 100269.6 i05M3 11852.9 19655.4 672403.1
i05M3 443.8 399.4 110351.2 i05M4 16203.8 16343.5 713973.6

where the terminals are not fixed but can be chosen arbitrarily from a given set of vertices each one contributing a

certain profit.

The aim of this paper is the construction of an algorithmic framework to solve large and difficult instances of

PCST to optimality within reasonable running time. The method of choice is a branch-and-cut approach based on

an ILP formulation depending on connectivity inequalities which can be written as cuts between an artificial root

and every selected customer vertex.

While the choice of the ILP model is essential for the success of our method, it should also be pointed out

that solving the basic ILP model by a default algorithm is by no means sufficient to reach reasonable results.

Indeed, our experiments show that a satisfying performance can be achieved only by appropriate initialization and

strengthening of the original ILP formulation and in particular by a careful analysis of the separation procedure.

Combining all these efforts, we manage to solve to optimality (even without the usual preprocessing) all in-

stances from the literature in a few seconds thereby deriving new optimal solution values and new certificates of

optimality for a number of problems previously attacked.

For a number of new large instances constructed from Steiner tree instances, we also derive optimal solutions

within reasonable running time. For these instances with more than 60 000 edges, our advanced preprocessing

procedure proves to be an indispensable tool for finding the optimum without branching. Finally, we also solve to

optimality a number of large real-world instances arising in the design of urban fiber optic networks.
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26. R. T. Wong. A dual ascent based approach for the Steiner tree problem in directed graphs.Mathematical Programming,

28:271–287, 1984.

25


