
A note on unsatisfiable k-CNF formulas with few occurrences per

variable

Shlomo Hoory∗

Department of Computer Science
University of British Columbia

Vancouver, Canada
shlomoh@cs.ubc.ca

Stefan Szeider

Department of Computer Science
University of Durham
Durham, England, UK

stefan.szeider@durham.ac.uk

January 26, 2006

Abstract

The (k, s)-SAT problem is the satisfiability problem restricted to instances where each clause
has exactly k literals and every variable occurs at most s times. It is known that there exists a
function f such that for s ≤ f(k) all (k, s)-SAT instances are satisfiable, but (k, f(k) + 1)-SAT
is already NP-complete (k ≥ 3). We prove that f(k) = O(2k · log k/k), improving upon the best
know upper bound O(2k/kα), where α = log

3
4− 1 ≈ 0.26. The new upper bound is tight up

to a log k factor with the best known lower bound Ω(2k/k).

1 Introduction

We consider CNF formulas represented as sets of clauses, where each clause is a set of literals. A
literal is either a variable or a negated variable. Let k, s be fixed positive integers. We denote by
(k, s)-CNF the set of formulas F where every clause of F has exactly k distinct literals and each
variable occurs in at most s clauses of F . We denote the set of satisfiable formulas by SAT.

It was observed by Tovey [7] that all formulas in (3, 3)-CNF are satisfiable, and that the satisfiability
problem restricted to (3, 4)-CNF is already NP-complete. This was generalized in Kratochv́ıl, et
al. [4] where it is shown that for every k ≥ 3 there is some integer s = f(k) such that

1. all formulas in (k, s)-CNF are satisfiable, and

2. the satisfiability problem restricted to formulas in (k, s + 1)-CNF is already NP-complete.

The function f can be defined for k ≥ 1 by the equation

f(k) := max{ s : (k, s)-CNF ⊆ SAT }.

∗Research is supported in part by an NSERC grant and a PIMS postdoctoral fellowship.

1

Exact values of f(k) are only known for k ≤ 4. It is easy to verify that f(1) = 1 and f(2) = 2. It
follows from [7] that f(3) = 3 and f(k) ≥ k in general. Also, by [6], we know that f(4) = 4.

Upper and lower bounds for f(k), k = 5, . . . , 9, have been obtained in [2, 6, 1, 3]. For larger values
of k, the best known lower bound, a consequence of Lovász Local Lemma, is due to Kratochv́ıl et
al. [4]:

f(k) ≥

⌊

2k

ek

⌋

. (1)

Prior to this work, the best known upper bound has been by Savický and Sgall [5]. They constructed
a family of unsatisfiable k-CNF formulas with 2k clauses and small number of occurrences per
variable. Their construction yields:

f(k) = O

(

2k

kα

)

, (2)

where α = log3 4− 1 ≈ 0.26.

In this paper we asymptotically improve upon (2) and show

f(k) = O

(

2k log k

k

)

. (3)

Our result reduces the gap between the upper and lower bounds to a log k factor. It turns out that
the construction yielding the upper bound (3) can be generalized. We present a class of k-CNF
formulas that is amenable to an exhaustive search using dynamic programming. This enables us to
calculate upper bounds on f(k) for values up to k = 20000 improving upon the bounds provided
by the constructions underlying (2) and (3).

The remainder of the paper is organized as follows. In Section 2 we start with a simple construction
that already provides an O(2k log2 k/k) upper bound on f(k). In Section 3 we refine our construc-
tion and obtain the upper bound (3). In the last section we describe the more general construction
and the results obtained using computerized search.

2 The first construction

We denote by K(x1, . . . , xk) the complete unsatisfiable k-CNF formula on the variables x1, . . . , xk.
This formula consists of all 2k possible clauses. Let K−(x1, . . . , xk) = K(x1, . . . , xk)\{{x1, . . . , xk}}.
The only satisfying assignment for K−(x1, . . . , xk) is the all-False assignment. Also, for two CNF
formulas F1 and F2 on disjoint sets of variables, their product F1 × F2 is defined as {c1 ∪ c2 : c1 ∈
F1 and c2 ∈ F2}. Note that the satisfying assignments for F1 × F2 are assignments that satisfy F1

or F2. In what follows, log and ln denote logarithms to the base of 2 and e, respectively.

Lemma 1. f(k) < 2k ·min1≤l≤k

(

(1− 2−l)bk/lc + 2−l
)

.

Proof. We prove the lemma by constructing, for every l, an unsatisfiable (k, s)-CNF formula F
where s = 2k · ((1− 2−l)bk/lc + 2−l). Let k, l be two integers such that 1 ≤ l ≤ k, and let u = bk/lc

2

and v = k − l · u. Define the formula F as the union F = F0 ∪ F1 ∪ . . . ∪ Fu, where:

F0 = K(z1, . . . , zv)×
u

∏

i=1

K−(x
(i)
1 , . . . , x

(i)
l),

Fi = K(y
(i)
1 , . . . , y

(i)
k−l)× {{x

(i)
1 , . . . , x

(i)
l }} for i = 1, . . . , u.

Therefore, F is a k-CNF formula with n variables and m clauses, where

n = k + u · (k − l) ≤ k2/l, (4)

m = 2v · (2l − 1)u + u · 2k−l = 2k ·
(

(1− 2−l)bk/lc + bk/lc · 2−l
)

. (5)

To see that F is unsatisfiable observe that any assignment satisfying F0 must set all the variables

x
(i)
1 , . . . , x

(i)
l to False for some i. On the other hand, any satisfying assignment to Fi must set at

least one of the variables x
(i)
1 , . . . , x

(i)
l to True.

To bound the number of occurrences of a variable note that the variables zj , y
(i)
j , and x

(i)
j occur

|F0|, |Fi|, and |F0| + |Fi| times, respectively. Since |F0| = 2v · (2l − 1)u = 2k · (1 − 2−l)bk/lc and
|Fi| = 2k−l, we get the required result.

For k ≥ 4, let l be the largest integer satisfying 2l ≤ k · log e/ log2 k. If follows that

(1− 2−l)bk/lc ≤ exp(−2−l · bk/lc) ≤ exp

(

−
log2 k

k log e
· (

k

l
− 1)

)

≤ e · exp

(

−
log2 k

l log e

)

≤ e · exp

(

−
log k

log e

)

=
e

k
,

where the last two inequalities follow from the fact that for k ≥ 4 we have log2 k < k log e and
l ≤ log k. Therefore, by Lemma 1 there exists an unsatisfiable k-CNF formula F where the number
of occurrences of variables is bounded by

2k ·

(

e

k
+

2 log2 k

k log e

)

.

It may be of interest that by (4) and (5), the number of clauses in F is O(2k · log k) and the number
of variables is O(k2/ log k). Thus, in comparison to the construction in [5], we pay for the better
bound on k by a O(log k) factor in the number of clauses.

Corollary 2. f(k) = O(2k · log2 k/k).

3 A better upper bound

To simplify the subsequent discussion, let us fix a value of k. We will only be concerned with CNF
formulas F that have clauses of size at most k. We call a clause of size less that k an incomplete

clause and denote F ′ = {c ∈ F : |c| < k}. A clause of size k is a complete clause, and we denote
F ′′ = {c ∈ F : |c| = k}.

3

Lemma 3. f(k) < min{2k−l+1 : l ∈ {0, . . . , k} and l · 2l ≤ log e · (k − 2l)}.

Proof. Let l be in {0, . . . , k}, satisfying l · 2l ≤ log e · (k − 2l), and set s = 2k−l+1. We will
define a sequence of CNF formulas, F0, . . . , Fl. We require that (i) Fj is unsatisfiable, (ii) F ′

j is a

(k − l + j)-CNF formula, (iii) |F ′
j | ≤ 2k−l, and that (iv) the maximal number of occurrences of a

variable in Fj is bounded by s. It follows that Fl is an unsatisfiable (k, s)-CNF formula, implying
the claimed upper bound.

Set dj = k − l + j and uj = b(k − l + j)/(l − j + 1)c. We proceed by induction on j. For j = 0, we
define F0 = K(x1, . . . , xk−l). It can be easily verified that F0 satisfies the above four requirements.
For j > 0, assume a formula Fj−1 on the variables y1, . . . , yn, satisfying the requirements. We
define the formula Fj =

⋃uj

i=0 Fj,i as follows:

Fj,0 = K(z1, . . . , zdj−uj ·(l−j+1))×

uj
∏

i=1

K−(x
(i)
1 , . . . , x

(i)
l−j+1), (6)

Fj,i = F ′
j−1(y

(i)
1 , . . . , y(i)

n)× {{x
(i)
1 , . . . , x

(i)
l−j+1}} ∪ F ′′

j−1(y
(i)
1 , . . . , y(i)

n) for i = 1, . . . , uj . (7)

It is easy to verify that F ′
j is a (k− l+j)-CNF formula. To see that Fj is unsatisfiable, observe that

any assignment satisfying Fj,0, must set all the variables x
(i)
1 , . . . , x

(i)
l−j+1 to False for some i. On

the other hand, for any satisfying assignment to Fj,i, at least one of the variables x
(i)
1 , . . . , x

(i)
l−j+1

must be set to True.

Let us consider the number of occurrences of a variable in Fj . Consider first the y-variables. These
variables occur only in the uj duplicates of Fj−1 and therefore occur the same number of times as
in Fj−1, which is bounded by s by induction. The number of occurrences of an x- or z-variable is
|F ′

j−1|+ |Fj,0| or |Fj,0| respectively. By induction, |F ′
j−1| ≤ 2k−l. Also,

|F ′
j | = |Fj,0| = 2dj−uj ·(l−j+1) · (2l−j+1 − 1)uj = 2dj · (1− 2−l+j−1)uj

≤ 2k−l+j · exp(−2−l+j−1 · uj) ≤ 2k−l+j · exp(−2−l+j−1 · (k − 2l)/l).

Taking logarithms, we get

log |Fj,0| ≤ k − l + j − log e · 2−l+j−1 · (k − 2l)/l

≤ k − l + j − 2j−1 ≤ k − l.

Therefore, Fj satisfies the induction hypothesis. For j = l this implies that Fl is an unsatisfiable
(k, s)-CNF formula for s = 2k−l+1, as long as

l · 2l ≤ log e · (k − 2l). (8)

Let l be the largest integer satisfying 2l ≤ log e · k/(2 log k). Then (8) holds for k ≥ 2 and we get
the following:

Corollary 4. f(k) < 2k · 8 ln k/k for k ≥ 2.

4

4 Further generalization and experimental results

One way to derive better upper bounds on f(k) is to generalize the constructions of Sections 2 and
3. To this end, we first define a special way to compose CNF formulas capturing the essence of
these constructions.

Definition 5. Let G1, G2 be unsatisfiable CNF formulas that have clauses of size at most k such

that G′
i is a ki-CNF formula for i = 1, 2. Also, assume that k1 ≤ k2 < k. Then the formula G1 ◦G2

is defined as:




⋃

c∈K−(x1,...,xk−k2
)

G′
1,c × c ∪G′′

1,c



 ∪G′
2 × {{x1, . . . , xk−k2

}} ∪G′′
2,

where the formulas G1,c are copies of G1 on distinct sets of variables. We say that G1 ◦ G2 is

obtained by applying ◦G2 to G1, and we let G1 ◦q G2 denote the formula obtained by applying ◦G2

to G1 q times.

It is not difficult to verify the following:

Lemma 6. Let G1, G2 be formulas as above, where the number of occurrences of each variable

is bounded by some number s satisfying s ≥ (2k−k2 − 1) · |G′
1| + |G

′
2|. Then G = G1 ◦ G2 is

an unsatisfiable CNF formula where each variable occurs at most s times. Furthermore, G ′ is a

(k1 + k − k2)-CNF formula, and |G′| = (2k−k2 − 1) · |G′
1|.

Given k, s, we ask whether one can obtain a k-CNF formula using the following derivation rules.
We start with the unsatisfiable formula {∅} as an axiom (this formula consists of one empty clause).
For a set of derivable formulas, one can apply one of the following rules:

1. If G is a derived formula such that s ≥ 2 · |G′|, then we can derive G′
x×{{x}}∪G′

x×{{x}}∪
G′′

x ∪G′′
x, where x is a new variable and Gx, Gx are two disjoint copies of G.

2. If G1, G2 are two derived formulas satisfying the conditions of Lemma 6, then we can derive
the formula G1 ◦G2.

One can sometimes replace G1◦G2 in the second rule by a more compact formula G1◦
′G2 that avoids

duplicating G1. Namely, the formula G′
1 ×K

−(x1, . . . , xk−k2
) ∪G′′

1 ∪G′
2 × {{x1, . . . , xk−k2

}} ∪G′′
2 .

Although this can never reduce the number of occurrences of variables, this modification reduces
the number of clauses and variables. The constructions presented in Sections 2 and 3 are special
cases of the above derivation rule. Indeed, K(x1, . . . , xv) can be obtained by applying the first rule
v times to {∅}. The formula of Section 2 is just

F = K(z1, . . . , zv) ◦
′
u K(y1, . . . , yk−l).

The formula of Section 3 is inductively obtained by

F0 = K(z1, . . . , zk−l),

Fj = K(z1, . . . , zdj−uj ·(l−j+1)) ◦
′
uj

Fj−1 for j = 1, . . . , l.

5

Since any k-CNF formula obtained using the above procedure is an unsatisfiable (k, s)-CNF, one
can define f2(k) as the maximal value of s such that no k-CNF formula can be obtained using the
above procedure (clearly f(k) ≤ f2(k)). It turns out that the function f2(k) is appealing from an
algorithmic point of view. Given a value for s, one can check if f2(k) is larger than s using a simple
dynamic programming algorithm. The algorithm keeps an array a0, . . . , ak, where eventually al

contains the minimal size of F ′ for a derivable formula F such that F ′ is an l-CNF formula.

Initialize a0 = 1, a1 = · · · = ak =∞
Repeat until no more changes are made to a1, . . . , ak

For l = 0, . . . , k − 1
If s ≥ 2l then al+1 ← min(2al, al+1)

For k2 = 0, . . . , k − 1
For k1 = 0, . . . , k2

If s ≥ (2k−k2 − 1) · ak1
+ ak2

then ak1+k−k2
← min((2k−k2 − 1) · ak1

, ak1+k−k2
)

If ak <∞ then output “f2(k) ≤ s” else output “f2(k) > s”

This algorithm works well in practice and we were able to calculate f2(k) for values up to k = 20000
to get the results depicted by the graph in Figure 1.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

log
2
(k)

(a)

(b)

(c)

(d)

Figure 1: The bounds on f(k) · k/2k. (a) Lower bound of Kratochv́ıl et al. [4], 1/e. (b) Upper
bound (3) obtained in Section 3 of the present paper, 8 ln k. (c) Upper bound f2(k)·k/2k , calculated
by a computer program. (d) The line 0.5 log(k) + 0.23.

The computed numerical values of f2(k) seem to indicate that

f2(k) · k/2k = 0.5 log(k) + o(log(k)) (9)

which is better than our upper bound by a constant factor of about 11. If (9) indeed holds, then
a better analysis of the function f2 may improve our upper bound by a constant factor. However,
such an approach cannot improve upon the logarithmic gap left between the known upper and
lower bounds on f(k).

6

References

[1] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness and satisfiability of
bounded occurrence instances of SAT. Technical Report TR03-022, Electronic Colloquium on

Computational Complexity (ECCC), 2003.

[2] O. Dubois. On the r, s-SAT satisfiability problem and a conjecture of Tovey. Discr. Appl.

Math., 26(1):51–60, 1990.

[3] S. Hoory and S. Szeider. Computing unsatisfiable k-SAT instances with few occurrences per
variable. Theoret. Comput. Sci., 337(1-3):347–359, 2005.

[4] J. Kratochv́ıl, P. Savický, and Z. Tuza. One more occurrence of variables make satisfiability
jump from trivial to NP-complete. Acta Informatica, 30:397–403, 1993.

[5] P. Savický and J. Sgall. DNF tautologies with a limited number of occurrences of every variable.
Theoret. Comput. Sci., 238(1-2):495–498, 2000.

[6] J. Stř́ıbrná. Between combinatorics and formal logic. Master’s thesis, Charles University,
Prague, 1994.

[7] C. A. Tovey. A simplified NP-complete satisfiability problem. Discr. Appl. Math., 8(1):85–89,
1984.

7

