A note on unsatisfiable k-CNF formulas with few occurrences per variable

Shlomo Hoory*
Department of Computer Science
University of British Columbia
Vancouver, Canada
shlomoh@cs.ubc.ca

Stefan Szeider
Department of Computer Science
University of Durham
Durham, England, UK
stefan.szeider@durham.ac.uk

January 26, 2006

Abstract

The (k,s)-SAT problem is the satisfiability problem restricted to instances where each clause has exactly k literals and every variable occurs at most s times. It is known that there exists a function f such that for $s \leq f(k)$ all (k,s)-SAT instances are satisfiable, but $(k,f(k)+1)$-SAT is already NP-complete ($k \geq 3$). We prove that $f(k) = O(2^k \cdot \log k/k)$, improving upon the best known upper bound $O(2^k/k)$, where $\alpha = \log_{3}4 - 1 \approx 0.26$. The new upper bound is tight up to a $\log k$ factor with the best known lower bound $\Omega(2^k/k)$.

1 Introduction

We consider CNF formulas represented as sets of clauses, where each clause is a set of literals. A literal is either a variable or a negated variable. Let k, s be fixed positive integers. We denote by (k,s)-CNF the set of formulas F where every clause of F has exactly k distinct literals and each variable occurs in at most s clauses of F. We denote the set of satisfiable formulas by SAT.

It was observed by Tovey [7] that all formulas in $(3,3)$-CNF are satisfiable, and that the satisfiability problem restricted to $(3,4)$-CNF is already NP-complete. This was generalized in Kratochvıl, et al. [4] where it is shown that for every $k \geq 3$ there is some integer $s = f(k)$ such that

1. all formulas in (k,s)-CNF are satisfiable, and
2. the satisfiability problem restricted to formulas in $(k,s+1)$-CNF is already NP-complete.

The function f can be defined for $k \geq 1$ by the equation

$$f(k) := \max\{ s : (k,s)\text{-CNF} \subseteq \text{SAT} \}.$$

*Research is supported in part by an NSERC grant and a PIMS postdoctoral fellowship.
Exact values of $f(k)$ are only known for $k \leq 4$. It is easy to verify that $f(1) = 1$ and $f(2) = 2$. It follows from [7] that $f(3) = 3$ and $f(k) \geq k$ in general. Also, by [6], we know that $f(4) = 4$.

Upper and lower bounds for $f(k)$, $k = 5, \ldots, 9$, have been obtained in [2, 6, 1, 3]. For larger values of k, the best known lower bound, a consequence of Lovász Local Lemma, is due to Kratochvíl et al. [4]:

$$f(k) \geq \left\lfloor \frac{2^k}{ek} \right\rfloor. \quad (1)$$

Prior to this work, the best known upper bound has been by Savicky and Sgall [5]. They constructed a family of unsatisfiable k-CNF formulas with 2^k clauses and small number of occurrences per variable. Their construction yields:

$$f(k) = O\left(\frac{2^k}{k^\alpha}\right), \quad (2)$$

where $\alpha = \log_3 4 - 1 \approx 0.26$.

In this paper we asymptotically improve upon (2) and show

$$f(k) = O\left(\frac{2^k \log k}{k}\right). \quad (3)$$

Our result reduces the gap between the upper and lower bounds to a log k factor. It turns out that the construction yielding the upper bound (3) can be generalized. We present a class of k-CNF formulas that is amenable to an exhaustive search using dynamic programming. This enables us to calculate upper bounds on $f(k)$ for values up to $k = 20000$ improving upon the bounds provided by the constructions underlying (2) and (3).

The remainder of the paper is organized as follows. In Section 2 we start with a simple construction that already provides an $O(2^k \log^2 k/k)$ upper bound on $f(k)$. In Section 3 we refine our construction and obtain the upper bound (3). In the last section we describe the more general construction and the results obtained using computerized search.

2 The first construction

We denote by $\mathcal{K}(x_1, \ldots, x_k)$ the complete unsatisfiable k-CNF formula on the variables x_1, \ldots, x_k. This formula consists of all 2^k possible clauses. Let $\mathcal{K}^-(x_1, \ldots, x_k) = \mathcal{K}(x_1, \ldots, x_k) \setminus \{x_1, \ldots, x_k\}$. The only satisfying assignment for $\mathcal{K}^-(x_1, \ldots, x_k)$ is the all-False assignment. Also, for two CNF formulas F_1 and F_2 on disjoint sets of variables, their product $F_1 \times F_2$ is defined as $\{c_1 \cup c_2 : c_1 \in F_1 \text{ and } c_2 \in F_2\}$. Note that the satisfying assignments for $F_1 \times F_2$ are assignments that satisfy F_1 or F_2. In what follows, log and ln denote logarithms to the base of 2 and e, respectively.

Lemma 1. $f(k) < 2^k \cdot \min_{1 \leq l \leq k} \left((1 - 2^{-l})^{k/l} + 2^{-l} \right)$.

Proof. We prove the lemma by constructing, for every l, an unsatisfiable (k, s)-CNF formula F where $s = 2^k \cdot ((1 - 2^{-l})^{k/l} + 2^{-l})$. Let k, l be two integers such that $1 \leq l \leq k$, and let $u = \lfloor k/l \rfloor$
and \(v = k - l \cdot u \). Define the formula \(F \) as the union \(\bigcup_{u} F_{u} \), where:

\[
F_{0} = \mathcal{K}(z_{1}, \ldots, z_{u}) \times \prod_{i=1}^{u} \mathcal{K}^{-}(x_{1}^{(i)}, \ldots, x_{l}^{(i)}),
\]

\[
F_{i} = \mathcal{K}(y_{1}^{(i)}, \ldots, y_{k-1}^{(i)}) \times \{ (x_{1}^{(i)}, \ldots, x_{l}^{(i)}) \} \quad \text{for } i = 1, \ldots, u.
\]

Therefore, \(F \) is a \(k \)-CNF formula with \(n \) variables and \(m \) clauses, where

\[
n = k + u \cdot (k - l) \leq k^{2}/l, \tag{4}
\]

\[
m = 2^{u} \cdot (2^{l} - 1)^{u} + u \cdot 2^{k-l} = 2^{k} \cdot (1 - 2^{-l})^{[k/l]} + [k/l] \cdot 2^{-l}. \tag{5}
\]

To see that \(F \) is unsatisfiable observe that any assignment satisfying \(F_{0} \) must set all the variables \(x_{1}^{(i)}, \ldots, x_{l}^{(i)} \) to False for some \(i \). On the other hand, any satisfying assignment to \(F_{i} \) must set at least one of the variables \(x_{1}^{(i)}, \ldots, x_{l}^{(i)} \) to True.

To bound the number of occurrences of a variable note that the variables \(z_{j}, y_{j}^{(i)}, \) and \(x_{j}^{(i)} \) occur \(|F_{0}|, |F_{i}|, \) and \(|F_{0}| + |F_{i}| \) times, respectively. Since \(|F_{0}| = 2^{u} \cdot (2^{l} - 1)^{u} = 2^{k} \cdot (1 - 2^{-l})^{[k/l]} \) and \(|F_{i}| = 2^{k-l} \), we get the required result. \(\square \)

For \(k \geq 4 \), let \(l \) be the largest integer satisfying \(2^{l} \leq k \cdot \log e / \log^{2} k \). If follows that

\[
(1 - 2^{-l})^{[k/l]} \leq \exp(-2^{-l} \cdot [k/l]) \leq \exp \left(-\frac{\log^{2} k}{k \log e} \cdot \left(\frac{k}{l} - 1 \right) \right)
\]

\[
\leq e \cdot \exp \left(-\frac{\log^{2} k}{l \log e} \right) \leq e \cdot \exp \left(-\frac{\log k}{\log e} \right) = \frac{e}{k},
\]

where the last two inequalities follow from the fact that for \(k \geq 4 \) we have \(\log^{2} k < k \log e \) and \(l \leq \log k \). Therefore, by Lemma 1 there exists an unsatisfiable \(k \)-CNF formula \(F' \) where the number of occurrences of variables is bounded by

\[
2^{k} \cdot \left(\frac{e}{k} + \frac{2 \log^{2} k}{k \log e} \right).
\]

It may be of interest that by (4) and (5), the number of clauses in \(F \) is \(O(2^{k} \cdot \log k) \) and the number of variables is \(O(k^{2} / \log k) \). Thus, in comparison to the construction in [5], we pay for the better bound on \(k \) by a \(O(\log k) \) factor in the number of clauses.

Corollary 2. \(f(k) = O(2^{k} \cdot \log^{2} k / k) \).

3 A better upper bound

To simplify the subsequent discussion, let us fix a value of \(k \). We will only be concerned with CNF formulas \(F \) that have clauses of size at most \(k \). We call a clause of size less that \(k \) an *incomplete* clause and denote \(F' = \{ c \in F : |c| < k \} \). A clause of size \(k \) is a *complete* clause, and we denote \(F'' = \{ c \in F : |c| = k \} \).
Lemma 3. \(f(k) < \min\{2^{k-l+1} : l \in \{0, \ldots, k\} \text{ and } l \cdot 2^l \leq \log e \cdot (k - 2l)\}. \)

Proof. Let \(l \) be in \(\{0, \ldots, k\} \), satisfying \(l \cdot 2^l \leq \log e \cdot (k - 2l) \), and set \(s = 2^{k-l+1} \). We will define a sequence of CNF formulas, \(F_0, \ldots, F_l \). We require that (i) \(F_j \) is unsatisfiable, (ii) \(F'_j \) is a \((k - l + j) \)-CNF formula, (iii) \(|F'_j| \leq 2^{k-l} \), and that (iv) the maximal number of occurrences of a variable in \(F_j \) is bounded by \(s \). It follows that \(F_l \) is an unsatisfiable \((k, s) \)-CNF formula, implying the claimed upper bound.

Set \(d_j = k - l + j \) and \(u_j = \lfloor (k - l + j)/(l - j + 1) \rfloor \). We proceed by induction on \(j \). For \(j = 0 \), we define \(F_0 = \mathcal{K}(x_1, \ldots, x_{k-1}) \). It can be easily verified that \(F_0 \) satisfies the above four requirements. For \(j > 0 \), assume a formula \(F_{j-1} \) on the variables \(y_1, \ldots, y_n \), satisfying the requirements. We define the formula \(F_j = \bigcup_{i=0}^{u_j} F_{j,i} \) as follows:

\[
F_{j,0} = \mathcal{K}(z_1, \ldots, z_{d_j-u_j}, -z_{l-j+1}) \times \prod_{i=1}^{u_j} \mathcal{K}^-(x_1^{(i)}, \ldots, x_{l-j+1}^{(i)}),
\]

\[
F_{j,i} = F'_{j-1}(y_1^{(i)}, \ldots, y_n^{(i)}) \times \{x_1^{(i)}, \ldots, x_{l-j+1}^{(i)}\} \cup F''_{j-1}(y_1^{(i)}, \ldots, y_n^{(i)}) \quad \text{for } i = 1, \ldots, u_j.
\]

It is easy to verify that \(F_j \) is a \((k - l + j) \)-CNF formula. To see that \(F_j \) is unsatisfiable, observe that any assignment satisfying \(F_{j,0} \), must set all the variables \(x_1^{(i)}, \ldots, x_{l-j+1}^{(i)} \) to False for some \(i \). On the other hand, for any satisfying assignment to \(F_{j,i} \), at least one of the variables \(x_1^{(i)}, \ldots, x_{l-j+1}^{(i)} \) must be set to True.

Let us consider the number of occurrences of a variable in \(F_j \). Consider first the \(y \)-variables. These variables occur only in the \(u_j \) duplicates of \(F_{j-1} \) and therefore occur the same number of times as in \(F_{j-1} \), which is bounded by \(s \) by induction. The number of occurrences of any \(x \)- or \(z \)-variable is \(|F_{j-1}| + |F_{j,0}| \) or \(|F_{j,0}| \) respectively. By induction, \(|F'_{j-1}| \leq 2^{k-l} \). Also,

\[
|F'_j| = |F_{j,0}| = 2^{d_j-u_j}(l-j+1) \cdot (2^{l-j+1} - 1)^{u_j} = 2^{d_j} \cdot (1 - 2^{-l+j-1})^{u_j} \\
\leq 2^{k-l+j} \cdot \exp(-2^{-l+j-1} \cdot u_j) \leq 2^{k-l+j} \cdot \exp(-2^{-l+j-1} \cdot (k - 2l)/l).
\]

Taking logarithms, we get

\[
\log |F_{j,0}| \leq k - l + j - \log e \cdot 2^{-l+j-1} \cdot (k - 2l)/l \\
\leq k - l + j - 2^{l-1} \leq k - l.
\]

Therefore, \(F_j \) satisfies the induction hypothesis. For \(j = l \) this implies that \(F_l \) is an unsatisfiable \((k, s) \)-CNF formula for \(s = 2^{k-l+1} \), as long as

\[
l \cdot 2^l \leq \log e \cdot (k - 2l).
\]

Corollary 4. \(f(k) < 2^k \cdot 8 \ln k/k \) \quad for \(k \geq 2 \).
4 Further generalization and experimental results

One way to derive better upper bounds on $f(k)$ is to generalize the constructions of Sections 2 and 3. To this end, we first define a special way to compose CNF formulas capturing the essence of these constructions.

Definition 5. Let G_1, G_2 be unsatisfiable CNF formulas that have clauses of size at most k such that G'_i is a k_i-CNF formula for $i = 1, 2$. Also, assume that $k_1 \leq k_2 < k$. Then the formula $G_1 \circ G_2$ is defined as:

$$
\left(\bigcup_{c \in \mathcal{K}^- (x_1, \ldots, x_{k-k_2})} G'_{1,c} \times c \cup G''_{1,c} \right) \cup G'_2 \times \{\{x_1, \ldots, x_{k-k_2}\}\} \cup G''_2,
$$

where the formulas $G'_{1,c}$ are copies of G_1 on distinct sets of variables. We say that $G_1 \circ G_2$ is obtained by applying $\circ G_2$ to G_1, and we let $G_1 \circ_s G_2$ denote the formula obtained by applying $\circ G_2$ to G_1 q times.

It is not difficult to verify the following:

Lemma 6. Let G_1, G_2 be formulas as above, where the number of occurrences of each variable is bounded by some number s satisfying $s \geq (2^{k-k_2} - 1) \cdot |G'_1| + |G'_2|$. Then $G = G_1 \circ G_2$ is an unsatisfiable CNF formula where each variable occurs at most s times. Furthermore, G' is a $(k_1 + k - k_2)$-CNF formula, and $|G'| = (2^{k-k_2} - 1) \cdot |G'_1|$.

Given k, s, we ask whether one can obtain a k-CNF formula using the following derivation rules. We start with the unsatisfiable formula $\{\emptyset\}$ as an axiom (this formula consists of one empty clause). For a set of derivable formulas, one can apply one of the following rules:

1. If G is a derived formula such that $s \geq 2 \cdot |G'|$, then we can derive $G'_{x} \times \{\{x\}\} \cup G''_{x} \times \{\{\top\}\} \cup G''_{x} \cup G''_{x},$ where x is a new variable and G_{x}, G_{\top} are two disjoint copies of G.

2. If G_1, G_2 are two derived formulas satisfying the conditions of Lemma 6, then we can derive the formula $G_1 \circ G_2$.

One can sometimes replace $G_1 \circ G_2$ in the second rule by a more compact formula $G_1 \circ' G_2$ that avoids duplicating G_1. Namely, the formula $G'_{1} \times \mathcal{K}^- (x_1, \ldots, x_{k-k_2}) \cup G''_{1} \cup G'_2 \times \{\{x_1, \ldots, x_{k-k_2}\}\} \cup G''_2$. Although this can never reduce the number of occurrences of variables, this modification reduces the number of clauses and variables. The constructions presented in Sections 2 and 3 are special cases of the above derivation rule. Indeed, $\mathcal{K}(x_1, \ldots, x_v)$ can be obtained by applying the first rule v times to $\{\emptyset\}$. The formula of Section 2 is just

$$
F = \mathcal{K}(z_1, \ldots, z_v) \circ' \mathcal{K}(y_1, \ldots, y_{k-1}).
$$

The formula of Section 3 is inductively obtained by

$$
F_0 = \mathcal{K}(z_1, \ldots, z_{k-1}),
F_j = \mathcal{K}(z_1, \ldots, z_{d_j-u_j(l-j+1)}) \circ'_{u_j} F_{j-1} \quad \text{for } j = 1, \ldots, l.
$$
Since any \(k\)-CNF formula obtained using the above procedure is an unsatisfiable \((k,s)\)-CNF, one can define \(f_2(k)\) as the maximal value of \(s\) such that no \(k\)-CNF formula can be obtained using the above procedure (clearly \(f(k) \leq f_2(k)\)). It turns out that the function \(f_2(k)\) is appealing from an algorithmic point of view. Given a value for \(s\), one can check if \(f_2(k)\) is larger than \(s\) using a simple dynamic programming algorithm. The algorithm keeps an array \(a_0, \ldots, a_k\), where eventually \(a_l\) contains the minimal size of \(F'\) for a derivable formula \(F\) such that \(F'\) is an \(l\)-CNF formula.

Initialize \(a_0 = 1, \ a_1 = \cdots = a_k = \infty\)
Repeat until no more changes are made to \(a_1, \ldots, a_k\)
 For \(l = 0, \ldots, k - 1\)
 If \(s \geq 2l\) then \(a_{l+1} \leftarrow \min(2a_l, a_{l+1})\)
 For \(k_1 = 0, \ldots, k - 1\)
 For \(k_2 = 0, \ldots, k - 1\)
 If \(s \geq (2^{k-k_2} - 1) \cdot a_{k_1} + a_{k_2}\) then \(a_{k_1+k-k_2} \leftarrow \min((2^{k-k_2} - 1) \cdot a_{k_1}, a_{k_1+k-k_2})\)
 If \(a_k < \infty\) then output “\(f_2(k) \leq s\)” else output “\(f_2(k) > s\)”

This algorithm works well in practice and we were able to calculate \(f_2(k)\) for values up to \(k = 20000\) to get the results depicted by the graph in Figure 1.

![Figure 1: The bounds on \(f(k) \cdot k/2^k\). (a) Lower bound of Kratochvíl et al. [4], 1/e. (b) Upper bound (3) obtained in Section 3 of the present paper, 8 \ln k. (c) Upper bound \(f_2(k) \cdot k/2^k\), calculated by a computer program. (d) The line 0.5 \log(k) + 0.23.](image)

The computed numerical values of \(f_2(k)\) seem to indicate that

\[
f_2(k) \cdot k/2^k = 0.5 \log(k) + o(\log(k))
\]

which is better than our upper bound by a constant factor of about 11. If (9) indeed holds, then a better analysis of the function \(f_2\) may improve our upper bound by a constant factor. However, such an approach cannot improve upon the logarithmic gap left between the known upper and lower bounds on \(f(k)\).
References

