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Abstract

(k, s)-SAT is the propositional satisfiability problem restricted to instances
where each clause has exactly k distinct literals and every variable occurs
at most s times. It is known that there exists an exponential function
f such that for s ≤ f(k) all (k, s)-SAT instances are satisfiable, but
(k, f(k) + 1)-SAT is already NP-complete (k ≥ 3). Exact values of f

are only known for k = 3 and k = 4, and it is open whether f is com-
putable. We introduce a computable function f1 which bounds f from
above and determine the values of f1 by means of a calculus of integer se-
quences. This new approach enables us to improve the best known upper
bounds for f(k), generalizing the known constructions for unsatisfiable
(k, s)-SAT instances for small k.
Keywords: (k, s)-SAT, minimal unsatisfiable formulas, NP-completeness,
integer sequences

1 Introduction

We consider CNF formulas represented as sets of clauses. Let k, s be fixed
positive integers. We denote by (k, s)-CNF the set of formulas F where every
clause of F has exactly k different literals and each variable occurs in at most
s clauses of F . We denote the sets of satisfiable and unsatisfiable formulas by
SAT and UNSAT, respectively.

It was observed by Tovey [12] that all formulas in (3, 3)-CNF are satisfiable,
and the satisfiability problem restricted to (3, 4)-CNF is already NP-complete.
This was generalized in Kratochv́ıl, et al. [7] where it is shown that for every
k ≥ 3 there is some integer s = f(k) such that

1. all formulas in (k, s)-CNF are satisfiable, and

2. (k, s + 1)-SAT, the SAT problem restricted to (k, s + 1)-CNF, is already
NP-complete.

The function f can be defined for positive integers k by the equation

f(k) := max{ s : (k, s)-CNF ∩ UNSAT = ∅ }.

From [12] it follows that f(3) = 3 and f(k) ≥ k for k > 3.
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Asymptotic upper and lower bounds for f(k) have been obtained in [7, 9,
5]. Since typical formulas arising in practice have clauses of small width, it is
interesting to know the exact values of f(k) for small k. However, it is not
known whether f is computable.

Dubois [4] constructs unsatisfiable formulas in (4, 6)-CNF and (5, 11)-CNF,
respectively, which implies 4 ≤ f(4) ≤ 5 and 5 ≤ f(5) ≤ 10. As reported in [9],
Stř́ıbrná shows in her M.Sc. thesis [10] that (4, 5)-CNF contains unsatisfiable
formulas, hence f(4) = 4. More recently, Berman, et al. [2] construct unsat-
isfiable formulas belonging to the classes (3, 4)-CNF, (4, 6)-CNF, (5, 9)-CNF,
improving Dubois’ upper bound for f(5) to 8.

The quoted constructions are quite involved. We present a new and simple
technique for generating unsatisfiable (k, s)-CNF formulas. By this new tech-
nique we can improve on best known upper bounds for f(k); Table 1 gives an
overview of upper bounds for f(k).

By means of a construction due to Kratochv́ıl, et al. [7], one can construct
from any unsatisfiable (k, s)-CNF formula an unsatisfiable (k + 1, 2s)-CNF for-
mula; thus

f(k + 1) ≤ 2f(k) + 1. (1)

By generalization of a theorem by Savický and Sgall [9] one can derive the
inequality f(3k) ≤ 3 · 4k−1f(k), yielding an asymptotic improvement over (1).
The best known asymptotic upper bound is f(k) ≤ 2k · 8 loge k/k for k ≥ 2,
Hoory and Szeider [5]. However, for small k, (1) in conjunction with genuinely
constructed formulas is preferable.

Tov[12] Dub[4] Stř[10] BKS[2] this paper

3 ≤ f(3) ≤ 3 3 3 3 3

4 ≤ f(4) ≤ 7∗ 5 4 5 4

5 ≤ f(5) ≤ 15∗ 10 9∗ 8 7

7 ≤ f(6) ≤ 31∗ 21∗ 19∗ 17∗ 11

13 ≤ f(7) ≤ 63∗ 43∗ 39∗ 35∗ 17

24 ≤ f(8) ≤ 127∗ 87∗ 79∗ 71∗ 29

41 ≤ f(9) ≤ 255∗ 175∗ 159∗ 143∗ 51

Table 1: Best known lower and upper bounds of f(k) for small k. Entries
labeled by an asterisk are obtained via equation (1) from the preceding value of
the respective paper. The lower bounds are taken from [2].

Our approach is to focus on a certain class MU(1) of unsatisfiable formulas.
Formulas in MU(1) have a simple structure and can be constructed in a recursive
way (see the next section). Therefore it is easier to search for unsatisfiable
formulas in (k, s)-CNF ∩ MU(1) than in (k, s)-CNF.

For k ≥ 3 let f1(k) denote the largest integer such that (k, s)-CNF∩MU(1) =
∅. Since all formulas in MU(1) are unsatisfiable, always f(k) ≤ f1(k) holds. Our
examples below show that f(k) = f1(k) for k = 3, 4. It is interesting to know
whether f(k) = f1(k) holds for k ≥ 5.

We show that the existence of an unsatisfiable (k, s)-CNF formula in MU(1)
is equivalent to a search problem on ordered integer sequences. This formulation
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lead to a saturation algorithm that calculates f1(k) exactly in time O(4k2

). The
next theorem summarizes the results we have obtained so far by running a C++
implementation of the saturation algorithm.

Theorem 1.
The following classes contain unsatisfiable formulas: (3, 4)-CNF,

(4, 5)-CNF, (5, 8)-CNF, (6, 12)-CNF, (7, 18)-CNF, (8, 30)-CNF. (9, 52)-CNF.
Hence, the satisfiability problem restricted to any of these classes is NP-com-
plete.

The existence of unsatisfiable formulas in (5, 8)-CNF and (6, 12)-CNF is
certified by the derivations given in Fig. 3 and the appendix, respectively. For
the other classes mentioned in Theorem 1, computer-generated certificates can
be found in a file archive, available at the authors’ homepages. The values of
f1(k) are 3, 4, 7, 11, 17, 29, 51 for k = 3, 4, 5, 6, 7, 8, 9, respectively. The
concise certificates we present prove the upper bound on f1(k). Proving that
these bounds on f1(k) are exact requires re-running our program.

2 The Class MU(1)

A CNF formula is minimal unsatisfiable if it is unsatisfiable and removing any of
its clauses makes it satisfiable. We denote the class of minimal unsatisfiable CNF
formulas by MU. Since every unsatisfiable formula F has a minimal unsatisfiable
subset F ′, and since F ∈ (k, s)-CNF implies F ′ ∈ (k, s)-CNF, we can restrict
ourselves to the class MU. In other words,

f(k) = max{ s : (k, s)-CNF ∩ MU = ∅ }.

The deficiency δ(F ) of a formula with n variables and m clauses is defined as
δ(F ) = m−n. It is known that formulas in MU have always positive deficiency
[1]; therefore it is natural to parameterize MU by deficiency and to consider the
classes MU(d) := {F ∈ MU : δ(F ) = d } for d ≥ 1.

Let us consider the function

f1(k) = max{ s : (k, s)-CNF ∩ MU(1) = ∅ }. (2)

Evidently, we have f1(k) ≥ f(k), and so any upper bound for f1(k) is also an
upper bound for f(k). In the sequel we will show that f1 is computable, and
that for small k we can actually compute the exact value of f1(k).

Formulas in MU(1) have been widely studied (see, e.g., [1, 3, 8, 6, 11]).
In particular, the following result of Davydov, et al. [3] (a proof is implicitly
present in [1]), shows that formulas in MU(1) can be recursively decomposed
(var(F ) denotes the set of variables which occur (positively or negatively) in the
formula F ).

Lemma 1 (Davydov, et al. [3]). F ∈ MU(1) if and only if either F = {∅}
or F is the disjoint union of formulas F ′

1, F
′
2 such that for a variable x we have

• var(F ′
1) ∩ var(F ′

2) = {x} and {x, x} ⊆
⋃

C∈F C;

• F1 := {C \ {x} : C ∈ F ′
1 } ∈ MU(1);

• F2 := {C \ {x} : C ∈ F ′
2 } ∈ MU(1).
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If F has a variable x with the properties stated in the above lemma, then
following [6] we call the pair (F1, F2) a disjunctive splitting of F in x. Note
that x /∈ var(F1) ∪ var(F2) since the minimal unsatisfiable formulas F1 and F2

contain no pure literals. Furthermore we call the number of clauses of F in
which x occurs the degree of the splitting (F1, F2).

For example, the formula F = {{x, z}, {x, y}, {y, z}, {z, w}, {z, w}} belongs
to MU(1) since it can be decomposed by disjunctive splittings as displayed in
Fig. 1. Note that F ∈ (2, 4)-CNF since all clauses have size 2 and every variable
occurs at most 4 times. In general, if we decompose a formula F by splittings
of degree ≤ s, then evidently every variable of F occurs in at most s clauses.
Hence we have the following lemma.

{∅} {∅}
(split in x)

{{x}, {x}} {∅}
(split in y)

{{x}, {x, y}, {y}})

{∅} {∅}
(split in w)

{{w}, {w}}
(split in z)

F = {{x, z}, {x, y}, {y, z}, {z, w}, {z, w}}

Figure 1: Decomposition of a formula F ∈ MU(1) by disjunctive splittings.

Lemma 2. If all clauses of a nonempty formula F have size k, then F ∈
(k, s)-CNF∩MU(1) if and only if F can be decomposed by disjunctive splittings
of degree ≤ s.

3 A Calculus of Integer Sequences

Let σ = (a1, . . . , an) be a finite nonincreasing sequence of positive integers (a
stairway, for short). That is, a1 ≥ · · · ≥ an ≥ 1. We call ai an entry of σ, n the
length of σ, and denote the empty sequence by ε. For a finite sequence of non-
negative integers σ let σord denote the stairway obtained from σ by removing
0’s and by ordering the entries nonincreasingly.

For a fixed integer s ≥ 2 we consider the (nondeterministic) binary rule N(s)
that allows to infer a stairway σ from stairways σ1, σ2 as follows: For i = 1, 2
obtain σ′

i from σi by decrementing si ≥ 1 entries by one, s1 + s2 ≤ s, and put
σ := (σ′

1σ
′
2)

ord.
For dealing formally with the rule N(s) in the proofs below, the follow-

ing concept is convenient. Consider stairways σ1 = (a1, . . . , aj) and σ2 =
(aj+1, . . . , am). The definition of N(s) says that a stairway σ can be inferred
from σ1, σ2 if and only if there is a set I ⊆ {1, . . . , m} with I ∩ {1, . . . , j} 6= ∅,
I ∩ {j + 1, . . . , m} 6= ∅, and |I | ≤ s such that σ = (a′

1, . . . , a
′
m)ord where

a′
i =

{

ai − 1 if i ∈ I ;

ai otherwise.

We call the set I an index set associated with the inference. Note that the index
set I is not necessarily unique.

An N(s)-derivation is a finite binary rooted tree T whose vertices are labeled
by stairways such that if a vertex v labeled by σ has parents v1, v2 labeled by
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σ1, σ2, respectively, then σ can be inferred from σ1, σ2 by the rule N(s). For a set
of stairways Γ and a stairway σ we write Γ `N(s) σ if there is an N(s)-derivation
T whose root is labeled by σ and whose leaves are labeled by sequences from
Γ. In particular, we have Γ `N(s) σ if σ ∈ Γ. If Γ is a singleton {σ′} we simply
write σ′ `N(s) σ.

As an example, the N(4)-derivation displayed in Fig. 2 shows that (3) `N(4)

(1, 1, 1, 1, 1).

(3) (3)

(2,2) (3)

(2,2,1)

(3) (3)

(2,2)

(1,1,1,1,1)

Figure 2: An N(4)-derivation.

Let F = {C1, . . . , Cm} 6= ∅ be a formula with 0 ≤ |C1| ≤ · · · ≤ |Cm| ≤ k,
and let n be the largest integer in {1, . . . , m} with |Cn| < k. We associate with
F the stairway

Σk(F ) := (k − |C1|, . . . , k − |Cn|).

Thus, Σk(F ) is the empty sequence if all clauses of F have size k.
The next lemma, which can be shown by induction, asserts that N(s)-deriva-

tions and formulas in MU(1) ∩ (k, s)-CNF are closely related.

Lemma 3. For every stairway σ the following holds true. (k) `N(s) σ if and
only if there is a formula F ∈ MU(1) such that (i) Σk(F ) = σ, (ii) all clauses
of F have size at most k, and (iii) F can be decomposed by disjunctive splittings
of degree ≤ s.

Proof. (⇒) Assume (k) `N(s) σ and let T be an N(s)-derivation of σ from (k)
with a minimal number n of inference steps (we count every non-leaf of T as
an inference step). We proceed by induction on n. If n = 0 then σ is the
axiom (k) and we put F = {∅}. Clearly Σk(F ) = (k) and we are done. Now
assume n ≥ 1, and let σ1, σ2 be the stairways from which σ is inferred in T . Let
σ1 = (a1, . . . , aj), σ2 = (aj+1, . . . , am), and σ = (c1, . . . , cn). Let I ⊆ {1, . . . , m}
be an index set associated with the inference of σ from σ1, σ2, so that we can
write σ = (a′

1, . . . , a
′
m)ord.

By induction hypothesis (the subderivations of T ending in σ1 and σ2, re-
spectively, have less than n steps), there are formulas F1, F2 ∈ MU(1) with
Σk(Fi) = σi such that Fi can be decomposed by disjunctive splittings of de-
gree ≤ s. We may assume that F1 and F2 do not share a variable (we can
always rename variables). Let F ′

i be the subset of Fi containing all clauses of
size k, i = 1, 2. Since Σk(Fi) = σi, we can write F1 = {C1, . . . , Cj} ∪ F ′

1 and
F2 = {Cj+1, . . . , Cm} ∪ F ′

2 such that ai = k − |Ci| for i = 1, . . . , m. We pick a
new variable x and define F := {D1, . . . , Dm} ∪ F ′

1 ∪ F ′
2 where

Di =











Ci ∪ {x} if i ∈ I and i ≤ j

Ci ∪ {x} if i ∈ I and i > j,

Ci otherwise.
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Consequently, (F1, F2) is a disjunctive splitting of F of degree ≤ s. Since
Σk(F ) = σ, the first part of the lemma is shown true.

(⇐) Let F ∈ MU(1), Σk(F ) = σ, be decomposable by disjunctive splittings
of degree ≤ s. We show by induction on the number n of variables of F that
(k) `N(s) σ. If n = 0 then F = {∅} and so σ = (k); hence (k) `N(s) σ. Now
assume n > 0. By assumption, F has a disjunctive splitting (F1, F2) of degree
≤ s. Let σi := Σk(Fi), i = 1, 2. Since |var(Fi)| ≤ |var(F )| − 1, it follows by
induction hypothesis that (k) `N(s) σi, i = 1, 2. It remains to show that σ can
be inferred from σ1, σ2 by the rule N(s).

By definition of a disjunctive splitting, F is the disjoint union of formulas
F ′

1, F
′
2 such that for a variable x the conditions stated in Lemma 1 are satisfied.

Consequently, for some nonempty subsets Gi ⊆ Fi, i = 1, 2, we have

F ′
1 = {C ∪ {x} : C ∈ G1 } ∪ (F1 \ G1),

F ′
2 = {C ∪ {x} : C ∈ G2 } ∪ (F2 \ G2).

Since the splitting is of degree ≤ s, |G1| + |G2| ≤ s follows. Every clause in
G1 ∪ G2 corresponds bijectively to an entry a of σi which is decreased by one
(thus either a ≥ 2 and a − 1 is an entry of σ, or a = 1 and a − 1 is omitted in
σ). The other clauses C ∈ Fi \Gi with |C| < k correspond bijectively to entries
a = k − |C| of σi which give rise to entries of σ. Thus σ can indeed be inferred
from σ1, σ2 by the rule N(s) and so (k) `N(s) σ follows.

Note that in general there are many different formulas corresponding to one
N(s)-derivation in the sense of Lemma 3.

For the example in Fig. 1, we have F = {{x, z}, {x, y}, {y, z}, {z, w}, {z, w}}
and Σ3(F ) = (1, 1, 1, 1, 1). The disjunctive splitting of degree ≤ 4 depicted in
Fig. 1 corresponds to the N(4)-derivation in Fig. 2 by means of Lemma 3.

An immediate consequence of Lemma 3 is the following characterization of
the function f1 defined in (2). Recall that ε denotes the empty sequence.

Theorem 2. f1(k) = min{ s : (k) `N(s) ε } − 1.

Proof. Let s ≥ 2 such that (k) `N(s) ε. By Lemma 3, there exists a formula
F ∈ MU(1), Σk(F ) = ε, which can be decomposed by splittings of degree ≤ s.
Thus variables of F occur in at most s clauses. Moreover, Σk(F ) = ε implies
that all clauses of F have size k, thus F ∈ (k, s)-CNF follows. Consequently
f1(k) ≤ s − 1.

Now assume f1(k) ≥ s; i.e., (k, s)-CNF ∩ MU(1) = ∅. Consequently, no
F ∈ MU(1) with Σk(F ) = ε can be decomposed by splittings of degree ≤ s. By
Lemma 3, it follows that (k) `N(s) ε does not hold. Hence the theorem is shown
true.

4 Computing f1

The results of the previous section suggest the following saturation algorithm
for determining whether f1(k) ≤ s for given k, s:

• Start with the set S0 = {(k)}.

• For i > 0, obtain Si as the union of Si−1 and the set of all sequences σ
which can be inferred from σ1, σ2 ∈ Si−1 by the rule N(s).
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If we reach a set Si which contains the empty sequence ε then we stop,
as we then know that f1(k) < s. Otherwise, if we reach a fixed-point i where
Si = Si−1, then we know f1(k) ≥ s. We will show below that a refined saturation
algorithm actually terminates, hence that a finite procedure for determining
f1(k) exists.

When we run the saturation algorithm, it is desirable to avoid the derivation
of sequences which are “worse” than other already derived sequences. For ex-
ample, if we have already derived (3, 2, 1), it is certainly superfluous to add the
sequence (3, 3, 1) or the sequence (3, 2, 1, 1) to the cumulating set. We will see
below that also, say, (3, 3) can be ignored if we already have obtained (3, 2, 1).
Formally, we base the comparison of sequences on the following definition.

Let σ, σ′ be stairways. We say that σ′ is obtained from σ = (a1, . . . , an) by
elementary flattening if one of the following prevails:

1. For some p ∈ {1, . . . , n} we have σ′ = (a′
1, . . . , a

′
n)ord where

a′
i =

{

ai − 1 if i = p,

ai otherwise.

2. Consider σ to have an additional entry an+1 with value 0. For some
p, q ∈ {1, . . . , n + 1} with ap > aq we have σ = (a′

1, . . . , a
′
n+1)

ord where

a′
i =











ai − 1 if i = p,

ai + 1 if i = q,

ai otherwise.

We exclude the case ap = aq + 1 to ensure σ 6= σ′.

That is, σ′ is obtained by decrementing some entry ap and possibly incrementing
some smaller entry aq . We say that σ′ dominates σ if either σ′ = σ or σ′ can
be obtained from σ by multiple applications of elementary flattening.

The next lemma states that if σ is dominated by σ′, then σ is “worse” than
σ′ in the above sense.

Lemma 4. If σ can be inferred from σ1, σ2 by rule N(s), and if σi is dominated
by σ′

i 6= ε, i = 1, 2, then σ is dominated by some σ′ which can be inferred from
σ′

1, σ
′
2 by rule N(s).

Proof. Since σi is dominated by σ′
i, σ′

i can be obtained from σi by ri applications

of elementary flattening for some ri ≥ 0; in symbols, σi
ri−→ σ′

i. We proceed by
induction on r = r1 + r2. If r = 0 then σ1 = σ′

1, σ2 = σ′
2, and we put σ′ = σ.

Now assume r > 0. W.l.o.g., we may assume that r2 > 0. Hence there is a
stairway σ∗

2 such that

σ2
r2−1
−−−→ σ∗

2
1
−→ σ′

2.

The induction hypothesis yields that there is a stairway σ∗ which dominates σ
and can be obtained from σ′

1, σ
∗
2 by the rule N(s). We have to show that there

exists a stairway σ′ which can be obtained from σ′
1, σ

′
2 by rule N(s) and which

dominates σ∗; i.e., that the diagram

σ′
1σ

∗
2

1
−−−−→ σ′

1σ
′
2





y

N(s)





y

N(s)

σ∗ ≤1
−−−−→ σ′
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commutes. Let σ′
1 = (a1, . . . , aj), σ∗

2 = (aj+1, . . . , am), σ∗ = (a′
1, . . . , a

′
m)ord,

am+1 := 0. Furthermore, let b1, . . . , bm+1 be integers such that σ′
1σ

′
2 = (b1, . . . , bm+1)

ord

where ai = bi except bp = ap − 1 and possibly bq = aq + 1 for ap > aq + 1,
j ≤ p < q ≤ m+1. We put σ′ = (b′1, . . . , b

′
m+1)

ord and define b′i in the following
case distinction.

First assume bp > 0 or ap = a′
p. We put b′i = bi − ai + a′

i. It follows that σ′

can be obtained from σ∗ by one elementary flattening, thus σ′ dominates σ∗.
Now assume that 0 = bp = ap − 1 = a′

p. It follows that no entry aq is
incremented, since otherwise we would have aq < 0. By assumption, σ′

2 is not
empty, hence we can pick some t ∈ {j+1, . . . , m}\{p} with bt > 0. If a′

t = at−1,
then we put b′p = bp and b′i = bi − ai + a′

i for i 6= p; σ′ = σ∗ follows (observe
that b′t = bt − 1). Otherwise, if a′

t = at, then we put b′p = bp, b′t = bt − 1, and
b′i = bi − ai + a′

i for i /∈ {p, t}; in this case σ′ arises from σ∗ by an elementary
flattening which decrements a′

t. It follows that σ′ dominates σ∗ in any case,
hence in turn, σ′ dominates σ as claimed.

Repeated application of Lemma 4 yields the following result.

Corollary 1. Let Γ and Γ′ be sets of stairways such that every element of Γ is
dominated by some element of Γ′. If Γ `N(s) σ then σ is dominated by some σ′

such that Γ′ `N(s) σ′. In particular, Γ `N(s) ε implies Γ′ `N(s) ε.

It would be interesting to know if there exists a more general notion of
domination for which Corollary 1 holds.

Now it is easy to see that f1 is computable: Assume that we want to decide
whether f1(k) ≤ s. First decide whether f1(k − 1) ≤ s (we can inductively
assume that this is possible); if f1(k − 1) > s then clearly f1(k) > s and we
are done. Otherwise, if f1(k − 1) ≤ s, let T be an N(s)-derivation of ε from
(k − 1), and let n denote the number of leaves of T . By changing all axioms
of T from (k − 1) to (k), and by propagating this modification downward in T ,
we obtain an N(s)-derivation of the sequence 1n, a sequence consisting of n 1s.
Since every sequence of length at least n is dominated by 1n, we can ignore all
sequences of length greater than n in the saturation algorithm. On the other
hand, all sequences containing an entry which is greater than k are dominated
by (k); hence it follows that there is a finite number (≤ (k + 1)n) of sequences
that have to be considered by the saturation algorithm. Hence it can be decided
whether f1(k) ≤ s; thus f1 is computable.

Theorem 3. The function f1 is computable.

5 Restricting the Search Space

In this section we present further results which allow to speed up the computa-
tion of f1.

5.1 A Deterministic Rule of Inference

Let σ1 = (a1, . . . , aj), σ2 = (aj+1, . . . , an) be nonempty stairways, and let
(a2, . . . , aj , aj+2, . . . , an)ord = (b1, . . . , bn−2). For given s ≥ 2, we put s′ =
min(s, n) − 2 and we define a stairway

σ1 ⊕s σ2 := (a1 − 1, aj − 1, b1 − 1, . . . , bs′ − 1, bs′+1, . . . , bn−2)
ord.
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Thus, σ1 ⊕s σ2 arises from σ1σ2 by decrementing the s largest entries of σ1σ2,
ensuring that at least one entry of σ1 and at least one entry of σ2 is decremented.

Lemma 5. Let σ1, σ2 be stairways. Then σ1 ⊕s σ2 can be inferred from σ1 and
σ2 by the rule N(s); moreover, σ1 ⊕s σ2 dominates all other sequences which
can be inferred from σ1 and σ2 by the rule N(s).

Thus obtaining σ1 ⊕s σ2 from σ1, σ2 is a special case of an inference by the
rule N(s). We denote the corresponding restricted form of the rule by D(s).

Since every stairway is dominated by the empty sequence ε, Lemmas 4 and
5 immediately yield the following result.

Theorem 4. f1(k) = min{ s : (k) `D(s) ε } − 1.

In Fig. 3 we give a D(8)-derivation of ε from (5), displayed as a sequence
of inference steps. Since there is no D(7)-derivation of ε from (5), f1(5) = 7
follows.

σ0 = (5)
σ1 = σ0 ⊕8 σ0 = (4, 4)
σ2 = σ0 ⊕8 σ1 = (4, 3, 3)
σ3 = σ0 ⊕8 σ2 = (4, 3, 2, 2)
σ4 = σ0 ⊕8 σ3 = (4, 3, 2, 1, 1)
σ5 = σ0 ⊕8 σ4 = (4, 3, 2, 1)
σ6 = σ5 ⊕8 σ5 = (3, 3, 2, 2, 1, 1)
σ7 = σ5 ⊕8 σ6 = (3, 2, 2, 2, 1, 1, 1, 1, 1)
σ8 = σ6 ⊕8 σ0 = (4, 2, 2, 1, 1)
σ9 = σ7 ⊕8 σ0 = (4, 2, 1, 1, 1, 1, 1)
σ10 = σ8 ⊕8 σ0 = (4, 3, 1, 1)
σ11 = σ8 ⊕8 σ10 = (3, 3, 2, 1, 1, 1)
σ12 = σ9 ⊕8 σ0 = (4, 3, 1)
σ13 = σ11 ⊕8 σ0 = (4, 2, 2, 1)
σ14 = σ12 ⊕8 σ13 = (3, 3, 2, 1, 1)
σ15 = σ12 ⊕8 σ14 = (3, 2, 2, 2, 1)

σ16 = σ12 ⊕8 σ15 = (3, 2, 2, 1, 1, 1)
σ17 = σ16 ⊕8 σ0 = (4, 2, 1, 1)
σ18 = σ17 ⊕8 σ17 = (3, 3, 1, 1)
σ19 = σ17 ⊕8 σ18 = (3, 2, 2, 1)
σ20 = σ17 ⊕8 σ19 = (3, 2, 1, 1, 1)
σ21 = σ20 ⊕8 σ0 = (4, 2, 1)
σ22 = σ20 ⊕8 σ21 = (3, 2, 1, 1)
σ23 = σ20 ⊕8 σ22 = (2, 2, 1, 1, 1)
σ24 = σ20 ⊕8 σ23 = (2, 1, 1, 1, 1, 1)
σ25 = σ24 ⊕8 σ0 = (4, 1)
σ26 = σ24 ⊕8 σ25 = (3, 1)
σ27 = σ24 ⊕8 σ26 = (2, 1)
σ28 = σ24 ⊕8 σ27 = (1, 1)
σ29 = σ24 ⊕8 σ28 = (1)
σ30 = σ29 ⊕8 σ29 = ε

Figure 3: D(8)-derivation, certifying that f(5) ≤ 7.

5.2 Sequences of Length s − 1 Suffice

In the above argument for showing that f1 is computable (Theorem 3) we estab-
lished an upper bound for the maximum length of sequences we have to consider
for deciding whether f1(k) ≤ s. This upper bound is very large and is not of
practical help for actually determining f1(k) for small k. Next we present a
construction which allows us to restrict the length of the sequences we have to
consider to s − 1.

Let s ≥ 1 and let σ = (a1, . . . , an) be a stairway of length n ≥ s. Consider
the stairway

σ′ = (a1, . . . , as−2, as−1 + 1, as − 1, as+1, . . . , an)ord;

we say that σ′ is obtained from σ by elementary s-sloping. We can apply
s-sloping to σ repeatedly, until we end up with a sequence of length s − 1;
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we denote this sequence by σ|s, and for any stairway σ of length < s, we put
σ|s = σ.

The next result allows us for the saturation algorithm to apply s-sloping
before we add a new sequence to the cumulating set.

Theorem 5. Let Γ be a set of stairways and let Γ′ := {σ|s : σ ∈ Γ }. Then
Γ `D(s) ε if and only if Γ′ `D(s) ε.

Proof. (⇐) Since σ always dominates σ|t, this direction of the theorem follows
directly from Corollary 1.

(⇒) Consider a D(s)-derivation T of ε from Γ. For every leaf v of T we
count the number k(v) of times we have to apply s-sloping to the sequence σv

labeling v to obtain σv |s. Let k(T ) denote the sum of k(v) over all leaves of T .
If k(T ) = 0 then T is already a D(s)-derivation of ε from Γ′, and we are done.
Hence assume k(T ) > 0. Below we describe a construction which modifies T in
such a way that k(T ) is decreased; a repeated application of the construction
yields to the case k(T ) = 0.

We pick a leaf v0 of T which is is labeled by σ0 = (a1, . . . , an) for n ≥ s.
Let v0, . . . , vr be the sequence of vertices on the path P from v0 to the root

vr of T . We introduce now a notion which will allow us to talk precisely about
what happens to the entries of σ0 on the path P .

Consider an entry aj of σ0. Following the path P from v0 to vr, we can track
the entry aj . At each step of inference, it is either decremented or it retains
its value, until its value reaches 0 (we can always find its new position after
sorting the sequence). We use this procedure to track a1, . . . , an so that at vi

their values are represented by the sequence Ai := (a
(i)
1 , . . . , a

(i)
n ), i = 0, . . . , r.

Using the freedom in the choice of Ai, we can make sure that

a
(i)
1 ≥ · · · ≥ a

(i)
s−1 for i = 0, . . . , r. (3)

We call τ = (a
(i)
1 , . . . , a

(i)
n )r

i=0 a trace of v0. Note that in general, v0 has several
possible traces. Since T is a D(s)-derivation, it follows that for any transition
from Ai to Ai+1, if an entry of Ai is decremented, all strictly larger elements of
Ai are decremented as well; we refer to this property of the trace as >-preference.
For entries of Ai of equal value, we have some freedom in the choice of the

trace. We assume that if an entry a
(i)
t is decremented for t ≥ s, then all entries

a
(i)
t′ = a

(i)
t for t′ < s are decremented as well. We refer to this property of the

trace as =-preference.

Let i0 ∈ {1, . . . , r − 1} be the smallest index such that a
(i0+1)
s = a

(i0)
s − 1

(such i0 exists, since the root vr is labeled by the empty sequence, and so
Ar = (0, . . . , 0)). At the transition from Ai0 to Ai0+1 at most s − 1 entries

are decremented; by the pigeon hole principle it follows that at least one a
(i0)
t ,

t < s, is not decremented. <-preference implies a
(i0)
t ≤ a

(i0)
s , and =-preference

implies a
(i0)
t < a

(i0)
s . In view of (3), we may assume that t = s − 1, therefore

a
(i0)
s−1 < a

(i0)
s .

Now we modify the labels of the vertices vi, i = 0, . . . , i0, as follows. We can

replace in σvi
the entries a

(i)
s−1 and a

(i)
s by a

(i)
s−1 +1 and a

(i)
s −1, respectively (by

assumption, a
(i)
s = as for i ≤ i0). Let T ′ denote the new labeled tree. To show

that T ′ is an N(s)-derivation, it suffices to justify the labels of v0, . . . , vi0+1

10



by the rule N(s). This is easy for v0, . . . , vi0 . By assumption, the inference

that yields the label vi0+1 involves decrementing a
(i0)
s , (a

(i0+1)
s = a

(i0)
s − 1),

but a
(i0)
s−1 is not changed (a

(i0+1)
s−1 = a

(i0)
s−1). In T ′, we simply swap the roles of

these two entries, and obtain the original label of vi0+1. Hence T ′ is indeed an
N(s)-derivation and, as we have applied elementary s-sloping to the label of v0,
k(T ′) = k(T ) − 1.

In order to complete our inductive argument, we transform the N(s)-deriva-
tion T ′ into a D(s)-derivation T ′′ such that k(T ′′) ≤ k(T ′). We apply Lemmas
4 and 5 along the path P . That is, assume that vertex vi, 1 ≤ i ≤ r is labeled
by a sequence λ, and that its parents vi−1 and v′i−1 are labeled by λ1 and λ2,
respectively. If we change λ1 to some sequence λ′

1 which dominates λ1, then, in
view of Lemmas 4 and 5, we can change λ to λ′ := λ′

1 ⊕s λ2 (λ′ dominates λ).
We apply this re-labeling to v1, v2, . . . until we reach a vertex vr′ which re-
ceives the label ε. The subtree T ′′ rooted in vr′ is now a D(s)-derivation with
k(T ′′) ≤ k(T ′) < k(T ) as claimed. Hence, by iteration, we are finally left with
a D(s)-derivation T ∗ with k(T ∗) = 0, which is a D(s)-derivation of ε from Γ′.
This completes the proof of the theorem.

Corollary 2. There exists an algorithm to calculate f1(k) with running time

O(4k2

).

Proof. As suggested by previous discussion, consider the following saturation
algorithm, that given k and s decides if ε is derivable from (k). Throughout,
the algorithm maintains in its memory a database of known derivable sequences
of length at most s − 1. Initially the database consists of the sequence (k). As
long as possible, the algorithm picks two derivable sequences σ1, σ2, calculates
(σ1⊕σ2)|s, and adds it to the database, provided it is not already there and that
it is not dominated by (k). Finally, the algorithm checks if ε is in the database.

The maximal possible size of the database is bounded by the number of
integer sequences k ≥ a1 ≥ a2 ≥ · · · ≥ as−1 ≥ 0, which is

(

k+s−1
k

)

≤ (k + s)k.
Note that k ≥ a1 follows from the restriction to sequences not dominated by
(k). To see this, consider the

(

k+s−1
k

)

possible orderings of k white balls and
s − 1 black balls. Each such ordering is in one to one correspondence with the
sequence a1, . . . , as−1, where ai is the number of white balls to the right of the
i-th black ball.

Let M denote the maximal number of sequences in the database, and denote
the time required to calculate (σ1 ⊕ σ2)|s by Tflat. It can be easily verified that
Tflat = O(s + k). We calculate f1(k) by performing a binary search on s, to
determine the maximal value of s such that ε is not derivable from (k). It is
not difficult to verify that f1(k) ≤ 2k−2 for a sufficiently large k, either by a
direct proof, or by the results of Hoory and Szeider [5]. Therefore, k + s may
be bounded by 2k−1, for large k. It follows that f1(k) can be calculated in time

k · Tflat · M2 = O(k · (k + s)2k+1) = O(k · 2(k−1)·(2k+1)) = O(4k2

).
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Appendix: A D(12)-Derivation, Certifying that
f(6) ≤ 11

σ0 = (6)
σ1 = σ0 ⊕12 σ0

σ2 = σ0 ⊕12 σ1

σ3 = σ0 ⊕12 σ2

σ4 = σ0 ⊕12 σ3

σ5 = σ0 ⊕12 σ4

σ6 = σ0 ⊕12 σ5

σ7 = σ1 ⊕12 σ1

σ8 = σ1 ⊕12 σ6

σ9 = σ1 ⊕12 σ8

σ10 = σ1 ⊕12 σ9

σ11 = σ1 ⊕12 σ10

σ12 = σ1 ⊕12 σ11

σ13 = σ2 ⊕12 σ12

σ14 = σ6 ⊕12 σ12

σ15 = σ6 ⊕12 σ13

σ16 = σ7 ⊕12 σ12

σ17 = σ7 ⊕12 σ13

σ18 = σ14 ⊕12 σ0

σ19 = σ15 ⊕12 σ0

σ20 = σ16 ⊕12 σ0

σ21 = σ17 ⊕12 σ0

σ22 = σ18 ⊕12 σ0

σ23 = σ18 ⊕12 σ1

σ24 = σ18 ⊕12 σ22

σ25 = σ19 ⊕12 σ0

σ26 = σ20 ⊕12 σ1

σ27 = σ21 ⊕12 σ0

σ28 = σ23 ⊕12 σ25

σ29 = σ23 ⊕12 σ28

σ30 = σ24 ⊕12 σ0

σ31 = σ25 ⊕12 σ27

σ32 = σ25 ⊕12 σ28

σ33 = σ25 ⊕12 σ32

σ34 = σ26 ⊕12 σ31

σ35 = σ27 ⊕12 σ31

σ36 = σ29 ⊕12 σ0

σ37 = σ30 ⊕12 σ34

σ38 = σ33 ⊕12 σ0

σ39 = σ35 ⊕12 σ35

σ40 = σ36 ⊕12 σ0

σ41 = σ37 ⊕12 σ0

σ42 = σ38 ⊕12 σ38

σ43 = σ38 ⊕12 σ40

σ44 = σ38 ⊕12 σ42

σ45 = σ39 ⊕12 σ0

σ46 = σ40 ⊕12 σ40

σ47 = σ40 ⊕12 σ43

σ48 = σ41 ⊕12 σ0

σ49 = σ42 ⊕12 σ46

σ50 = σ42 ⊕12 σ47

σ51 = σ42 ⊕12 σ48

σ52 = σ44 ⊕12 σ0

σ53 = σ45 ⊕12 σ0

σ54 = σ49 ⊕12 σ52

σ55 = σ50 ⊕12 σ0

σ56 = σ51 ⊕12 σ53

σ57 = σ51 ⊕12 σ56

σ58 = σ52 ⊕12 σ55

σ59 = σ52 ⊕12 σ58

σ60 = σ53 ⊕12 σ58

σ61 = σ53 ⊕12 σ59

σ62 = σ54 ⊕12 σ0

σ63 = σ55 ⊕12 σ55

σ64 = σ55 ⊕12 σ58

σ65 = σ57 ⊕12 σ0

σ66 = σ58 ⊕12 σ60

σ67 = σ60 ⊕12 σ62

σ68 = σ60 ⊕12 σ66

σ69 = σ61 ⊕12 σ67

σ70 = σ63 ⊕12 σ0

σ71 = σ64 ⊕12 σ0

σ72 = σ65 ⊕12 σ71

σ73 = σ66 ⊕12 σ71

σ74 = σ68 ⊕12 σ0

σ75 = σ69 ⊕12 σ0

σ76 = σ70 ⊕12 σ74

σ77 = σ72 ⊕12 σ76

σ78 = σ73 ⊕12 σ0

σ79 = σ75 ⊕12 σ75

σ80 = σ75 ⊕12 σ79

σ81 = σ75 ⊕12 σ80

σ82 = σ75 ⊕12 σ81

σ83 = σ77 ⊕12 σ80

σ84 = σ78 ⊕12 σ83

σ85 = σ79 ⊕12 σ79

σ86 = σ79 ⊕12 σ82

σ87 = σ79 ⊕12 σ86

σ88 = σ79 ⊕12 σ87

σ89 = σ80 ⊕12 σ88

σ90 = σ80 ⊕12 σ89

σ91 = σ84 ⊕12 σ0

σ92 = σ85 ⊕12 σ90

σ93 = σ85 ⊕12 σ92

σ94 = σ91 ⊕12 σ93

σ95 = σ91 ⊕12 σ94

σ96 = σ93 ⊕12 σ95

σ97 = σ93 ⊕12 σ96

σ98 = σ97 ⊕12 σ0

σ99 = σ97 ⊕12 σ98

σ100 = σ97 ⊕12 σ99

σ101 = σ97 ⊕12 σ100

σ102 = σ97 ⊕12 σ101

σ103 = σ102 ⊕12 σ102 = ε
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