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Abstract

(k, s)-SAT is the propositional satisfiability problem restricted to instances
where each clause has exactly k distinct literals and every variable occurs
at most s times. It is known that there exists an exponential function
f such that for s < f(k) all (k,s)-SAT instances are satisfiable, but
(k, f(k) + 1)-SAT is already NP-complete (k > 3). Exact values of f
are only known for £k = 3 and k = 4, and it is open whether f is com-
putable. We introduce a computable function f; which bounds f from
above and determine the values of fi1 by means of a calculus of integer se-
quences. This new approach enables us to improve the best known upper
bounds for f(k), generalizing the known constructions for unsatisfiable
(k, s)-SAT instances for small k.

Keywords: (k,s)-SAT, minimal unsatisfiable formulas, NP-completeness,
integer sequences

1 Introduction

We consider CNF formulas represented as sets of clauses. Let k,s be fixed
positive integers. We denote by (k, s)-CNF the set of formulas F' where every
clause of F' has exactly k different literals and each variable occurs in at most
s clauses of F. We denote the sets of satisfiable and unsatisfiable formulas by
SAT and UNSAT, respectively.

It was observed by Tovey [I2] that all formulas in (3, 3)-CNF are satisfiable,
and the satisfiability problem restricted to (3,4)-CNF is already NP-complete.
This was generalized in Kratochvil, et al. [7] where it is shown that for every
k > 3 there is some integer s = f(k) such that

1. all formulas in (k, s)-CNF are satisfiable, and

2. (k,s+ 1)-SAT, the SAT problem restricted to (k,s + 1)-CNF, is already
NP-complete.

The function f can be defined for positive integers k by the equation
f(k) := max{s: (k,s)-CNF N UNSAT =0 }.

From [12] it follows that f(3) =3 and f(k) > k for k > 3.
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Asymptotic upper and lower bounds for f(k) have been obtained in [7, [,
B]. Since typical formulas arising in practice have clauses of small width, it is
interesting to know the exact values of f(k) for small k. However, it is not
known whether f is computable.

Dubois [ constructs unsatisfiable formulas in (4,6)-CNF and (5, 11)-CNF,
respectively, which implies 4 < f(4) <5 and 5 < f(5) < 10. As reported in [9],
Stifbrnd shows in her M.Sc. thesis [I0] that (4,5)-CNF contains unsatisfiable
formulas, hence f(4) = 4. More recently, Berman, et al. [2] construct unsat-
isfiable formulas belonging to the classes (3,4)-CNF, (4,6)-CNF, (5,9)-CNF,
improving Dubois’ upper bound for f(5) to 8.

The quoted constructions are quite involved. We present a new and simple
technique for generating unsatisfiable (k, s)-CNF formulas. By this new tech-
nique we can improve on best known upper bounds for f(k); Table [ gives an
overview of upper bounds for f(k).

By means of a construction due to Kratochvil, et al. [[], one can construct
from any unsatisfiable (k, s)-CNF formula an unsatisfiable (k + 1, 2s)-CNF for-
mula; thus

f(k+1) <2f(k)+ 1. (1)

By generalization of a theorem by Savicky and Sgall [O] one can derive the
inequality f(3k) < 3-4%~1f(k), yielding an asymptotic improvement over ([I).
The best known asymptotic upper bound is f(k) < 2% . 8log, k/k for k > 2,
Hoory and Szeider [B]. However, for small k, () in conjunction with genuinely
constructed formulas is preferable.

Tov[l2]  Dubf] StF[I0] BKSJ2]  this paper
3 <f@3)< 3 3 3 3 3
4 <f4)< 7 5 4 5 4
5 <f(5)< 15* 10 9* 8 7
7 < f(6) < 31 21 19 17+ 11
13 <f(7)< 63" 43" 39* 35* 17
24 < f(8)< 127 87 79* 71 29
41 < f9) < 255* 175 159* 143* 51

Table 1: Best known lower and upper bounds of f(k) for small k. Entries
labeled by an asterisk are obtained via equation ([l) from the preceding value of
the respective paper. The lower bounds are taken from [2].

Our approach is to focus on a certain class MU(1) of unsatisfiable formulas.
Formulas in MU(1) have a simple structure and can be constructed in a recursive
way (see the next section). Therefore it is easier to search for unsatisfiable
formulas in (k, s)-CNF N MU(1) than in (k, s)-CNF.

For k > 3 let f1(k) denote the largest integer such that (k, s)-CNFNMU(1) =
(. Since all formulas in MU(1) are unsatisfiable, always f(k) < f1(k) holds. Our
examples below show that f(k) = f1(k) for k = 3,4. It is interesting to know
whether f(k) = f1(k) holds for k > 5.

We show that the existence of an unsatisfiable (k, s)-CNF formula in MU(1)
is equivalent to a search problem on ordered integer sequences. This formulation



lead to a saturation algorithm that calculates fi(k) exactly in time O(4k2). The
next theorem summarizes the results we have obtained so far by running a C++
implementation of the saturation algorithm.

Theorem 1.

The following classes contain unsatisfiable formulas: (3,4)-CNF,
(4,5)-CNF, (5,8)-CNF, (6,12)-CNF, (7,18)-CNF, (8,30)-CNF. (9,52)-CNF.
Hence, the satisfiability problem restricted to any of these classes is NP-com-
plete.

The existence of unsatisfiable formulas in (5,8)-CNF and (6,12)-CNF is
certified by the derivations given in Fig. Bl and the appendix, respectively. For
the other classes mentioned in Theorem [, computer-generated certificates can
be found in a file archive, available at the authors’ homepages. The values of
fi(k) are 3, 4, 7, 11, 17, 29, 51 for k = 3, 4, 5, 6, 7, 8, 9, respectively. The
concise certificates we present prove the upper bound on f;(k). Proving that
these bounds on fi(k) are exact requires re-running our program.

2 The Class MU(1)

A CNF formula is minimal unsatisfiable if it is unsatisfiable and removing any of
its clauses makes it satisfiable. We denote the class of minimal unsatisfiable CNF
formulas by MU. Since every unsatisfiable formula F' has a minimal unsatisfiable
subset F', and since F € (k,s)-CNF implies F’ € (k,s)-CNF, we can restrict
ourselves to the class MU. In other words,

f(k) = max{s: (k,s)-CNFNMU = }.

The deficiency 0(F') of a formula with n variables and m clauses is defined as
0(F) =m —n. It is known that formulas in MU have always positive deficiency
[1]; therefore it is natural to parameterize MU by deficiency and to consider the
classes MU(d) :={F e MU : (F) =d} for d > 1.

Let us consider the function

f1(k) = max{s: (k,s)-CNFNMU(1) =0}. (2)

Evidently, we have f1(k) > f(k), and so any upper bound for fi(k) is also an
upper bound for f(k). In the sequel we will show that f; is computable, and
that for small & we can actually compute the exact value of f1(k).

Formulas in MU(1) have been widely studied (see, e.g., [I, B, 8, 6, [I1]).
In particular, the following result of Davydov, et al. [3] (a proof is implicitly
present in [1]), shows that formulas in MU(1) can be recursively decomposed
(var(F) denotes the set of variables which occur (positively or negatively) in the
formula F').

Lemma 1 (Davydov, et al. [3]). F € MU(1) if and only if either F = {(}}
or F is the disjoint union of formulas Fy, F3 such that for a variable x we have

e var(F{) Nvar(Fy) = {z} and {z,T} CUpcp C;
e i :={C\{z}:CeF/} e MU®1);
o Fro:={C\{Z}:C e F)} e MUQ).



If F has a variable x with the properties stated in the above lemma, then
following [6] we call the pair (Fy, Fy) a disjunctive splitting of F in x. Note
that z ¢ var(Fy) Uvar(Fy) since the minimal unsatisfiable formulas F; and Fy
contain no pure literals. Furthermore we call the number of clauses of F in
which z occurs the degree of the splitting (Fy, F»).

For example, the formula F = {{x, 2z}, {7, y}, {7y, 2}, {z,w}, {Z,w}} belongs
to MU(1) since it can be decomposed by disjunctive splittings as displayed in
Fig.[M Note that F' € (2,4)-CNF since all clauses have size 2 and every variable
occurs at most 4 times. In general, if we decompose a formula F' by splittings
of degree < s, then evidently every variable of F' occurs in at most s clauses.
Hence we have the following lemma.

{0y {0}
{{z}, {z}} {0y {0}
{{z}, {z,4}, {7}}) {{w}, {w}}

F= {{x, Z}7 {fv y}v {@ Z}7 {Z w}v {Z E}}

(split in )

{03

(split in y) (split in w)

(split in z)

Figure 1: Decomposition of a formula F' € MU(1) by disjunctive splittings.

Lemma 2. If all clauses of a nonempty formula F have size k, then F €
(k,s)-CNFNMU(1) if and only if F' can be decomposed by disjunctive splittings
of degree < s.

3 A Calculus of Integer Sequences

Let ¢ = (a1,...,ay,) be a finite nonincreasing sequence of positive integers (a
stairway, for short). That is, a1 > --- > a, > 1. We call a; an entry of o, n the
length of o, and denote the empty sequence by €. For a finite sequence of non-
negative integers o let 0°'¢ denote the stairway obtained from ¢ by removing
0’s and by ordering the entries nonincreasingly.

For a fixed integer s > 2 we consider the (nondeterministic) binary rule N (s)
that allows to infer a stairway o from stairways o1, 02 as follows: For i = 1,2
obtain ¢} from o; by decrementing s; > 1 entries by one, s1 + s2 < s, and put
o = (o}oh)°rd.

For dealing formally with the rule N(s) in the proofs below, the follow-
ing concept is convenient. Consider stairways o1 = (ai,...,a;) and g2 =
(@j41,--.,am). The definition of N(s) says that a stairway o can be inferred
from 01,09 if and only if there is a set I C {1,...,m} with TN {1,...,5} #0,
IN{j+1,...,m}#0,and |I| < s such that o = (a},...,al,)°"d where

) {ai—l ifiecl,

a; = .
a; otherwise.

We call the set I an index set associated with the inference. Note that the index
set I is not necessarily unique.

An N(s)-derivation is a finite binary rooted tree 7" whose vertices are labeled
by stairways such that if a vertex v labeled by ¢ has parents vy, v, labeled by



o1, 09, respectively, then o can be inferred from o1, 09 by the rule N(s). For a set
of stairways I' and a stairway o we write I' - (,) o if there is an N (s)-derivation
T whose root is labeled by o and whose leaves are labeled by sequences from
I'. In particular, we have I -,y 0 if 0 € I'. If I is a singleton {0’} we simply
write o' (s 0.

As an example, the N(4)-derivation displayed in Fig. 2shows that (3) - (4)
(1,1,1,1,1).

(1,1,1,1,1)

Figure 2: An N (4)-derivation.

Let F = {C1,...,Cp} # 0 be a formula with 0 < |Cy| < -+ < |Cp| <k,
and let n be the largest integer in {1,...,m} with |C,| < k. We associate with
F' the stairway

S(F) = (k — ‘Cl|a sk — |Cn|)

Thus, X (F') is the empty sequence if all clauses of F' have size k.
The next lemma, which can be shown by induction, asserts that N (s)-deriva-
tions and formulas in MU(1) N (k, s)-CNF are closely related.

Lemma 3. For every stairway o the following holds true. (k) =y o if and
only if there is a formula F' € MU(1) such that (i) p(F) = o, (i) all clauses
of F' have size at most k, and (iii) F' can be decomposed by disjunctive splittings
of degree < s.

Proof. (=) Assume (k) () 0 and let T' be an N (s)-derivation of o from (k)
with a minimal number n of inference steps (we count every non-leaf of T as
an inference step). We proceed by induction on n. If n = 0 then o is the
axiom (k) and we put F = {0}. Clearly ¥Xx(F) = (k) and we are done. Now
assume n > 1, and let o1, 09 be the stairways from which o is inferred in T". Let

o1 =(ai,...,a;5), 00 = (aj41,...,am), and o = (c1,...,¢,). Let I C{1,...,m}
be an index set associated with the inference of o from o1, 09, so that we can
write o = (a},...,al,)" .

By induction hypothesis (the subderivations of T ending in o1 and o9, re-
spectively, have less than n steps), there are formulas Fy, F» € MU(1) with
Yk (F;) = o, such that F; can be decomposed by disjunctive splittings of de-
gree < s. We may assume that F; and Fy do not share a variable (we can
always rename variables). Let F/ be the subset of F; containing all clauses of
size k, ¢ = 1,2. Since Xx(F;) = oy, we can write Fi = {Cq,...,C;} U F{ and
Fy ={Cj41,...,Cpn} UF; such that a; = k — |Cj| for i = 1,...,m. We pick a
new variable x and define F := {D1,..., D, } U F{ U F} where

CiU{z} ifielandi<j
Di=<C;u{z} ifielandi>j,
C; otherwise.



Consequently, (Fi, F3) is a disjunctive splitting of F' of degree < s. Since
Yk (F) = o, the first part of the lemma is shown true.

(<) Let F e MU(1), £x(F) = o, be decomposable by disjunctive splittings
of degree < s. We show by induction on the number n of variables of F' that
(k) Fn@sy 0. If n = 0 then F' = {@} and so o = (k); hence (k) Fy(s) 0. Now
assume n > 0. By assumption, F' has a disjunctive splitting (Fy, F») of degree
<'s. Let gy := Xk(F;), ¢ = 1,2. Since |var(F;)| < |var(F)| — 1, it follows by
induction hypothesis that (k) () 0i, i = 1,2. It remains to show that o can
be inferred from oy, 04 by the rule N(s).

By definition of a disjunctive splitting, F' is the disjoint union of formulas
F{, F} such that for a variable x the conditions stated in Lemma [l are satisfied.
Consequently, for some nonempty subsets G; C F;, i = 1,2, we have

Fll = {CU{I‘}ZCEGl}U(Fl\Gl),
F, = {Cu{z}:CeGy}U(F)\Gy).

Since the splitting is of degree < s, |G1| + |G2| < s follows. Every clause in
G1 U G2 corresponds bijectively to an entry a of ¢; which is decreased by one
(thus either @ > 2 and @ — 1 is an entry of o, or a = 1 and a — 1 is omitted in
o). The other clauses C' € F; \ G; with |C| < k correspond bijectively to entries
a =k — |C] of o; which give rise to entries of 0. Thus o can indeed be inferred
from o1, 09 by the rule N(s) and so (k) Fy(s) o follows. O

Note that in general there are many different formulas corresponding to one
N (s)-derivation in the sense of Lemma

For the example in Fig. [l we have F' = {{x, z}, {7, y}, {7, 2}, {Z,w}, {Z,0}}
and ¥3(F) = (1,1,1,1,1). The disjunctive splitting of degree < 4 depicted in
Fig. [ corresponds to the N(4)-derivation in Fig. Bl by means of Lemma

An immediate consequence of Lemma B is the following characterization of
the function f; defined in (). Recall that € denotes the empty sequence.

Theorem 2. fi(k) =min{s: (k) Fy) e} —1.

Proof. Let s > 2 such that (k) Fy(s) €. By Lemma B there exists a formula
F € MU(1), X, (F) = €, which can be decomposed by splittings of degree < s.
Thus variables of F' occur in at most s clauses. Moreover, X (F) = ¢ implies
that all clauses of F' have size k, thus F' € (k, s)-CNF follows. Consequently
fl (k) <s—1.

Now assume fi(k) > s; i.e., (k,s)-CNF N MU(1) = (). Consequently, no
F € MU(1) with X (F) = e can be decomposed by splittings of degree < s. By
Lemmal3] it follows that (k) -, € does not hold. Hence the theorem is shown
true. O

4 Computing f;

The results of the previous section suggest the following saturation algorithm
for determining whether f;(k) < s for given k, s:

e Start with the set So = {(k)}.

e For i > 0, obtain S; as the union of S;_; and the set of all sequences o
which can be inferred from 01,09 € S;_1 by the rule N(s).



If we reach a set S; which contains the empty sequence £ then we stop,
as we then know that fi(k) < s. Otherwise, if we reach a fixed-point i where
S; = Si—_1, then we know f1 (k) > s. We will show below that a refined saturation
algorithm actually terminates, hence that a finite procedure for determining
f1(k) exists.

When we run the saturation algorithm, it is desirable to avoid the derivation
of sequences which are “worse” than other already derived sequences. For ex-
ample, if we have already derived (3,2,1), it is certainly superfluous to add the
sequence (3,3,1) or the sequence (3,2,1,1) to the cumulating set. We will see
below that also, say, (3,3) can be ignored if we already have obtained (3,2, 1).
Formally, we base the comparison of sequences on the following definition.

Let 0,0’ be stairways. We say that ¢’ is obtained from o = (ay,...,a,) by
elementary flattening if one of the following prevails:

1. For some p € {1,...,n} we have o’ = (a},...,a,)°*® where
’ a; —1 if 1 = D,
a; =
! a; otherwise.
2. Consider o to have an additional entry a,4; with value 0. For some
p,q €{1,...,n+ 1} with a, > a4 we have o = (a},...,a},,,)°"d where

a; —1 ifi=p,
ai=<a;+1 ifi=gq,
a; otherwise.
We exclude the case a, = aq + 1 to ensure o # o’.

That is, o’ is obtained by decrementing some entry a,, and possibly incrementing
some smaller entry a,. We say that o’ dominates o if either ¢’ = ¢ or ¢’ can
be obtained from o by multiple applications of elementary flattening.

The next lemma states that if o is dominated by ¢/, then o is “worse” than
o’ in the above sense.

Lemma 4. If o can be inferred from o1,09 by rule N(s), and if o; is dominated
by ol #£¢,i=1,2, then o is dominated by some o' which can be inferred from
o1, 0h by rule N(s).
Proof. Since o; is dominated by o}, o can be obtained from o; by r; applications
of elementary flattening for some r; > 0; in symbols, o; —= ol. We proceed by
induction on r = r; + ro. If r = 0 then o1 = 07, 02 = 0}, and we put ¢’ = 0.

Now assume r > 0. W.l.o.g., we may assume that ro > 0. Hence there is a
stairway o3 such that

oy 2L o5 ER ab.

The induction hypothesis yields that there is a stairway ¢* which dominates o
and can be obtained from o/, 05 by the rule N(s). We have to show that there
exists a stairway o’ which can be obtained from o}, o} by rule N(s) and which
dominates ¢*; i.e., that the diagram

1
! * ! !
0102 — 0102

lN(s) lN(s)

* <1 /
¥ —— o



commutes. Let o} = (a1,...,a;), 05 = (aj+1,...,am), o* = (a},...,a,,)°,
@1 := 0. Furthermore, let by, ..., b, 1 be integers such that o}l = (b1, ..., byi1)
where a; = b; except b, = a, — 1 and possibly b, = a4 + 1 for a, > a4 + 1,
j<p<qg<m+1. Weputo = (b,..., ;nﬂ)ord and define b} in the following

case distinction.

First assume b, > 0 or a, = a;,. We put b; = b; — a; + a;. It follows that o
can be obtained from o* by one elementary flattening, thus ¢’ dominates o*.

Now assume that 0 = b, = a, — 1 = a;,. It follows that no entry a, is
incremented, since otherwise we would have a, < 0. By assumption, ¢4 is not
empty, hence we can pick some ¢t € {j+1,...,m}\{p} with b > 0. If a} = a;—1,
then we put b;, = by and b, = b; — a; + a} for i # p; o' = o* follows (observe
that b; = by — 1). Otherwise, if aj; = a;, then we put b, = by, b; = b; — 1, and
b, = b; —a; + a for i ¢ {p,t}; in this case o’ arises from o* by an elementary
flattening which decrements a;. It follows that ¢’/ dominates o* in any case,
hence in turn, ¢’ dominates o as claimed. O

Repeated application of Lemma Bl yields the following result.

Corollary 1. LetT' and IV be sets of stairways such that every element of T is
dominated by some element of I''. If ' -y, o then o is dominated by some o’
such that Tty sy 0. In particular, T' =) € implies I F () €.

It would be interesting to know if there exists a more general notion of
domination for which Corollary [ holds.

Now it is easy to see that f; is computable: Assume that we want to decide
whether f1(k) < s. First decide whether fi1(k — 1) < s (we can inductively
assume that this is possible); if fi(k — 1) > s then clearly fi(k) > s and we
are done. Otherwise, if fi(k — 1) < s, let T be an N(s)-derivation of ¢ from
(k — 1), and let n denote the number of leaves of T. By changing all axioms
of T from (k — 1) to (k), and by propagating this modification downward in T,
we obtain an N (s)-derivation of the sequence 1", a sequence consisting of n 1s.
Since every sequence of length at least n is dominated by 1", we can ignore all
sequences of length greater than n in the saturation algorithm. On the other
hand, all sequences containing an entry which is greater than k are dominated
by (k); hence it follows that there is a finite number (< (k + 1)™) of sequences
that have to be considered by the saturation algorithm. Hence it can be decided
whether f1(k) < s; thus f; is computable.

Theorem 3. The function f1 is computable.

5 Restricting the Search Space

In this section we present further results which allow to speed up the computa-
tion of fi.

5.1 A Deterministic Rule of Inference

Let o1 = (a1,...,a5), 02 = (aj41,...,a,) be nonempty stairways, and let
(az,...,a5,a542,..., a,)°d = (by,...,bp_2). For given s > 2, we put s’ =
min(s,n) — 2 and we define a stairway

01 g 09 1= (a1 - Laj - 17b1 - 1,...7b51 - 17b5/+1,...,bn,2)0rd.



Thus, o1 @5 02 arises from o102 by decrementing the s largest entries of o109,
ensuring that at least one entry of o1 and at least one entry of o5 is decremented.

Lemma 5. Let 01,09 be stairways. Then o1 ®s oo can be inferred from o1 and
o2 by the rule N(s); moreover, o1 ®s oo dominates all other sequences which
can be inferred from o1 and oo by the rule N(s).

Thus obtaining o1 @ o2 from 01,05 is a special case of an inference by the
rule N(s). We denote the corresponding restricted form of the rule by D(s).

Since every stairway is dominated by the empty sequence ¢, Lemmas Bl and
immediately yield the following result.

Theorem 4. fi(k) =min{s: (k) Fpi e} —1.

In Fig. Bl we give a D(8)-derivation of € from (5), displayed as a sequence
of inference steps. Since there is no D(7)-derivation of ¢ from (5), f1(5) = 7
follows.

o = (5)

o1 = 0y @300—(474) o116 = 012 @3015:(372,271
09 = o0gbgo1 = (4,3,3) o117 = 016 Ps 0'0:(4, ,1,1)
o3 = 09 ®Pgog = (4,3,2,2) o1 = 017 Psg 0'172(3,3,1,1)
o4 = o09®Pgo3 = (473,271,1) o019 = o017 Pgo18 = (372,271)
o5 = o09®Pgoyg = (473,271) o0 = o017Pg0o19 = (372,171,
o = o05®g o5 = (373,272,1,1) 021 = 020 ®Pgog = (4, 71)
(04rd = 05 ®gog = (372,272,171,1,1,1) 092 = 090 ®Dg 021 = (372,171)
o8 = 0g®Pgog = (4,2,2,1,1) 0923 = 090 ®Dg 022 = (2,2,1,1,
09 = o07®g0og = (472,171,171,1) 094 = 090 ®Dg 023 = (271,171,
o9 = o0g8dgog= (473,171) 025 = 024 Pgog = (4,].)

011 = o08®Pgoig = ( s 72,171,1) 026 = 024 Pg0O9s = (371)

o1z = 09®goo=(4,3,1) o7 = 0214Dg02 =(2,1)

o3 = o1 Dsgoo=(4,2,2,1) o8 = 0924 ®goor = (1,1)

o = o12®soi3=(3,3,2,1,1) o029 = 024 ®gog = (1)

o115 = 01208014 = (372,272,1) 030 = 029 @Pgo9g =¢

Figure 3: D(8)-derivation, certifying that f(5) < 7.

5.2 Sequences of Length s — 1 Suffice

In the above argument for showing that f; is computable (Theorem Bl) we estab-
lished an upper bound for the maximum length of sequences we have to consider
for deciding whether f1(k) < s. This upper bound is very large and is not of
practical help for actually determining f1(k) for small k. Next we present a
construction which allows us to restrict the length of the sequences we have to
consider to s — 1.

Let s > 1 and let 0 = (aq,...,ay,) be a stairway of length n > s. Consider
the stairway

/ ord,
a :(ala"'aas—Qvas—l+1aas_17as+17"'7a’n) )

we say that o’ is obtained from o by elementary s-sloping. We can apply
s-sloping to o repeatedly, until we end up with a sequence of length s — 1;

—_
—_
~—

—_
~—

— =
—

—_
~—



we denote this sequence by o], and for any stairway o of length < s, we put
ol* =o0.

The next result allows us for the saturation algorithm to apply s-sloping
before we add a new sequence to the cumulating set.

Theorem 5. Let T' be a set of stairways and let TV := {o|® : 0 € T'}. Then
I'tp(s) € if and only if I Fp(y €.

Proof. (<) Since o always dominates o|?, this direction of the theorem follows
directly from Corollary [

(=) Consider a D(s)-derivation T of € from I'. For every leaf v of T' we
count the number k(v) of times we have to apply s-sloping to the sequence o,
labeling v to obtain o, |*. Let k(T) denote the sum of k(v) over all leaves of T'.
If k(T) = 0 then T is already a D(s)-derivation of € from I/, and we are done.
Hence assume k(7T') > 0. Below we describe a construction which modifies T in
such a way that k(T") is decreased; a repeated application of the construction
yields to the case k(T") = 0.

We pick a leaf vy of T' which is is labeled by o9 = (aq,...,a,) for n > s.

Let vg, ..., v, be the sequence of vertices on the path P from vg to the root
v, of T. We introduce now a notion which will allow us to talk precisely about
what happens to the entries of oy on the path P.

Consider an entry a; of 0g. Following the path P from vg to v,., we can track
the entry a;. At each step of inference, it is either decremented or it retains
its value, until its value reaches 0 (we can always find its new position after

sorting the sequence). We use this procedure to track as,...,a, so that at v;
their values are represented by the sequence A; := (agl) agf )), 1=0,...,7

Using the freedom in the choice of A;, we can make sure that
agi)z---ZaSll fori=0,...,r (3)

We call 7 = (ag ), . a%)) _o a trace of vg. Note that in general, vy has several
possible traces. Slnce T is a D(s)-derivation, it follows that for any transition
from A’ to A", if an entry of A’ is decremented, all strictly larger elements of
A" are decremented as well; we refer to this property of the trace as >-preference.

For entries of A® of equal value, we have some freedom in the choice of the

trace. We assume that if an entry a,i is decremented for ¢t > s, then all entries

agf) §“ for t' < s are decremented as well. We refer to this property of the

trace as =-preference.

Let ip € {1,...,7 — 1} be the smallest index such that aliot = gl _q
(such i exists, since the root v, is labeled by the empty sequence, and so
A, = (0,...,0)). At the transition from A;, to A;,+1 at most s — 1 entries

are decremented; by the pigeon hole principle it follows that at least one aﬁiﬂ),

t < s, is not decremented. <-preference implies af"’ < a?")

implies a( ) < glio)
o) <ol
Now we modify the labels of the vertices v;, i = 0, ..., g, as follows. We can
replace in o, the entries a( )1 and aé” by a(z) +1 and ag D _ 1, respectively (by
(4)

assumption, as’ = as for i <ig). Let 7' denote the new labeled tree. To show
that 7" is an N(s)-derivation, it suffices to justify the labels of vo, ..., vi;+1

, and =-preference
. In view of (@), we may assume that ¢t = s — 1, therefore
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by the rule N(s). This is easy for vp,...,v;,. By assumption, the inference

that yields the label v;,+1 involves decrementing aéiﬂ), (agOH) = aéiﬂ) -1

but aiif)l is not changed (aiiffl) = aizf)l) In T, we simply swap the roles of
these two entries, and obtain the original label of v;, 1. Hence T’ is indeed an
N (s)-derivation and, as we have applied elementary s-sloping to the label of vy,
k(T =k(T)-1.

In order to complete our inductive argument, we transform the N (s)-deriva-
tion T” into a D(s)-derivation T" such that k(T") < k(T"). We apply Lemmas
@A and H along the path P. That is, assume that vertex v;, 1 < i < r is labeled
by a sequence A, and that its parents v;_; and v_; are labeled by A; and Aqg,
respectively. If we change A\ to some sequence \] which dominates A1, then, in
view of Lemmas Bl and B we can change A to \ := \] &, A2 (N dominates \).
We apply this re-labeling to vy, vs,... until we reach a vertex v,» which re-
ceives the label e. The subtree T” rooted in v,» is now a D(s)-derivation with
E(T") < k(T") < k(T) as claimed. Hence, by iteration, we are finally left with
a D(s)-derivation T™* with k(T*) = 0, which is a D(s)-derivation of € from T".
This completes the proof of the theorem. O

)

Corollary 2. There exists an algorithm to calculate f1(k) with running time

O(4F").

Proof. As suggested by previous discussion, consider the following saturation
algorithm, that given k and s decides if ¢ is derivable from (k). Throughout,
the algorithm maintains in its memory a database of known derivable sequences
of length at most s — 1. Initially the database consists of the sequence (k). As
long as possible, the algorithm picks two derivable sequences o1, 02, calculates
(01®02)|°%, and adds it to the database, provided it is not already there and that
it is not dominated by (k). Finally, the algorithm checks if € is in the database.

The maximal possible size of the database is bounded by the number of
integer sequences k > a1 > ag > -+ > as_1 > 0, which is (1”271) < (k + s)*.
Note that & > a; follows from the restriction to sequences not dominated by
(k). To see this, consider the (k+2_1) possible orderings of k£ white balls and
s — 1 black balls. Each such ordering is in one to one correspondence with the
sequence ai,...,as—1, where a; is the number of white balls to the right of the
i-th black ball.

Let M denote the maximal number of sequences in the database, and denote
the time required to calculate (01 ® 02)|® by That- It can be easily verified that
That = O(s + k). We calculate f;(k) by performing a binary search on s, to
determine the maximal value of s such that e is not derivable from (k). It is
not difficult to verify that f(k) < 2¥~2 for a sufficiently large k, either by a
direct proof, or by the results of Hoory and Szeider [5]. Therefore, k& + s may
be bounded by 2¢~1 for large k. It follows that f;(k) can be calculated in time
k- Thae - M? = O(k - (k + 5)20+1) = O(k - 2k D Gk = O(44),

O
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Appendix: A D(12)-Derivation, Certifying that
f(6) <11

oo = (6) 035 = 027 D12 031 070 = 063 P12 00
01 = 00 D12 00 036 = 029 P12 09 071 = 064 P12 00
02 =00 D12 01 037 = 030 D12 034 O72 = 065 P12 071
03 = 00 D12 02 038 = 033 D12 09 073 = 066 D12 071
04 =00 D12 03 039 = 035 D12 035 074 = 068 D12 00
05 = 00 D12 04 040 = 036 D12 00 075 = 069 P12 00
06 = 00 D12 05 041 = 037 D12 09 076 = 070 D12 074
o7 =01 B1201 042 = 033 D12 038 o77 = 072 D12 076
0g = 01 D12 06 043 = 038 D12 040 o78 = 073 D12 00
09 = 01 D12 08 044 = 033 D12 042 079 = 075 D12 075
010 = 01 D12 09 045 = 039 D12 09 080 = 075 D12 079
011 =01 D12010 046 = 040 D12 040 081 = 075 D12 080
012 =01 D12011 047 = 040 D12 043 02 = 075 D12 081
013 = 02 D12 012 048 = 041 P12 09 083 = 077 D12 080
014 = 06 D12 012 049 = 042 D12 046 084 = 078 D12 083
015 = 06 D12 013 050 = 042 D12 047 085 = 079 D12 079
016 = 07 D12 012 051 = 042 D12 048 086 = 079 P12 082
o17 =07 D12013 052 = 044 D12 09 087 = 079 D12 Tsp
018 = 014 P12 00 053 = 045 P12 09 08 = 079 D12 087
019 = 015 D12 00 054 = 049 D12 052 089 = 050 D12 Tss
020 = 016 D12 00 055 = 050 D12 00 090 = 080 D12 089
021 = 017 P12 00 056 = 051 D12 053 091 = 084 P12 00
022 = 018 D12 0 057 = 051 D12 056 092 = 085 D12 090
023 = 018 P12 01 058 = 052 D12 055 093 = 085 D12 092
024 = 018 D12 022 059 = 052 D12 058 094 = 091 D12 093
025 = 019 D12 00 060 = 053 D12 058 095 = 091 D12 094
026 = 020 D12 01 061 = 053 D12 059 096 = 093 D12 095
027 = 021 P12 0p 062 = 054 P12 00 097 = 093 P12 09p
028 = 023 P12 025 063 = 055 D12 055 098 = 097 P12 0p
029 = 023 D12 028 064 = 055 D12 058 099 = 097 D12 09s
030 = 024 D12 00 065 = 057 D12 00 0100 = 097 D12 099
031 = 025 D12 027 066 = 058 D12 060 0101 = 097 D12 0100
032 = 025 D12 028 067 = 060 D12 062 0102 = 097 D12 0101
033 = 025 D12 032 068 = 060 D12 66 0103 = 0102 P12 0102 = €
034 = 026 D12 031 069 = 061 D12 T67

References

[1] R. Aharoni and N. Linial. Minimal non-two-colorable hypergraphs and
minimal unsatisfiable formulas. J. Combin. Theory Ser. A, 43:196-204,
1986.

[2] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness and
satisfiability of bounded occurrence instances of SAT. Technical Report
TR03-022, Electronic Colloquium on Computational Complexity (ECCC),
2003.

12



3]

G. Davydov, I. Davydova, and H. Kleine Biining. An efficient algorithm
for the minimal unsatisfiability problem for a subclass of CNF. Ann. Math.
Artif. Intell., 23:229-245, 1998.

O. Dubois. On the r, s-SAT satisfiability problem and a conjecture of Tovey.
Discr. Appl. Math., 26(1):51-60, 1990.

S. Hoory and S. Szeider. Families of unsatisfiable k-CNF formulas with few
occurrences per variable. Submitted.

H. Kleine Biining and X. Zhao. On the structure of some classes of minimal
unsatisfiable formulas. Discr. Appl. Math., 130(2):185-207, 2003.

J. Kratochvil, P. Savicky, and Z. Tuza. One more occurrence of variables
make satisfiability jump from trivial to NP-complete. Acta Informatica,
30:397-403, 1993.

O. Kullmann. An application of matroid theory to the SAT problem. In
Fifteenth Annual IEEE Conference on Computational Complexity, pages
116-124, 2000.

P. Savicky and J. Sgall. DNF tautologies with a limited number of occur-
rences of every variable. Theoret. Comput. Sci., 238(1-2):495-498, 2000.

J. Stiibrna. Between combinatorics and formal logic. Master’s thesis,
Charles University, Prague, 1994.

S. Szeider. Homomorphisms of conjunctive normal forms. Discr. Appl.
Math., 130(2):351-365, 2003.

C. A. Tovey. A simplified NP-complete satisfiability problem. Discr. Appl.
Math., 8(1):85-89, 1984.

13



	Introduction
	The Class MU(1)
	A Calculus of Integer Sequences
	Computing f1
	Restricting the Search Space
	A Deterministic Rule of Inference
	Sequences of Length s-1 Suffice


