
Inserting an Edge Into a Planar Graph

Carsten Gutwenger� Petra Mutzely Ren�e Weiskircherz

Abstract

Computing a crossing minimum drawing of a given
planar graph G augmented by an additional edge e in
which all crossings involve e, has been a long stand-
ing open problem in graph drawing. Alternatively,
the problem can be stated as �nding a planar combi-
natorial embedding of a planar graph G in which the
given edge e can be inserted with the minimum num-
ber of crossings. Many problems concerned with the
optimization over the set of all combinatorial embed-
dings of a planar graph turned out to be NP-hard.
Surprisingly, we found a conceptually simple linear
time algorithm based on SPQR-trees, which is able
to �nd a crossing minimum solution.

1 Introduction

Crossing minimization is among the most challenging
problems in graph theory and graph drawing. Al-
though, there is a vast amount of literature on this
NP-hard problem (for a survey see, e.g., [13], NP-
hardness is shown in [5]), so far no practically eÆcient
exact algorithm for crossing minimization is known.
Currently, the best known approach for crossing min-
imization is based on planarization. Here, in a �rst
step, the minimum number of edges is deleted so that
the resulting graph is planar. Then, the edges are it-
eratively reinserted into the planar subgraph so that
the number of crossings is minimized. So far, this is
done in the following way: Fix an arbitrary combi-

�Max{Planck{Institut f�ur Informatik, Im Stadtwald, 66123
Saarbr�ucken, Germany

yTechnische Universit�at Wien E186, Favoritenstra�e 9-11,
1040 Wien, Austria

zTechnische Universit�at Wien E186, Favoritenstra�e 9-11,
1040 Wien, Austria

natorial embedding � of the planar subgraph P and
reinsert the �rst deleted edge e1. This is done by solv-
ing a shortest path problem in the augmented (geo-
metrical) dual graph of P associated with �, since
every crossing of e1 and an edge f corresponds to us-
ing an edge in the dual graph. Then, the crossings
are substituted by arti�cial vertices, yielding a pla-
nar graph again. Now, the next edge can be inserted,
and so on.

One criticism of the planarization method was that
when choosing a \bad" embedding in the edge rein-
sertion phase, the number of crossings may get much
higher than necessary [8]. Hence, the question arose
if there is a polynomial time algorithm for inserting
an edge into the planar subgraph P so that the num-
ber of crossings is minimized. Thereby, the task is
to optimize over the set of all possible combinatorial
embeddings of P .

While it is possible to compute an arbitrary combi-
natorial embedding for a planar graph in linear time
[10, 4], it is often hard to optimize over the set of all
possible combinatorial embeddings. E.g., the prob-
lem of bend minimization can be solved in polynomial
time for a �xed combinatorial embedding [14], while
it is NP-hard over the set of all combinatorial embed-
dings [6]. When a linear function of polynomial size
is de�ned on the cycles of a graph, it is NP-hard to
�nd the embedding that maximizes the value of the
cycles that are face cycles in the embedding [12, 11].
Note that the number of combinatorial embeddings
of a planar graph may be exponential.

This paper shows that the edge reinsertion problem
can be solved in polynomial time, thus solving a long
standing open problem in graph drawing. We present
a conceptually simple linear time algorithm based on
SPQR-trees which is able to solve the edge reinsertion
problem to optimality.

1

A graph is planar if it can be drawn in the plane
without any edge crossings. (Combinatorial) em-
beddings are equivalence classes of planar drawings
which can be de�ned by the sequence of the edges
around each vertex in a drawing. We consider two
drawings of the same graph equivalent, if the circular
sequences of the adjacent edges around each node in
clockwise order is the same. We say that they realize
the same combinatorial embedding.

Figure 1 shows a simple case where the choice of the
combinatorial embedding of the planar subgraph has
an impact on the number of crossings produced when
inserting the dashed edge. When choosing the em-
bedding of Figure 1(a) for the planar subgraph (with-
out the dashed edge), we get two crossings, while the
optimal crossing number over the set of all combina-
torial embeddings is one (see Fig. 1(b)).

Formally, we de�ne the edge insertion problem as
follows: Given a planar graph G = (V;E) and a pair
of vertices (v1; v2) in G, �nd an embedding � of G
such that we can add the edge e = (v1; v2) to � with
the minimum possible number of crossings among all
embeddings of G. We will present an algorithm that
is able to solve the problem in linear time.

Note that the solution produced by our algorithm
does not necessarily lead to a drawing of the graph
G0 = (V;E[feg) with the minimum number of cross-
ings. The reason is that there may not always be a
drawing with the minimum number of crossings in
which a maximum planar subgraph is drawn without
crossings.

In Section 2, we give a brief overview of SPQR-
trees and de�ne a few concepts we need. Section 3
contains the algorithm for solving our problem for bi-
connected graphs and mentions brie
y the extension
of the algorithm for general planar graphs. We also
prove the correctness and discuss the running time.
Section 4 gives our computational experiments on a
set of benchmark graphs. They show that our algo-
rithm produces signi�cant improvements compared
with the state-of-the-art insertion method. The last
section addresses an interesting open problem.

1
2

3

4

6

5

7

9

8

(a)

1
2

3

4

6

5
9

8 7

(b)

Figure 1: The number of crossings when inserting an
edge highly depends on the chosen embedding

2 Preliminaries

In this section, we give a brief overview of the SPQR-
tree data structure for biconnected graphs. A con-
nected graph is biconnected if it contains no vertex
whose removal splits the graph into two or more com-
ponents. SPQR-trees have been suggested by Di Bat-
tista and Tamassia [3]. They represent a decomposi-
tion of a biconnected graph into triconnected compo-
nents. A connected graph is triconnected, if there is
no pair of vertices in the graph whose removal splits
the graph into two or more components.

The structure of the SPQR-tree T for a graph G

is determined by the split pairs of G. These are

pairs of vertices that are either connected by an edge
or whose removal splits the graph into components.
These components are called the split components of
the split pair.
An SPQR-tree has four types of nodes and with

each node is associated a biconnected graph which is
called the skeleton of that node. This graph can be
seen as a simpli�ed version of the original graph and
its vertices are vertices of the original graph. If (u; v)
is and edge in a skeleton of a node in the SPQR-tree
T of a graph G, then the vertices u and v are a split
pair of G and the edge (u; v) represents one or several
split components of the split pair (u; v).

1. Q-node: The skeleton consists of two vertices
connected by two edges. One of the edges repre-
sents an edge of the original graph and the other
one the rest of the graph. There is exactly oneQ-
node for each edge in the graph and these nodes
are the leaves of the SPQR-tree (the nodes with
degree one).

2. S-node: The skeleton is a simple cycle with at
least 3 vertices (see Fig. 2(a)).

3. P -node: The skeleton consists of two vertices
connected by at least three edges (see Fig. 2(b)).

4. R-node: The skeleton is a triconnected graph
with at least four vertices (see Fig. 2(c)).

Except for the edges in the skeletons of Q-nodes
that represent an edge of the original graph, all edges
in the skeletons correspond to exactly one edge in
the SPQR-tree and each edge in the SPQR-tree cor-
responds to exactly one edge in each of the the two
skeletons of the nodes that it connects. These two
edges in the two skeletons of adjacent nodes are called
twin edges because they correspond to the same edge
in the SPQR-tree and they connect the same vertices.
As a consequence, every vertex of the original graph
is contained in at least three skeletons (it is contained
in at least two Q-node skeletons because every ver-
tex in a biconnected graph has at least degree two
and in at least one skeleton of an inner node of the
SPQR-tree). For each vertex v in the original graph,
we call all nodes in the SPQR-tree whose skeletons

(a) S-node (b) P-node

(c) R-node

Figure 2: The skeletons of the three inner node types
of SPQR-trees and how there edges correspond to
subgraphs

contain v the allocation nodes of v. They will play
an important role in our algorithm.

When we see the SPQR-tree as an unrooted tree,
then it is unique for each biconnected planar graph.
Another important property of these trees is that
their size (including the skeletons) is linear in the
size of the original graph and that they can be con-
structed in linear time [7].

As described in [3], SPQR-trees can be used to rep-
resent all combinatorial embeddings of a biconnected
planar graph. This is done by choosing embeddings
for the skeletons of the nodes in the tree. The skele-
tons of S- and Q-nodes are simple cycles, so they
have only one embedding. Therefore, we only have
to look at the skeletons of R- and P -nodes. The
skeletons of R-nodes are triconnected graphs. Our
de�nition of combinatorial embeddings distinguishes
between two combinatorial embeddings of a tricon-

nected graph, which are mirror-images of each other
(the circular order of the edges around each vertex
in clockwise order is reversed in the second embed-
ding). The number of di�erent embeddings of a P -
node skeleton is (k � 1)! where k is the number of
edges in the skeleton.
Every combinatorial embedding of the original

graph de�nes a unique combinatorial embedding for
each skeleton of a node in the SPQR-tree. Con-
versely, when we de�ne an embedding for each skele-
ton of a node in the SPQR-tree, we de�ne a unique
embedding for the original graph.
In this paper, we describe an algorithm for solv-

ing the following problem: Given a planar graph G

and two non-adjacent vertices, �nd an optimal edge
insertion path and a corresponding embedding � of
G for this path. So �rst we have to de�ne what is
meant by the term edge insertion path.

De�nition 1 Let v1 and v2 be two non-adjacent
vertices in a planar graph G and � a combinatorial
embedding of G. Let G� be the dual graph of G with
respect to �. By �e, we denote the edge in G� cor-
responding to edge e in G. With �f we denote the
vertex in G� corresponding to face f in �. Then the
list L = (e1; : : : ; ek) of edges in G is an edge inser-
tion path for v1 and v2 in G with respect to � if the
following conditions are satis�ed:

1. There is a face in � with e1 and v1 on its bound-
ary.

2. There is a face in � with ek and v2 on its bound-
ary.

3. �L = (e1; : : : ; ek) represents a path in G�.

This basically means that we can add the edge
(v1; v2) to � with k crossings, each involving edge
ei for 1 � i � k and the edge (v1; v2). We call an
edge insertion path an optimal edge insertion path
for v1 and v2, when there is no shorter edge insertion
path for v1 and v2 with respect to any combinatorial
embedding of the graph.
Figure 3 shows three di�erent edge insertion paths

for v1 and v2 with respect to the embedding realized
by the drawing. The three paths are the empty path,

e1

e2

e3

e4

e5

e6

v1

v2

Figure 3: Three di�erent edge insertion paths for v1
and v2

the path (e1; e2; e3) and the path (e4; e5; e6). In this
case, the empty path is the only optimal edge inser-
tion path for v1 and v2.
In the description of our algorithm we will need

the notation of the expansion graph of an edge e =
fv1; v2g in a skeleton of a node v in an SPQR-tree
T . As already stated, each skeleton edge is associ-
ated with a tree edge. We can produce the expan-
sion graph of e as follows: We remove the tree edge
eT = (v; w) associated with e from T splitting T into
two trees T1 (the part containing v) and T2. Now
we transform T2 into an SPQR-tree T 0

2 by adding a
Q-node to T2 adjacent to w. This new Q-node rep-
resents e. The biconnected graph whose SPQR-tree
is T 0

2 is called the expansion graph of e.

3 The algorithm

We will �rst present the algorithm for biconnected
graphs, proof its correctness and optimality and then
brie
y mention its extension for connected planar
graphs and general planar graphs. One term we will
use in our algorithm is the augmentation of a dual
graph with two vertices.

De�nition 2 Let v1 and v2 be two vertices in the
planar graph G and � be an embedding of G. Let
G� be the dual graph of G with respect to embedding

�. We say the graph G�

0

has been obtained by aug-
menting G� with v1 and v2, if it was constructed by
adding v1 and v2 to G� and inserting edges from vi
to all vertices in G� representing faces in � with vi
on their boundary for i 2 f1; 2g.

Algorithm 1 computes an optimal edge insertion
path for a biconnected planar graph and two non-
adjacent vertices in this graph. As already mentioned
in section 2, the term allocation node of a vertex v in
a graph G used in the algorithm refers to a node in
the SPQR-tree T of G with v in its skeleton. We say
an edge e in a skeleton represents a vertex v of G if
v is contained in its expansion graph. By expanding
an edge e in a skeleton, we mean replacing this edge
by its expansion graph where we have removed the
edge e. Expanding all edges in a skeleton results in
the original graph.
We use the fact that any embedding of G is

uniquely de�ned by the embedding of every skeleton
in T . Our algorithm solves the problem of �nding
an optimal edge insertion path for v1 and v2 in G

by �nding optimal edge insertion paths in the skele-
tons of certain nodes in the SPQR-tree T of G where
we expanded certain edges and then concatenating
them. We only have to do this for nodes of T that lie
on the shortest path P in T connecting an allocation
node of v1 and v2. Note that this path is uniquely
de�ned because T is a tree.
We don't have to consider the nodes in the SPQR-

tree that are not on P because their embedding does
not in
uence the length of a shortest edge insertion
path. If we look at two embeddings �1 and �2 of G
that only di�er in the embedding of the SPQR-nodes
that are not on P , then for every optimal edge inser-
tion path for v1 and v2 with respect to �1 there exists
an optimal edge insertion path for v1 and v2 with re-
spect to �2 that contains the same edges (though the
sequence may di�er) and vice versa. This is shown in
the proof of theorem 2.
For each of the nodes v on P with skeleton S, each

of the vertices v1 and v2 is either present in S or rep-
resented by an edge. If the latter is the case, we split
this edge by inserting an arti�cial vertex. So there
will always be a representative for v1 and v2 in the
resulting graph. Then we compute an optimal edge

Algorithm 1: Algorithm OptimalBlockInserter

for computing an optimal edge insertion path for a
pair of non-adjacent nodes in a biconnected planar
graph

Input: A biconnected planar graph G, and two
non-adjacent vertices v1 and v2 in G.

Result: An optimal edge insertion path L for v1
and v2 with respect to some embedding
� of G

begin

Compute the SPQR-tree T of G;
L ();
Determine arbitrary allocation nodes �1 of
v1 and �2 of v2;
Find the path P1 in T starting at �1 and
ending at �2;
Delete nodes from the start and end of P1
until we have produced the shortest path P2
in T from an allocation node of v1 to an al-
location node of v2;
Delete all nodes from P2 except the R-nodes,
producing the list P3 of nodes in T ;
while P3 is not empty do

Pop the �rst node v from P3 and let S be
its skeleton;
if v1 is in S then

x1 v1;

else

Split the edge representing v1 in S by
inserting a new vertex y1;
Mark the two edges produced by the
split;
x1 y1;

if v2 is in S then

x2 v2;

else

Split the edge representing v2 in S by
inserting a new vertex y2;
Mark the two edges produced by the
split;
x2 y2;

Expand all unmarked edges in S;
Compute an arbitrary embedding � for
S;
Compute the dual graph S�;
Augment S� with x1 and x2;
Compute the shortest path L0 in S� from
x1 to x2;
Delete the �rst and the last edge in L0;
Replace every dual edge in L0 by its pri-
mal counterpart;
Append L0 to L;

end

insertion path connecting the two representatives in
the graph that we get by expanding all edges in the
skeleton except the ones that we have split. It is not
hard to see that such an optimal edge insertion path
will always be empty if v is a P - or S-node. So our
algorithm only has to deal with the R-nodes on P .
Computing such an optimal edge insertion path in

an R-node skeleton where edges have been expanded
is not hard since the skeletons of R-nodes are tricon-
nected graphs. Therefore, they have only two di�er-
ent combinatorial embeddings that are mirror images
of each other. If we compute an optimal edge inser-
tion path for one embedding, it will also be an opti-
mal edge insertion path for the other embedding. We
can compute the edge insertion path for a �xed em-
bedding using a shortest path algorithm on the dual
graph. The embedding we choose for the expansion
graphs does not matter for the length of a shortest
edge insertion path. This is shown in the proof of
theorem 2.
Algorithm 1 only computes an edge insertion path

L for the two vertices v1 and v2, but there is a simple
way for �nding an embedding � such that L is an
edge insertion path for v1 and v2 with respect to �.
We just split every edge in L by introducing new
vertices and connect these vertices with edges to form
a path starting at v1 and ending at v2. Since L is
an edge insertion path, the graph G0 generated by
this operation is planar. Therefore, we can compute
a combinatorial embedding �0 for G0 in linear time.
When we replace all the split edges in �0 with the
original edges, we get a combinatorial embedding �
for G with the property that L is an edge insertion
path for v1 and v2 with respect to �.
We show correctness of the algorithm in two parts.

Theorem 1 Given a planar biconnected graph G

and two non-adjacent vertices v1 and v2 in G, Algo-
rithm 1 computes a list of edges L such that L repre-
sents an edge insertion path for v1 and v2 with respect
to some embedding � of G.

Proof (sketch) The proof centers on the nodes of
T on path P2. The reason for not using P3 (the set of
nodes that the algorithm works on) is that the task of
the algorithm is to compute the edge insertion path
L, while in this proof, we have to compute an embed-

ding � and show that the edge insertion path com-
puted by the algorithm is valid for the embedding.
To compute the edge insertion path, we don't have
to look at all the skeletons in T but if we want to de-
�ne an embedding, we have to de�ne an embedding
for every skeleton.
Let P2 be given by the sequence P2 = (p1; : : : ; pk)

of nodes in T . p1 is an allocation node of v1 and pk
is an allocation node of v2. So the skeleton of p1 con-
tains v1 and the skeleton of pk contains v2 (note that
p1 and pk might be identical). By the construction
of P2, none of the nodes pi with 1 < i < k has the
vertex v1 or v2 in its skeleton.
The case k = 1 is not hard to verify, so assume

k > 1. For i = 1; : : : ; k � 1, let Gi be the graph
obtained from the skeleton of pi by expanding all
skeleton edges except for the representative e2 of v2
and then replacing e2 by a path of length two linked
by the new node ri. Furthermore, let Gk = G and
rk = v2. We will show by induction that for each
i 2 f1; : : : ; kg there is a combinatorial embedding �i

of Gi such that the edges in L which are also con-
tained in Gi form a pre�x Li of L and Li is an edge
insertion path for v1 and ri with respect to �i. Thus,
�k is an embedding for G and Lk = L is an edge in-
sertion path for G with respect to �k . So �k is the
embedding � of the theorem.
We construct �k iteratively. The construction is

done in k stages. We build graphGi for i 2 f1; : : : ; kg
and for each of these graphs we construct an embed-
ding �i. Each graph Gi for 1 � i < k can be con-
structed from Gi+1 by replacing a subgraph with a
path of two edges. The inner vertex of this path is
ri.
We prove that for all i 2 f1; : : : ; k � 1g, the pre�x

Li of L with the property that all edges of Li are
contained in Gi is an edge insertion path for v1 and
ri with respect to �i and that the suÆx of L following
Li does not contain any edges from Gi. Each Li with
i 2 f1; : : : ; k � 1g is a pre�x of Li+1 (see Fig. 4).
We only show the induction step: Assume that we

have already constructed the graph Gl�1 and the em-
bedding �l�1 and we want to construct graph Gl and
the embedding �l. To do this, we start with the skele-
ton of pl and construct the graph G0

l
by expanding

all the skeleton edges whose expansion graph contains

v1

ri

Li

Figure 4: The graph Gi of stage i in the proof for
Theorem 1

neither v1 nor v2 (if we expanded all the edges, we
would produce the original graph G). The edge e1
whose expansion graph contains v1 forms the link to
Gl�1 and the edge e2 with v2 in the expansion graph
forms the link to G0

l+1 (in the case l = k, e2 does not
exist because v2 is a vertex in the skeleton of pk).

We replace e1 with a path of two edges connected
by vertex rl�1 and, if l < k, e2 with a path of two
edges connected by vertex rl. We claim that the sub-
sequence S of L containing only edges in G0

l
is an

edge insertion path for rl�1 and rl with respect to
some embedding �0

l
of G0

l
. If pl is an S- or P -node,

Algorithm 1 has not added any edges contained in
G0

l
to L, so S is empty. In the �rst case, the removal

of rl�1 and rl will disconnect G
0

l
and so any embed-

ding of G0

l
has the property that we can insert the

edge (rl�1; rl) without crossings (see Fig. 5(a)). In
the second case, it is easy to construct an embed-
ding in which rl�1 and rl are on the boundary of
the same face (see Fig 5(b)). If pl is an R-node, we
have computed an edge insertion path for rl�1 and
rl in Algorithm 1 and this edge insertion path works
for both embeddings of G0

l
because they are mirror

images of each other.

Now we need to combine the embedding �0

l
with

the embedding �l�1 computed in the previous steps
to produce embedding �l of Gl. When we do this
correctly (omitted), we can afterwards guarantee that
a pre�x Ll of L is an edge insertion path for v1 and
rl in Gl with respect to embedding �l. �

Theorem 2 Algorithm 1 computes an optimal edge
insertion path for v1 and v2.

rl

rl�1

(a)

rlrl�1

(b)

Figure 5: The cases where pl is an S- or P -node

Proof (sketch) We have already seen that Algo-
rithm 1 computes an edge insertion path for v1 and
v2, so let L be the computed path with respect to
embedding �. We need to show that each edge inser-
tion path for v1 and v2 has length at least jLj. Let
L0 be an arbitrary edge insertion path with respect
to some embedding �0.

Let Gi be the graph we get by expanding all edges
in the skeleton of node pi on P2 except the represen-
tatives of v1 and v2. If we assume jL0j < jLj, then
there must be at least one R-node pl on P2 with the
property that the path P 0 in the dual of Gl de�ned
by L0 is shorter then the path P de�ned by L.

We consider the skeleton Sl of pl. We have com-
puted Gl by expanding all edges except for the ones

whose expansion graph contains v1 or v2 (the repre-
sentatives of v1 and v2) and replacing the represen-
tatives with paths of two edges linked by the vertices
rl�1 an rl. The important observation is that the em-
bedding we choose for the expansion graphs has no
in
uence on the length of a shortest edge insertion
path for rl�1 and rl.

Intuitively this can be seen as follows: An edge in-
sertion path P in Gl de�nes an edge insertion path
PS in Sl. When PS does not include some edge e of
the skeleton, the embedding of the expansion graph
X(e) of e is obviously irrelevant, because P does not
cross any of the edges in X(e). Now we assume that
PS includes e. So PS connects the face F1 left of e
with the face F2 right of e by crossing e. In a corre-
sponding embedding of Gl, P must connect the face
left of X(e) with the face right of X(e). Therefore
it must traverse the graph X(e). An optimal path
for traversing X(e) will produce the same number of
crossings no matter how X(e) is embedded, only the
sequence of the crossed edges changes. This can be
shown by structural induction on the SPQR-tree.

An embedding of Gl is determined by the em-
bedding of Sl and the embeddings of the expansion
graphs. The embeddings of the expansion graphs are
irrelevant and there are only two embeddings of Sl
which are mirror images of each other. Therefore, we
can choose an arbitrary embedding of Gl to compute
the edge insertion path. So there can be no shorter
edge insertion path P 0 for rl�1 and rl in Gl and our
algorithm must compute an optimal edge insertion
path. �

The linear running time is not hard to see: A pla-
nar graph with n vertices has at most 3n � 6 edges
(if we assume that there are no multi-edge and no
self loops). We can compute an SPQR-tree in linear
time and the size of the tree including the skeletons
is also linear. Thus we can compute the paths P1, P2
and P3 in linear time. Two graphs G1 and G2 com-
puted in the while-loop of Algorithm 1 share at most
two vertices and are (except for a constant number
of nodes and edges) subgraphs of the original graph.
Computing arbitrary embeddings and computing a
shortest path in the dual graph with breadth �rst
search can be done in linear time so the running time

of the while-loop is linear in the size of the original
graph.

To deal with connected planar graphs, we use al-
gorithm 1 as a subroutine. We use a data structure
called the block tree. This tree has two types of nodes:
The B�nodes correspond to biconnected components
of the original graph G and the V�nodes to the ver-
tices. The B�nodes contain the SPQR-trees of the
biconnected component they represent. There are
only edges between V� and B�nodes. An edge is
present between a V�node and a B�node, if the
corresponding vertex is contained in the component
represented by the B�node.

Our algorithm �rst computes the path P in the
block tree B of G connecting v1 and v2. For each
B�node b on this path, the two representatives of v1
and v2 are computed. The representative of vertex
vi for i 2 f1; 2g is either vi itself if it is contained in
the biconnected component c represented by b or the
vertex represented by the next V�node on the path
from b to vi. Using algorithm 1, an optimal edge
insertion path for v1 and v2 in c is computed. The
result of the algorithm is the concatenation of all the
edge insertion paths computed for all B�nodes on P .

In the proof of the correctness of the algorithm
(which is omitted here because of space considera-
tions), we �rst show that an optimal edge insertion
path for v1 and v2 will not cross any edge in a bi-
connected component of G that is not represented
by a B�node on P . We show that for any edge in-
sertion path that crosses edges of components not
represented on P , we can construct a shorter edge
insertion path by deleting a subpath of the edge in-
sertion path. Using the correctness and optimality
of algorithm 1, we then proof by contradiction that
there can be no shorter edge insertion path for v1 and
v2 in G than the one computed by our algorithm.

It is easy to extend the algorithm to planar graphs
that are not connected. If the two vertices we want
to connect by an edge are contained in the same con-
nected component, we can use the algorithm for con-
nected graphs. Otherwise, we can always connect the
edges without introducing a crossing.

4 Computational experiments

We have implemented our algorithm using AGD [1],
a library of algorithms for graph drawing, which con-
tains a state-of-the-art implementation of crossing
minimization using planarization and a linear time
implementation of SPQR-trees [7]. In our tests, we
use the 8249 non-planar graphs from a benchmark
set collected by Di Battista et al. [2] ranging from
10 to 100 vertices. The planar subgraph is computed
using the AGD implementation of [9]. In 10:1% (831
graphs) of our benchmark graphs the planar sub-
graphs resulted from deleting a single edge. In these
instances, our algorithm is direct applicable. In the
remaining cases, we insert the edges iteratively (see
Section 1) applying our new algorithm. It is not hard
to show that the resulting graphs Gi after every iter-
ation i satisfy the following property: In every com-
binatorial embedding of Gi all arti�cial vertices rep-
resent real crossings.
We compare the number of crossings produced by

our approach with the number of crossings produced
by the standard algorithm described in the introduc-
tion. Notice that, since we insert the edges iteratively
in the second phase of the planarization method, the
impact of optimally inserting one edge is not obvious.
Figure 6 visualizes the tremendous improvement

achieved by our new algorithm. It displays for each
graph the relative improvement IR of the number
of crossings in percent. Let cs denote the number
of crossings by the standard algorithm and cn de-
note our new edge insertion algorithm, then IR =
cs�cn

cs
100%.

For 68% out of the 8249 tested non-planar graphs,
the crossing number was smaller using our new
method and for only 8% it was greater. The aver-
age relative improvement was 14:42% in total. The
maximum improvement was 85:71%. This happened
for a graph with 39 vertices and 56 edges. The stan-
dard algorithm produced 7 crossings whereas our new
algorithm only 1. The maximum negative improve-
ment was �100% for a graph with 65 vertices and
76 edges. Here, the standard algorithm produced 2
crossings and the new algorithm 4 crossings. The av-
erage number of crossings produced by the standard
algorithm grows from 1:29 for graphs with 11 ver-

tices to 57:86 for graphs with 100 vertices, whereas
the numbers grow from 1:29 to 49:83 for our new al-
gorithm.

The two �gures 7 and 8 show the running time
of the reinsertion step of the planarization method
when the algorithm presented in this paper is used.
In Fig. 7, we computed the average time needed for
reinserting all edges for all graphs with the same num-
ber of vertices, while in Fig. 8, we computed the aver-
age time needed for the reinsertion step for all graphs
where the same number of edges had to be reinserted.
It seems that the time needed for the reinsertion step
grows cubic with the number of nodes and almost
quadratic with the number of edges that have to be
reinserted.

The reason for these two facts is that the number
of edges we have to reinsert grows roughly linear with
the number of vertices in the graphs of our test suit
and that whenever we reinsert one edge, the reinser-
tion of the next edge takes more time because the
graph where we have to reinsert the edge is larger
than before. Each reinsertion adds at least two edges
and one vertex to the graph. The reason is that we
can not reinsert the edge without producing at least
one crossing, so we have to add at least one arti�-
cial vertex to make the graph planar again. So the
insertion of a single edge is done in linear time with
respect to the size of the graph where its is inserted,
but the graph grows linearly with every reinserted
edge.

5 Open problems

Our algorithm computes the optimum embedding of
a planar graph for inserting an additional edge with
respect to the number of crossings. It may be inter-
esting to explore the connection of this problem with
the general crossing minimization problem.
An interesting question is the following: Consider

a graph with skewness one, i.e., a non-planar graph
that can be made planar by deleting a single edge.
All maximum planar subgraphs of the graph can be
found in quadratic time by testing planarity of each
subgraph constructed by deleting one edge. If we take
the maximum planar subgraphs and apply our algo-

rithm to reinsert the deleted edge with the minimum
number of crossings, do we always produce a draw-
ing of the original graph with the minimum number
of crossings?

References

[1] AGD User Manual (Version 1.1), 1999. Univer-
sit�at Wien, Max-Planck-Institut Saarbr�ucken,
Universit�at Trier, Universit�at zu K�oln. See also
http://www.mpi-sb.mpg.de/AGD/.

[2] G. Di Battista, A. Garg, G. Liotta, R. Tamas-
sia, E. Tassinari, and F. Vargiu. An experimen-
tal comparison of four graph drawing algorithms.
Comput. Geom. Theory Appl., 7:303{326, 1997.

[3] G. Di Battista and R. Tamassia. On-line pla-
narity testing. SIAM Journal on Computing,
25(5):956{997, 1996.

[4] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa.
A linear algorithm for embedding planar graphs
using PQ-trees. J. of Computer and System Sci-
ences, 30(1):54{76, 1985.

[5] M. R. Garey and D. S. Johnson. Crossing num-
ber is NP-complete. SIAM Journal Alg. Disc.
Methods, 4:312{316, 1983.

[6] A. Garg and R. Tamassia. On the computa-
tional complexity of upward and rectilinear pla-
narity testing. Lecture Notes in Computer Sci-
ence, 894:286{297, 1995.

[7] C. Gutwenger and P. Mutzel. A linear time im-
plementation of spqr trees. In J. Marks, edi-
tor, Graph Drawing (Proc. 2000), volume 1984
of Lecture Notes in Computer Science, pages 77{
90. Springer-Verlag, 2001.

[8] D. Harel and M. Sardas. Randomized graph
drawing with heavy duty preprocessing. Ad-
vanced Visual Interfaces, pages 19{33, 1994.

[9] M. J�unger, S. Leipert, and P. Mutzel. A note
on computing a maximal planar subgraph us-
ing PQ-trees. IEEE Transactions on Computer-
Aided Design, 17(7):609{612, 1998.

[10] K. Mehlhorn and P. Mutzel. On the embed-
ding phase of the Hopcroft and Tarjan planarity
testing algorithm. Algorithmica, 16(2):233{242,
1996.

[11] P. Mutzel and R. Weiskircher. Optimizing over
all combinatorial embeddings of a planar graph.
In G. Cornu�ejols, R. Burkard, and G. W�oginger,
editors, Proceedings of the Seventh Conference
on Integer Programming and Combinatorial Op-
timization (IPCO), volume 1610 of LNCS, pages
361{376. Springer Verlag, 1999.

[12] P. Mutzel and R. Weiskircher. Computing opti-
mal embeddings for planar graphs. In Proceed-
ings of the Sixth Annual International Comput-
ing and Combinatorics Conference (COCOON),
LNCS, pages 95{104. Springer Verlag, 2000.

[13] F. Shahrokhi, L. A. Sz�ekely, and I. Vrt�o. Cross-
ing numbers of graphs, lower bound techniques
and algorithms: a survey. In R. Tamassia
and I. G. Tollis, editors, Graph Drawing, vol-
ume 894 of Lecture Notes in Computer Science,
pages 131{142. DIMACS, Springer-Verlag, Oc-
tober 1994. ISBN 3-540-58950-3.

[14] R. Tamassia. On embedding a graph in the
grid with the minimum number of bends. SIAM
Journal on Computing, 16(3):421{444, 1987.

-100

-50

0

50

100

20 40 60 80 100

P
er

ce
nt

ag
e

Number of vertices

Relative improvement in percent

Figure 6: Relative improvement for each graph

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 40 60 80 100

S
ec

on
ds

Nodes

Reinsertion time
.000000347571428571*x**3

Figure 7: Average time needed for reinserting the edges in the planarization method using the optimal
method for inserting an edge into a planar graph

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

S
ec

on
ds

Inserted Edges

Reinsertion time
.00079986149584487534*x**2

Figure 8: Average time needed for reinsertion when the average is computed for all graphs where the same
number of edges have to be reinserted

