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Abstract

The profile of a graph is an integer-valued parameter defined via vertex orderings; it

is known that the profile of a graph equals the smallest number of edges of an interval

supergraph. Since computing the profile of a graph is an NP-hard problem, we consider

parameterized versions of the problem. Namely, we study the problem of deciding whether

the profile of a connected graph of order n is at most n − 1 + k, considering k as the

parameter; this is a parameterization above guaranteed value, since n − 1 is a tight lower

bound for the profile. We present two fixed-parameter algorithms for this problem. The

first algorithm is based on a forbidden subgraph characterization of interval graphs. The

second algorithm is based on two simple kernelization rules which allow us to produce a

kernel with linear number of vertices and edges. For showing the correctness of the second

algorithm we need to establish structural properties of graphs with small profile which are

of independent interest.

1 Introduction

The profile is an integer-valued graph parameter defined via vertex orderings: the profile of an
ordering α : V → {1, . . . , |V |} of a graph G = (V, E) is defined as

prfα(G) =
∑

v∈V

α(v) − min{α(w) : w ∈ N [v] }

where N [v] = {u ∈ V : uv ∈ E} ∪ {v}, the closed neighborhood of v; the profile of G is the
smallest profile of all orderings α of G.

Areas of application of the profile and equivalent parameters include computational biology
[4, 10], archaeology [15] and clone fingerprinting [14]. Fomin and Golovach [8] established
the equivalence of the profile and other parameters including one that is important in graph
searching.

It is well known that computing the profile of a given graph is NP-hard [6, 17]. In fact, via
the following relationship to interval graphs, the NP-hardness follows from earlier results [9]: It
is known from a result of Billionnet [3] that the profile of a graph G equals the smallest number
of edges of an interval supergraph of G. In view of this NP-hardness, it makes sense to study
the problem in the framework of parameterized complexity. We recall some basic notions of
parameterized complexity here, for a more in-depth treatment of the topic we refer the reader
to [2, 7, 18].
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A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem
instance and k (usually an integer) is the parameter. Π is called fixed-parameter tractable (FPT)
if membership of (I, k) in Π can be decided in time O(f(k)|I|c), where |I| is the size of I, f(k)
is a computable function, and c is a constant independent from k and I. Let Π and Π′ be
parameterized problems with parameters k and k′, respectively. An fpt-reduction R from Π
to Π′ is a many-to-one transformation from Π to Π′, such that (i) (I, k) ∈ Π if and only if
(I ′, k′) ∈ Π′ with |k′| ≤ g(k) for a fixed computable function g and (ii) R is of complexity
O(f(k)|I|c). A reduction to problem kernel (or kernelization) is a polynomial time fpt-reduction
R from a parameterized problem Π to itself such that |I ′| ≤ h(k) for a fixed computable function
h. In kernelization, an instance (I, k) is reduced to another instance (I ′, k′), which is called the
problem kernel ; |I ′| is the size of the kernel.

It is easy to see that a decidable parameterized problem is FPT if and only if it admits a
kernelization (see, e.g., [11, 18]); however, the problem kernels obtained by this general result
have impractically large size. Therefore, one tries to develop kernelizations that yield problem
kernels of smaller size. The survey of Guo and Niedermeier [11] on kernelization lists some
problem for which linear size kernels (the size here is the number of vertices), polynomial size
kernels and exponential size kernels were obtained. For many parameterized problems, optimal
size kernels have likely not been obtained yet; for example, Guo and Niedermeier [11] ask whether
the feedback vertex set problem admits a linear size kernel.

1.1 New results and algorithms

What is a suitable parameter for the profile problem? If we take as parameter an upper bound
on the profile, then we have a trivially fixed-parameter tractable problem. It is known that the
profile of a connected graph G of order n is at least n− 1; i.e., n− 1 is a “guaranteed value” for
the profile of G. Hence it makes sense to study the following parameterized problem.

Profile Above Vertex Guaranteed Value (PAVGV)
Instance: A connected graph G = (V, E).
Parameter: A positive integer k.
Question: Is the profile of G at most |V | − 1 + k?

In Section 2, we prove that PAVGV is FPT. Our algorithm relies on the link between profile
and interval graphs and a forbidden subgraph characterization for interval graphs: Lekkerkerker
and Boland [16] have shown that a graph is interval if and only if it does not contain certain
graphs as induced subgraphs (see Section 2 for details). There is an infinite number of possible
forbidden subgraphs; therefore Cai’s general result [5] for graph completion problems is not
directly applicable. However, using the assumption prf(G) ≤ |V | − 1 + k we can limit the
possible forbidden subgraphs to a finite number for any fixed k, and thus state a bounded
search-tree algorithm that renders PAVGV fixed-parameter tractable. This algorithm is only of
theoretical value because of its large branching factor; moreover, the algorithm does not imply
a kernel even of moderate exponential size.

We therefore develop in Section 4 a second algorithm based on two simple kernelization rules.
The first rule combines certain vertices of degree one to a single vertex. The second rule is based
on the observation that if a vertex is incident with two bridges and the number of vertices on
both sides of the bridges is sufficiently large, then we can suppress the vertex. The second
algorithm gives us a linear size kernel; the algorithm is very simple and easy to implement.
However, for showing its correctness we need to establish new and nontrivial structural results
for graphs with small profile. These structural results, the technically most involved parts of this
paper, are established in Section 3. These results are of independent interest; one such example
is Theorem 3 which provides us with a tight lower bound on the profile of a 2-edge-connected
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graph G in terms of the order of G. Applying the first algorithm to the kernel obtained by the
second algorithm, we obtain an algorithm of running time O(n2 + k23k(k + 1)!).

1.2 More general parameterizations for the profile problem

From the above mentioned relationship between the profile and interval supergraphs, it follows
that the profile of a graph is always at least the number of edges of the graph. Hence, one can
consider the following parameterized problem:

Profile Above Guaranteed Value (PAGV)
Instance: A graph G = (V, E).
Parameter: A positive integer k.
Question: Is the profile of G at most |E| + k?

Since |E| ≥ |V | + 1 holds for connected graphs G = (V, E), fixed-parameter tractability of
PAGV implies fixed-parameter tractability of PAVGV. In fact, fixed-parameter tractability of
PAGV was very recently proved by Heggernes et al. [13]. The algorithm of [13] is a bounded
search-tree algorithm combined with a greedy completion algorithm. The complexity of the
algorithm in [13] is O(k2k|V |3|E|) and no moderate exponential size (let alone polynomial size)
kernel is obtained. It would be interesting to find out whether PAGV admits a kernel of poly-
nomial size or even a linear-size kernel.

In the final section we consider a different generalization of PAVGV.

Vertex Average Profile (VAP)
Instance: A graph G = (V, E).
Parameter: A positive integer k.
Question: Is the profile of G at most k|V |?

This problem was introduced by Serna and Thilikos [19] who asked whether it is fixed-
parameter tractable. We answer this question negatively: we show that for every constant
k ≥ 2 it is NP-complete to decide whether prf(G) ≤ k|V (G)| for a given graph G.

2 Algorithm Based on Forbidden Subgraphs

In their seminal paper [16], Lekkerkerker and Boland proved that a graph is interval if and
only if it does not contain any of the following graphs as induced subgraphs (see Figure 1 for
illustrations).

1. Ci (i > 3), the cycle of length i.

2. G′ with V (G′) = {x, 1, 2, 3, 4, 5, 6} and E(G′) = {x1, x2, x3, 14, 25, 36}.

3. G′′ with V (G′′) = {x, y, 1, 2, 3, 4, 5} and
E(G′′) = {x1, x2, x3, x4, x5, y3, 12, 23, 34, 45}.

4. Ri (i > 1), with V (Ri) = {x, x′, y, z, 1, 2, 3, . . . , i} and
E(Ri) = {x′x, x1, x2, . . . , xi, y1, 12, 23, 34, . . . , (i − 1)i, zi}.

5. Qi (i > 2) with V (Qi) = {x, y, z, w, v, 1, 2, 3, . . . , i} and
E(Qi) = {x1, x2, . . . , xi, y1, y2, . . . , yi, zx, zy, xy, wx, w1, 12, 23, 34, . . . , (i − 1)i, vy, vi}.
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Figure 1: Forbidden induced subgraphs

Let G be a given graph with n vertices and m edges. It is well known that one can decide
in time O(n + m) whether G is an interval graph [1]. Furthermore, if G is not interval, we can
find in time O(n2 + nm) one of the above graphs as an induced subgraph as follows (Cai [5]
describes this procedure in a more general setting): We consider G− v for each v ∈ V . If G− v
is not interval for some v, then we consider G − v instead of G (and G− v must contain one of
the above graphs as an induced subgraph). Otherwise, if G− v is interval for all v ∈ V , then G
is already one of the above graphs (and no proper induced subgraph of G contains one of the
above graphs as an induced subgraph).

Theorem 1. Given a connected graph G with n vertices and m edges and a non-negative integer
k, we can decide in time O(nm3k(k + 1)!) whether prf(G) ≤ n− 1 + k. Hence PAVGV is fixed-
parameter tractable.

Proof. Let G = (V, E) be a connected graph and let n = |V |, m = |E| and q = m − n + 2.
Clearly, q ≥ 1. If G has an interval supergraph with at most n−1+k edges, then m ≤ n−1+k
and q ≤ k + 1. Thus, if q > k + 1 we can reject the given graph G. We consider now the case
where q ≤ k + 1.

Let A denote the O(n2 + nm)-time algorithm outlined just before Theorem 1. Notice that
O(n2 + nm) = O(nm) since G is connected. Let T (q) denote the running time of the following
search tree algorithm. We will prove (along with describing the algorithm) by induction on q

that T (q) = O(nm
∏k+1

j=q a(j)), where a(j) = 3j if j > 5 and otherwise a(j) = 15.
The root node of our search tree T is G. Consider an arbitrary node F of T . We describe

how to get all children of F . We apply the algorithm A either to decide that F is interval or
to find one of the above graphs H as an induced subgraph. Consider the case that F is not
interval and, for simplicity of notation, assume that F = G.

If H = G′ or H = G′′, then we have to add one edge to the subgraph. There are only 21− 6
and 21 − 10 possibilities, respectively. So in both cases we only have to try the at most 15
possibilities, and we add one edge. So by the induction hypothesis the bound on T (q) holds.

If H = Ci, we add a chord of length two (i.e., a chord that lies on a 3-cycle containing two
edges from the cycle). There are i ways of doing this. Now we have an induced Ci−1, and we
again add a chord of length two (in Ci−1). There are i − 1 possibilities. Continuing this we get
i(i− 1)(i− 2) · · · 7 · 6 · 5 · 2 possibilities of adding the i− 3 edges (there are only two options for
a 4-cycle). We observe that the bound on T (q) still holds by the induction hypothesis.
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Let H = Ri. Note that |V (H)| = i+4 and |E(H)| = 2i+2 and, thus, |E(H)|−|V (H)| ≥ i−2.
Note that G can be built from H by adding, one by one, vertices from V \ V (H) with edges to
the already constructed induced subgraph of G. We append at least one edges for every added
vertex. Thus, we have m − n ≥ i − 2 and q ≥ i. In order to make G an interval graph we will
have to add at least one edge from {x′, y, z} to {1, 2, . . . , i} (but not y1 or zi), or from x to
{y, z}. So we have 3i possibilities. But a(q) ≥ a(i) ≥ 3i, and hence we are done by induction.

The case H = Qi is treated similarly to the case H = Ri.
It remains to observe that T (q) ≤ T (1) = O(nm3k+1(k + 1)!) for each q ≥ 1.

This proof implies the following simple algorithm, where the procedure A(F ) outputs ∅ if F
is an interval graph or one of the forbidden induced subgraphs of F , otherwise. For a graph H ,
H∗ denotes the complement of H if H = G′ or H = G′′. If H is a cycle x0x1 . . . xp−1x0, then
V (H∗) = V (H) and E(H∗) = {xixi+2 mod p : 0 ≤ i ≤ p − 1}. If H = Ri, then V (H∗) = V (H)
and H∗ only contains all the edges from {x′, y, z} to {1, 2, 3, . . . , i} except y1 and zi and H∗

also contains the edges xy and xz (see the proof above). If H = Qi, then V (H∗) = V (H) and
H∗ contains all the edges from {z, w, v} to {1, 2, 3, . . . , i} except w1 and vi and H∗ also contains
the edges {1i, xv, yw}.

Algorithm add-edge(G, k)

Input: connected graph G and integer k ≥ 0.

Output: ‘yes’ if prf(G) ≤ |V (G)| + k − 1 and ‘no’ otherwise.

1. if (|E(G)| − |V (G)| + 1 > k) output ‘no’;

2. H := A(G);

3. if (H = ∅) output ‘yes’;

4. for each e ∈ E(H∗) add-edge(G + e, k − 1);

3 Structural Properties of Graphs with Small Profile

For this and the following sections we need additional definitions related to profiles. Let G =
(V, E) be a graph. An ordering of G is a one-to-one mapping α : V → {1, 2, . . . , |V |}. We
denote the set of orderings of G by OR(G). For a vertex v in G, its neighborhood is N(v) =
{u ∈ V : uv ∈ E} and its closed neighborhood is N [v] = N(v) ∪ {v}. The profile of a vertex z
of G in an ordering α of G is

prfα(G, z) = α(z) − min{α(w) : w ∈ N [z] }.

The profile of a set Z ⊆ V in an ordering α of G is

prfα(G, Z) =
∑

z∈Z

prfα(G, z).

The profile of an ordering α of G is prfα(G) = prfα(G, V ). An ordering α of G is optimal if

prfα(G) = min{ prfβ(G) : β ∈ OR(G) }.

If α is optimal, then prf(G) = prfα(G) is called the profile of G. If X ⊆ V and α is an ordering of
G, then let αX denote the ordering of G−X in which αX(u) < αX(v) if and only if α(u) < α(v)
for all u, v ∈ V (G) − X . If X = {x}, then we simply write αx instead of α{x}.

The following two lemmas will be used several times in the rest of the paper.
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Lemma 1. Let G = (V, E) be a graph of order n and let X be a set of vertices such that
G−X is connected. If an ordering α has {α−1(1), α−1(n)} ⊆ V (G−X) then prfα(G, V −X) ≥
prfαX

(G − X) + |X |.

Proof. Let X = {x1, x2, . . . , xr} and define Xi = {x1, x2, . . . , xi} for all 0 ≤ i ≤ r. We will by
induction show the following:

prfαXi
(G − Xi, V − X) ≥ prfαX

(G − X) + |X | − i. (1)

The above is clearly true when i = r as Xr = X and |X | = r. If we can show that (1) is true
for i = 0, then we are done. We will assume that (1) is true for some i > 0.

Since G−X is connected and {α−1(1), α−1(n)} ⊆ V (G−X), there is an edge uv ∈ E(G−X)
such that αXi−1(u) > αXi−1(xi) > αXi−1(v). This implies that the profile of u is one larger in
αXi−1 than it is in αXi

. This implies prfαXi−1
(G−Xi−1, V −X) ≥ prfαXi

(G−Xi, V −X)+1 ≥

prfαX
(G − X) + |X | − i + 1. We are now done by induction.

Lemma 2 (Lin and Yuan [17]). (i) If G is a connected graph with n vertices, then prf(G) ≥ n−1.
(ii) For a cycle Cn with n vertices we have prf(Cn) = 2n − 3.

For a vertex x, d(x) denotes its degree, i.e., d(x) = |N(x)|. A slightly weaker version of the
following lemma is stated in [17] without a proof.

Lemma 3. If G is an arbitrary graph of order n, x ∈ V (G) and α is an ordering of G, then
prfα(G) ≥ prfαx

(G − x) + d(x).

Proof. Let α be an ordering of G and let X be the set of vertices appearing to the left of x in
α. More formally,

X = {α−1(1), α−1(2), . . . , α−1(α(x) − 1)}.

Note that for all a ∈ N(x) − X we have prfα(G, a) ≥ prfαx
(G − x, a) + 1. Furthermore,

prfα(G, x) ≥ |N(x)∩X |. Thus, prfα(G)−prfαx
(G−x) ≥ prfα(G, x)+

∑

a∈N(x)−X(prfα(G, a)−

prfαx
(G− x, a)) ≥ |N(x)∩X |+ |N(x)−X | = d(x). Hence, prfα(G) ≥ prfαx

(G− x) + d(x).

Theorem 3 gives a lower bound for the profile of a 2-edge-connected graph, which is important
for our FPT algorithm. Lin and Yuan [17] used a concise and elegant argument to show that
prf(G) ≥ k(2n − k − 1)/2 for every k-connected graph G of order n. Their argument uses
Menger’s Theorem in a clever way, yet the argument cannot be used to prove our bound. Instead
of Menger’s Theorem we will apply the following well-known decomposition of 2-edge-connected
graphs (see, e.g., Theorem 4.2.10 in [20]) called a closed-ear decomposition.

Theorem 2. Any 2-edge-connected graph G has a partition of its edges E1, E2, . . . , Er, such
that Gi = G[E1 ∪ E2 ∪ . . . ∪ Ei] is 2-edge-connected for all i = 1, 2, 3, . . . , r. Furthermore, Ej

induces either a path with its endpoints in V (Gj−1) but all other vertices in V (Gj) − V (Gj−1)
or a cycle with one vertex in V (Gj−1) but all other vertices in V (Gj) − V (Gj−1) for every
j = 2, 3, . . . , r. Moreover, G1 is a cycle and every cycle of G can be G1.

Theorem 3. If G is a 2-edge-connected graph of order n, then prf(G) ≥ 3n−3
2 .

Proof. Let α be an optimal ordering of V (G) and let y be the vertex with α(y) = n. Since G
is 2-edge-connected, y is contained in a cycle C. By Theorem 2, G has an ear-decomposition
E1, E2, . . . , Er such that G[E1] = C. Let Gi = G[E1 ∪ E2 ∪ . . . ∪ Ei], which by Theorem 2 are
2-edge-connected for all i = 1, 2, . . . , r. We will prove this theorem by induction. If r = 1 then
the theorem holds by Lemma 2(ii), as n ≥ 3. So assume that r ≥ 2. Let ni = |V (Gi)| for all
i = 1, 2, . . . , r and note that by induction we know that prf(Gr−1) ≥

3nr−1−3
2 . If nr = nr−1 then
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Er is just one edge and we are done as prf(Gr) ≥ prf(Gr−1). So assume that a = nr −nr−1 > 0.
If a = 1 and V (Gr) − V (Gr−1) = {x}, then by Lemma 3 we obtain

prf(G) ≥ prf(Gr−1) + d(x) ≥
3nr−1 − 3

2
+ 2 >

3n − 3

2
.

So we may assume that a ≥ 2. Let P be the path Gr−V (Gr−1), let x and z be the endpoints
of P such that α(x) < α(z), and let u be a neighbor of x in Gr−1. Let j = min{α(q) : q ∈
V (Gr−1) }, and let Q = { p ∈ V (P ) : α(p) > j } and M = { p ∈ V (P ) : α(p) < j }, which is
a partition of V (P ). (Note that α−1(j) ∈ V (Gr−1) and recall that α−1(n) = y ∈ V (Gr−1).)
Furthermore let β denote the ordering α restricted to P (i.e., β = αV (Gr−1)) and let H = G−M .
By Lemma 1 (with X = Q) we obtain

prfαM
(H, V (H) − Q) ≥ prfαM∪Q

(H − Q) + |Q| = prfαV (P )
(Gr−1) + |Q|.

We now bound prfβ(P ) in the following way. Add an artificial vertex u′ to the end of the
ordering β and add the edges u′x and u′z. This results in an ordering β′ of V (P ) ∪ {u′} where
β′(u′) = |V (P )|+1. Since we have created a cycle we note that prfβ′(P ∪u′) ≥ 2(|V (P )|+1)−3,
by Lemma 2(ii). Since the profile of u′ in β′ is |V (P )| + 1 − β(x) we note that the following
holds.

prfβ(P ) ≥ 2(|V (P )| + 1) − 3 − (|V (P )| + 1 − β(x))
= |V (P )| − 2 + β(x)

If j = 1 then the following holds (as Q = V (P ), M = ∅ and |V (P )|−2+β(x) ≥ |V (P )|−1):

prfα(G) = prfα(G, V (G) − V (P )) + prfα(G, V (P ))
≥ (prfαV (P )

(Gr−1) + |Q|) + (|V (P )| − 2 + β(x))

= prfαV (P )
(Gr−1) + 2|V (P )| − 1

Now assume that j ≥ 2. Let R = { p ∈ V (Gr−1) : α(p) < α(x) } and note that α(x) =
β(x) + |R|. By Lemma 1 (used on the subgraph of G induced by V (P ) ∪ R and with X = R)
we obtain the following.

prfα(G, V (P )) ≥ prfβ(P ) + |R| ≥ |V (P )| − 2 + β(x) + |R| = |V (P )| − 2 + α(x)

Assume that α(x) < j and note that prfα(G, u) ≥ prfαM
(H, u) + j −α(x), as prfαM

(H, u) ≤
α(u) − j and prfα(G, u) ≥ α(u) − α(x). As |Q| = |V (P )| − j + 1 we obtain

prfα(G) = prfα(G, V (H) − Q) + prfα(G, V (P ))
≥ (prfαM

(H, V (H) − Q) + j − α(x)) + |V (P )| − 2 + α(x)
≥ prfαV (P )

(Gr−1) + |Q| + j + |V (P )| − 2

≥ prfαV (P )
(Gr−1) + 2|V (P )| − 1.

Now assume that α(x) > j. Analogously to the above we get the following:

prfα(G) = prfα(G, V (H) − Q) + prfα(G, V (P ))
≥ prfαM

(H, V (H) − Q) + |V (P )| − 2 + α(x)
≥ prfαV (P )

(Gr−1) + |Q| + |V (P )| − 2 + α(x)

≥ prfαV (P )
(Gr−1) + 2|V (P )| − 1.

So, we always have the following, which completes the proof.

prfα(G) ≥ prfαV (P )
(Gr−1) + 2|V (P )| − 1

≥ 3nr−1−3
2 + 2(n − nr−1) − 1

= 3n−3
2 + n−nr−1

2 − 1
≥ 3n−3

2 .
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Let α be an optimal ordering of a connected graph G and let V1, V2, . . . , Vt be a partition of
V . An ordering α′ is obtained from α by keeping the relative order of vertices within each part
Vi and laying out the parts in their order, V1, V2, . . . , Vt. The next two results show that under
certain weak conditions α′ is also optimal.

Proposition 1. Let G = (V, E) be a connected graph of order n, let prf(G) ≤ n−1+k and let α
be an optimal ordering of G. Let X, Y be a partition of V such that |X |, |Y | ≥ k+2 and there is
only one edge between G[X ] and G[Y ]. Assume α−1(1) ∈ X or α−1(n) ∈ Y . Then the ordering
α′ of G defined as follows is optimal: α′

V −X = αV −X , α′
V −Y = αV −Y , and α′(x) < α′(y) for

all x ∈ X and y ∈ Y .

Proof. Observe that G[X ] and G[Y ] are connected as otherwise G would be disconnected. Let
xy be the single edge between G[X ] and G[Y ] and assume x ∈ X and y ∈ Y . Let α be an optimal
ordering of G with α−1(n) = y′ ∈ Y (the case α−1(1) ∈ X is treated similarly). Let x′ be the
vertex with α(x′) = 1. If x′ ∈ Y , then Lemma 1 implies that prfα(G, Y ) ≥ prfαX

(G−X, Y )+|X |.
Since prfα(G, X) ≥ prfαY

(G[X ]) ≥ |X | − 1 and prfαX
(G[Y ]) ≥ |Y | − 1 (both by Lemma 2(i))

and |X | ≥ k + 2, we conclude that prfα(G) ≥ |X |+ |Y |+ k, a contradiction. Therefore, x′ ∈ X .
Let i = min{α(y′′) : y′′ ∈ Y } and let j = max{α(x′′) : x′′ ∈ X }. If j < i, we are done

(α′ = α), so we assume that i < j. Let I = α−1({i, i + 1, . . . , j}). Recall that α′ is defined as
follows: α′

X = αX and α′
Y = αY but α′(x′′) < α′(y′′) for all x′′ ∈ X and y′′ ∈ Y . We will prove

that α′ is optimal.
Let H = G[X ∪ (Y ∩ I)] and let G′ = H if xy 6∈ E(H) and G′ = H − xy, otherwise.

Let β = αV (G)−V (G′) (so β is equal to α, except we have deleted the last n − j vertices in the
ordering). Note that by Lemma 1 (used with the set Y ∩I) we get that prfβ(G′, V (G′)−(Y ∩I)) ≥
prfβY ∩I

(V (G′) − (Y ∩ I)) + |Y ∩ I|. This implies the following:

prfα(G − xy, X) ≥ prfαY
(G[X ]) + |Y ∩ I|.

Analogously we obtain that prfα(G − xy, Y ) ≥ prfαX
(G[Y ]) + |X ∩ I|, which implies

prfα(G − xy) ≥ prfαY
(G[X ]) + prfαX

(G[Y ]) + |I| = prfα′(G − xy) + (j − i + 1). (2)

Suppose that α(x) > α(y). Then (2) implies the following contradiction, as α′(y) − α′(x) <
j − i + 1.

prfα(G) ≥ prfα(G − xy) ≥ prfα′(G − xy) + (j − i + 1) > prfα′(G).

Therefore, α(x) < α(y). Let l = min{α(z) : z ∈ N [y] − {x} } and let L = α−1({α(x), α(x) +
1, α(x) + 2, . . . , l − 1}). Note that L = ∅ if l < α(x). By the definition of L and the inequality
in (2), we get the following:

prfα(G) = prfα(G − xy) + |L| ≥ prfα′(G − xy) + |I| + |L|.

When we add the edge xy to G − xy, we observe that, in the ordering α′, the profile of y will
increase by one for every vertex from Y with an α-value less then l and every vertex in X with
an α-value larger than α(x). This is exactly the set R1 ∪ R2 ∪ R3 ∪ R4, where

R1 = { y′′ ∈ Y : α(x) < α(y′′) < l },
R2 = { x′′ ∈ X : α(x) < α(x′′) < l },
R3 = { y′′ ∈ Y : α(y′′) < min{l, α(x)} },
R4 = { x′′ ∈ X : max{α(x), l} < α(x′′) }.

Since R1 ∪ R2 ⊆ L and R3 ∪ R4 ⊆ I (as α−1(l) ∈ Y ), we conclude that prfα(G) ≥ prfα′(G) +
|I| + |L| − |R1| − |R2| − |R3| − |R4| ≥ prfα′(G).
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Theorem 4. Let G = (V, E) be a connected graph of order n, let prf(G) ≤ n − 1 + k, and let
α be an optimal ordering of G. Let V1, V2, . . . , Vt be a partition of V such that |V1|, |Vt| ≥ k + 2
and there is only one edge xiyi between G[V1 ∪ V2 ∪ · · · ∪ Vi] and G[Vi+1 ∪ Vi+2 ∪ · · · ∪ Vt] for
each i = 1, 2, . . . t − 1. Let α−1(1) ∈ Vi1 , α−1(n) ∈ Vin

such that 1 ≤ i1 ≤ in ≤ t.
Then the ordering α′ of G defined as follows is optimal: α′

V −Vi
= αV −Vi

for each i =
1, 2, . . . t, and α′(vi) < α′(vi+1) for each vi ∈ Vi, vi+1 ∈ Vi+1, i = 1, 2, . . . , t − 1.

Proof. The case t = 2 is covered by Proposition 1, hence assume t ≥ 3. We distinguish the
following three cases.

Case 1: in = t. Let X =
⋃t−1

i=1 Vi and Y = Vt. By Proposition 1 the following ordering
β is optimal: βX = αX , βY = αY , and β(x) < β(y) for each x ∈ X, y ∈ Y. Now let X ′ =
⋃t−2

i=1 Vi, Y ′ = Vt−1∪Vt. Again by Proposition 1, the following ordering β′ is optimal: β′
X′ = βX′ ,

β′
Y ′ = βY ′ , and β′(x′) < β′(y′) for each x′ ∈ X ′, y ∈ Y ′. Combining the properties of β and β′,

we obtain that β′
Y ′ = αY ′ , β′

V −Vt−1
= αV −Vt−1 , β′

V −Vt
= αV −Vt

, and β′(x′) < β′(vt−1) < β′(vt)

for each x′ ∈ X ′, vt−1 ∈ Vt−1, vt ∈ Vt. Continuation of this argument allows us to show that α′

is an optimal ordering.
Case 2: i1 = 1. We argue similar as in Case 1.
Case 3: in < t. We consider the partition V ′

1 , . . . , V ′
in

where V ′
i = Vi for i < in and

V ′
in

=
⋃t

i=in
Vi. Case 1 applies and we obtain the optimal ordering α′ of G with α′

V −V ′
i

= αV −V ′
i

for each i = 1, 2, . . . , in, and α′(vi) < α′(vi+1) for each vi ∈ V ′
i , vi+1 ∈ V ′

i+1, i = 1, 2, . . . , in − 1.
Consider the original partition V1, . . . , Vn. Since (α′)−1(1) ∈ V1 = V ′

1 the above Case 2 applies,
and we conclude that the ordering α′′ defined as follows is optimal: α′′

V −Vi
= α′

V −Vi
for each i =

1, 2, . . . , t and α′′(vi) < α′′(vi+1) for each vi ∈ Vi, vi+1 ∈ Vi+1, i = 1, 2, . . . , t − 1. Consequently
we have α′′

V −Vi
= αV −Vi

for each i = 1, 2, . . . , t, and α′′(vi) < α′′(vi+1) for each vi ∈ Vi,
vi+1 ∈ Vi+1, i = 1, 2, . . . , t − 1.

A bridgeless component of a graph G is a maximal induced connected subgraph of G with
no bridges. We call a connected graph G a chain of length t if the following holds: (a) G has
bridgeless components Ci, 1 ≤ i ≤ t such that V (G) =

⋃t
i=1 V (Ci), and (b) Ci is linked to Ci+1

by a bridge, 1 ≤ i ≤ t − 1. A component Ci is nontrivial if |V (Ci)| > 1, and trivial, otherwise.
An ordering α of G is special if for any two vertices x, y ∈ V (G) and x ∈ V (Ci), y ∈ V (Cj),
i < j implies α(x) < α(y).

The following two lemmas will be of use in the proof of Theorem 6.

Lemma 4. Let G be a chain of order n and let η be the total number of vertices in the nontrivial
bridgeless components of G. Let α be a special ordering of G with prfα(G) ≤ n − 1 + k. Then
η ≤ 3k.

Proof. We show η ≤ 3k by induction on n. Suppose that G has a trivial component. If C1 is
trivial, then G − C1 is a chain with prfαV (C1)

(G − C1) ≤ n′ − 1 + k, where n′ = n − 1. Thus,

by the induction hypothesis, η ≤ 3k. Similarly, we prove η ≤ 3k when Ct is trivial. Assume
that Ci, 1 < i < t, is trivial. Let Ci be adjacent to x ∈ V (Ci−1) and y ∈ V (Ci+1). Consider
G′ obtained from G by deleting Ci and appending edge xy. Observe that G′ is a chain and
prfαV (Ci)

(G′) ≤ n′ − 1 + k, where n′ = n − 1. Thus, by induction hypothesis, η ≤ 3k. So, now

we may assume that η = n.
Let C1, . . . , Ct denote the bridgeless components of G as in the definition above. Let ni =

|V (Ci)|. If t = 1, then by Theorem 3 we have n ≤ 2k+1 and we are done as k ≥ 1. Now assume
t ≥ 2. Let G′ = G − V (Ct) and n′ = n − nt. Observe that G′ is a chain and αV (Ct) is a special
ordering of G′. Let kt = prfα(G, V (Ct))− nt + 1 and let k′ = prfα(G, V (G′))− n′ + 1. We have
kt + k′ − 1 ≤ k. Theorem 3 implies that

nt − 1 + kt = prfα(G, V (Ct)) ≥ prf(Ct) + 1 ≥
3nt − 3

2
+ 1 =

3nt − 1

2
,
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and thus kt ≥
nt+1

2 and nt ≤ 2kt − 1. Since nt ≥ 3, we have kt ≥ 2. By induction hypothesis,
n′ ≤ 3k′. Thus n = n′ + nt ≤ 3(k − kt + 1) + 2kt − 1 ≤ 3k.

A connected component of a graph G is called nontrivial if it has more than one vertex.

Lemma 5. Let G = (V, E) be a connected graph of order n, let X ⊆ V such that G[X ] is
connected. Let G1, . . . , Gr denote the connected components of G − X and let t be the number
of trivial components of G − X. Assume that |V (Gi)| ≤ |V (Gi+1)| for 1 ≤ i ≤ r − 1. If

k + n − 1 ≥ prf(G), then k + 2 + t ≥ r and 2k + t ≥
∑r−2

i=1 |V (Gi)|.

Proof. The result holds vacuously true if r < 3, hence assume r ≥ 3. Let α be an optimal
ordering of G. Let I = { 1 ≤ i ≤ r : V (Gi) ∩ {α−1(1), α−1(n)} = ∅ }. Clearly |I| ≥ r − 2.
Let Y = X ∪

⋃

i/∈I V (Gi) and Z = V \ Y . Observe that G[Y ] = G − Z is connected. Since
{α−1(1), α−1(n)} ⊆ Y , Lemma 1 applies. Thus we see that prf(G) = prfα(G) is at least

prfα(G, V − Z) +
∑

i∈I

prfα(G, V (Gi)) ≥ prf(G − Z) + |Z| +
∑

i∈I

prf(Gi).

Furthermore, by Lemma 2(i),

k ≥ prf(G) − n + 1 ≥ prf(G − Z) + |Z| − |Y | +
∑

i∈I

(prf(Gi) − |V (Gi)|) + 1

≥ (prf(G[Y ]) − |Y |) + |Z| − |I| + 1 ≥ −1 + |Z| − |I| + 1 ≥ |Z| − |I|.

Thus,
|Z| − |I| ≤ k. (3)

Let N = {i ∈ I : |V (Gi)| > 1}. Since |N | ≤ |Z| − |I|, we have k ≥ |N |. Thus, r ≤ |I| + 2 =
|N | + |I \ N | + 2 ≤ k + t + 2, and, by (3), |Z| ≤ k + |N | + |I \ N | ≤ 2k + |I \ N | ≤ 2k + t.

4 Algorithm Based on Kernelization

4.1 Dealing with Vertices of Degree 1

In this section, G denotes a connected graph of order n. For an ordering α of G let Eα(G)
denote the set of edges uv of G such that α(u) = minw∈N [v] α(w) and u 6= v. The length ℓα(uv)
of an edge uv ∈ E(G) relative to α is |α(u)−α(v)| if uv ∈ Eα(G), and 0 if uv /∈ Eα(G). Observe
that prfα(G) =

∑

e∈E(G) ℓα(e).
Let X, Y be two disjoint sets of vertices of G and let α be an ordering of G. We say that

(X, Y ) is an α-consecutive pair if there exist integers a, b, c with 1 ≤ a < b < c ≤ n so that
X = { x ∈ V (G) : a ≤ α(x) ≤ b − 1 } and Y = { y ∈ V (G) : b ≤ α(y) ≤ c }. By swapY,X(α)
we denote the ordering obtained from α by swapping the α-consecutive pair (X, Y ). For a set
X ⊆ V (G) let Er

α(X) (respectively, El
α(X)) denote the set of edges uv ∈ Eα with u ∈ X ,

v ∈ V (G) \ X , and α(u) < α(v) (respectively, α(u) > α(v)).

Lemma 6. Let α be an ordering of G and (X, Y ) an α-consecutive pair such that there are
no edges between X and Y . If |El

α(X)| ≤ |Er
α(X)| and |El

α(Y )| ≥ |Er
α(Y )|, then for β =

swapY,X(α) we have prfβ(G) ≤ prfα(G).

Proof. Observe that Eα(G) = Eβ(G). Moreover, the only edges of Eα(G) that have different
length in α and in β are the edges in El

α(Y ) ∪ Er
α(Y ) ∪ El

α(X) ∪ Er
α(X). Observe that ℓβ(e) =

ℓα(e)+ |Y |, ℓβ(e′) = ℓα(e′)−|Y |, ℓβ(f) = ℓα(f)−|X |, ℓβ(f ′) = ℓα(f ′)+ |X | for each e ∈ El
α(X),

e′ ∈ Er
α(X), f ∈ El

α(Y ) and f ′ ∈ Er
α(Y ). Using these relations and the inequalities |El

α(X)| ≤
|Er

α(X)| and |El
α(Y )| ≥ |Er

α(Y )|, we obtain prfβ(G) ≤ prfα(G).
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Lemma 7. Let α be an ordering of G and ({x}, Y ) an α-consecutive pair such that x has
a neighbor z of degree 1 with α(z) > α(y) for all y ∈ Y . If |El

α(Y )| ≥ |Er
α(Y )|, then for

β = swapY,{x}(α) we have prfβ(G) ≤ prfα(G).

Proof. If there are no edges between x and vertices in Y then the result follows from Lemma 6
since |El

α({x})| ≤ 1 ≤ |Er
α({x})|.

Now consider the case when El
α({x}) = {wx} for a vertex w. Every edge e ∈ Eβ \ Eα

is of the form e = yu for some vertex y ∈ Y , and xu must be in Eα \ Eβ . If u 6∈ Y then
ℓβ(yu) = ℓα(yu) + 1 ≤ ℓα(xu), and if u ∈ Y then ℓβ(yu) = ℓα(yu) ≤ ℓα(xu). Consequently

∑

e∈El
β
(Y )∪Er

β
(Y )

ℓβ(e) ≤
∑

e∈El
α(Y )∪Er

α(Y )

ℓα(e) +
∑

e∈Eα\Eβ

ℓα(e)

and clearly ℓβ(wx) + ℓβ(xz) ≤ ℓα(wx) + ℓα(xz). Hence the result also holds true in that case.
It remains to consider the case where x has neighbors in Y and El

α({x}) = ∅. Let y′ ∈
N(x) ∩ Y with minimum α-value. Now Eβ(G) \Eα(G) ⊆ {xy′} and ℓβ(xy′) + ℓβ(xz) ≤ ℓα(xz).
Thus, prfβ(G) ≤ prfα(G).

Lemma 8. Let α be an ordering of G and let ({x}, Y ) be an α-consecutive pair. Let all vertices
in Y be of degree 1 and adjacent with x. Then for β = swapY,{x}(α) we have prfβ(G) ≤ prfα(G).

Proof. Let y, y′ denote the vertex in Y with largest α(y) and smallest α(y′). Observe ℓα(yx) =
|Y |. First assume that El

α({x}) contains an edge zx. We have Eβ(G) ⊆ Eα(G) \ {xy}, and
ℓβ(e) ≤ ℓα(e) holds for all e ∈ Eβ(G) \ {xz}. Since ℓβ(zx) = ℓα(zx)+ ℓα(xy), the result follows.
Next assume that El

α({x}) = ∅. We have Eβ(G) ⊆ (Eα(G) \ {xy}) ∪ {xy′}, and ℓβ(e) ≤ ℓα(e)
holds for all e ∈ Eβ(G) \ {xy′}. Since ℓβ(xy′) = ℓα(xy), the result follows.

For x ∈ V (G) let N1(x) denote the set of neighbors of x that have degree 1. We say that
an ordering α of G is conformal for a vertex x of G if {α(w) : w ∈ N1(x) } forms a (possibly
empty) interval and α(w) < α(x) holds for all w ∈ N1(x). We say that α is conformal for a
graph G if it is conformal for all vertices of G.

Theorem 5. For every connected graph G there exists an optimal ordering which is conformal.

Proof. Let α be an optimal ordering of G. Let x be a vertex of G for which α is not conformal.
We apply the following steps to α, until we end up with an optimal ordering which is conformal
for x. In each step we transform α into an optimal ordering β in such a way that whenever α
is conformal for a vertex x′, so is β. Hence, we can repeat the procedure for all the vertices one
after the other, and we are finally left with an optimal ordering which is conformal.

Let w1, w2 ∈ N1(x)∪{x} with minimal α(w1) and maximal α(w2). We call a set B ⊆ N1(x)
a block if {α(b) : b ∈ B } is a nonempty interval of integers. A block is maximal if it is not
properly contained in another block.

Step 1. Assume that there exist α-consecutive pairs ({x}, Y ), (Y, Z) with the following
properties: (a) Y and Z are nonempty; (b) Y ∩ N1(x) = ∅; (c) Z is a maximal block. By
assumption, there is a z ∈ Z such that xz ∈ E(G) and α(z) > α(y) holds for all y ∈ Y .
Moreover, there are no edges between Y and Z and Er

α(Z) = ∅. If |El
α(Y )| ≥ |Er

α(Y )|, then
we put β = swapY,{x}(α), otherwise we put β = swapZ,Y (α). It follows from Lemmas 7 and 6,
respectively, that β is optimal.

Step 2. Assume that there exists an α-consecutive pair ({x}, Y ) such that Y is a maximal
block. We put β = swapY,{x}(α). It follows by Lemma 8 that β is optimal.

Remark: If neither Step 1 nor Step 2 can be applied, then α(w2) < α(x).
Step 3. Assume that there exist α-consecutive pairs (X, Y ), (Y, Z) with the following proper-

ties: (a) X and Z are maximal blocks; (b) Y ⊆ V (G) \N1(X); (c) w1 ∈ X . Note that there are
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no edges between X and Y and no edges between Y and Z. Furthermore, we have El
α(X) = ∅

and Er
α(Z) = ∅ (the former follows from Property (c)). If |El

α(Y )| ≥ |Er
α(Y )|, then we put

β = swapY,X(α), otherwise we put β = swapZ,Y (α). In both cases it follows from Lemma 6
that β is optimal.

Remark: If none of the above Steps 1, 2, or 3, applies, then α is conformal for x.

Note that when applying the procedure of the above proof, it is possible that we end up with
exactly one maximal block X such that for a nonempty set Y the pairs (X, Y ) and (Y, {x}) are
α-consecutive. If |El

α(Y )| < |Er
α(Y )| < |Er

α({x})|, then we can neither swap X and Y nor Y
and {x} without increasing the cost of the profile.

4.2 Kernelization

For technical reasons, in this section we will deal with a special kind of weighted graphs, but
they will be nothing else but compact representations of (unweighted) graphs.

We consider a weighted graph G = (V, E, ρ) whose vertices v of degree 1 have an arbitrary
positive integral weight ρ(v), vertices u of degree greater than one have weight ρ(u) = 1. The
weight ρ(G) of G = (V, E, ρ) is the sum of weights of all vertices of G. A weighted graph
G = (V, E, ρ) corresponds to an unweighted graph Gu, which is obtained from G by replacing
each vertex v of degree 1 (v is adjacent to a vertex w) with ρ(v) vertices adjacent to w. An
ordering of a weighted graph G = (V, E, ρ) is obtained as follows: take a conformal ordering α
of Gu and for each vertex x with |N1(x)| > 1 delete all neighbors of x degree of 1 apart from
y ∈ N1(x) for which α(y) < α(z) for each z ∈ N1(x) − {y}. Thus, an ordering of G is an
injective mapping β from V (G) to {1, 2, . . . , ρ(G)}. The profile prf(G) of a weighted graph is
defined exactly as the profile of an unweighted graph.

By Theorem 5 and the definitions above, prf(G) = prf(Gu) and an optimal ordering of G
can be effectively transformed into an optimal ordering of Gu. Also, ρ(G) = |V (Gu)|. The
correspondence between G and Gu allows us to use the results given in the previous sections.

Kernelization Rule 1. Let G be a weighted graph and x a vertex of G with N1(x) = {v1, . . . , vr},
r ≥ 2. We obtain the weighted graph G0 = (V0, E0, ρ0), where G0 = G − {v2, . . . , vr} and
ρ0(u) = ρ(u) for u ∈ V0 \ {v1} and ρ0(v1) =

∑r
i=1 ρ(vi).

The next lemma follows from Theorem 5.

Lemma 9. Let G be a weighted connected graph and G0 the weighted graph obtained from G
by Kernelization Rule 1. Then prf(G) = prf(G0), and an optimal ordering α0 of G0 can be
effectively transformed into an optimal ordering α of G.

Let e be a bridge of a weighted connected graph G and let G1, G2 denote the connectivity
components of G − e. We define the order of e as min{ρ(G1), ρ(G2)}. Let v be a vertex of a
(weighted) graph G. We say that v is k-suppressible if the following conditions hold: (a) v forms
a trivial bridgeless component of G; (b) v is of degree 2 or 3; (c) there are exactly two bridges
e1, e2 of order at least k + 2 incident with v; (d) if there is a third edge e3 = vw incident with
v, then w is a vertex of degree 1.

Kernelization Rule 2 (w.r.t. parameter k). Let v be a k-suppressible vertex of a weighted
graph G = (V, E, ρ) and let xv, yv be the bridges of order at least k + 2. From G we obtain a
weighted graph by removing {v} ∪ N1(v) and adding the edge xy.

Lemma 10. Let G = (V, E, ρ) be a weighted connected graph with prf(G) ≤ ρ(G)−1+k and G′

the weighted graph obtained from G by means of Kernelization Rule 2 with respect to parameter
k. Then prf(G) − ρ(G) = prf(G′) − ρ(G′), and an optimal ordering α′ of G′ can be effectively
transformed into an optimal ordering α of G.
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Proof. Let v be a k-suppressible vertex of Gu and let xv, yv be the bridges of order at least
k + 2. We consider the case when N1(v) = {w1, . . . , wr} 6= ∅; the proof for the case when
N1(v) = ∅ is similar. Let Gu[X ] and Gu[Y ] denote the components of Gu − v that contain x
and y, respectively. Consider an optimal ordering α of Gu. By Theorem 5, we may assume that
α(wi) < α(v) for every 1 ≤ i ≤ r. Now by Theorem 4 (V1 = X , V2 = {v, w1, . . . , wr}, V3 = Y ),
we can find an optimal ordering α′ of Gu such that α′(x′) < α′(wi) < α′(v) < α′(y′) for each
x′ ∈ X, y′ ∈ Y and i = 1, 2, . . . , r.

Now it will be more convenient to argue using the weighted graphs G and G′. Using Kernel-
ization Rule 1, we transform α′ into the corresponding optimal ordering of G. For simplicity we
denote the new ordering α′ as well. Observe that prfα′

{v,w}
(G′, y) = prfα′(G, y) + prfα′(G, v) −

1 − ρ(w). Hence, prf(G′) − ρ(G′) ≤ prfα′
{v,w}

(G′) − ρ(G′) = prf(G) − ρ(G).

Conversely, let α′ be an optimal ordering of G′. Since the bridge xy of G′ is of order at
least k + 2, we may assume by Theorem 4 that for all x′ ∈ X and y′ ∈ Y we have α′(x′) <
α′(y′). It is straightforward to extend α′ into an ordering α of G such that α{v,w} = α′ and
prfα(G) = prfα′(G′) + 1 + ρ(w). Hence prf(G) − ρ(G) ≤ prfα(G) − ρ(G) = prfα′(G′) − ρ(G′).
Thus, prf(G′) − ρ(G′) = prf(G) − ρ(G).

Theorem 6. Let G = (V, E, ρ) be a weighted connected graph with n = |V | and m = |E|. Let
k be a positive integer such that prf(G) ≤ ρ(G) − 1 + k. One of the Kernelization Rules 1 and
2 can be applied with respect to parameter k, or n ≤ 12k + 6 and m ≤ 13k + 5.

Proof. For a weighted graph G = (V, E, ρ), let G∗ be the unweighted graph with V (G∗) = V
and E(G∗) = E. Consider an optimal ordering α of G. By definition of an ordering of a weighted
graph, α is obtained from a conformal ordering of Gu, so we may assume that α is conformal.
Define an ordering β of G∗ as follows: for each v ∈ V we set β(v) = |{u ∈ V : α(u) ≤ α(v)}|.
A vertex v of G is heavy if ρ(v) > 1; let H be the set of heavy vertices of G.

Assume first that G has only one heavy vertex v and let u be the neighbor of v. Since α is
conformal, v is to the left of u in α. Thus, prfβ(G∗, u) ≤ prfα(G, u) − ρ(v) + 1. If G has more
than one heavy vertex, we may transform G to G∗ by setting the weights of heavy vertices, one
by one, to 1. As above we get prfβ(G∗, U) ≤ prfα(G, U) −

∑

v∈H(ρ(v) − 1), where U is the set
of the neighbors of vertices in H . Thus, prf(G∗) + ρ(G) − n ≤ prfβ(G∗) + ρ(G) − n ≤ prf(G),
and if prf(G) ≤ ρ(G) − 1 + k, then prf(G∗) ≤ n − 1 + k. The last inequality will allow us to
consider G∗ rather than G in the rest of the proof, but for the simplicity of notation we use G
instead of G∗.

Assume that none of the Kernelization Rules 1 and 2 can be applied with respect to parameter
k. We will show that the claimed bounds on n and m hold. By the connection between profile
and interval graphs [3] we have m ≤ prf(G) ≤ n−1+k. Thus, n ≤ 12k+6 implies m ≤ 13k+5.
Therefore, it suffices to prove that n ≤ 12k + 6.

Case 1: G has no bridges of order at least k + 2. If G is bridgeless, then by Theorem 3, we
have n − 1 + k ≥ prf(G) ≥ 3n−3

2 and, thus, n ≤ 2k + 1. Hence, we may assume that G has
bridges.

For a bridge xy of G let G[V xy
x ] and G[V xy

y ] denote the connectivity components of G − xy
with x ∈ V xy

x and y ∈ V xy
y . If we have |V xy

x | = |V xy
y | for a bridge xy, then n ≤ 2k + 2 since

otherwise xy would have order at least k + 2. Hence assume |V xy
x | 6= |V xy

y | for all bridges xy of
G.

Consider the oriented tree T whose vertices are the bridgeless components of G and whose
arcs are the bridges xy of G, oriented from x to y if |V xy

x | > |V xy
y |. Since T is an acyclic

digraph, T contains a vertex s of in-degree 0. Let S denote the bridgeless component of G
corresponding to s. Let P be a connectivity component of G − V (S). If P is nontrivial, P
has a vertex z such that P − z is connected and z is not incident to the bridge between P
and S. If P is trivial, let z = V (P ). Let α be an optimal ordering of G. By Lemma 3,
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n−1+k ≥ prfα(G) ≥ prfαz
(G−z)+d(z) ≥ prf(G−z)+1. Thus, prf(G−z) ≤ |V (G−z)|−1+k.

Similarly, we can see that prf(G − V (P )) ≤ |V (G − V (P ))| − 1 + k and, moreover,

prf(S) ≤ |S| − 1 + k. (4)

Therefore, as in the first paragraph of Case 1, we obtain |V (S)| ≤ 2k + 1.
Let G1, G2, . . . , Gr be the connectivity components of G−V (S) and let |V (Gi)| ≤ |V (Gi+1)|

for each i = 1, 2, . . . , r − 1. Let t be the number of trivial components of G − V (S). Since we
have assumed that Kernelization Rule 1 cannot be applied, it follows that t ≤ |V (S)| ≤ 2k + 1.

By Lemma 5,
∑r−2

i=1 |V (Gi)| ≤ 2k + t. By the definition of S and the fact that every bridge of
G is of order at most k + 1, we have |V (Gr−1)| ≤ |V (Gr)| ≤ k + 1. Thus,

|V (G)| ≤ 2k + 1 + 2k + t + 2(k + 1) ≤ 8k + 4.

Case 2: G has some bridges of order at least k+2. Let Ci, i = 1, . . . , t, denote the bridgeless
components of G such that at least one vertex in Ci is incident with a bridge of order at least
k + 2. We put X =

⋃t
i=1 V (Ci).

Suppose that there is a component Ci incident with three or more bridges of order at least
k + 2. Then, we may assume that there are three bridges e2, e3, e4 of order at least k + 2 that
connect a subgraph F1 of G with subgraphs F2, F3, F4, respectively, and V =

⋃4
i=1 V (Fi). Let

α be an optimal ordering of G. Assume without loss of generality that α−1(1) 6∈ V (F2) and
α−1(n) 6∈ V (F2). Let Q = V (F2) and note that G − Q is connected. Therefore Lemmas 1 and
2(i) imply prf(G) = prfα(G, Q) + prfα(G, V − Q) ≥ |Q| − 1 + (|V | − |Q| − 1) + |Q| ≥ n + k, a
contradiction. Since G is connected, it follows that G[X ] is connected. Thus, G[X ] is a chain
and we may assume that Ci and Ci+1 are linked by a bridge bi for each i = 1, 2, . . . , t−1. Notice
that each bi is of order at least k + 2 in G.

Let G1, G2, . . . , Gr be the connectivity components of G − X . Observe that each Gi (1 ≤
i ≤ r) is linked with exactly one Cj (1 ≤ j ≤ t) with a bridge eij . The bridge eij must be of
order less than k + 2, since otherwise V (Gi) ∩ X 6= ∅. Hence

|V (Gi)| ≤ k + 1 (5)

follows for all i ∈ {1, . . . , r}. For each j, let IG(j) be the set of indices i such that Gi is linked
to Cj .

Let N = { 1 ≤ i ≤ t : |V (Ci)| > 1 } and T = { 1 ≤ i ≤ t : |V (Ci)| = 1 }. For i ∈ T
let xi denote the single vertex in Ci. Similarly, let N ′ = { 1 ≤ i ≤ r : |V (Gi)| > 1 } and
T ′ = { 1 ≤ i ≤ r : |V (Gi)| = 1 }. Let Hj = G[

⋃

i∈IG(j) V (Gi) ∪ V (Cj)] for each j = 1, 2, . . . , t.

By Theorem 4, we may assume that there exists an optimal ordering β such that β(hi) < β(hj)
for all i < j, hi ∈ V (Hi), hj ∈ V (Hj). Let γ = βV (G)−X . Clearly, γ is a special ordering of the
chain G[X ], i.e., γ(ci) < γ(cj) for all i < j, ci ∈ V (Ci), cj ∈ V (Cj).

Similarly to (4), we can prove that prfγ(G[X ]) ≤ |X |−1+k. Now by Lemma 4,
∑

i∈N |V (Ci)| ≤
3k. Lemma 5 yields that |N ′| ≤ k + 2. Since none of the Kernelization Rules 1 and 2 can be
applied, for each i ∈ T , xi is linked by a bridge xiyπ(i) to at least one nontrivial Gπ(i), where
π(i) 6= π(i′) whenever i 6= i′. Hence, |T | ≤ k+2. Thus, |X | =

∑

i∈N |V (Ci)|+|T | ≤ 3k+(k+2) =
4k+2. Using (5) and Lemma 5, we have that

∑r
i=1 |V (Gi)| ≤ 2(k+1)+2k+ |T ′| = 4k+2+ |T ′|.

Let Y =
⋃r

i=1 V (Gi). Since Kernelization Rule 1 cannot be applied, every vertex in X
is adjacent with at most one Gi with i ∈ T ′. Hence |T ′| ≤ |X | ≤ 4k + 2. Consequently
|Y | ≤ 2(4k + 2) = 8k + 4. Hence n = |X | + |Y | ≤ 4k + 2 + 8k + 4 = 12k + 6 follows.

It is not too difficult to see how Theorem 1 can be extended to the following theorem. As
the proof of Theorem 7 is very similar to that of Theorem 1 we will only outline the proof.
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Theorem 7. Let G = (V, E, ρ) be a connected weighted graph with n vertices and m edges as
considered at the beginning of this section. The cost of adding an edge e = uv to G is ρ(u) ·ρ(v).
If k is a non-negative integer, then we can decide, in time O(nm3k(k + 1)!), whether we can
add edges of total cost (i.e. the sum of the costs of all edges added) at most k + n− 1−m, such
that the result is an interval graph.

Proof. Note that if ρ(u) = 1 for all u ∈ V (G), then this theorem is equivalent to Theorem 1. In
Theorem 1 we have shown that the running time of a search tree algorithm is O(Πk+1

j=m−n+2a(j)),
where a(j) = 3j if j > 5 and otherwise a(j) = 15. This also holds for the weighted case as we
can add at most as many edges as we did in the search tree in Theorem 1. So the depth of the
search tree is not greater in the weighted case than in the unweighted one.

Corollary 1. The problem PAVGV can be solved in time O(|V |2 + k23k(k + 1)!).

Proof. We can apply the two kernelization rules as long as it is possible or we have concluded
that prf(G) > |V |−1+k. This will take time O(|V |2). Assume that prf(G) ≤ |V |−1+k. Then,
by Theorem 6, the remaining graph H has at most 12k+6 vertices and 13k+5 edges. Applying
Theorem 7 to H , we obtain the required running time.

Remark 1. Of the two algorithms we obtained, one of complexity O(nm3k(k + 1)!) and the
other of complexity O(n2 + k23k(k + 1)!), the second algorithm is far more efficient.

5 Vertex Average Profile Problem

In this final section we consider the problem Vertex Average Profile (VAP); see section 1.2.
Serna and Thilikos [19] asked whether VAP is fixed-parameter tractable. The following result,
announced in [12] without a proof, implies that VAP is not fixed-parameter tractable unless
P = NP.

Theorem 8. Let k ≥ 2 be a fixed integer. Then it is NP-complete to decide whether prf(H) ≤
k|V (H)| for a graph H.

Proof. Let G be a graph and let r be an integer. We know that it is NP-complete to decide
whether prf(G) ≤ r. Let n = |V (G)|. Let k be a fixed integer, k ≥ 2. Define G′ as follows (i and
j will be chosen later): G′ contains k copies of G, j isolated vertices and a clique with i vertices
(all of these subgraphs of G′ are vertex disjoint). We have n′ = |V (G′)| = kn + i + j. Observe
that prf(Ki) =

(

i
2

)

. By the definition of G′, k · prf(G) = prf(G′) − prf(Ki) = prf(G′) −
(

i
2

)

.

Therefore, prf(G) ≤ r if and only if prf(G′) ≤ kr +
(

i
2

)

. If there is a positive integer i such that

kr +
(

i
2

)

= kn′ and the number of vertices in G′ is bounded from above by a polynomial in n,

then G′ provides a reduction from to VAP with the fixed k. Observe that kr +
(

i
2

)

≥ k(kn + i)

for i = 2kn. Thus, by setting i = 2kn and j = r + 1
k

(

i
2

)

− kn − i, we ensure that G′ exists and
the number of vertices in G′ is bounded from above by a polynomial in n.
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