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We survey the parameterized complexity of problems that arise in artificial
intelligence, database theory, and automated reasoning. In particular, we
consider various parameterizations of the constraint satisfaction problem, the
evaluation problem of Boolean conjunctive database queries, and the propositional
satisfiability problem. Furthermore, we survey parameterized algorithms for
problems arising in the context of the stable model semantics of logic programs, for
a number of other problems of non-monotonic reasoning, and for the computation

of cores in data exchange.

1. INTRODUCTION

Many problems that arise in artificial intelligence,
database theory, and automated reasoning are at least
NP-hard. In such cases, one often applies heuristics or
approximation algorithms in order to obtain suboptimal
solutions in a reasonable amount of time. The
framework of parameterized complexity, initiated by
Rod Downey and Mike Fellows, provides a means
for developing optimal algorithms which are feasible
in practice. The main idea is to associate with a
problem instance a parameter, usually a non-negative
integer k, which is small for instances of relevance,
and to develop algorithms with running times that are
possibly exponential in the parameter but uniformly
polynomial in the instance size. In particular, an
algorithm is a fixed-parameter algorithm if it solves
instances of size n and parameter k in time O(f(k)nc);
here f denotes a computable function and c denotes
a constant which is independent of the parameter k.
Although the function f can be exponential (and is
exponential for non-trivial cases), a fixed-parameter
algorithm remains feasible for large instances provided
that the parameter k is small. This feature of fixed-
parameter algorithms makes them often preferable to
algorithms with a running time of the form O(nf(k)),
since the latter become impractical for large instances
even when f(k) = k and k is small.

Example 1.1. A vertex cover of a graph G is a
set S of vertices of G such that every edge of G
has at least one of its ends in S. Given a graph G
and a non-negative integer k, the problem of deciding

whether G admits a vertex cover of size at most k, is a
classical NP-complete problem [49]. However, several
fixed-parameter algorithms are known that solve the
following parameterized version of the problem:

VC

Instance: A graphG and a non-negative integer k.

Parameter: k.

Question: Does G admit a vertex cover of size at
most k?

Indeed, VC is probably the best studied problem
in parameterized complexity with a long history of
improvements [18]. The currently fastest fixed-
parameter algorithm for VC is due to Chen, Kanj,
and Xia [19] and requires time O(1.273k + nk) and
polynomial space for graphs of order n.

In this paper we focus on positive results, i.e.,
the existence of fixed-parameter algorithms for the
problems under consideration. The presented negative
results (i.e., hardness results) have merely the purpose
of carving out territories that are very likely to be
inaccessible to fixed-parameter algorithms.

The majority of combinatorial problems studied in
the framework of parameterized complexity offer a
“natural parameter,” e.g., it is natural to parameterize
the vertex cover problem by the size of the vertex covers
as in VC above. However, the problems considered
in this survey lack of a natural parameter; there are
numerous possibilities for parameters. An important



task is the identification of parameters that are as
general as possible (i.e., for many instances of practical
importance one can expect that the parameter is
small), and which are still accessible to fixed-parameter
algorithms. Thus, problems of that kind open up a race
between more and more general parameters.

We have tried to cover many relevant results under a
unified framework. However, there are certainly several
interesting fixed-parameter algorithms known which are
not covered in this survey. We apologize to all the
authors whose results are not included.

The remainder of the paper is organized as follows.
We close this section with a brief review of the
basics of parameterized complexity. In Section 2 we
consider various parameterizations of the constraint
satisfaction problem and the evaluation problem for
Boolean conjunctive database queries. In Section 3 we
consider several parameterizations of the propositional
satisfiability problem. Finally, in Section 4, we consider
problems arising in the context of the stable model
semantics of logic programs, problems related to other
forms of non-monotonic reasoning, and we discuss
complexity problems related to the computation of
cores in data exchange.

1.1. Parameterized complexity in a nutshell

Next we give a brief and rather informal review of the
most important concepts of parameterized complexity.
For an in-depth treatment of the subject we refer the
reader to other sources [29, 30, 35, 41, 45, 81].

An instance of a parameterized decision problem
is a pair (I, k) where I is the main part and k is
the parameter ; the latter consists usually of one or
several non-negative integers. A parameterized decision
problem is fixed-parameter tractable if it can be solved
by a fixed-parameter algorithm, i.e., if instances (I, k)
can be decided in time O(f(k)‖I‖c) where f is a
computable function, c is a constant, and ‖I‖ represents
the size of I with respect to a reasonable encoding.
FPT denotes the class of all fixed-parameter tractable
decision problems.

The framework of parameterized complexity offers
a completeness theory, similar to the theory of
NP-completeness, that allows the accumulation of
strong theoretical evidence that a parameterized
problem is not fixed-parameter tractable. This
completeness theory is based on the weft hierarchy
of complexity classes W[1],W[2], . . . ,W[P]. Each
class is the equivalence class of certain parameterized
problems under fpt-reductions. Such a reduction is a
straightforward extension of a polynomial-time many-
one reduction that ensures a parameter for one problem
maps into the parameter for another (see [30] for
details). All reductions considered in this survey are
of this type. The class XP consists of parameterized
problems that can be solved in polynomial time if the
parameter is considered as a constant. The above

classes form the chain

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP

where all inclusions are assumed to be proper; it is
known that FPT 6= XP [30, 45]. The following
parameterized clique-problem is W[1]-complete; this
problem is the basis for several hardness results
considered below.

CLIQUE

Instance: A graphG and a non-negative integer k.

Parameter: k.

Question: Does G contain a clique on k vertices?

A good reason for assuming that FPT and W[1]
are distinct is provided by an analog of Cook’s
Theorem: FPT = W[1] implies the existence of a
fixed-parameter algorithm for deciding whether a non-
deterministic Turing machine accepts an input within
k non-deterministic computation steps [30]. Although
XP contains problems which are very unlikely to
be fixed-parameter tractable, it is often a significant
improvement to show that a problem belongs to this
class, in contrast to, e.g., k-SAT which is NP-hard for
every constant k ≥ 3.

2. CONSTRAINT SATISFACTION AND
CONJUNCTIVE DATABASE QUERIES

2.1. Preliminaries

Constraint Satisfaction is a central problem of artificial
intelligence and provides a powerful and general
formalism for the encoding of various special-purpose
problems. An instance of the constraint satisfaction
problem (CSP) consist of a set of variables that range
over a finite domain of possible values, together with
a collection of constraints. Each constraint imposes a
restriction on the combination of values for specified
variables. The question is whether one can assign values
to variables complying with all the restrictions imposed
by the constraints.

Constraint satisfaction can be rephrased as the
evaluation problem for Boolean conjunctive queries
over relational databases. Actually, constraint
satisfaction and Boolean conjunctive query evaluation
are essentially the same problem [74]. Below we
will state concepts and results in terms of constraint
satisfaction; we will occasionally point out aspects
that arise from the database theoretic point of view.
Furthermore, the evaluation problem for Boolean
conjunctive queries can be considered as the model
checking problem for first-order formulas in prenex form
whose only connectives are ∃ and ∧. We note in passing
that first-order model checking problems provide an
alternative way of defining the complexity classes of the
weft hierarchy; this approach was initiated by Downey,
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Fellows, and Regan [31] and refined and extended by
Flum and Grohe [44].

Formally, a constraint satisfaction instance is a triple
(V,D, C) where V is a set of variables, D is a set of
values, the domain, and C is a set of constraints. Each
constraint in C is a pair (S,R) where S, the constraint
scope, is a sequence of distinct variables of V , and
R, the constraint relation, is a relation over D whose
arity matches the length of S (that is, R ⊆ Dr). A
constraint satisfaction instance with domain {0, 1} is
called Boolean. We denote by var(C) the set of variables
that occur in the scope of a constraint C. We define
the size of an instance I = (V,D, C) as the length of
a string that encodes the instance; more specifically,
the size ‖C‖ of a constraint C = (S,R) is given by
|var(C)| · (|R|+1); the size of the instance I is given by
|V |+ |D|+

∑
C∈C ‖C‖.

Consider a constraint satisfaction instance I =
(V,D, C). An assignment α : V → D satisfies a
constraint ((x1, . . . , xr), R) ∈ C if (α(x1), . . . , α(xr)) ∈
R. An assignment satisfies I if it satisfies all the
constraints of I simultaneously; in that case we also
say that α is a solution of I. A constraint satisfaction
instance is satisfiable or consistent if it has at least one
solution. CSP is the problem of deciding whether a
given instance is consistent.

Example 2.1. Graph 3-colorability can be expressed
as a constraint satisfaction problem: for a given graph
G = (V,E) we form the constraint satisfaction instance
I = (V, {red, green, blue}, C) where for every edge
uv ∈ E the set C contains the constraint ((u, v), R) with
R = {(red,green), (red,blue), (green,red), (green,blue),
(blue,red), (blue,green)}.

This example shows that the constraint satisfaction
problem is NP-hard.

Example 2.2. Similarly to Example 2.1, the popular
Sudoku puzzle can be described as a constraint
satisfaction problem [98]. As variables we take the 81
squares of the game, the domain is the set of integers
from 1 to 9. Each clue number gives raise to a unary
constraint that fixes the value for a variable. For each
set of nine variables x1, . . . , x9 that form a row, column,
or a 3× 3 subgrid we take a constraint ((x1, . . . , x9), R)
where R contains all tuples that correspond to a
permutation of the integers 1, . . . , 9.

The next two examples show how the clique problem
can be encoded as as a constraint satisfaction problem.
These two examples are the base for several hardness
results considered below.

Example 2.3 ([87]). Let G = (V,E) be a graph
and let k be a positive integer. We consider the
constraint satisfaction instance I = ({x1, . . . , xk}, V ,
{ ((xi, xj), R) : 1 ≤ i < j ≤ k }) where R =
{ (u, v) : uv ∈ E }. It is easy to verify that G contains
a clique on k vertices if and only if I is consistent.

Example 2.4 ([93]). Let G = ({v1, . . . , vn}, E) be
a graph and let k be a positive integer. Each edge
e = vivi′ of G can be encoded by a tuple te =
(d1, . . . , dn, d

′
1, . . . , d

′
n) where di = d′i′ = 1 and all

other values are 0. We consider the Boolean constraint
satisfaction instance I with kn variables xj

i (1 ≤
i ≤ n, 1 ≤ j ≤ k) and

(
k
2

)
many constraints Cj,j′

(1 ≤ j < j′ ≤ k). The constraints are defined by
Cj,j′

= ((xj
1, . . . , x

j
n, x

j′

1 , . . . , x
j′

n ), R), where R contains
all tuples tvivi′ for vivi′ ∈ E and i < i′. Again, it is
easy to verify that G contains a clique on k vertices if
and only if I is consistent.

Example 2.5. Consider a relational database with
the following relational schemes.

works(Emp#,Proj#)

manages(Emp#,Proj#)

relative(Emp1,Emp2)

The following Boolean conjunctive query checks
whether an employee works in a project managed by
his or her relative.

ans ←− works(E,P) ∧ manages(M,P)
∧ relative(E,M).

Formulating this query as a constraint satisfaction
instance we get I = ({xE , xM , xP }, D, {((xE , xP ), Rw),
((xM , xP ), Rm), ((xE , xM ), Rr)}), where D is the set of
all persons contained in the database, and Rw, Rm, Rr

are the binary relations that correspond to the database
records.

2.2. Parameterized constraint satisfaction

A constraint satisfaction parameter is a computable
function p that assigns to every constraint satisfaction
instance I a non-negative integer p(I). For constraint
satisfaction parameters p1, . . . , pr we consider the
following generic parameterized problem:

CSP(p1, . . . , pr)

Instance: A constraint satisfaction instance I
and non-negative integers k1, . . . , kr with p1(I) ≤
k1, . . . , pr(I) ≤ kr.

Parameters: k1, . . . , kr.

Question: Is I consistent?

Note that we formulate this problem as a “promise
problem” in the sense that for solving the problem
we do not need to verify the assumption p1(I) ≤
k1, . . . , pr(I) ≤ kr. However, for most of the cases
considered below the verification of the assumption
p1(I) ≤ k1, . . . , pr(I) ≤ kr is fixed-parameter tractable.
For a constraint satisfaction instance I = (V,D, C) we
have the basic parameters vars(I) = |V |, the number
of variables of I, length(I) =

∑
C∈C |var(C)|, the sum
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of arities of constraints, and dom(I) = |D|, the domain
size.

In the context of Boolean conjunctive queries, the
parameter length is known as the query size. For
queries it is natural to assume a small query size in
contrast to a large size of the database.

If we parameterize by the domain size, then the
problem remains NP-hard, since, e.g., 3-colorability
can be expressed as a constraint satisfaction problem
with constant domain (see Example 2.1 above). Thus
CSP(dom) is not fixed-parameter tractable unless
P = NP. On the other hand, if we parameterize
by the number of variables and the domain size,
i.e., CSP(vars,dom), then we have a trivially
fixed-parameter tractable problem: we can decide
the consistency of an instance I by checking all
dom(I)vars(I) possible assignments.

Somewhat surprisingly, if we do not bound the
domain size, we get a W[1]-complete problem.

Theorem 2.1 ([87]). The problems CSP(vars) and
CSP(length) are W[1]-complete.

The hardness part of this theorem follows from
Example 2.3 which gives a reduction from CLIQUE.

Let A be a deterministic polynomial-time algorithm
that applies simplification and propagation rules to
a constraint satisfaction instance I without changing
consistency. For example, arc consistency is an
important simplification and propagation rule used
in constraint solvers. Let A(I) denote the instance
obtained form I by applying algorithm A, and let
kernA(I) denote the size of A(I) (if the size of A(I)
depends on a particular ordering of variables and
constraints, let kernA(I) denote the largest size of A(I)
over all such orderings).

It follows now that the problem CSP(kernA) is
fixed-parameter tractable, since after the polynomial-
time preprocessing we are left with an instance A(I)
whose size is bounded in terms of the parameter, and
therefore any brute-force algorithm applied to A(I)
yields fixed-parameter tractability. In other words,
CSP(kernA) is fixed-parameter tractable by definition.

Next we will consider nontrivial constraint satis-
faction parameters that give rise to tractable classes
of constraint satisfaction instances. There are two
main approaches for obtaining tractable classes. The
first possibility for achieving tractability is to restrict
the constraint relations to a certain class of rela-
tions, a constraint language. For example, Schaefer’s
Dichotomy Theorem [96] is a classical result which clas-
sifies Boolean constraint languages. For further results
on tractable constraint languages, see, e.g., Cohen and
Jeavon’s survey [21].

The second possibility is to impose structural
restrictions on the way how variables and constraints
interact. To this end one associates with a constraint
satisfaction instance certain (hyper)graphs that model
the overall structure of the instance.

As observed by Feder and Vardi [39], the constraint
satisfaction problem can be rephrased as the question of
whether there exists a homomorphism from a relational
structure A into a relational structure B. This point of
view reveals an interesting symmetry between the above
two possibilities for achieving tractability: structural
restrictions correspond to restrictions on the structure
A, whereas restrictions on the constraint relations
correspond to restrictions on the structure B.

In this survey we will focus mainly on parameters
that impose structural restrictions. To this end we
associate the following (hyper)graphs with a constraint
satisfaction instance I.

The primal graph GI is the graph whose vertices are
the variables of I; two variables are joined by an edge
if and only if the variables occur together in the scope
of a constraint of I. The incidence graph G∗I is the
bipartite graph whose vertices are the variables and the
constraints of I; a variable x and a constraint C are
joined by an edge if and only if x ∈ var(C). Finally,
the constraint hypergraph HI is the hypergraph whose
vertices are, as for primal graphs, the variables of I; the
hyperedges of HI are the sets var(C) for constraints C
of I.

2.3. Instances of bounded treewidth

The graph parameter treewidth measures in a certain
sense the “tree-likeness” of a graph. Treewidth
is famous for its central role in Robertson and
Seymour’s Graph Minor Project; however, the concept
was independently discovered by other authors.
Many otherwise NP-hard graph problems such as
Hamiltonicity and 3-colorability are fixed-parameter
tractable if parameterized by the treewidth of the input
graph. It is generally believed that many practically
relevant problems actually do have low treewidth [11].
Treewidth has also been fruitfully applied to several
areas of AI and automated reasoning [59]. Before
we discuss applications of treewidth to constraint
satisfaction we briefly recall its definition.

Let G be a graph and let T be a tree. To improve
readability we will refer to the vertices of T as nodes.
Let χ be a labeling of the nodes of T by sets vertices of
G; the sets χ(t) are called bags. The pair (T, χ) is a tree
decomposition of G if the following conditions hold:

(i) every vertex of G belongs to χ(t) for some node t
of T ;

(ii) for every edge vw of G there is some node t of T
such that v, w ∈ χ(t);

(iii) for any three nodes t1, t2, t3 of T , if t2 lies on the
path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree decomposition (T, χ) is the
maximum |χ(t)| − 1 over all nodes t of T ; the
treewidth tw(G) of G is the minimum width over all
its tree decompositions. Determining the treewidth
of a graph is an NP-hard problem, as shown by
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Arnborg, Corneil, and Proskurowski [5]. However,
as shown by Bodlaender [15], if k is fixed, then for
a given graph G one can find in linear time a tree
decomposition of width at most k, or decide that the
treewidth of G exceeds k. Bodlaender’s algorithm is not
feasible in practice as its linear running time involves a
huge constant factor. For practical applications other
algorithms are preferred [14, 16].

The importance of treewidth lies in the fact that
many hard graph problems can be solved in polynomial
time for graphs of bounded treewidth [12, 23]. So it
is obvious to consider constraint satisfaction instances
with primal or incidence graphs of bounded treewidth.
Indeed, it was observed by Freuder [48] that instances
whose primal graphs have bounded treewidth can be
solved in (non-uniformal) polynomial time.

We define the constraint satisfaction parameters
tw(I) = tw(GI) and tw∗(I) = tw(G∗I) where GI

and G∗I are the primal and incidence graphs of I,
respectively. Since tw(I) ≤ vars(I) holds by trivial
reasons for every constraint satisfaction instance I, the
W[1]-hardness of CSP(tw) is a direct consequence of
Theorem 2.1.

Corollary 2.1. The problem CSP(tw) is W[1]-
hard.

However, as observed by Gottlob, Scarcello, and
Sideri [60], additionally bounding the domain size
renders the problem fixed-parameter tractable:

Theorem 2.2 ([60]). The problem CSP(tw,dom)
is fixed-parameter tractable.

Fixed-parameter tractability of CSP(tw,dom) can
be established by means of dynamic programming along
tree decompositions. Given an instance I = (V,D, C)
we first obtain a tree decomposition ((VT , ET ), χ) of
width k of the primal graph GI . Next we produce
an instance I ′ = (V,D, C′) that is solution-equivalent
to I, taking for every node t of T a new constraint
Ct = (χ(t), Rt) whose relation Rt contains those tuples
over D that are consistent with all constraints C of I
with var(C) ⊆ χ(t). Since the domain size is bounded,
the size of Ct is bounded as well. Now I ′ is an “acyclic”
instance that can be solved by a bottom-up traversal
of T . This procedure for acyclic instances was first
described by Yannakakis [109].

Bounding the treewidth of incidence graphs instead
of the treewidth of primal graphs yields a more general
constraint satisfaction parameter tw∗. Namely, there
are classes of constraint satisfaction instances with
bounded tw∗ and arbitrarily large tw. However,
the treewidth of the incidence graph G∗I exceeds the
treewidth of the primal graph GI at most by one [74].
Hence we have the following corollary to Theorem 2.1.

Corollary 2.2. The problem CSP(tw∗) is W[1]-
hard.

However, unlike for CSP(tw), bounding the domain
size by an additional parameter does not yield fixed-
parameter tractability. This follows from the reduction
from CLIQUE as described in Example 2.4. In fact,
for Boolean instances I that encode the existence of a
clique of size k in a graph, as described in Example 2.4,
we have tw∗(I) ≤

(
k
2

)
. This can be seen by taking a

tree decomposition (T, χ) of the incidence graph where
T is a path (i.e., (T, χ) is a path decomposition) where
bags contain all the

(
k
2

)
constraints plus one of the

variables. Hence we have a reduction from CLIQUE
to CSP(tw∗,dom).

Theorem 2.3 ([93]). The problem CSP(tw∗,dom)
is W[1]-hard.

This result implies W[1]-hardness of CSP(p,dom)
for every constraint satisfaction parameter p that is
more general than tw∗, i.e., if p(I) ≤ f(tw∗(I)) for
some computable function f .

Next we present a decomposition method which is
based on feedback vertex sets and was proposed by
Dechter [27]. This method is less general than the
method of bounded treewidth. However, it is often
preferred since it is significantly simpler to implement
and requires less space. This method provides an
example for the “backdoor set approach” to constraint
solving.

A set S of vertices of a graph G is a cycle cut set
or feedback vertex set of G if G − S is acyclic (here
G− S denotes the graph obtained from G by removing
all vertices in S and all the edges that are incident with
vertices in S). Although it is NP-hard to determine,
given G and k, whether G has a feedback vertex set of
size at most k [49], the following parameterized problem
is fixed-parameter tractable.

FVS

Instance: A graph G, a non-negative integer k.

Parameter: k.

Question: Does G have a feedback vertex set of
size at most k?

Downey and Fellows [30] have proposed two fixed-
parameter algorithms for FVS, one is based on bounded
search trees, one is based on a structure theorem due to
Bodlaender [13]. An efficient fixed-parameter algorithm
for FVS based on the iterative compression technique
is due to Guo et al. [64].

Assume that S is a feedback vertex set of the primal
graph of a constraint satisfaction instance I = (V,D, C).
For each partial assignment α : S → D we obtain from
I the instance I[α] = (V \ S,D, C′), the restriction of
I to α, as follows: First we remove all constraints from
I that are satisfied by α. Next we remove from the
remaining constraints all tuples that disagree in at least
one variable with α, and we eliminate the variables of S
from the scopes and update the relations accordingly.
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It is not difficult to see that I is consistent if and only
if I[α] is consistent for at least one partial assignment
α : S → D. However, since S is a feedback vertex set
of the primal graph of I, the primal graphs of all the
instances I[α] are acyclic. Whence each of the |D||S|
instances I[α] can be solved in polynomial time. This
renders the problem fixed-parameter tractable if we take
|D| and |S| as parameters.

Therefore, denoting by fvs(I) the size of a smallest
feedback vertex set of the primal graph of I, we have
the following result.

Theorem 2.4. The problem CSP(fvs,dom) is
fixed-parameter tractable.

As noted above, this result is less general than
Theorem 2.2 since graphs with small feedback vertex
sets have small treewidth, but the converse is not the
case.

Partial assignments and restrictions as considered
above provide a general framework for parameterizing
the constraint satisfaction problem. Let Γ be a class of
constraint satisfaction instances for which consistency
can be decided in polynomial time. Consider an
arbitrary constraint satisfaction instance I = (V,D, C)
and a subset B ⊆ V . The set B is called a strong Γ-
backdoor set of I if for all partial assignments α : B →
D, the restriction I[α] belongs to the base class Γ; this
notion of backdoor sets was introduced by Williams,
Gomes, and Selman [106]. Let bΓ(I) denote the size
of a smallest strong Γ-backdoor set of I. If we know a
strong Γ-backdoor set B of an instance I = (V,D, C),
then we can solve I by considering all |D||B| restrictions
I[α] for α : B → D. Hence, if the detection of
a strong Γ-backdoor set of size at most k is fixed
parameter tractable with respect to the parameter k,
then CSP(bΓ,dom) is fixed-parameter tractable. Note
that, if Γ0 denotes the class of constraint satisfaction
instances with acyclic primal graphs, then feedback
vertex sets of primal graphs, as considered above, are
strong Γ0-backdoor sets.

The identification of base classes Γ with fixed-
parameter tractable backdoor set detection is an
interesting research objective. In the next section we
will consider the concept of backdoor sets with respect
to propositional satisfiability.

Grohe [61] has established an interesting result under
the complexity theoretic assumption FPT 6= W[1]; see
also the conference paper of Grohe, Schwentick, and
Segoufin [63]: if a class of polynomial time solvable
constraint satisfaction instances is solely characterized
in terms of primal graphs, then the primal graphs
of the instances in the class have bounded treewidth.
This result rests on Robertson and Seymour’s deep
Excluded Grid Theorem [90]. For stating Grohe’s
theorem more specifically, we introduce the following
notation. For a class G of graphs let CSP[G] denote the
constraint satisfaction problem restricted to instances
whose primal graphs belongs to G. We say that G has

bounded treewidth if there exists a constant k such that
all graphs in G have treewidth at most k.

Theorem 2.5 ([61]). Unless FPT = W[1], the
following statements are equivalent for every recursively
enumerable class G of graphs:

(i) The problem CSP(length)[G] is fixed-parameter
tractable.

(ii) The problem CSP[G] can be solved in polynomial
time.

(iii) G has bounded treewidth.

2.4. Beyond treewidth

Constraints of large arity can be helpful, as illustrated
by the following example.

Example 2.6. Consider constraint satisfaction
instance I = (V,D, C) that contains a constraint Cbig

with var(Cbig) = V . We can solve the instance in poly-
nomial time, since we only need to check whether one
of the tuples of the constraint relation of Cbig defines a
solution.

A constraint whose scope contains n variables
produces a clique on n vertices in the primal graph.
The primal graph, however, does not provide enough
information to conclude from the presence of a clique
on n vertices that the corresponding n variables occur
together in the scope of a constraint (the clique could be
the result of, say, several binary constraints). Therefore
it is beneficial to consider the constraint hypergraph, as
defined above, which contains this additional structural
information.

Let us fix some hypergraph terminology before
we discuss properties of constraint hypergraphs. A
hypergraph H is a pair (V,E) where V is a set of vertices
and E is a set of hyperedges; a hyperedge is a subset
of V . The primal graph or 2-section of a hypergraph
H = (V,E) is the graph G = (V,E2) where E2 contains
all pairs of distinct vertices that occur together in
some hyperedge of H. Thus the primal graph of a
constraint satisfaction instance I is the primal graph
of the constraint hypergraph of I.

A constraint satisfaction instance is acyclic if its
constraint hypergraph is acyclic, where a hypergraph
is called acyclic if it can be reduced to the empty
hypergraph (∅, ∅) by multiple applications of the
following rules (we refer here to the most general
concept of hypergraph acyclicity, also known as α-
acyclicity [36]).

(i) Remove a vertex that belongs to at most one
hyperedge.

(ii) Remove a hyperedge that is empty or is a subset
of another hyperedge.

Several equivalent definitions of hypergraph acyclicity
are known [8]. For example, a hypergraph is acyclic
if and only if there exists a tree decomposition of
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its primal graph such that the bags of the tree
decomposition are hyperedges of the hypergraph. Such
a tree decomposition, rooted at one of its nodes, is also
known as a join tree of the acyclic hypergraph. The
following is a well-known result of Yannakakis [109].

Theorem 2.6 ([109]). Acyclic constraint satisfac-
tion instances can be solved in polynomial time.

Actually, in our above sketch of the algorithm that
establishes Theorem 2.2 we have already encountered a
join tree: the tree decomposition of the given instance I
is nothing but a join tree of the constraint hypergraph
of the equivalent instance I ′.

Next we state a related fixed-parameter tractability
result that is based on a mixture of restrictions on
both the structure and the constraint relations. Often
constraint satisfaction instances involve several non-
equality constraints, i.e., constraints that impose the
restriction that two variables cannot receive the same
value. For a constraint satisfaction instance I let I6=
denote the instance obtained from I by removing all
non-equality constraints. Furthermore, let CSPacyc

6=
denote the constraint satisfaction problem restricted to
instances I for which I6= is acyclic. The question arises
of whether CSPacyc

6= is easier than CSP. Interestingly,
as shown by Papadimitriou and Yannakakis [87], the
answer is no for the non-parameterized setting, but yes
for the parameterized setting:

Theorem 2.7 ([87]). The problem CSPacyc
6= is NP-

complete.

Theorem 2.8 ([87]). The problem CSPacyc
6= (vars)

is fixed-parameter tractable.

In a series of papers, Gottlob, Leone, and Scarcello
have developed a concept of hypergraph decompositions
which allows a slice-wise generalization of acyclic
constraint satisfaction instances [56]. Let H = (V,E)
be a hypergraph. A generalized hypertree decomposition
of H is a triple (T, χ, λ) where (T, χ) is a tree
decomposition of the primal graph of H and λ is a
mapping that assigns to every node t of T a set λ(t)
of hyperedges of H such that each vertex x ∈ χ(t)
is contained in some hyperedge e ∈ λ(t). Thus λ(t)
is a set cover of χ(t). The width of a generalized
hypertree decomposition (T, χ, λ) is the size of a largest
set λ(t) over all nodes t of T . The generalized
hypertree width ghw(H) of H is the minimum width
over all generalized hypertree decompositions ofH. The
hypertree width hw(H) is defined similarly, considering
hypertree decompositions that satisfy an additional
technical condition. Recently Adler, Gottlob, and
Grohe [1] have shown that hypertree width and
generalized hypertree width are related by a small
multiplicative constant, namely ghw(H) ≤ hw(H) ≤
3 ·ghw(H)+1. For fixed k one can decide in polynomial
time whether hw(G) ≤ k (see below); for generalized

hypertree width, however, deciding ghw(H) ≤ 3 is NP-
hard [57].

We define the constraint satisfaction parameters
ghw and hw via the (generalized) hypertree width of
constraint hypergraphs. Gottlob, Leone, and Scarcello
[55] have shown that for any constant k one can decide
constraint satisfaction instances I with hw(I) ≤ k in
polynomial time; the problem is even in the complexity
class LOGCFL and so highly parallelizable.

Theorem 2.9 ([55]). The problems CSP(hw) and
CSP(ghw) are in XP.

The polynomial time algorithm of Gottlob et al. [55]
can be outlined as follows. Let I be an instance of
size s with ghw(I) ≤ k and let HI = (V,E) be its
constraint hypergraph; by the above result of Adler
et al., hw(I) ≤ 3k + 1 =: k′. First we compute a
hypertree decomposition of H of width at most k′. This
can be accomplished in time O(|E|2k′ |V |2). Second,
using the decomposition, we transform I into a solution-
equivalent acyclic instance I ′. This can be accomplished
in time O(sk′

). Third, we solve the acyclic instance I ′

by Yannakakis’ polynomial-time algorithm as outlined
above. In total we have the overall time complexity
O(s2(k

′+1) log s).
This algorithm does not render the problem

CSP(ghw) fixed-parameter tractable. A recent result
of Gottlob, Grohe, Musliu, Samer, and Scarcello [54]
shows that the first step of the above procedure involves
a W[2]-hard problem:

Theorem 2.10 ([54]). The problem of deciding
whether ghw(H) ≤ k (or, hw(H) ≤ k) holds for a
given hypergraph H is W[2]-hard with respect to the
parameter k.

Chen and Dalmau [17] have shown that it is possible
to avoid the decomposition step. They present
a game-theoretic algorithm that decides consistency
in polynomial time for instances whose generalized
hypertree width is bounded by a constant. Their
algorithm, however, is not a fixed-parameter algorithm
either. Furthermore, a similar argument as used for
the proof of Theorem 2.3 shows that the problems
CSP(hw,dom) and CSP(ghw,dom) are W[1]-hard.

Grohe and Marx [62] have proposed two new
hypergraph parameters that give raise to new classes
of polynomial-time solvable constraint satisfaction
instances. A fractional edge cover of a hypergraph
H = (V,E) is a mapping ψ : E → [0,∞] such that∑

e∈E,v∈e ψ(e) ≥ 1 holds for all vertices v ∈ V . The
weight of ψ is given by

∑
e∈E ψ(e). The fractional edge

cover number ρ∗(H) is the minimum of the weights of all
edge covers of H. For a constraint satisfaction instance
I let ρ∗(I) = ρ(HI). Using Shearer’s Lemma [20],
Grohe and Marx have shown that, given a constraint
satisfaction instance I of size s and k = ρ∗(I), all
solutions of I can be listed in time sk+O(1). This yields
the following result.
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Theorem 2.11 ([62]). The problem CSP(ρ∗) is in
XP.

This result is interesting since there are classes of
constraint satisfaction instances of constant ρ∗ with
arbitrary high ghw, and classes of instances with
arbitrarily high ρ∗ and constant ghw [62]. Furthermore,
Grohe and Marx have defined fractional hypertree
decompositions of hypergraphs, combining the concepts
of generalized hypertree decompositions and fractional
edge covers. This new decomposition concept gives
rise to the hypergraph parameter fractional hypertree
width fhw(H). For every hypergraph H, fhw(H) is
bounded by both ρ∗(H) and ghw(H); hence fractional
hypertree width generalizes both other parameters. It
is not known whether for a given hypergraph H with
fhw(H) ≤ k for a fixed constant k, one can find
a fractional hypertree decomposition of H of width
at most k in polynomial time. However, if such a
decomposition is provided, then the instance can be
solved in polynomial time. For a classH of hypergraphs
let CSP[H] denote the constraint satisfaction problem
restricted to instances whose constraint hypergraphs
belong to H.

Theorem 2.12 ([62]). The problem CSP(vars)[H]
is fixed-parameter tractable for every class H of
hypergraphs with bounded fractional hypertree width.

Since fhw is more general than tw∗, Theorem 2.3
implies that the problem CSP(fhw,dom) is W[1]-hard.

3. PROPOSITIONAL SATISFIABILITY

3.1. Preliminaries

Propositional satisfiability is the classical problem
of determining whether a propositional formula in
conjunctive normal form has a satisfying truth
assignment. Cook’s famous proof that this problem
is NP-complete placed satisfiability as the cornerstone
of complexity theory. Despite its seemingly specialized
nature, satisfiability has proved to be extremely useful
in a wide range of different disciplines such as hardware
and software verification [10, 76, 105] and planning [71].

We consider propositional formulas in conjunctive
normal form (CNF) presented as a finite sets of clauses
where a clause is a finite set of literals, and a literal
is a negated or unnegated propositional variable. For
example,

F = {{¬x, y, z}, {¬y,¬z}, {x,¬y}}

represents the propositional formula (¬x∨y∨z)∧(¬y∨
¬z)∧ (x∨¬y). For a literal ` we denote by ` the literal
of opposite polarity, i.e., x = ¬x and ¬x = x. Similarly,
for a set L of literals, we put L = { ` : ` ∈ L }. We say
that two clauses C,D overlap if C ∩D 6= ∅, and we say
that C and D clash if C and D overlap.

For a clause C we denote by var(C) the set of
variables that occur (negated or unnegated) in C; for a

CNF formula F we put var(F ) =
⋃

C∈F var(C). We
measure the size of a CNF formula F by its length∑

C∈F |C|.
A truth assignment is a mapping τ : X → {0, 1}

defined on some set X of variables. We extend τ to
literals by setting τ(¬x) = 1 − τ(x) for x ∈ X. F [τ ]
denotes the formula obtained from F by removing all
clauses that contain a literal ` with τ(`) = 1 and by
removing from the remaining clauses all literals `′ with
τ(`′) = 0; F [τ ] is the restriction of F to τ . Note
that var(F [τ ]) ∩ X = ∅ holds for every assignment
τ : X → {0, 1} and every CNF formula F . A truth
assignment τ : X → {0, 1} satisfies a CNF formula
F if F [τ ] = ∅. A formula F is satisfiable if there
exists a truth assignment that satisfies F ; otherwise F is
unsatisfiable. SAT is the problem of deciding whether
a given CNF formula is satisfiable.

Example 3.1. A classical application of SAT is the
tautology testing problem. Consider the propositional
formula Ψ = (x → (y → x)). We transform Ψ
into a CNF formula using a technique which is due to
Tseitin [104]. First we replace the subformula (y → x)
by a new “extension variable” u and produce the set
of clauses F1 = {{y, u}, {¬x, u}, {¬y, x,¬u}} which
asserts the equivalence u ≡ (y → x). Next, we replace
(x→ u) by a new extension variable v and produce the
set of clauses F2 = {{x, v}, {¬u, v}, {¬x, u,¬v}} which
asserts the equivalence v ≡ (x → u). It is easy to see
that Ψ is a tautology if and only if the CNF formula
F = F1 ∪ F2 ∪ {{¬v}} is unsatisfiable.

In general, for every propositional formula Ψ we can
obtain in linear time a CNF formula F such that Ψ is
a tautology if and only if F is unsatisfiable.

Obviously, we can decide the satisfiability of
a CNF formula F with n variables by checking
all 2n truth assignments τ : var(F ) → {0, 1};
surprisingly, no algorithm is known that performs, in
the worst case, significantly better than the brute
force search. More precisely, no algorithm is known
that decides satisfiability of CNF formulas with n
variables in time 2o(n), and it is believed that no
such algorithm exists [69]. State-of-the-art satisfiability
solvers, however, are capable of solving large CNF
formulas originating from real-world applications with
thousands of variables. This successful performance
of solvers is usually explained by the presence of a
“hidden structure” in problem instances that arise from
practical applications. The parameterized approach
to satisfiability entails the identification of parameters
that allow fixed-parameter algorithms and exploit the
hidden structure.

Similarly as for constraint satisfaction above, we
consider as a satisfiability parameter any computable
function p that assigns to a CNF formula F
a non-negative integer p(F ). For satisfiability
parameters p1, . . . , pr we consider the following generic
parameterized decision problem:
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SAT(p1, . . . , pr)

Instance: A CNF formula F , non-negative
integers k1, . . . , kr with p1(F ) ≤ k1, . . . , pr(F ) ≤
kr.

Parameters: k1, . . . , kr.

Question: Is F satisfiable?

As for constraint satisfaction, we can consider the
satisfiability parameter kernA(F ), the size of the CNF
formula F ′ obtained from F by a polynomial-time
algorithm A. The algorithm simplifies a given instance
by applying simplification and data-reduction rules
and outputs a satisfiability-equivalent CNF formula F ′.
Clearly SAT(kernA) is fixed-parameter tractable by
definition.

Unit propagation and pure literal elimination are the
main simplification and data reduction methods used
in SAT solvers. If a CNF formula F contains a unit
clause {`}, we can simplify it by unit propagation to the
satisfiability-equivalent CNF formula F [` = 1]. Note
that F [` = 1] may contain new unit clauses that where
not present in F . A literal ` is a pure literal of a
CNF formula F if some clauses of F contain ` but no
clause contains `. If ` is a pure literal of F , then we
can simplify F by obtaining the satisfiability-equivalent
CNF formula F [` = 1]. Also pure literal elimination
propagates.

3.2. Treewidth and related parameters

We associate certain graphs and hypergraphs with CNF
formulas similarly as for constraint satisfaction. The
primal graph GF of a CNF formula is the graph with
vertex set var(F ) where two variables x, y are joined
by an edge if and only if F contains a clause C with
x, y ∈ var(C). The incidence graph G∗F is the bipartite
graph whose vertices are the variables and the clauses
of F ; a variable x and a clause C are joined by an edge
if and only if v ∈ var(C). The directed incidence graph
D∗

F is obtained from G∗F by orienting an edge xC from
x to C if ¬x ∈ C and from C to x if x ∈ C. Finally, the
formula hypergraph HF is the hypergraph with vertex
set var(F ) and hyperedges var(C) for all C ∈ F . We
define the satisfiability parameters tw(F ) = tw(GF )
and tw∗(F ) = tw(G∗F ).

If a CNF formula F has clauses of bounded size,
then we can transform F into a constraint satisfaction
instance I such that F is satisfiable if and only if I is
consistent. Namely, we replace each clause C with a
constraint whose constraint relation contains 2|C| − 1
tuples in the obvious way. However, if the size of
clauses is unbounded, then this transformation yields
an exponential blow-up of the instance size. It is known
that the treewidth of a graph G plus 1 is an upper
bound for the size of a clique in G. Note also that a
clause of size s yields a clique of size s in the primal
graph. Hence, if the treewidth of the primal graph of

a CNF formula F is at most k, then the size of clauses
of F is bounded by k + 1. In other words, bounding
the treewidth of primal formula graphs automatically
bounds the size of clauses. Consequently, the above
transformation does not cause an exponential blow-up
for CNF formulas whose primal graphs have bounded
treewidth. Thus Theorem 2.2 immediately gives us the
following result.

Theorem 3.1. The problem SAT(tw) is fixed-
parameter tractable.

Alekhnovich and Razborov [4] have pointed out the
significance of the hypergraph parameter branchwidth
for satisfiability. We briefly recall the definition of
branchwidth. Let H be a hypergraph, T = (V,E) a
ternary tree (i.e., all vertices of T have either degree
1 or 3), and τ a one-to-one mapping from the set of
leaves of T to the set of hyperedges of H; (T, τ) is
called a branch decomposition of H. The order of
an edge e of T is the number of vertices of H which
belong to hyperedges τ(t1), τ(t2) for nodes t1 and t2
that belong to different components of T −e. The width
of a branch decomposition (T, τ) is the maximum order
of all edges of T ; the branchwidth bw(H) of H is the
smallest width over all its branch decompositions. The
branchwidth of a CNF formula is the branchwidth of its
formula hypergraph, that is, bw(F ) = bw(HF ). The
following is a consequence of the results of Alekhnovich
and Razborov [4].

Theorem 3.2 ([4]). The problem SAT(bw) is fixed-
parameter tractable.

This result has been obtained via a modification
of Robertson and Seymour’s algorithm for computing
branch-decompositions [92]. Bacchus, Dalmao, and
Pitassi [7] have proposed an efficient fixed-parameter
algorithm for CNF formulas of bounded branchwidth.
This algorithm, which actually computes the number of
satisfying assignments, is based on the DPLL procedure
and uses caching techniques for an efficient reuse of
solutions for subproblems.

Using a result of Robertson and Seymour [91], one
can show the following lemma [100].

Lemma 3.1. For every CNF formula F without pure
literals we have

bw(F ) ≤ tw(F ) + 1 ≤ 2 · bw(F ).

Thus Theorems 3.1 and 3.2 are essentially equivalent
since pure literals can be eliminated in polynomial time
without increasing the treewidth.

3.3. Treewidth and clique-width

Similarly as for constraint satisfaction (see the previous
section) bounding the treewidth of incidence graphs
gives larger classes of CNF formulas than bounding
the treewidth of primal graphs. Indeed satisfiability

9



is fixed-parameter tractable for the more general
parameter.

Theorem 3.3. The problem SAT(tw∗) is fixed-
parameter tractable.

This theorem can be shown by means of linear
programming on tree decompositions of incidence
graphs [42, 94]. However, using general results of
descriptive complexity theory, one can easily derive
fixed-parameter tractability of SAT(tw∗). Next we
will outline this approach (a variant was proposed by
Szeider [100]).

Courcelle [23] has shown that if a graph property can
be expressed in a certain fragment of monadic second
order logic, MSO2, then this property can be checked
in linear time for graphs of bounded treewidth; see also
Downey and Fellows’ book [30] for an elegant proof
of this result. MSO2 admits quantification over sets
of vertices and over sets of edges. MSO1 denotes the
weaker fragment of monadic second order logic where
only quantification over sets of vertices is allowed; for
our purposes it suffices to consider MSO1.

Example 3.2. Whether a graph G = (V,E) is 3-
colorable can be expressed by the MSO1 formula

(∃R ⊆ V )(∃G ⊆ V )(∃B ⊆ V )[partition(R,G,B)
∧proper(R) ∧ proper(G) ∧ proper(B)]

using the abbreviations

partition(R,G,B) ≡
R ∩G = ∅ ∧R ∩B = ∅
∧B ∩G = ∅ ∧R ∪G ∪B = V,

proper(X) ≡
∀u, v ∈ V (uv ∈ E → ¬(u ∈ X ∧ v ∈ X)).

Hence, it follows from Courcelle’s Theorem that the
problem of deciding whether a graph of treewidth k is
3-colorable is fixed-parameter tractable with respect to
the parameter k.

We establish Theorem 3.3 using the following graph
theoretic formulation of satisfiability. For a CNF
formula F we obtain the graph G4(F ) with vertex
set {x,¬x : x ∈ var(F ) } ∪ F ∪ { aC , bC : C ∈ F };
edges are defined such that (i) each literal is adjacent
with its complement and with all clauses that contain
the literal, and (ii) each clause C forms a triangle
with the vertices aC and bC . The purpose of the
“auxiliary” vertices aC , bC is to distinguish between
vertices representing clauses and vertices representing
literals. It is straightforward to state an MSO1 formula
Ψ that expresses the following property of G4(F ):

“There exists a set V1 of literals such that for every
literal ` ∈ V1 its complement ` is not in V1, and every
clause is adjacent with at least one literal in V1.”

It is not difficult to see that F is satisfiable if and only
if Ψ is true for G4(F ), and that tw(G4(F )) is bounded

in terms of tw(G∗(F )). Hence, Theorem 3.3 follows by
Courcelle’s Theorem.

Courcelle’s Theorem provides a very general and pow-
erful means for showing fixed-parameter tractability.
However it is important to note that the running times
of algorithms obtained by this result involve huge hid-
den constants which make an implementation difficult
and limits the practical applicability. However, once the
fixed-parameter tractability of a problem is established,
one can try to develop made-to-measure combinatorial
algorithms for the problem under consideration.

Clique-width is a graph parameter that is more
general than treewidth in the sense that every graph
class of bounded clique-width has also bounded
treewidth, but there are graph classes of bounded
clique-width and unbounded treewidth. Since a
result similar to Courcelle’s Theorem holds for clique-
width, clique-width gives raise to a more general
parameterization of the satisfiability problem. Before
we state the relevant results in detail we give the
definition of clique-width.

Let k be a positive integer. A k-graph is a graph
whose vertices are labeled by integers from {1, . . . , k}.
We consider an arbitrary graph as a k-graph with all
vertices labeled by 1. We call the k-graph consisting of
exactly one vertex v, labeled by i ∈ {1, . . . , k}, an initial
k-graph and denote it by i(v). The clique-width cwd(G)
of a graph G is the smallest integer k such that G can be
constructed from initial k-graphs by means of repeated
application of the following three operations.

(i) Disjoint union (denoted by ⊕);
(ii) Relabeling : changing all labels i to j (denoted by

ρi→j);
(iii) Edge insertion: connecting all vertices labeled by

i with all vertices labeled by j, i 6= j (denoted by
ηi,j).

A construction of a k-graph using the above operations
can be represented by an algebraic term composed of
i(v), ⊕, ρi→j , and ηi,j , (i, j ∈ {1, . . . , k}, and i 6= j).
Such a term is called a k-expression defining G. Thus,
the clique-width of a graph G is the smallest integer k
such that G can be defined by a k-expression.

Example 3.3. The cliqueK4 on the vertices u, v, w, x
is defined by the 2-expression

ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(

2(u)⊕ 1(v)))⊕ 2(w)))⊕ 2(x))).

Hence cwd(K4) ≤ 2. In general, every clique on two or
more vertices has clique-width 2.

Similarly one can define the clique-width of a directed
graph D as the smallest integer k such that D can
be defined by a k-expression where the operation ηi,j

connects all vertices labeled by i with all vertices labeled
by j by edges directed from i-labeled vertices to j-
labeled vertices.
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Courcelle, Makowsky, and Rotics [24] have shown
that any property for graphs (or directed graphs)
definable in MSO1 can be checked in linear time if
a k-expression of the given graph is provided as an
input; here k is considered as a constant. This
result immediately applies to satisfiability via directed
incidence graphs. Namely, a CNF formula F is
satisfiable if and only if the following property holds
for the directed incidence graph D∗(F ):

“The set of variables can be partitioned into two sets
V0, V1 such that for every clause C there exists either
(i) a variable x ∈ V0 and a directed edge (x,C) or
(ii) a variable x ∈ V1 and a directed edge (C, x).”

Note that the partition V0, V1 corresponds to a
satisfying assignment τ with τ(x) = i for x ∈ Vi,
i = 0, 1. Considering the satisfiability parameter
dcwd∗(F ) = cwd(D∗(F )) we do not have yet fixed-
parameter tractability of SAT(dcwd∗) since the result
of Courcelle et al. [24] requires a k-expression as an
input. Determining the clique-width of a given graph
is NP-hard, as shown by Fellows, Rosamond, Rotics,
and Szeider [40]. However, Oum and Seymour provide
a fixed-parameter algorithm for approximating clique-
width.

Theorem 3.4 ([84]). Given a graph G of order n
and clique-width k one can find a (23k+2−1)-expression
for G in time O(n9 log n).

As observed by Fischer, Makowsky, and Ravve [42],
the proof of Theorem 3.4 carries over to directed
graphs. Hence, combining the MSO1 result of [24] with
Theorem 3.4, one obtains fixed-parameter tractability
of SAT(dcwd∗).

Theorem 3.5 ([42]). The problem SAT(dcwd∗) is
fixed-parameter tractable.

From the theoretical point of view, Theorem 3.5
subsumes Theorems 3.1 and 3.3 since there exists a
computable function f such that tw∗(F ) ≤ k implies
dcwd∗(F ) ≤ f(k). The latter follows from a result of
Courcelle and Olariu [25].

We note that Theorem 3.5 can also be obtained
using Theorem 3.4 for undirected graphs since it is
easy to show that cwd(G4(F )) is bounded in terms
of cwd(D∗(F )).

3.4. Maximum deficiency and falsum number

Matchings in incidence graphs give raise to the
satisfiability parameter maximum deficiency, first
considered by Franco and Van Gelder [47]. A set M
of edges of a graph G is a matching if each vertex of
G is incident with at most one edge in M . A matching
of largest size of a graph G is a maximum matching of
G. It is well known that a maximum matching can be
found in polynomial time. The following observation is
due to Aharoni and Linial [2].

Lemma 3.2. If the incidence graph of a CNF formula
F has a matching M such that every clause of F is
incident with an edge of M , then F is satisfiable.

Namely, given such a matching, we can satisfy each
clause independently by choosing the right truth value
for the variable to which the clause is matched. The
maximum deficiency md(F ) of a CNF formula F is
the number of clauses of F that are not incident
with an edge of an arbitrary but fixed maximum
matching of the incidence graph of F . Lemma 3.2
covers the case md(F ) = 0. Defining the deficiency
of a CNF formula F as the difference d(F ) =
|F | − |var(F )|, the following equation, which can be
established using Hall’s Theorem, explains the origin
of the term “maximum deficiency”

md(F ) = max
F ′⊆F

d(F ′).

Fleischner, Kullmann, and Szeider [43] have shown
that SAT(md) is in XP. Szeider [99] has improved
this result to fixed-parameter tractability.

Theorem 3.6 ([99]). The problem SAT(md) is
fixed-parameter tractable.

This result can be applied to the recognition of min-
imal unsatisfiable CNF formulas (i.e., CNF formulas
that are unsatisfiable but become satisfiable by remov-
ing any clause). In general, recognition of minimal
unsatisfiable CNF formulas is DP-complete [86]. A
problem is in DP if and only if it can be formulated
as the conjunction of an NP-problem and a co-NP-
problem [85]. A canonical DP-problem is the following:
given two CNF formulas F1, F2, determine whether F1 is
satisfiable and F2 is unsatisfiable. Deficiency and max-
imum deficiency agree for minimal unsatisfiable CNF
formulas [2, 43, 99]. Hence, using the algorithm of The-
orem 3.6 as a subroutine, one can obtain the following
result.

Theorem 3.7 ([99]). The recognition of minimal
unsatisfiable CNF formulas is fixed-parameter tractable
with respect to the parameter deficiency.

Note that the satisfiability parameters md and
dcwd∗ are incomparable in the following sense. There
are CNF formulas with constant md and arbitrarily
large dcwd∗, and conversely, there are CNF formulas
with arbitrarily large md and constant dcwd∗ [99]. Of
related interest is a recent paper of Szeider [102] where
the relationship between maximum deficiency and the
size of backdoor sets is considered.

Next we consider propositional formulas that are not
in conjunctive normal form. A propositional formula ψ
is called f -implicational if → (implication) is the only
connective of ψ; however, ψ may contain the constant
f (falsum) that is always mapped to 0 by any truth
assignment. Franco, Goldsmith, Schlipf, Speckenmeyer,
and Swaminathan [46] have shown the following.
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Theorem 3.8 ([46]). Satisfiability of f -implicational
formulas with at most two occurrences of each variable
and k occurrences of f is fixed-parameter tractable with
respect to the parameter k.

Heusch, Porschen, and Speckenmeyer [68] have
improved the algorithm of Franco et al. using dynamic
programming techniques.

Szeider [100] has considered a canonical translation of
CNF formulas F into f -implicational formulas ψF with
at most two occurrences of each variable. The falsum
number fn(F ) of a CNF formula F is the number of
occurrences of f in ψF . Theorem 3.8 yields directly the
fixed-parameter tractability of SAT(fn).

Theorem 3.9 ([100]). The problem SAT(fn) is
fixed-parameter tractable.

Since md(F ) ≤ fn(F ) holds for CNF formulas F
without pure literals [100], Theorem 3.6 subsumes
Theorem 3.9.

3.5. Backdoor sets

We have already considered the concept of backdoor
sets in the section on constraint satisfaction. This
concept also applies to satisfiability [107]. Consider a
class Γ of CNF formulas. A set B of variables of a CNF
formula F is a strong Γ-backdoor set of F if for all truth
assignments τ : B → {0, 1}, the restriction F [τ ] belongs
to Γ. Similarly as above, let bΓ(F ) denote the size of a
smallest strong Γ-backdoor set of F . For a base class Γ
we consider the following parameterized problem.

SBDS(Γ)

Instance: A CNF formula F , a non-negative
integer k.

Parameter: k.

Question: Does F have a strong Γ-backdoor set
of size at most k? I.e., is bΓ(F ) ≤ k?

Let Γ be a class of CNF formulas for which
satisfiability can be decided in polynomial time.
Assume that SBDS(Γ) is fixed-parameter tractable
in the sense that a fixed-parameter algorithm finds a
strong Γ-backdoor set of size at most k if such set
exists. Then, clearly, SAT(bΓ(F )) is fixed-parameter
tractable.

For the base classes HORN (CNF formulas where
each clause contains at most one positive literal) and
2CNF (CNF formulas with clauses of size at most 2),
Nishimura, Ragde, and Szeider [82] have shown the
following.

Theorem 3.10 ([82]). The problems SBDS(Γ) and
SAT(bΓ(F )) are fixed-parameter tractable for Γ ∈
{HORN, 2CNF}.

The algorithms of Nishimura et al. make use of the
concept of deletion backdoor sets. For a CNF formula

F and a set of variables B ⊆ var(F ), let F −B denote
the CNF formula {C \ (B ∪B) : C ∈ F }. We say that
B is a deletion Γ-backdoor set of F if F − B ∈ Γ. We
denote the size of a smallest deletion Γ-backdoor set of
F by dbΓ(F ).

Consider a base class Γ with the property that all
subsets of a CNF formula of Γ also belong to Γ; in
that case we say that Γ is clause-induced. Since F [τ ] ⊆
F − B holds for every truth assignment B → {0, 1},
it follows that for a clause-induced base class Γ, each
deletion Γ-backdoor set is also a strong Γ-backdoor
set. Often it is easier to search for deletion backdoor
sets than for strong backdoor sets; however, smallest
deletion backdoor sets can be larger than smallest
strong backdoor sets.

For the base classes HORN and 2CNF we are lucky:
it can be shown that strong and deletion backdoor sets
for these two classes coincide [82]. Consequently, the
search for strong HORN or 2CNF-backdoor sets can be
accomplished by a simple search-tree algorithm. Let F
be a CNF formula that contains a non-Horn clause C;
i.e., C contains at least two positive literals x, y. Every
deletion HORN-backdoor set of F must contain either
x or y. Thus we can branch into cases F − {x} and
F−{y} and repeat recursively with the parameter k−1.
The branching step for the detection of deletion 2CNF-
backdoor sets is similar: we take a clause C of size at
least 3 and pick three distinct variables x, y, z ∈ var(C).
We branch into cases F − {x}, F − {y}, and F − {z},
and repeat recursively with the parameter k − 1.

In a recent paper, Samer and Szeider [95] have gener-
alized the notion of backdoor sets to Quantified Boolean
Formulas (QBF) and have show that Theorem 3.10 also
holds in this more general setting.

Consider the class UP of CNF formulas that can
be decided by unit propagation; that is, by repeated
application of unit propagation to F ∈ UP we can
either reduce F to the empty CNF formula (F is
satisfiable) or we can reduce F to a CNF formula
that contains the empty clause (F is unsatisfiable). It
is well known that every unsatisfiable Horn formula
belongs to UP [72]. Thus, a possible generalization of
Theorem 3.10 is to consider strong UP-backdoor sets.
However, Szeider [101] has shown that the detection of
strong UP-backdoor sets is a W[P]-complete problem.
The same holds true for the class PL of CNF formulas
decidable by pure literal elimination, and the class
UP + PL of CNF formulas decidable by a combination
of unit propagation and pure literal elimination.

Theorem 3.11 ([101]). The problems SBDS(UP),
SBDS(PL), and SBDS(UP + PL) are W[P]-complete.

Note that for the classes UP, PL, and UP + PL,
deletion backdoor sets are not always strong backdoor
sets (the classes are not clause-induced). Hence deletion
backdoor sets do not provide a way for overcoming the
limits of Theorem 3.11.
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Let RHORN denote the class of renamable Horn
CNF formulas, i.e., of CNF formulas F for which there
exists a set X ⊆ var(F ) such that, replacing in the
clauses of F the literal x by ¬x and the literal ¬x by
x whenever x ∈ X, yields a Horn formula. Obviously,
RHORN properly contains HORN. In turn, from an
unsatisfiable formula F ∈ RHORN we can derive the
empty clause by unit propagation, i.e, F ∈ UP [72].
The parameterized complexity of SBDS(RHORN) is
an interesting open question, as it lies in a certain sense
between the fixed-parameter tractable SBDS(HORN)
and the W[P]-complete SBDS(UP). Since RHORN is
clause-induced, one can also study the relaxed problem
of deciding whether a given CNF formula has a deletion
RHORN-backdoor set of size at most k. The latter
problem is equivalent (under parameterized reductions)
to the problem of deciding whether a graph G with
a perfect matching M has a vertex cover of size at
most |M |/2 + k. Note that for such a graph G, |M |/2
is a guaranteed value for the size of a vertex cover;
parameterizations above guaranteed value have recently
received a lot of attention [77, 66, 65].

A further interesting base class is the class CLU of
cluster formulas. A CNF formula is a cluster formula if
it is the variable-disjoint union of hitting formulas which
are CNF formulas where any two clauses of clash [73].

The next lemma is due to an observation of
Iwama [70].

Lemma 3.3. A hitting formula F with n variables
has exactly 2n −

∑
C∈F 2n−|C| satisfying assignments

τ : var(F )→ {0, 1}.

Consequently, we can decide the satisfiability of
hitting formulas, and in turn, the satisfiability of cluster
formulas, in polynomial time.

Nishimura, Ragde, and Szeider [83] have considered
the parameterized complexity of backdoor set detection
for the base class CLU. Note that CLU is clause-
induced, hence both strong and deletion backdoor sets
are relevant.

Theorem 3.12 ([83]). The problem SBDS(CLU) is
W[2]-hard.

This negative result follows by a reduction from
the parameterized hitting set problem. The relaxed
parameter dbCLU admits a fixed-parameter algorithm.

Theorem 3.13 ([83]). The problem SAT(dbCLU) is
fixed-parameter tractable.

This result is obtained by means of an algorithm that
systematically destroys certain obstructions that consist
of pairs or triples of clauses. To this end, the obstruction
graph of a CNF formula F is considered. The vertex set
of this graph is the set of variables of F ; two variables
x, y are joined by an edge if and only if at least one of
the following conditions hold.

(i) F contains two clauses C1, C2 that do not clash,
x ∈ var(C1 ∩ C2), and y ∈ var(C1 \ C2);

(ii) F contains three clauses C1, C2, C3 such that C1

and C3 do not clash, x ∈ var((C1 \ C3) ∩ C2), and
y ∈ var((C3 \ C1) ∩ C2).

Vertex covers of obstruction graphs are closely related
to backdoor sets: Every deletion CLU-backdoor set of
a CNF formula F is a vertex cover of the obstruction
graph of F . Conversely, every vertex cover of the
obstruction graph of a CNF formula F is a strong CLU-
backdoor set of F .

The satisfiability parameter clu(F ), the clustering-
width, is defined as the size of a smallest vertex cover
of the obstruction graph of F . Hence the following
inequalities hold for every CNF formula F .

bCLU(F ) ≤ clu(F ) ≤ dbCLU(F ).

Finding a size k vertex cover of a given graph (or
deciding that such a vertex cover does not exist) is
fixed-parameter tractable, see Example 1.1. Since every
vertex cover of the obstruction graph of a CNF formula
F is a strong CLU-backdoor set of F , we have the
following.

Theorem 3.14 ([83]). The problem SAT(clu) is
fixed-parameter tractable.

Moreover, Theorem 3.13 follows, since we always
have clu(F ) ≤ dbCLU(F ). There are classes of CNF
formulas with constant clu and unbounded dcwd∗,
and classes of CNF formulas with unbounded clu and
constant dcwd∗ [83]. Hence the clustering number is
incomparable with any of the satisfiability parameters
tw, tw∗, bw, and dcwd∗.

4. LOGIC PROGRAMMING AND
NON-MONOTONIC REASONING

4.1. Computing stable models

A well-studied form of non-monotonic reasoning is
logic programming under the stable model semantics.
Before we survey parameterized problems that arise
in this context we briefly review some concepts and
definitions. Here we restrict our scope to propositional
logic programming.

A literal is an atom A or a negated atom ¬A. A
disjunctive logic program (DLP) P is a finite set of rules
of the form

A′1 ∨ · · · ∨A′r ←− A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An

where A,A1, . . . , An, A
′
1, . . . , A

′
r are atoms [88]. Here

the head H(r) of a rule r of P is the set of atoms
appearing at the left-hand-side of r, and the body B(r)
is the set of atoms at the right-hand-side of r. We also
write H(P ) (respectively B−(P )) for the union of H(r)
(respectively B−(r)) for all rules r of P . If |H(r)| = 1
for all rules r of a disjunctive logic program P , we call P
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a normal logic program. A DLP is positive if B−(r) = ∅
holds for all rules r. A positive normal logic program is
a Horn program.

The body B(r) of a rule is partitioned into the set of
unnegated atoms B+(r) and the set of negated atoms
B−(r). The universe U(P ) of such a program P is the
set of all atoms occurring in P , and an interpretation I
of P is a subset of U(P ) which fixes a set of atoms that
are true according to I, while the atoms in U(P )\ I are
false according to I. An interpretation I of a disjunctive
logic program P satisfies a rule r if H(r) ∩ I 6= ∅ or
B+(r) \ I 6= ∅ or B−(r) ∩ I 6= ∅. If I satisfies all the
rules of P we call I a model of P .

The reduct P I of a disjunctive logic program P
under an interpretation I is obtained by performing
the following two steps: first we remove every rule r
such that B−(r)∩ I 6= ∅; second we remove all negated
atoms from the bodies of the remaining rules. The
reduct of a disjunctive logic program is a positive logic
program, but not necessarily a Horn program, given the
possible disjunctions in the rule heads. Thus the reduct
P I may have several minimal models with respect to
set-inclusion. However, the reduct of a normal logic
program is a Horn program. Since the intersection of
two models of a Horn program P is again a model of
P , it follows that a satisfiable Horn program P has a
unique smallest model with respect to set-inclusion, the
least model of P .

Now, an interpretation I is called a stable model of
the disjunctive logic program P if I happens to coincide
with a minimal model of P I (or the minimal model of
P I , if P is normal). We say that a formula ϕ is a brave
consequence of a disjunctive logic program P if there
is at least one stable model of P such that M satisfies
ϕ, in symbols, M |= ϕ. We say that a formula ϕ is a
cautious consequence of P if M |= ϕ for every stable
model M of P .

Example 4.1 ([60]). Consider the normal logic
program P consisting of the rules

p ←− q ∧ ¬r
r ←− q ∧ s
s ←− ¬q ∧ r
q ←− ¬u
u ←− ¬q.

The interpretation I = {u} is a stable model for P ,
since the reduct P I consisting of the rules

p ←− q
r ←− q ∧ s
s ←− r
u ←−

is the least model of P I . The only further stable model
of P is the interpretation {p, q}.

4.2. Small and large stable models

The following parameterized problems were considered
by Truszczyński [103].

SmallStableModel

Instance: A normal logic program P and a non-
negative integer k.

Parameter: k.

Question: Does P admit a stable model of size at
most k?

LargeStableModel

Instance: A normal logic program P and a non-
negative integer k.

Parameter: k.

Question: Does P admit a stable model of size at
least |P | − k?

For solving SmallStableModel it suffices to check
all sets of atoms of P of size at most k. The number
of such subsets is bounded by O(nk) for n = |U(P )|,
thus the problem is in XP. A more refined analysis
[75] puts it into W[2]; a reduction from weighted CNF
satisfiability determines the problem as W[2]-complete.

Theorem 4.1 ([75, 103]). The problem Small-
StableModel is W[2]-complete.

Next we consider the problem LargeStableModel.
Consider a normal logic program P with m = |P |
rules. Let k be a non-negative integer. We apply two
preprocessing steps: We obtain a logic program P1 from
P by removing from the bodies of rules of P all literals
¬A for which A /∈ H(P ) holds. This removal does not
effect the set of stable models. Furthermore, we obtain
a logic program P2 from P1 by removing all rules r from
P1 for which |B−(r)| > k holds. The following can be
shown:

(i) An interpretation I containing at leastm−k atoms
is a stable model of P1 if and only if it is a stable
model of P2.

(ii) If a stable model I of P2 contains at least m − k
atoms, then |B−(P2)| ≤ k + k2.

Thus, if |B−(P2)| > k + k2 we can reject the instance.
However, each stable model of P2 is determined by
a subset of B−(P2). Consequently, if |B−(P2)| ≤
k + k2, then the number of such subsets is bounded
by O(2k+k2

). Hence we have the following result.

Theorem 4.2 ([103]). The problem LargeStable-
Model is fixed-parameter tractable.

Lonc and Truszczyński [75] have determined the
parameterized complexity of several model search
problems for general logic programs, definite Horn
programs, and purely negative programs, distinguishing
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the search for models, supported models, and stable
models (see Lonc and Truszczyński’s paper for the
respective definitions).

4.3. Structural parameters for logic programs

Similarly as for satisfiability and constraint satisfaction
above, we define a generic parameterized problem
for stable models; here p1, . . . , pr denote computable
mappings that assign to a logic program P a non-
negative integer pi(P ).

SM(p1, . . . , pr)

Instance: A normal logic program P and
non-negative integers k1, . . . , kr with p1(P ) ≤
k1, . . . , pr(P ) ≤ kr.

Parameters: k1, . . . , kr.

Question: Does P admit a stable model?

Gottlob, Scarcello, and Sideri [60] have considered
(directed) graphs to model the structure of logic
programs. The dependency graph D(P ) is the directed
graph with vertex set U(P ) and two types of arcs
defined as follows. There is a positive arc from A
to B if there exists a rule r ∈ P with {A} = H(r)
and B ∈ B+(r); there is a negative arc from A to B
if there exists a rule r ∈ P with {A} = H(r) and
B ∈ B−(r). From D(P ) one obtains the undirected
dependency graph G(P ) by replacing each positive arc
running from A to B by an edge between A and B,
and by replacing each negative arc from A to B by an
induced path of length two from A to B, introducing
a new vertex vAB . The parameter fvs(P ) is defined as
the size of a smallest feedback vertex set of G(P ).

Theorem 4.3 ([60]). The problem SM(fvs) is fixed-
parameter tractable.

The proof of this result follows from the following
considerations. First, it is easy to see that if fvs(P ) ≤ k,
then the undirected dependency graph G(P ) has a
feedback vertex set S of size at most k containing
only atoms, since each vertex of the form vAB can
be replaced by one of its two neighbors. Given such
a feedback vertex set S ⊆ U(P ) one considers, one
after the other, all assignments τ : S → {0, 1} and the
corresponding restriction P [τ ] of P to τ . The restriction
P [τ ] is defined similarly as for CNF formulas, see
Section 3. It can be shown that if I is a stable model of
P , then it is also a stable model of P [τ ]. Moreover, since
the undirected dependency graph of P [τ ] is acyclic, P [τ ]
is a “stratified” program and has a unique stable model
Mτ which can be computed in linear time. We check
whether Mτ is a stable model of P , and, if so, we add
it to a cumulating set Σ. When we have considered
all assignments τ : S → {0, 1} we are left with the set
Σ of all stable models of P . Hence SM(fvs) is fixed-
parameter tractable. As we have actually computed all

stable models, we can now determine whether a given
atom belongs to some stable model (brave reasoning)
and whether a given atom belongs to all stable models
(cautious reasoning).

The fixed-parameter tractability of the SM problem
has also been explored under the treewidth parameter.
This was actually done in the more general context of
disjunctive logic programs.

Example 4.2 (adapted from [26]). Consider the
following disjunctive logic program P , describing the
behavior of a reviewer while reviewing a paper:

good ∨ bad ← paper
tired ← ¬angry ∧ ¬happy

happy ← good
angry ← bad
smoke ← happy
smoke ← angry
paper ←

Intuitively, here paper means that the reviewer currently
reviews a paper, good means that the paper is good, bad,
that it is bad, and so on. As one can easily verify, there
are only two stable models of P , which are:

M1 = {paper, good, happy, smoke} and
M2 = {paper, bad, angry, smoke}.

Thus, for example, happy and angry are both brave
consequences of P , but none of the two is a cautious
consequence of P . However happy∨ angry is a cautious
consequence of P , and so is smoke.

Note that each propositional logic program is also
a disjunctive logic program, and thus disjunctive logic
programming is a true generalization of propositional
logic programming as introduced before. It immediately
follows that all fixed-parameter tractability results for
disjunctive logic programs also apply to normal logic
programs.

Let us denote the problem of checking whether a
disjunctive logic program has a stable model by DSM,
and the problem of checking whether for a given
disjunctive logic program P and propositional formula
ϕ in CNF, whether ϕ is a brave (cautious) consequence
of P by BRAV (CAUT). Eiter and Gottlob [34]
have determined the complexity of DSM, BRAV, and
CAUT: Both DSM and BRAV are Σp

2-complete, and
CAUT is Πp

2-complete. Moreover, BRAV remains
Σp

2-complete even if ϕ consists of a single atom and
CAUT remains Πp

2-complete even if ϕ consists of a
single negated atom.

For a computable mapping p that assigns a non-
negative integer to a disjunctive logic program, or, in
the case of BRAV and CAUT, to a pair consisting
of a disjunctive logic program and a formula ϕ, we can
define in the obvious way the parameterized versions
DSM(p), BRAV(p), and CAUT(p) of DSM, BRAV,
and CAUT, respectively. For example, BRAV(p) has
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as instance a disjunctive logic program P , a formula
ϕ in CNF, and a non-negative integer k, such that
p(P,ϕ) ≤ k. The question is whether P admits a stable
model satisfying ϕ.

Since each disjunctive logic program is syntactically
in CNF, the parameters tw and tw∗ are well defined
for such programs, and thus for the problem DSM.
For each instance (P,ϕ) of the problems BRAV and
CAUT, we define tw∗(I) as tw∗(P ∧ϕ), and tw(I) as
tw(P ∧ ϕ), where P ∧ ϕ is simply the CNF formula
resulting from conjoining the two CNF formulas P
and ϕ. The following positive result was recently shown:

Theorem 4.4 ([59]). The problems DSM(tw∗),
BRAV(tw∗), and CAUT(tw∗) are all fixed-parameter
tractable and actually solvable in linear time for fixed
parameter tw∗.

The proof uses Courcelle’s Theorem by formulating
the problems DSM, BRAV, and CAUT as MSO1

sentences which are evaluated over structures of
bounded incidence treewidth encoding the instances
P , and (P,ϕ), respectively. The interesting aspect of
these results (and proofs) is that the non-parameterized
versions of these problems are complete for classes at the
second level of the Polynomial Hierarchy. Thus, when
keeping the tw∗ parameter fixed, we jump down two
levels the Polynomial Hierarchy. In this sense, the FPT
results are somewhat more drastic than FPT results
for NP-complete problems. In fact, we also have a
slightly more complex MSO1 formula which contains
an alternation of second-order quantifiers. More FPT
results of this sort will be discussed in the next section.

Since, as already noted, bounded tw implies bounded
tw∗, the fixed-parameter tractability of DSM(tw),
BRAV(tw), and CAUT(tw) trivially follows from
Theorem 4.4.

It would be interesting to explore the problems DSM,
SM, BRAV, and CAUT for yet other structural
parameters and to develop a backdoor set approach as
described in Sections 2 and 3 above for various base
classes.

4.4. Closed World Reasoning

Gottlob, Pichler, and Wei [59] also study parameterized
versions of a number of other forms of non-monotonic
reasoning problems, and show that they are fixed-
parameter tractable w.r.t. the parameter treewidth. In
this section we give a short overview of these results.

Closed world reasoning is an important technique
used in AI and database theory. Its simplest form, the
Closed World Assumption (CWA) [89] is based on the
observation that in many situations it is common use
to express a data or knowledge base T just by listing
“positive knowledge”, and assuming that what does not
logically follow from T is false.

Example 4.3. Consider the data relation STU-
DENT that stores the students enrolled in a paint-
ing class, could be STUDENT= {emma, john,
leila, mary, zoe}. This relation could be logi-
cally formalized as a conjunction T of logical atoms:
T ≡ student(emma) ∧ student(john) ∧ student(leila) ∧
student(mary)∧ student(zoe). In this example, we have
one atom for each data tuple. This formalization is,
however, somewhat problematic given that we usually
assume that all students enrolled in the course are
listed in the STUDENT relation. Thus, in the rela-
tional database view, STUDENT is a model whose true
atoms are precisely those listed. For example, we would
normally infer from the knowledge present in the STU-
DENT relation that Irene and Tom are not students of
the painting class. However, first-order logic does not
allow us to do so. In fact, neither ¬student(irene) nor
¬student(tom) is a logical consequence of T .

The idea that led to the CWA was thus to
add the negation of all facts (atoms) that are not
logical consequences of T to T , getting a new theory
CWA(T ), and then take CWA(T ) as the intended
logical semantics of the given data relations. Formally
we put

CWA(T ) = T ∪ {¬K : K is a positive literal such
that T 6|= K }.

For Example 4.3 it now clearly holds that CWA(T ) |=
¬student(irene) and CWA(T ) |= ¬student(tom)
(assuming that irene and tom belong to some suitably
defined universe, e.g., of all students of the university).
Obviously, reasoning under the CWA is non-monotonic.
For example if we add the atom student(irene) to T ,
then we can no longer infer ¬student(irene).

The CWA interpretation CWA(T ) of a logical theory
T works well as long as T does not contain disjunctive
information. It fails dramatically for theories as simple
as D ≡ a ∨ b, where a and b are propositional atoms.
In fact, in this case, we have CWA(D) |= ¬a and
CWA(D) |= ¬b and thus CWA(D) is inconsistent. In
general, CWA(T ) is consistent if and only if T has a
unique minimal model M , and, in this case, CWA(T )
has precisely M as its unique model.

On input T , the complexity of reasoning under the
CWA, i.e., of checking whether CWA(T ) is consistent,
is currently an open problem. It is known that
this problem is co-NP-hard and can be solved in
polynomial time with a logarithmic number of calls
to an oracle in NP [32]. Several more sophisticated
closed world reasoning mechanisms that redress the
consistency problem of CWA at least partially have
been designed. Examples for such mechanisms are
Generalized CWA (GCWA) [80], Extended GCWA
(EGCWA) [108], Careful CWA (CCWA) [50]. and
Extended CWA (ECWA), also known as propositional
circumscription [51, 79]. For definitions of these
mechanisms we refer to [32]. Note that, just like the
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CWA, all these reasoning methods are non-monotonic.
For C ∈ {CWA, GCWA, EGCWA, CCWA, ECWA },
deciding whether C(T ) |= ϕ holds is Πp

2-complete or
harder [32].

For C ∈ {CWA, GCWA, EGCWA, CCWA, ECWA }
we consider the following parameterized problems.

C-Deduction(tw∗)

Instance: Propositional CNF formulas T and ϕ,
and a non-negative integer k with tw∗(T ∧ϕ) ≤ k.
Parameter: k.

Question: Does C(T ) |= ϕ hold?

By means of Tseitin’s transformation (see Example 3.1)
this problem generalizes in a natural way to instances
where T and ϕ are not in CNF.

Gottlob et al. [59] note that the deduction problem
for all these forms of non-monotonic reasoning can
be encoded in terms of MSO sentences over a
combined structure encoding both the theory T and
the formula ϕ. We thus have the following result.

Theorem 4.5. For each of the CWA reasoning
mechanisms C ∈ {CWA, GCWA, EGCWA, CCWA,
ECWA }, the problem C-Deduction(tw∗) is fixed-
parameter tractable and actually linear time solvable for
constant tw∗.

4.5. Propositional Abduction

Another form of non-monotonic reasoning is abduction.
Abduction is a kind of “reverse reasoning” where one
seeks possible implicants of a manifestation or, in other
terms, for causes of a symptom.

In the following we will consider a simple form of plain
propositional abduction. For the abduction problems
below, an instance is given by a tuple P = (V,H,M, T )
where V is a set of propositional variables, H is a
subset of V (the “hypotheses”), M is a subset of V (the
“manifestations”), and T is a consistent propositional
formula (the “theory”). A solution of P is a subset S ⊆
H, such that T ∪S is consistent and T ∪S |= M . Given
an instance P, the basic problems of propositional
abduction are the following:
• Solvability: Does there exist a solution of P?
• Relevance: Given h ∈ H, is h contained in at

least one solution of P?
• Necessity: Given h ∈ H, is h contained in every

solution of P?
Often, a refined version of abduction is used, where

one is not interested in all solutions, but only in
solutions that are minimal w.r.t. to some preorder � on
the powerset 2H . In this case, the problems Relevance
and Necessity are adapted accordingly, and we speak
of �-Relevance (respectively, �-Necessity). Plain
abduction as above corresponds to the special case
where � is equality. The following preorders have also
been considered.

• Subset-minimality “⊆.”
• Prioritization “⊆P ” for a fixed number p of

priorities: H is partitioned into “priorities”
H1, . . . , Hp. Then A ⊆P B, if and only if A = B
or there exists a k s.t. A∩Hi = B∩Hi for all i < k
and A ∩Hk ⊂ B ∩Hk.

• Minimum cardinality “≤”: A ≤ B if and only if
|A| ≤ |B|.

• Penalization “vp” (also referred to as “weighted
abduction”): To each element h ∈ H, a weight
w(h) is attached. Then A vp B if and only if∑

h∈A w(h) ≤
∑

h∈B w(h).

Example 4.4 ([33], inspired by [22]). Consider the
following theory T , set of hypotheses H, and set of
manifestations M .

T = {¬(rich mixture ∧ lean mixture),
rich mixture→ high fuel consumption,

lean mixture→ overheating,

low oil→ overheating,

low water→ overheating},
H = { rich mixture, lean mixture,

low oil, low water },
M = {high fuel consumption, overheating }.

Then, {rich mixture, low oil} and {rich mixture,
low water} are solutions w.r.t. the preorders =, ⊆, and
≤, but the set of hypotheses {rich mixture, low oil,
low water} is a solution only for the preorder =. Note
that {rich mixture, lean mixture} is ruled out as a
solution, since it is inconsistent with T .

It is easy to see that logic-based abduction is a
form of non-monotonic reasoning. For instance, adding
the formula ¬low oil to the theory T of the above
example has the effect that {rich mixture, low oil} is no
longer a solution. Thus, from stronger theories we may
sometimes abduce less.

In different contexts, different preorders may be
the most appropriate. A detailed discussion can be
found in the paper of Eiter and Gottlob [33]. The
complexity of �-Relevance and �-Necessity for all
these relations (including =) was studied by Eiter
and Gottlob [33] who show that these problems all
lie on the second and third level of the Polynomial
Hierarchy. Gottlob et al. [59] consider parameterized
versions of the above propositional abduction problems.
For instances (V,H,M, T ) where T is a propositional
formula in CNF, the parameter is the bound on the
treewidth of the incidence graph of T .

Theorem 4.6 ([59]). Each of the following prob-
lems is fixed-parameter tractable: Solvability(tw∗),
Relevance(tw∗), and Necessity(tw∗), as well as �-
Relevance(tw∗) and �-Necessity(tw∗) with � ∈ {=
,⊆,⊆P ,≤,vp}. Moreover, if � ∈ {=,⊆,⊆P }, then the
problems can be solved in linear time for constant tw∗.
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The proofs for preorders � ∈ {=,⊆,⊆P } use
Courcelle’s Theorem. The theory T is encoded in a
finite structure of the same incidence treewidth as T ,
and the �-Relevance and �-Necessity problems are
formulated as an MSO sentence with second-order
quantifier alternations. However, for the preorders ≤
and vp, such a MSO-formalization is not possible. In
fact, set cardinality comparisons are known not to be
expressible in MSO. Therefore the proof of Theorem 4.6
for the preorders ≤ and vp used a result by Arnborg,
Lagergreen, and Seese [6] stating that the evaluation of
formulas that extend MSO with weight functions, sums
and minimum/maximum-functions is fixed-parameter
tractable (but not necessarily linear) with respect to
the parameter treewidth.

5. CORES AND DATA EXCHANGE

In this section we deal with the problem of computing
cores of graphs, and, more generally, of relational
structures. Roughly, a core of a relational structure A is
the smallest relational structure contained in A that is
homomorphically equivalent to A. This core is unique
up to isomorphism. Cores were considered in graph
theory [67], and more recently in the context of data
exchange [37, 38, 52, 58], where methods are studied
for transferring data from one database to another
database having a different structure.

If G = (V,E) is a graph, then an endomorphism of
G is a mapping h : V → V such that for each edge
xy ∈ E, also h(x)h(y) ∈ E. A subgraph G′ of a graph
G is called a core of G if G′ is a minimal endomorphic
image of G (see [67]) . For example, if a graph G is
3-colorable and, in addition, contains a triangle, then
this triangle is a core of G. Since all cores of a graph
are isomorphic, we usually speak about the core of a
graph. It is well known that computing cores of graphs
is NP-hard [67].

The concept of core can be extended as follows to
finite relational instances with constants and variables,
i.e., finite structures whose universe elements are of two
sorts: Constants and variables. Let I be an instances
over the universe U = C∪V , where C are the constants
and V are the variables. Then an endomorphism is a
mapping h : U → U such that the following hold.

(i) h preserves constants, i.e., h(c) = c holds for all
c ∈ C, and

(ii) for each relation R of the structure, and
for each tuple (x1, . . . , xk) ∈ R, we have
(h(x1), . . . , h(xk)) ∈ R.

Relational instances with variables arise when dealing
with unknown data in form of marked null values. Such
marked null values are to be considered existentially
quantified. If we identify the tuples of a relational
database with logical atoms, then the logical semantics
of a database D with variables is given by a
prenex formula ϕD whose quantifier prefix existentially

quantifies over all variables of D and whose matrix
consists of the conjunction of all atoms of D.

Example 5.1. Suppose we know that the employees
Julia and Sue have the same phone number, but we do
not know which one. We can use a specific variable (or
marked null), say x1, to represent this phone number in
a relational instance, and write x1 both in the field of
Sue’s phone and in the field of Julia’s phone. Consider
the database D = {phone(sue,x1), phone(bill,x2),
phone(julia,x3), phone(bill,73859)} and the formula
ϕD = (∃x1 ∃x2)(phone(sue, x1) ∧ phone(bill, x2) ∧
phone(julia, x1) ∧ phone(bill, 73859)). The database D
is obviously redundant, as the tuple phone(bill,x2) can
be eliminated from D without changing the semantics.
By eliminating this tuple we actually obtain the core
of D.

More generally, it is very easy to see and well known
(cf. [38]) that the core of a finite relational instance
I is (up to isomorphism) the smallest sub-instance J
of I which is logically equivalent to I, i.e., such that
ϕJ ≡ ϕI .

Let us consider the following two problems:

(i) GraphCoreIdentification (GCI): Given a
graph G = (V,E), and a subgraph G′ of G, decide
whether G′ is the core of G.

(ii) InstanceCoreIdentification (ICI): Given an
instance I and a sub-instance J of I (i.e. an
instance whose relations consist of subsets of those
of I), decide whether J is the core of I.

Note that ICI is at least as hard as GCI, since for
every instance G of GCI we can trivially obtain an
equivalent instance of ICI by simply identifying the set
V of vertices of G with a set of variables; we then get
an instance of ICI whose set of constraints is empty.

Gottlob and Fermüller [53] have shown that the
Clause Condensation Problem, which is immediately
seen to be equivalent to ICI, is DP-complete (see
Section 3.4 for more information on DP). More recently,
Fagin, Kolaitis, and Popa [38] showed by a somewhat
more involved proof, that also GCI is DP-complete.

The Gaifman graph of an instance I of ICI has as
vertices the variables of I and an edge between two
variables x and y if x and y appear in a same tuple
of I. The blockwidth blw(I) of I is the size of the
largest connected component of the Gaifman graph of I.
The parameterized problem ICI(blw) is defined in the
obvious way.

Theorem 5.1 ([52]). The problem ICI(blw) is
W[1]-hard.

This problem is most likely not in any class W[t] of
the W-hierarchy because ICI is DP-hard and thus also
co-NP-hard.

Data exchange aims at materializing in a target
database data stemming from some source database.
While data exchange has been recognized as an
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important problem for several decades, systematic
research on foundational and algorithmic issues of this
problem has started only a few years ago with the
fundamental work of Fagin, Kolaitis, Miller, and Popa
[37]. The basic and most fundamental data exchange
problem for relational databases, as defined by Fagin et
al. [37], is as follows. Given a source database schema σ,
a target database schema τ , a source database instance
S, and a set of constraints Σ, find a target database
instance T such that S and T satisfy all constraints in
Σ, denoted by (S, T ) |= Σ. Fagin et al. [37, 38] restrict
their attention to the following types of constraints

(i) Tuple generating dependencies (TGDs) which are
first-order implications of the form
∀ū (ϕ(ū) =⇒ ∃v̄ ψ(ū, v̄)), where ϕ and ψ are
conjunctions of atoms and ū and v̄ are lists of
variables. If v̄ is empty, then we speak about a
full TGD.

(ii) Equation generating dependencies (EGDs)
which are first-order implications of the form
∀ū (ϕ(ū) =⇒ v = w), where ϕ is a conjunction
of atoms, ū is a list of variables, and v and w are
single variables from the list ū.

Source-to-target constraints are those where (i) the
premise ϕ(ū) contains atoms whose predicate symbols
are relation names of the source signature σ only, and
where (ii) the conclusion ψ(ū, v̄) is made of atoms
whose predicate symbols are relation names of the
target signature τ only. All atoms occurring in target
constraints refer to the target signature only.

In particular, Fagin et al. [37, 38] consider the case
where the set Σ = Σst ∪ Σt of constraints consists of
source-to-target constraints Σst encoding conditions on
the mapping between source and target data, and the
target constraints Σt which express data dependencies
on the target database.

This setting allows us to formulate a large class of
constraints.

Example 5.2. Let a source database contain a
relation

student(STUDNAME,BIRTHDATE,SSN,ZIPCODE)

and let the target database contain two relations

person(NAME,BORN,SSN,ZIPCODE,PHONE),
zc(ZIPCODE,STATE),

then a typical source-to-target constraint would be

st1 : (∀u1, u2, u3, u4) (student(u1, u2, u3, u4)
=⇒ (∃v) person(u1, u2, u3, u4, v)),

while the target constraints could be

t1 : (∀u1, u2, u3, u4, u5) (person(u1, u2, u3, u4, u5)
=⇒ (∃v) zc(u5, v))

t2 : (∀u, v) (zc(u, v) ∧ zc(u,w) =⇒ v = w).

Here st1 and t1 are inclusion dependencies, and t2 is
a functional dependency. Note that t1 and t2 together
express a “foreign key” constraint.

It is easy to see that, in addition to functional,
inclusion dependencies, and foreign key constraints, also
multivalued dependencies and even join dependencies
can be expressed by formulas in this setting. Thus,
this setting is very general and encompasses all major
dependencies used in database design and for database
maintenance.

The problem is to check whether a target instance T
exists, and if so, to compute a good one. Vari-
ables (or, equivalently, labeled null values) are allowed
to appear in target instances. In Example 5.2,
a tuple (doe, 19880203, 1234567, 94305) of the stu-
dent source relation could be translated into a tuple
(doe, 19880203, 1234567, 94305, x1) of the person rela-
tion, where x1 is a variable representing a null value.
For further, more detailed examples, we refer to the
paper of Fagin et al. [37].

A universal solution of a data exchange problem is a
target instance T which is more general than all other
solutions, i.e., such that for each other solution T ′ there
exists a homomorphism T → T ′. Fagin, Kolaitis, Miller,
and Popa [37] have shown that universal solutions of
data exchange problems can be obtained via the well-
known chase procedure [9, 3, 78]. One first chases
the set Σst of source-to-target TGDs over the source
instance S and obtains in polynomial time an initial
target instance T = SΣst . Then one chases the target
constraints Σt over T . If this chase terminates, one
obtains a finite universal solution. In order to guarantee
termination, Fagin et al. [37, 38] restrict themselves to
target TGDs which are weakly acyclic. Weak acyclicity
is a syntactic condition on TGDs ensuring that there
are no cyclic dependencies among argument positions
involving existential constraints (see [38] for a precise
definition). Weak acyclicity has been so far the most
general known sufficient condition for termination of the
chase. This concept was developed by Deutsch [28] and
Popa [37]. Fagin and his colleagues [37] have shown that
universal solutions are very useful for query answering.
In particular, any universal solution can be used to
obtain the certain answers tuples to a conjunctive query
over the target schema, i.e., those answer tuples that are
contained in all solutions of the data exchange problem.

If a data exchange problem P is solvable, then it can
have several universal solutions, and these solutions can
noticeably differ in size. However, as observed in [38],
the cores of all universal solutions to a data exchange
problem are all mutually isomorphic, and thus there is,
up to isomorphism, one single smallest solution, which
is, up to isomorphism, equal to the core of each universal
solution. To compute this smallest solution, one can
first compute an arbitrary universal solution J and then
compute the core of J . Fagin, Kolaitis, and Popa [38]
strongly argue that this should be the solution of choice.

Fagin et al. [38] formulated the following problem:
Given a (solvable) data exchange problem whose
source-to-target constraints are TGDs and whose
target constraints consist of weakly-acyclic TGDs and
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arbitrary EGDs, can the core of a universal solution be
computed in polynomial time? Here the source schema
σ, the target schema τ and the set of constraints Σ are
all considered to be fixed, and the problem instance thus
consists of a source instance S.

Unfortunately, even though (in case of solvable
data exchange problems) a universal solution can
be computed in polynomial time via the chase
procedure, the solutions can be of unbounded block
width. In fact, even very simple TGDs such as
(∀x, y) ((P (x) ∧ P (y))→ P (x, y)) can “lump” variables
from different components (blocks) together and thus
merge several small components into very large
components of connected variables.

Thus, at a first glance, Theorem 5.1 may suggest a
negative answer to the above problem raised by Fagin,
Kolaitis, and Popa. However, it turned out that it has
a positive answer.

Theorem 5.2 ([58]). The core of a universal
solution of a solvable data exchange problem whose
source-to-target constraints are TGDs and whose
target constraints consist of weakly-acyclic TGDs and
arbitrary EGDs can be computed in polynomial time.

The proposed solution to the problem is technically
rather involved. The reader is referred to the conference
paper [58] for further details.
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