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1. Introduction, notation and statement of the main result

All graphs considered are finite and have no loops; multiple edges, however, are allowed.
For a graph G and X, Y ⊆ V (G) we denote the set of edges of G joining a vertex in X and
a vertex in Y by E(X, Y ); for v ∈ V (G) we put E(v) := E({v}, V (G)). For E ′ ⊆ E(G)
we denote by V (E ′) the set of all v ∈ V (G) with E(v) ∩ E ′ 6= ∅. Further graph theoretic
terminology we refer to Diestel [2].

A graph G is called edge-colored if some positive integer χ(e) is assigned to every edge
e ∈ E(G); in this case we call χ(e) the color of e. In the sequel, G always denotes an
edge-colored graph. For a vertex v ∈ V (G) and a color c we write Ec(v) := { e ∈ E(v) |
χ(e) = c }, and we write χ(v) := { c | Ec(v) 6= ∅ }.

A cycle C in G is called properly colored if adjacent edges of C have different colors.
We say that G is covered by properly colored cycles (pcc covered, for short) if every edge
of G lies on some properly colored cycle. Note that if an edge-colored graph is connected
and pcc covered, then it is “color connected” in the sense of Bang-Jensen and Gutin [1].

Edge-colored graphs which contain no properly colored cycles are well studied [3,7,8];
in the present paper we go to the other extreme and study edge-colored graphs in which
every edge lies on some properly colored cycle. We characterize such graphs in terms of the
newly introduced concept of “color restrictions.” Ultimately, our characterization rests on
Tutte’s 1-Factor Theorem, applied in terms of a characterization of 1-extendable graphs
due to Little, Grant, and Holton [4].

A survey on several results on edge-colored graphs can be found in Bang-Jensen and
Gutin’s book [1] where also applications to genetics are exhibited.

A color restriction of an edge-colored graph G is a map ρ which assigns to every
vertex v ∈ V (G) a set of colors ρ(v) ⊆ χ(v). We put Eρ(v) :=

⋃

c∈ρ(v) Ec(v), and Eρ :=
⋃

v∈V (G) Eρ(v). We say that a color restriction ρ is independent if Eρ(v) ∩ Eρ(w) = ∅ for

every edge vw of G. Finally, for any subgraph G′ of G (with given color restriction ρ) we
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put1

∆ρ(G
′) :=

{

∑

v∈V (G′) |ρ(v)| if V (Eρ) ∩ V (G′) 6= ∅;

1 otherwise.

Now we are in the position to state the main result.

Theorem 1 An edge-colored graph G is pcc covered if and only if for every color restric-
tion ρ of G exactly one of the following holds.

(i) ∆ρ(G
′) > 1 for some component G′ of G − Eρ;

(ii) ρ is independent and ∆ρ(G
′) = 1 for all components G′ of G − Eρ.

The proof of this theorem is deferred to Section 3, where we will use the construction
defined in the next section. This construction will also show that the question whether
an edge-colored graph is pcc covered can be decided in polynomial time.

2. Transformation into 1-extendable graphs

A connected graph G is called 1-extendable (or matching covered) if G has a perfect
matching, and every edge of G lies on some perfect matching (see Lovász and Plummer
[5]). The following characterization of 1-extendable graphs (see Little et al. [4] for a proof
and Yeo [9] for generalizations) can be shown easily by Tutte’s 1-Factor Theorem, which
states that a graph H has a perfect matching if and only if co(H − S) ≤ |S| for every
S ⊆ V (H); as usual, we denote by co(H−S) the number of odd components (components
with an odd number of vertices) of H − S.

Theorem 2 A connected graph H having a perfect matching is 1-extendable if and only
if every set S ⊆ V (H) with co(H − S) = |S| is independent.

Note that for a 1-extendable graph H and ∅ 6= S ⊆ V (H), H−S has no even components:
otherwise, we choose an edge uv ∈ E(H) such that u belongs to an even component of
H − S and v belongs to S; for S ′ := S ∪ {u} we have |co(H − S ′)| = |S ′| but S ′ is not
independent, contradicting Theorem 2.

At this junction we also state an elementary lemma which we will use below.

Lemma 1 Let H be a graph, M a perfect matching of H, and S ⊆ V (H). Then
|E(V (H ′), S) ∩ M | ≡ |V (H ′)| (mod 2) holds for every component H ′ of H − S.

Next we present a construction which transforms a given edge-colored graph G into a
graph HG (with a certain fixed perfect matching M) such that G is pcc covered if and
only if HG is 1-extendable (this construction has already been used by Szeider [6,7]).

Consider v ∈ V (G) with χ(v) = {c1, . . . , ck}. We split v into new vertices vc1, . . . , vck

such that edges in Eci
(v) become incident with vci

, i = 1, . . . , k (see Fig. 1 for an illustra-
tion). Next we add new vertices v′

c1
, . . . , v′

ck
and join vci

with v′

ci
, i = 1, . . . k. Finally, we

add new vertices w1,v and w2,v, the edge w1,vw2,v, and join v′

ci
with wj,v for all i = 1, . . . , n

and j = 1, 2. We put

VHG
(v) := {w1,v, w2,v} ∪ { vci

, v′

ci
| 1 ≤ i ≤ k }.

1 The second case in this definition serves as a technical trick which allows us to formulate Theorem 1
for possibly disconnected graphs.
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Applying this construction to all vertices of G, we obtain the graph HG.
Let V1, V2, V3 ⊆ V (HG) be the sets consisting of all vertices of the form vci

, v′

ci
, and

wj,v, respectively. Evidently, V (HG) is the disjoint union of V1, V2, and V3, and the set

M := E(V1, V2) ∪ E(V3, V3)

is a perfect matching of HG. However, for brevity’s sake we set H := HG in the following
considerations.

Lemma 2 Let G be a connected edge-colored graph. Then G is pcc covered if and only if
H is 1-extendable.

Proof. The lemma follows from the following observations. Properly colored cycles in G
correspond in a natural way to M -alternating cycles in H (i.e., to cycles which alternate
with respect to the perfect matching M). On the other hand, an edge e ∈ E(H) \ M lies
on some M -alternating cycle C if and only if e lies in a perfect matching M ′ of H (C is
one of the cycles induced by the symmetric difference of M and M ′).

Since the construction of H can be carried out in polynomial time, and since we can
decide whether H is 1-extendable by at most |E(H)|− 1

2
|V (H)| applications of a matching

algorithm, we have the following.

Theorem 3 It can be decided in polynomial time whether an edge-colored graph is pcc
covered.

Note that Theorem 3 holds for disconnected graphs since it suffices to proceed by consid-
ering each of the components.

Lemma 3 Let G be a connected edge-colored graph and M the perfect matching of H as
defined above. For a color restriction ρ of G with Eρ 6= ∅, we define

Sρ := { vci
∈ V1 | v ∈ V (G) and ci ∈ ρ(v) }. (1)

Then components of G −Eρ and components of H − Sρ are in a bijective correspondence
such that

∆ρ(G
′) = |E(V (H ′), Sρ) ∩ M | (2)

holds for all pairs G′, H ′ of corresponding components of G−Eρ and H−Sρ, respectively.
Furthermore, ρ is an independent color restriction if and only if Sρ is an independent set
of vertices.
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Proof. Note that for each component G′ of G − Eρ the set
⋃

v∈V (G′) V (v) \ Sρ induces a

component of H − Sρ. Since V (H − Sρ) =
⋃

v∈V (G) VH(v) \ Sρ, the components of G−Eρ

and H − Sρ are indeed in a bijective correspondence.
Let G′ be a component of G−Eρ and let H ′ be the corresponding component of H−Sρ.

A vertex v ∈ V (G′) with ρ(v) = {c1, . . . , cr} corresponds to edges vc1v
′

c1
, . . . , vcr

v′

cr
∈ M

with vci
∈ Sρ and v′

ci
∈ V (H ′) (i = 1, . . . , r); thus (2) follows.

Moreover, E(Sρ, Sρ) 6= ∅ if and only if there are vertices xci
, ycj

∈ V1 such that xci
yci

∈
E(Sρ, Sρ); i.e., xy ∈ E(G) and by (1), ci ∈ ρ(x) and cj ∈ ρ(y). That is, E(Sρ, Sρ) 6= ∅ if
and only if Eρ(x) ∩ Eρ(y) 6= ∅ for some distinct vertices x, y ∈ V1.

3. Proof of the main result

Lemma 4 Let G be a connected edge-colored graph and H the graph obtained from G by
the above construction. H is 1-extendable if and only if for every color restriction ρ of G
with Eρ 6= ∅ either condition (i) or condition (ii) of Theorem 1 is satisfied.

Proof. (⇒) Assume that H is 1-extendable and choose an arbitrary color restriction ρ of
G with Eρ 6= ∅.

In view of Lemma 3 we can write the components of G−Eρ and H −Sρ as G1, . . . , Gk

and H1, . . . , Hk, respectively, such that Gi and Hi correspond to each other satisfying

∆ρ(Gi) = |E(V (Hi), Sρ) ∩ M | for i = 1, . . . , k. (3)

Now suppose that condition (i) of Theorem 1 does not hold; i.e., ∆ρ(Gi) ≤ 1, 1 ≤ i ≤ k.
However, Eρ 6= ∅ implies Sρ 6= ∅ and therefore H − Sρ has no even components (see
the remark following Theorem2). Thus ∆ρ(Gi) = 1, 1 ≤ i ≤ k, follows of necessity.
Consequently, Lemma 1 and (3) imply co(H − Sρ) = |Sρ|. Thus Sρ is independent by
Theorem 2 and so ρ is independent by Lemma 3. Whence condition (ii) of Theorem 1 is
actually satisfied.

(⇐) Assume that for every color restriction ρ of G with Eρ 6= ∅ either condition (i) or
condition (ii) of Theorem 1 is satisfied. In order to apply Theorem 2, we choose arbitrarily
S ⊆ V (H) such that co(H − S) = |S|. In view of Lemma 1, it follows that

E(S, S) ∩ M = ∅. (4)

We will show that S is independent.
First we study the effect of removing certain vertices from S.

(a) Consider v ∈ S∩V3. By construction of H there is some v′ ∈ V3 with vv′ ∈ M ; by (4),
v′ /∈ S. Thus, there is a component H ′ of H − S with v′ ∈ V (H ′). H ′ must be an odd
component because of co(H − S) = |S|. If a vertex x ∈ V (H) is adjacent with v, then
v′x ∈ E(H) follows by the very structure of H, therefore x ∈ V (H ′)∪S follows. Hence,
if we consider S ′ := S \ {v}, then H ′ turns into an even component H∗ in G− S ′ with
V (H∗) = V (H ′)∪{v} and we have co(H−S ′) = co(H−S)−1. Thus co(H−S ′) = |S ′|,
and H − S ′ has some even component.

(b) Consider v ∈ S ∩ V2 and assume S ∩ V3 = ∅. By construction of H, there is some
v′ ∈ V1 with vv′ ∈ M . As above we conclude that there is a component H ′ of H − S
with v′ ∈ V (H ′). Since v is of degree 3 by construction of H, v is adjacent to w, w′ ∈ V3

with ww′ ∈ M . Since S∩V3 = ∅, there is a component H ′′ of H−S containing w and w′
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(possibly H ′ = H ′′). We put S ′ = S\{v} and consider H−S ′. Now H ′ and H ′′ turn into
a component H∗ of H −S ′ with V (H∗) = V (H ′)∪V (H ′′)∪{v}. Note that H∗ is odd if
H ′ 6= H ′′ and H ′′ is odd, and even, otherwise. Thus co(H − S)− 1 = co(H − S ′) = |S ′|
follows.

In order to show that S is independent, we assume to the contrary that S contains adjacent
vertices x, y. Note that in view of (4), for any two adjacent vertices of S either both belong
to V1, or one belongs to V2 and the other belongs to V3. Hence we have to consider the
following cases.

Case x, y ∈ V1. By repeated application of steps (a) and (b) above, we obtain S ′ :=
S ∩ V1 with co(H − S ′) = |S ′| ≥ 2. We define a color restriction ρ of G by setting
ρ(v) := { ci ∈ χ(v) | vci

∈ S ′ } for all v ∈ V (G). It can be verified that this definition is
exactly the converse of (1) in Lemma 3; i.e., Sρ = S ′ holds. By Lemma 1, we conclude
from co(H − S ′) = |S ′| that |E(V (H ′), S ′) ∩ M | ≤ 1 for every component H ′ of H − S ′;
i.e., in view of Lemma 3, condition (i) of Theorem 1 does not hold. On the other hand,
since x, y ∈ Sρ are adjacent, ρ is not independent by the last part of Lemma 3. Thus
condition (ii) of Theorem 1 does not hold as well, and we have a contradiction.

Case x ∈ V2, y ∈ V3, and S ∩ V1 6= ∅. As above, we apply steps (a) and (b), such that
for S ′ := S ∩ V1 we have co(H − S ′) = |S ′| > 0. However, H − S ′ contains some even
component, since y ∈ S \ S ′ (see step (a) above). Exactly as in the preceding case we
define a color restriction ρ such that Sρ = S ′, and we conclude—again by Lemma 3—that
condition (i) of Theorem 1 does not hold. Therefore, by Lemma 3, |E(V (H ′), Sρ) ∩ M | = 1
for all components H ′ of H − Sρ. In view of Lemma 1 we conclude that all components
of H − Sρ are odd, a contradiction.

Case x ∈ V2, y ∈ V3, and S ∩ V1 = ∅. We apply steps (a) and (b) to remove from S all
vertices that belong to V3 ∪ V2 \ {x}. Thus we end up with the singleton S ′ := {x} ⊆ S
such that H−x has exactly one odd component H ′. As in step (b) we conclude that apart
from y there are exactly two more vertices adjacent with x, say y ′ ∈ V3, x′ ∈ V1; thus
xx′, yy′ ∈ M . Let H ′′ denote the component of H − x which contains y and y′. Since y
was removed from S by step (a), H ′′ is an even component; actually, this is the only even
component of H − x, since H is connected and by construction of H, x has degree 3 and
yy′ ∈ E(H).

Furthermore,

|E(H ′′, {x}) ∩ M | = 0. (5)

As in the preceding cases we define a color restriction ρ such that Sρ = S ′; by Lemma 3,
H ′′ corresponds to a component G′′ of G−Eρ, with ∆ρ(G

′′) = |E(H ′′, {x}) ∩ M |. However,
∆ρ(G

′′) = 1 by definition of ρ, a contradiction to (5).

Whence S must be independent in any case, and so H is 1-extendable by Theorem 2.

If G is disconnected, and G1, . . . , Gk are the components of G, then evidently G is pcc
covered if and only if every Gi is pcc covered, i = 1, . . . , k. Furthermore, a color restriction
ρ of G decomposes into color restrictions ρi of Gi, i = 1, . . . , k, and Eρ is the disjoint union
of all Eρi

, i = 1, . . . , k. The proof of Theorem 1 hence reduces to applications of Lemmas 2
and 4 to the components of G.
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