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Stefan Szeider3†

1 Department of Computer Science, Vienna Technical University
A-1040 Vienna, Austria

fleisch@dbai.tuwien.ac.at
2 Mathematics Department, University of Dar es Salaam

PO Box 35062, Dar es Salaam, Tanzania
emujuni@maths.udsm.ac.tz

3 Department of Computer Science, Durham University
Durham DH1 3LE, United Kingdom

{daniel.paulusma,stefan.szeider}@durham.ac.uk

Abstract. We consider computational problems on covering graphs with
bicliques (complete bipartite subgraphs). Given a graph and an inte-
ger k, the biclique cover problem asks whether the edge-set of the graph
can be covered with at most k bicliques; the biclique partition problem
is defined similarly with the additional condition that the bicliques are
required to be mutually edge-disjoint. The biclique vertex-cover problem
asks whether the vertex-set of the given graph can be covered with at
most k bicliques, the biclique vertex-partition problem is defined simi-
larly with the additional condition that the bicliques are required to be
mutually vertex-disjoint. All these four problems are known to be NP-
complete even if the given graph is bipartite. In this paper we investigate
them in the framework of parameterized complexity: do the problems
become easier if k is assumed to be small? We show that, considering k

as the parameter, the first two problems are fixed-parameter tractable,
while the latter two problems are not fixed-parameter tractable unless
P = NP.

Keywords. bicliques, parameterized complexity, covering and parti-
tioning problems.

1 Introduction

Let G be a simple undirected graph and let S be a set of (not necessarily vertex-
induced) subgraphs of G. The set S is a cover of G of size |S| if every edge of
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G is contained in at least one of the subgraphs in S. The set S is a vertex-cover
of G if every vertex of G is contained in at least one of the subgraphs in S. If all
subgraphs in S are bicliques, that is, complete connected bipartite graphs, then
we speak of a biclique cover or a biclique vertex-cover, respectively.

We consider the following four problems.

Biclique Cover

Instance: A graph G and a positive integer k.
Question: Does G have a biclique cover of size at most k?

Biclique Partition

Instance: A graph G and a positive integer k.
Question: Does G have a biclique cover of size at most k consisting of
mutually edge-disjoint bicliques?

Biclique Vertex-Cover

Instance: A graph G and positive integer k.
Question: Does G have a biclique vertex-cover of size at most k?

Biclique Vertex-Partition

Instance: A graph G and positive integer k.
Question: Does G have a biclique vertex-cover of size at most k consist-
ing of mutually vertex-disjoint bicliques?

We observe that the Biclique Vertex-Cover and Biclique Vertex-

Partition problem are equivalent, since we can always make the bicliques of a
biclique vertex-cover disjoint without increasing the size of the cover (and we can
do so without introducing trivial bicliques, that is, bicliques having one vertex
only). However, Biclique Cover and Biclique Partition are not equivalent.
Take for example the bipartite graph with vertex set U1 ∪U2, U1 = {x1, x2, x3},
U2 = {y1, y2, y3}, and all possible edges between vertices in U1 and U2 except
for the edges x1y3 and x3y1. This graph has a biclique cover of size 2, namely
the biclique cover with bicliques ({x1, y1, x2, y2}, {x1y1, x1y2, x2y1, x2y2}) and
({x2, y2, x3, y3}, {x2y2, x2y3, x3y2, x3y3}). However, any biclique cover that con-
sists of mutually edge-disjoint bicliques has size at least 3.

One can consider variants of the above problems where solutions must consist
of nontrivial bicliques only. However, minimal solutions for Biclique Cover

and Biclique Partition clearly do not contain trivial bicliques, and it is easy
to see that for Biclique Vertex-Cover and Biclique Vertex-Partition

there is always a minimal solution where only isolated vertices are contained in
trivial bicliques. Hence, the computational complexities of the four problems do
not change if solutions must avoid trivial bicliques.

The Biclique Cover problem arises in both theoretical and practical areas
for more than thirty years. From a theoretical point of view, the Biclique

Cover problem is equivalent to the set basis problem [22] and related to boolean
algebraic forms associated with graphs and combinatorial optimization problems.
There, the minimum number of bicliques necessary to cover all the edges of a

2



graph G is also called the bipartite dimension of G, which is considered to be
an interesting graph property on its own. For more details we refer to [1, 3, 7].
From a more practical perspective, bicliques are used to model the rectangle
cover problem that asks if a rectilinear polygon can be expressed as the union
of a minimum number of rectangles [16]. Both the Biclique Cover and the
Biclique Partition problem play a significant role in the analysis of so-called
HLA reaction matrices used in biology [19]. Other practical applications lie in
artificial intelligence and data mining. In Formal Concept Analysis, context
is structured into a set of concepts with binary relations. It turns out that
each concept corresponds to a so-called closed item set in data mining and,
by representing the binary relations as bipartite graphs, to a maximal biclique.
See [24] for more details. Applications of Biclique Vertex-Cover include
data mining, e-commerce, information retrieval and network management. In
all these applications, large bipartite graphs are analyzed in order to discover
so-called cross associations corresponding to bicliques [13].

All four problems are computationally hard problems: Biclique Cover is
NP-complete and remains NP-hard for chordal bipartite graphs [18, 21]. The Bi-

clique Partition problem is also already NP-complete for bipartite graphs [15].
Very recently, Heydari et al. [13] showed that Biclique Vertex-Partition,
and consequently, Biclique Vertex-Cover are NP-complete for bipartite
graphs.

In this paper we investigate the questions of whether these problems become
easier if the given upper bound k on the number of bicliques in the cover is
assumed to be small. We undertake this investigation in the framework of pa-
rameterized complexity as developed by Downey and Fellows [6], considering
the upper bound k on the number of bicliques in the cover as the parameter.
We give some basic background of parameterized complexity in Section 2.2. In
principle, the problems under consideration can fall into any of the following
three categories.

1. For every fixed k the problem can be solved in polynomial time where the
order of the polynomial is independent of k; in this case we say that the
problem is fixed-parameter tractable.

2. For every fixed k the problem can be solved in polynomial time but the order
of the polynomial grows with k.

3. For some fixed k the problem is NP-hard.

Problems that fall into the second category can be further categorized by means
of the complexity classes W[1], W[2], . . . , XP (see Section 2.2). In the literature,
a similar study has been performed for the problems Clique Cover and Clique

Partition. These NP-complete problems ask if a given graph has a cover
consisting of at most k cliques or k mutually edge-disjoint cliques, respectively.
Both Clique Cover [10, 12] and Clique Partition [17] are fixed-parameter
tractable. The problem Clique Vertex-Cover (or Partition into Cliques)
asks if the vertices of a given graph can be covered by at most k cliques. This
problem is NP-complete for each fixed k ≥ 3 and polynomial-time solvable for
k ≤ 2 [9, GT15].
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New Results

Our results show that the problems under consideration fall into all three of the
above categories, spanning a wide range of parameterized complexities.

1. Problems Biclique Cover and Biclique Partition are fixed-parameter
tractable.

We show these results in Section 3. We make use of kernelization, that is, we
give an algorithm that reduces an instance of Biclique Cover or Biclique

Partition in polynomial time into an equivalent instance where the number of
vertices is bounded in terms of the parameter k.

2. For k ≤ 2 the problem Biclique Vertex-Cover can be solved in polyno-
mial time for bipartite graphs. For every fixed k ≥ 3 the problem Biclique

Vertex-Cover is NP-complete and remains NP-hard for bipartite graphs.

As the problem Biclique Vertex-Cover is equivalent to the problem Bi-

clique Vertex-Partition, the above result is also valid for the latter problem.
In Section 4.1 we establish the NP-completeness result by a reduction from an
NP-complete variant of the List-Coloring problem. Note that our NP-com-
pleteness result is stronger than the one in [13] as we assume that k ≥ 3 is a
constant and not part of the input. In Section 4.2 we show the polynomial case
k = 2. The result for this case follows directly from a stronger result on a graph
homomorphism problem defined on the complement graph (we explain this in
detail in Section 4.2).

In view of the NP-hardness it makes sense to study the more restricted prob-
lem b-Biclique Vertex-Cover where the bicliques in the cover are bicliques
where at least one of the bipartite sets contains at most b vertices. Indeed, in
Section 4.3, we show that this restriction moves the problem from the third to
the second of the above categories:

3. For every fixed b ≥ 1 the problem b-Biclique Vertex-Cover is W[2]-
complete and remains W[2]-hard for bipartite graphs.

2 Preliminaries

2.1 Graph Theoretic Terminology

For graph theoretic terminology not defined in this paper, we refer the reader
to standard text books [2, 5]. In this paper we consider connected simple graphs
G = (V, E). The set of neighbors of a vertex v in a graph G is denoted by NG(v),
and we set NG(T ) =

⋃
v∈T NG(v) for T ⊂ V (we often omit the subscript G if

it is clear from the context which graph G is considered). A set D ⊆ V is a
dominating set of G if every vertex of G is either in D or has a neighbor in D.
The distance dG(u, v) between two vertices u and v in G is the number of edges
of a shortest path from u to v. The diameter diam(G) of G is the maximum
distance over all pairs of vertices of G; diam(G) = ∞ if G is disconnected.
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If V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. We write
G = ((V1, V2), E) for a bipartite graph G = (V, E) having the vertex bipartition
V = V1∪V2. We say that G = ((V1, V2), E) is a biclique if G is connected and E
contains all possible edges between vertices in V1 and vertices in V2. A biclique
((U1, U2), E) is a star centered at a vertex u if U1 = {u} or U2 = {u}.

2.2 Parameterized Complexity

We give some basic background on parameterized complexity; for a detailed dis-
cussion we refer the reader to other sources [6, 20]. In parameterized complexity
theory, we consider the problem input as consisting of two parts; that is, a pair
(I, k), where I is the main part and k (usually an integer given in unary) is
the parameter. We say a problem is fixed parameter tractable if an instance
(I, k) can be solved in time O(f(k) + nc) or O(f(k)nc), where f denotes a com-
putable function and c denotes a constant that is independent of the parameter
k. Therefore, such an algorithm may provide an efficient solution to the prob-
lem if the parameter is reasonably small. We denote by FPT the class of all
fixed-parameter tractable decision problems.

A well known technique to show that a parameterized problem Π is fixed-
parameter tractable is to find a reduction to a problem kernel (this is also called
kernelization). It replaces an instance (I, k) of Π with a reduced instance (I ′, k′)
of Π (called problem kernel) such that

(i) k′ ≤ k and |I ′| ≤ g(k) for some computable function g;
(ii) the reduction from (I, k) to (I ′, k′) is computable in polynomial time;
(iii) (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π .

It is well known that a parameterized problem is fixed-parameter tractable if
and only if it is kernelizable [12, 14, 20].

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This com-
pleteness theory is based on a hierarchy of complexity classes W[1], W[2], . . . , XP.
Each class contains all parameterized decision problems that can be reduced to
a certain fixed parameterized decision problem under fpt-reductions. An fpt-
reduction from a parameterized problem Π to a parameterized problem Π ′ is
an algorithm that computes for every instance (I, k) of Π an instance (I ′, k′) of
Π ′ in at most f(k)|I|c time for some computable function f and constant c such
that

(i) k′ ≤ h(k) for some computable function h, and
(ii) (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π ′.

This means that if Π ′ belongs to some parameterized complexity class W then
Π also belongs to W . For instance, the class W[1] contains all parameterized
problems that can be reduced to Weighted 3-CNF-Satisfiability by an
fpt-reduction. The latter problem asks for a given instance F of 3CNF and a
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positive integer k , whether F can be satisfied by setting exactly k variables to
true. The class XP consists of parameterized decision problems Π such that for
each instance (I, k), it can be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ Π ,
where f, g are computable functions depending only k. That is, XP consists
of parameterized decision problems which can be solved in polynomial time if
the parameter is considered as a constant. The above classes form the chain
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP where all inclusions are conjectured to be
proper; FPT 6= XP is known [6, 8].

3 Covering the Edges

As mentioned in the introduction, the decision problem corresponding to Bi-

clique Cover is NP-complete even for bipartite graphs [21]. In this section we
establish fixed-parameter tractability.

We start with two simple reduction rules that can be easily applied to simplify
an instance of the Biclique Cover or Biclique Partition problem.

Rule 1. Given an instance (G, k) and a vertex v ∈ V (G) of degree 0, then (G, k)
is a yes-instance if and only if (G − v, k) is a yes-instance.

Rule 2. Given an instance (G, k) and a pair of (non-adjacent) vertices u, v such
that N(u) = N(v), then (G, k) is a yes-instance if and only if (G−{v}, k) is
a yes-instance.

Clearly, the following is true.

Lemma 1 Rules 1 and 2 are correct for both problems Biclique Cover and
Biclique Partition, and can be applied in polynomial time.

We say that an instance (G, k) is reduced (with respect to Rules 1 and 2) if these
rules cannot be applied.

Theorem 2 (Kernelization) If (G, k) is a reduced yes-instance of Biclique

Cover or Biclique Partition then G has at most 3k vertices. Furthermore,
if G is bipartite, then it has at most 2k+1 vertices.

Proof. Let (G, k) be a reduced instance of the Biclique Cover or Biclique

Partition problem with biclique cover S = {C1, . . . , Cl} of size l ≤ k, where
Ci = ((Xi, Yi), Ei). We will argue similarly as Gramm et al. [10]. We assign to
each vertex v ∈ V (G) a vector bv ∈ {0, 1, 2}l where the i-th component bv,i = 1 if
v is contained in Xi, bv,i = 2 if v is contained in Yi, and bv,i = 0 otherwise. Since
(G, k) is reduced, each vertex belongs to at least one biclique of S. Consider
an arbitrary but fixed vector b ∈ {0, 1, 2}l. Let Vb be the set of vertices of G
such that bu = b for all u ∈ Vb. Suppose Vb contains two distinct vertices x, y.
Since bx = by, it follows that x and y belong to the same partition classes of
the same bicliques. Then N(x) = N(y) and we obtain a contradiction. Hence
|Vb| = 1. Therefore we conclude that G has at most |{0, 1, 2}l| ≤ 3k vertices.
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If G is bipartite, we can define bv,i = 1 if v is contained in Ci and bv,i = 0
otherwise. Then we find that each set Vb must be complete (as otherwise we
could apply rule 2 for two vertices x, y with bx = by), and thus contains at most
two vertices. This means that G has at most 2 × |{0, 1}l| ≤ 2k+1 vertices if it is
bipartite. ⊓⊔

A direct consequence of Theorem 2 is that Biclique Cover and Biclique

Partition are fixed-parameter tractable.

Corollary 3 Both the Biclique Cover and the Biclique Partition problem
can be solved in O(f(k)+n3) time where f(k) = 32k2+3k for non-bipartite graphs

and f(k) = 22k2+3k for bipartite graphs.

Proof. We represent a graph G = (V, E) on |V | = n vertices by its adjacency
matrix, i.e., the n × n matrix A = (aij) with rows and columns indexed by the
vertices of V such that auv = 1 if uv ∈ E and auv = 0 otherwise. Then it takes
O(n2) time to detect and remove all isolated vertices in G (Rule 1) and O(n3)
time to verify if N(u) = N(v) for any two vertices u and v (Rule 2). Then, by
Theorem 2, we find a reduced graph G′ with 3k vertices and consequently O(9k)
edges if it is non-bipartite and 2k+1 vertices and consequently O(4k) edges if it
is bipartite in O(n3) time.

A brute force algorithm that solves the Biclique Partition problem with
input (H, k), where H is a graph with m edges, guesses for each edge of H to
which biclique it belongs and verifies if the resulting partition of E(H) yields
a biclique cover of size at most k. This takes O(mk) time. As any partition
of E(H) fixes the vertices of both bipartition classes of each biclique, we only
have to verify if all the fixed sets of vertices indeed induce mutually edge-disjoint
bicliques. This verification process takes O(|V (H)|3) time. We can do exactly
the same for the Biclique Cover problem except that here we do not care
if the bicliques are mutually edge-disjoint. Hence, for both problems, we find
f(k) = 32k2+3k if G′ is non-bipartite and f(k) = 22k2+3k otherwise. This finishes
the proof of Corollary 3. ⊓⊔

4 Covering the Vertices

As we observed in Section 1 that Biclique Vertex-Cover and Biclique

Vertex-Partition are equivalent, we will only consider the former problem in
this section.

4.1 NP-Hardness

We now proceed to show that Biclique Vertex-Cover is NP-complete for
fixed k ≥ 3, even if the given graph is bipartite. We present a polynomial-time
reduction from the following problem.
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List-Coloring

Instance: A graph G = (V, E) and a mapping L that assigns to every
v ∈ V a list L(v) of colors allowed for v.
Question: Is there a coloring c of V (G) such that c(v) ∈ L(v) for each
v ∈ V and c(u) 6= c(v) for each uv ∈ E?

If such a coloring c exists, then we call c an L-coloring of G, and we say that G is
L-colorable. If the number of available colors k = |

⋃
v∈V L(v)| is fixed, then the

problem is called k-List-Coloring. This problem is known to be NP-complete
for bipartite graphs and k ≥ 3 [11].

Our reduction proceeds as follows. Let (G, L) be an instance of k-List-

Coloring where G = ((U, V ), E) is a bipartite graph. We assume that⋃
v∈V L(v) = {1, 2, . . . , k}. We construct a graph H as follows (see Figure 1

for an example):

1. Let G∗ be the bipartite complement of G; i.e., V (G∗) = V (G) = U ∪ V and
E(G∗) = { uv : u ∈ U, v ∈ V, uv /∈ E(G) }.

2. For i = 1, . . . , k, introduce k new edges uivi for i = 1, . . . , k using 2k new
vertices ui, vi /∈ V (G∗).

3. Now take G∗ and the k edges uivi. For every x ∈ U and i ∈ {1, . . . , k}, if
i ∈ L(x) add an edge xvi. For every y ∈ V and i ∈ {1, . . . , k}, if i ∈ L(y)
add an edge yui. Call the resulting graph H . Thus, H is a bipartite graph
containing G∗ as a proper subgraph (note that V (H) = (U ∪ { ui : 1 ≤ i ≤
k }) ∪ (V ∪ { vi : 1 ≤ i ≤ k })).

{1, 2} x1

{2} x2

{1, 2} x3

y1 {1, 2}

y2 {2}

y3 {2}

x1

x2

x3

u1

u2

y1

y2

y3

v1

v2

Fig. 1. A graph G with list assignment L and the graph H obtained from G. The
L-coloring c of G with c(x1) = c(x3) = c(y1) = 1 and c(x2) = c(y2) = c(y3) = 2 and
the corresponding biclique vertex-partition of H are indicated with black and white
vertices.

In general, it is clear that H can be constructed in polynomial time and
|V (H)| = |V (G)| + 2k. Furthermore, the following can be established (as illus-
trated in Figure 1).

Lemma 4 G is L-colorable if and only if V (H) can be covered by k bicliques.
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Proof. Suppose that G has an L-coloring c. Define a partition of V (H) as follows.
For i = 1, . . . , k, define

Ci := { v ∈ V (G) : c(v) = i } ∪ {ui, vi}.

Let S := {H [C1], . . . , H[Ck]}. Note that each vertex of H belongs to precisely
one element of S. We claim that S is a biclique vertex-cover of H . Choose
an arbitrary element H [Ci] ∈ S. Let x, y ∈ V (G) be two vertices in H [Ci]
belonging to different classes in the vertex bipartition of H induced by the vertex
bipartition of G. Clearly xy /∈ E(G) because c(x) = c(y). Thus xy ∈ E(G∗)
which in turn implies that xy ∈ E(H [Ci]). Moreover, by definition of H , uiy ∈
E(H [Ci]) for every y ∈ Ci ∩ V , and vix ∈ E(H [Ci]) for every x ∈ Ci ∩U . Thus,
H [Ci] is a biclique of H . Thus, we conclude the set S is a biclique vertex-cover
of G.

Now suppose that H has a biclique vertex-cover S = {G1, . . . , Gk}. The edges
uivi, i = 1, . . . , k belong to distinct bicliques since uivj /∈ E(H), i, j ∈ {1, . . . , k},
i 6= j. Hence we may assume, w.l.o.g., that uivi ∈ E(Gi), i = 1, . . . , k. Let
Ci := V (Gi)−{ui, vi}. The set {C1, . . . , Ck} defines k disjoint independent sets
in G since H [Ci] is a biclique or a subset of U or a subset of V . Now define a
function γ : V (G) →

⋃
v∈V (G) L(v) as follows:

γ(v) := i if and only if v ∈ Ci.

For every v ∈ Ci we have, by definition of H , i ∈ L(v), and as we deduced above
γ(x) 6= γ(y) for xy ∈ E(G). Thus γ defines an L-coloring of G. ⊓⊔

For every fixed k the problem Biclique Vertex-Cover belongs to NP.
Since, as mentioned above, k-List-Coloring is NP-complete for bipartite
graphs for k ≥ 3, the reduction in Lemma 4 yields following result.

Theorem 5 Biclique Vertex-Cover is NP-complete for every fixed k ≥ 3.
This also holds if only bipartite graphs are considered.

Corollary 6 Biclique Vertex-Cover is not fixed-parameter tractable unless
P = NP.

4.2 Polynomial Cases

Next we study the question of whether k ≥ 3 is an optimal bound for the
NP-hardness of Biclique Vertex-Cover. If k = 1 the problem is trivially
solvable in polynomial time: G has a biclique vertex-cover of size one if and only
if the complement graph G (which has vertex set V (G) = V (G) and edges uv
whenever uv /∈ E(G)) is disconnected or |V | = 1. The case k = 2 is still open.
However, we can establish polynomial-time results for a special graph class that
includes all bipartite graphs.

For this purpose we transform Biclique Vertex-Cover for k = 2 into
an equivalent problem involving graph homomorphisms. We need the following
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definitions. Let G, H be two simple graphs. A mapping h : V (G) → V (H) is a
homomorphism from G to the reflexive closure of H if for every edge uv ∈ E(G)
we have either h(u) = h(v) or h(u)h(v) ∈ E(H). The homomorphism h is
vertex-surjective if for each c ∈ V (H) there is some v ∈ V (G) with h(v) = c. Let
Ck denote the cycle on k vertices c1, . . . , ck where ci and cj are adjacent if and
only if |i − j| ≡ 1(mod k). We make the following observation, which is easy to
see.

Observation 7 A graph G has a biclique vertex-cover consisting of two non-
trivial vertex-disjoint bicliques if and only if there is a vertex-surjective homo-
morphism from the complement graph G to the reflexive closure of C4.

A dominating edge of a graph G is an edge xy with N(x) ∪ N(y) = V (G).

Theorem 8 We can check in polynomial time whether a graph G allows a
vertex-surjective homomorphism to the reflexive closure of C4 if

(i) G has a dominating edge, or
(ii) G has diameter not equal to two, or
(iii) G has bounded maximum degree, or
(iv) G is triangle-free.

Proof. Let G = (V, E) be a graph. The following terminology is useful. Let h
be a vertex-surjective homomorphism from G to the reflexive closure of C4. If h
maps a vertex v ∈ V to ci, we say that v has color i. This way h induces a coloring
with exactly four different colors 1,2,3,4 such that neither color pair (1, 3) nor
(2, 4) is used on the end vertices of an edge. We call h a diagonal coloring.
Since any diagonal coloring corresponds to a vertex-surjective homomorphism
from G to the reflexive closure of C4 as well, we are done if we can decide in
polynomial time if G has a diagonal coloring for cases (i)-(iv). We prove each
case separately.

(i) Suppose xy is a dominating edge of G. Clearly, {x, y} will be assigned two
different colors by any diagonal coloring h of G.

Suppose such a coloring h exists. Then we may, w.l.o.g., assume that x has
got color 1 and y has got color 2. We will show how we can check in polynomial
time whether this precoloring can be extended to a full diagonal coloring of G.
We call a set U ⊆ V colored if every vertex in U has received a color. In a
precoloring, we denote the set of all colored neighbors of a vertex u by N c(u),
and we call a colored set U j-chromatic if the number of different colors in U
equals j.

We proceed as follows. First we guess an uncolored vertex s not adjacent
to x that we assign color 3 and an uncolored vertex t not adjacent to y that
we assign color 4. Note that the number of guesses is bounded by O(|V |2). We
apply the following rule as long as possible: if there exists an uncolored vertex
u with 3-chromatic N c(u) then u can only get one possible color, which we then
assign to u. Afterwards we check if there exists a vertex w with a 4-chromatic
colored neighbor set. If so, then pair (s, t) was a wrong guess, because we cannot
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assign an appropriate color to w. We then guess another pair (s′, t′) that we
assign color 3, 4 respectively, and so on.

Suppose that for a particular pair (s, t) we have applied the above rule as
long as possible and such a vertex w (with 4-chromatic N c(w)) does not exist.
Since xy is a dominating edge, we can partition the uncolored vertices of G
into the following sets: sets Ui,j consisting of vertices adjacent to vertices with
color i and j for (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} and sets Ui consisting
of vertices only adjacent to color i for i = 1, 2. Then we extend the precoloring
of F by assigning color 1 to the vertices in U1,2 ∪U1,4 ∪U2,4 ∪U1 ∪U2 and color
2 to the vertices in U1,3 ∪ U2,3. This proves case (i).

(ii) Suppose G does not have diameter 2. If diam(G) = 1, then G is a complete
graph and does not have a diagonal coloring. Let diam(G) ≥ 3. Then there
exist vertices u, v in G with dG(u, v) = diam(G) ≥ 3. We can find such a pair
u, v in polynomial time. We assign color 1 to u, color 2 to all neighbors of u,
color 3 to all vertices of distance 2 from u, and color 4 to all remaining vertices
in G. As this coloring is diagonal, we have shown case (ii).

(iii) Suppose G has maximum degree d for some fixed integer d. By (ii) we may
assume that G has diameter 2. This means that V has at most d2 + 1 vertices,
which proves case (iii).

(iv) Suppose G is triangle-free. By (ii) we may assume that diam(G) = 2. If G
has a dominating vertex u, i.e., N(u) = V \{u} then G does not have a diagonal
coloring (since u would become adjacent to a forbidden color). Suppose G does
not have a dominating vertex. We claim that G has a diagonal coloring if and
only if |V | ≥ 4.

Suppose G has a diagonal coloring c. As |c(V )| = 4, we obtain |V | ≥ 4. To
prove the reverse implication, suppose |V | ≥ 4. Let u ∈ V be a vertex with
degree at least two. We color u by 1, one of its neighbors by 2, its remaining
neighbors by 4 and all the other vertices by 3 (as u is not dominating, G has
at least one vertex not adjacent to u). Since G is triangle-free, N(u) is an
independent set, and we have obtained a diagonal coloring of G. This proves
case (iv) and completes the proof of Theorem 8. ⊓⊔

Corollary 9 Biclique Vertex-Cover for fixed k = 2 can be solved in poly-
nomial time for the class of graphs that contain a pair of nonadjacent vertices
with no common neighbor. In particular, Biclique Vertex-Cover for fixed
k = 2 can be solved in polynomial time for bipartite graphs.

Proof. The first statement immediately follows from Observation 7 and Theo-
rem 8. So, let G be a bipartite graph with bipartition classes A, B. If G has two
nonadjacent vertices x ∈ A and y ∈ B, then we are done by the first statement.
In the other case G is a biclique. This proves Corollary 9. ⊓⊔

Remark 10. A homomorphism f from a graph G to a graph H is called edge-
surjective or a compaction if for each xy ∈ E(H) with x 6= y there is some
uv ∈ E(G) with f(u)f(v) = xy. The problem that asks whether there exists
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a compaction from a given graph to the reflexive closure of C4 is known to be
NP-complete [23]. For a graph G with diameter 2 it is equivalent to asking if
G allows a vertex-surjective homomorphism to the reflexive closure of C4. This
can be seen as follows.

We first note that any compaction, which is edge-surjective, is also vertex-
surjective. To show the remaining implication, suppose f is a vertex-surjective
homomorphism from G to the reflexive closure of C4. Suppose f(u) = c1 and
f(v) = c2. If uv ∈ E, then c1 and c2 are images of the end vertices of an edge.
Otherwise, since G has diameter two, there exists a vertex s adjacent to u and v.
Then f(s) = c1 or f(s) = c2. In the first case sv and in the second case su is the
desired edge. We use the same arguments for edges c2c3, c3c4, and c4c1. Hence
the reverse implication is valid too.

So far, we could only show that the problem that asks if G allows a com-
paction to the reflexive closure of C4 stays NP-complete if we restrict the input
graphs to graphs with diameter 3. We do this by slightly modifying the NP-
completeness reduction given in [23]. As this is beyond the scope of this paper,
we leave out the proof details.

Remark 11. Of related interest is the concept of H-partitions as studied by
Dantas et al. [4]. Let H be a fixed graph with four vertices h1, . . . , h4. An
H-partition of a graph G = (V, E) is a partition of V into four nonempty sets
X1, . . . , X4 such that whenever hihj is an edge of H , then G contains the biclique
K = ((Xi, Xj), Ek). H-partition denotes the problem of deciding whether a
given graph admits an H-partition. Evidently, Biclique Vertex-Cover for
k = 2 is equivalent to the problem 2K2-partition where 2K2 denotes the graph
on four vertices with two independent edges. H = 2K2 is the only case for which
the complexity of H-partition is not known. All other cases are known to be
solvable in polynomial time.

Remark 12. The Biclique Vertex-Cover problem for k = 2 is also equiva-
lent to asking if G has a disconnected cut, i.e., a set U ⊆ V such that both G[U ]
and G[V \U ] are disconnected. We are not aware of any previous work on the
problem expressed this way.

4.3 Bounding One Side of the Bicliques

In the following we study the question of whether Biclique Vertex-Cover

becomes easier when the number of vertices in one of the two classes of the
vertex bipartition of bicliques is bounded. For a complete bipartite graph K =
((U1, U2), E) we define β(K) = min{|U1|, |U2|}. Clearly, β(K) = 1 if and only
if K is a star. A b-bounded biclique is a biclique K such that β(K) ≤ b. A
b-biclique vertex-cover of a graph G is a set of b-bounded bicliques of G such
that each vertex of G is contained in one of these bicliques.

Let b be a fixed positive integer. We consider the following parameterized
problem.

12



b-Biclique Vertex-Cover

Instance: A graph G and a positive integer k.
Parameter: The integer k.
Question: Does there exist a b-biclique vertex-cover S of G such that
|S| ≤ k?

It is not difficult to see that b-Biclique Vertex-Cover is in XP as follows.
Let G = (V, E) be a graph with n vertices and k > 0. We assume w.l.o.g.
that G does not contain isolated vertices. We choose independently subsets
X1, . . . , Xk ⊆ V of size at most b, there are O(nkb) possibilities. For each choice
X1, . . . , Xk we define Y1, . . . , Yk where Yi =

⋂
x∈Xi

N(x). Then we check in
polynomial time if every vertex of G is in at least one set Xi or Yi, and if all Yi

are non-empty (note that Yi = ∅ implies |Xi| ≥ 2 because we assume G does not
have isolated vertices). If both conditions are satisfied, then we have found a
b-biclique vertex-cover of size at most k. Furthermore, if there exists a b-biclique
cover of size at most k then one of the guesses will succeed.

Next we will identify the exact parameterized complexity of b-Biclique

Vertex-Cover. In Lemma 14 we show that the b-Biclique Vertex-Cover

problem is in W[2]. In Lemma 15 we show that the b-Biclique Vertex-Cover

problem is W[2]-hard. These two lemmas together imply the following result.

Theorem 13 The b-Biclique Vertex-Cover problem is W[2]-complete for
every b ≥ 1. This also holds if only bipartite graphs are considered.

To show W[2]-membership we use the following parameterized problem known
to be W[2]-complete [6].

Dominating Set

Instance: A graph G and a positive integer k.
Parameter: The integer k.
Question: Does there exist a dominating set of G of size at most k?

Lemma 14 There is an fpt-reduction from b-Biclique Vertex-Cover to
Dominating Set.

Proof. Consider an instance (G, k) of b-Biclique Vertex-Cover. For a set
S ⊆ V (G) let S′ ⊆ V (G) denote the set of common neighbors of vertices in S,
i.e., S′ =

⋂
v∈S N(v). Furthermore, let T denote the set of subsets S ⊆ V (G)

with 1 ≤ |S| ≤ b and S′ 6= ∅.
We construct a graph H = (V ′, E′) as follows. We let V ′ consist of V (G),

two new vertices z, z′ and a new vertex vS for every S ∈ T . We let E′ consist
of E(G) together with the edge zz′ and all edges vSw for w ∈ S ∪ S′ ∪ {z},
S ∈ T . Note that H can be constructed in polynomial time as |T | = O(bnb)
where n = |V (G)|. We show that G has a b-biclique vertex-cover of size at most
k if and only if H has a dominating set of size at most k + 1.

Let S be a b-biclique vertex-cover of G and |S| ≤ k. Note that S ⊆ T . For
every K ∈ S we choose a vertex xK ∈ V (H) as follows. If K is trivial, i.e.,
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V (K) = {v}, then we put xK = v. Otherwise we put xK = vS . Evidently
D = { xK : K ∈ S } ∪ {z} is a dominating set of H , and |D| ≤ k + 1.

Conversely, let D be a dominating set of H with |D| ≤ k + 1. We may
assume, w.l.o.g., that z ∈ D (otherwise z′ ∈ D and we can replace z′ by z).
For every x ∈ D\{z} we identify a biclique Kx of G as follows. If x = vS for
some set S ⊆ V (G) then we let Kx = ((S, S′), EKx

). Otherwise, if x ∈ V (G),
then we define Kx = (({x}, N(x)), EKx

). We let S = {Kx : x ∈ D\{z} }.
Again it is easy to verify that S is a b-biclique vertex cover of G, and clearly
|S| ≤ |D| − 1 = k. ⊓⊔

To show W[2]-hardness we use the following parameterized problem known to
be W[2]-complete [6].

Hitting Set

Instance: A pair (Q, C), where Q = {q1, . . . , qm} and C = {C1, . . . , Cn}
with Ci ⊆ S for i = 1, . . . , n, and a positive integer k.

Parameter: The integer k.

Question: Does there exist a subset H ⊆ Q with |H | ≤ k, such that
H ∩ Ci 6= ∅ for i = 1, . . . , n?

Lemma 15 There is an fpt-reduction from Hitting Set to b-Biclique

Vertex-Cover for bipartite graphs.

Proof. Let I = ((Q, C), k) be an instance of Hitting Set, where Q =
{q1, . . . , qm} and C = {C1, . . . , Cn}. We transform I into an instance of
b-Biclique Vertex-Cover as follows. First construct a bipartite graph
G = ((Q, C), E) by letting qiCj ∈ E(G) if and only if qi ∈ Cj . Now add two
new vertices z and z′ to G, such that z is adjacent to every qi and z′ is adjacent
to z only. Finally, for each vertex Cj add bk new vertices vj1 , . . . , vjbk

and add
edges such that N(vjd

) := N(Cj), d = 1, . . . , bk. Call the resulting graph G′.
An example of a graph G′ is given in Figure 2. Clearly, G′ is bipartite. Let

v1 v11
v12

v13
v2 v21

v22
v23

v3 v31
v32

v33
v4 v41

v42
v43

v5 v51
v52

v53
v6 v61

v62
v63

u1 u2 u3 u4 u5

z

z′

Fig. 2. The graph G′ for the instance ((Q,C), 3) and b = 1, where Q = {q1, . . . , q5}
and C = {C1, . . . , C6} with C1 = {q1}, C2 = {q2, q4}, C3 = {q2, q3}, C4 = {q1, q5},
C5 = {q3, q5} and C6 = {q4, q5}.
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U ′, V ′ be the bipartition classes of V (G′), such that z ∈ V ′, and consequently,
U ′ = Q ∪ {z′}. We show that (Q, C) has a hitting set of size at most k if and
only if G′ has a b-biclique vertex-cover of size at most k + 1.

Let H be a hitting set of (Q, C) with |H | ≤ k. Define Kq := NG′(q)∪{q} for
all q ∈ H . These |H | stars together with the star that consists of z, z′ and the
elements of Q\H form a b-biclique vertex-cover of G′ with size |H | + 1 ≤ k + 1.

Conversely, suppose that G′ has a b-biclique vertex-cover S of size at most
k+1. We may assume, w.l.o.g., that S contains a star K0 centered at the vertex
z. Let S′ := S\{K0}. For a biclique K = ((X, Y ), EK) ∈ S′ we may assume,
w.l.o.g., that X ⊆ Q and Y ⊆ V ′. Then |X | ≤ b or |Y | ≤ b. Let Q′ be the union
of all vertices that are in a set X of at least one biclique K = ((X, Y ), EK) ∈ S′

with |X | ≤ b. We claim that C = NG(Q′). Suppose to the contrary that there
is a vertex Cj ∈ C\NG(Q′). Consider the set Vj = {Cj , vj1 , . . . , vjbk

}. Since
Cj /∈ NG(Q′), we have Vj ∩ NG′(Q′) = ∅ by construction of G′. Thus, for each
biclique K = ((X ′, Y ′), EK) ∈ S′ containing an element v ∈ Vj , it follows that
|X ′| > b and |Y ′| ≤ b. However, then |S′| ≥ k + 1, since |Vj | > bk. This means
that |S| = |S′| + 1 ≥ k + 2. This is a contradiction. Therefore, we obtain a set
H ⊆ Q that is a hitting set of (Q, C) of size at most k by including in H precisely
one vertex in Q′ ∩ X for each K = ((X, Y ), EK) ∈ S′. ⊓⊔

Remark 16. Since the non-parameterized Hitting Set problem, where k is
just part of the input and not a parameter, is well known to be NP-hard, and
since the reduction in the proof of Lemma 15 is in fact a polynomial-time reduc-
tion, it follows that the non-parameterized b-Biclique Vertex-Cover problem
is NP-hard.

5 Final Remarks

We have classified the parameterized complexity of the problems Biclique

Cover, Biclique Partition, Biclique Vertex-Cover, and Biclique

Vertex-Partition: the first two are fixed-parameter tractable, the latter two
are equivalent and not fixed-parameter tractable unless P = NP. It would be
interesting to improve our algorithm for Biclique Cover and Biclique Par-

tition. In particular, it would be interesting to improve on the 3k kernel or to
show that under plausible complexity theoretic assumptions a kernelization to
a kernel of size polynomial in k is not possible. Our results for the Biclique

Vertex-Cover problem are negative. It would be interesting to identify spe-
cial graph classes for which the problem becomes fixed-parameter tractable, and
to determine the complexity of Biclique Vertex-Cover for fixed k = 2.
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