
1

Mixed Labeling:
Integrating Internal and External Labels

Ladislav Čmolı́k, Václav Pavlovec, Hsiang-Yun Wu, and Martin Nöllenburg

Abstract—In this paper, we present an algorithm capable of mixed labeling of 2D and 3D objects. In mixed labeling, the given objects
are labeled with both internal labels placed (at least partially) over the objects and external labels placed in the space around the
objects and connected with the labeled objects with straight-line leaders. The proposed algorithm determines the position and type of
each label based on the user-specified ambiguity threshold and eliminates overlaps between the labels, as well as between the internal
labels and the straight-line leaders of external labels. The algorithm is a screen-space technique; it operates in an image where the 2D
objects or projected 3D objects are encoded. In other words, we can use the algorithm whenever we can render the objects to an
image, which makes the algorithm fit for use in many domains. The algorithm operates in real-time, giving the results immediately.
Finally, we present results from an expert evaluation, in which a professional illustrator has evaluated the label layouts produced with
the proposed algorithm.

Index Terms—Labeling, Mixed labeling, Internal labeling, External labeling, Expert evaluation.

F

1 INTRODUCTION

G RAPHICS such as illustrations, data visualizations, and
information graphics are designed to communicate

information visually. However, in most cases, the graphics
cannot convey the whole information themselves. Therefore,
the visual information is typically accompanied by verbal
information in the form of text or audio. In such cases, la-
bels, short textual annotations, that mediate the connection
between the visual and verbal information, play an essential
part in the design of a graphic.

The label layout, i.e., the positioning of the labels, plays
a crucial role in the efficient and correct understanding of
the communicated information. According to Tufte [1], label
layouts should not use legends but embed all the necessary
text into the graphics itself.

A convenient and functional label layout has to ex-
hibit four general characteristics: Readability, unambiguity,
compactness, and aesthetics [2]. More specifically, all labels
should be readable without occlusions. The viewer should
be able to easily associate the labels to the labeled objects
and vice versa. The label layout should use as little space
around the illustration as possible. This characteristic is
essential, especially when we embed graphics on a page
of text. Finally, the label layout should be pleasing to the
readers’ eyes. However, we should keep in mind that the
aesthetics are most often subjective.

In this paper, we are focusing on the labeling of area
features, where we can divide labels into two categories

• Ladislav Čmolı́k is with Faculty of Electrical Engineering at CTU in
Prague, Prague, Czechia. E-mail: cmolikl@fel.cvut.cz.

• Václav Pavlovec is with Faculty of Electrical Engineering at CTU in
Prague, Prague, Czechia. E-mail: pavlova1@fel.cvut.cz.

• Hsiang-Yun Wu is with Institute of Visual Computing and
Human-Centered Technology at TU Wien, Vienna, Austria. E-mail:
hsiang.yun.wu@acm.org.

• Martin Nöllenburg is with Institute of Logic and Computation at TU
Wien, Vienna, Austria. E-mail: noellenburg@ac.tuwien.ac.at.

based on their positioning: internal labels are overlapping
the labeled objects, at least partially, while external labels
are typically not overlapping the labeled objects and are
connected with the labeled objects by leaders. A leader can
be a straight-line, a polyline, or a smooth curve. Figure 1
shows label layouts using internal labels and/or external
labels with straight-line leaders.

Various types of labels are utilized in various domains.
Technical illustrations and encyclopedia illustrations almost
exclusively use external labels [3]. On the other hand,
illustrations in medical atlases [4] use both internal and
external labels, where the internal labels are entirely inside
of the labeled areas. In cartography and data visualizations,
area features are labeled with both internal and external
labels [5], but internal labels are allowed to overlap the
labeled areas only partially if they maintain an unambigu-
ous association with the labeled areas (e.g., small islands in
maps or glyphs in data visualizations). Generally, internal
positions are preferred in maps and information graphics,
but if the features are locally densely packed and there is a
lack of space, illustrators switch to external labels.

Most of the previous work, discussed in detail in Sec-
tion 2, is focusing solely on internal or external labels. Only
a few methods are using both internal and external labels in
a single label layout. However, these methods determine po-
sitions of internal labels independently from external labels
and vice versa. Such approaches may lead to overlaps of
leaders with internal labels. Further, they require that every
internal label is positioned entirely inside of its area, which
excludes label layouts, where the internal labels overlap the
labeled objects only partially; such label layouts, however,
are useful in data visualization and microbiology [6].

In this work, we propose a more flexible approach to
the mixed labeling of area features that is able to use both
internal and external labels in one label layout. We highlight
our three main contributions:



2

(a) (b) (c)

Fig. 1. (a) 3D model of a human head with an internal label layout created with the proposed method. (b) By changing the value of the ambiguity
threshold ta, the user can create a mixed label layout where external labels are used instead of the internal labels with possibly ambiguous
placement (e.g., the spinal cord label). (c) By setting the value of the threshold ta to the maximum value, all labels are positioned externally.

1) We propose an internal labeling algorithm to compute
label layouts. Internal labels are allowed to overlap the
labeled objects fully or only partially while maintaining
an unambiguous association with the labeled objects
whenever possible. The objects can have any shape,
including non-convex shapes. To achieve this, we present
new criteria designed to prioritize positions with an
unambiguous association between labeled objects and
internal labels. Our algorithm is able to label also over-
lapping areas. We label 3D models with semitransparent
objects to demonstrate this ability.

2) To achieve mixed labeling with both internal and external
labels, we show how to integrate the modified external
labeling algorithm of Čmolı́k and Bittner [7] into the
proposed internal labeling algorithm. We have modified
their external labeling algorithm to allow external label-
ing of objects of non-convex shapes and to prioritize posi-
tions with an unambiguous association between labeled
objects and external labels.
The mixed labeling algorithm determines label layouts,
where the labels do not overlap, and the straight-line
leaders of external labels do not cross internal labels. The
user can control the algorithm by setting the ambiguity
threshold ta to force the method to use external labels in-
stead of internal labels if they would have an ambiguous
association with the labeled objects. See Figure 1.

3) The proposed mixed labeling algorithm is a screen-space
technique; it functions in an image with encoded 2D ob-
jects, as well as projections of 3D objects. Consequently,
we can use the algorithm whenever we can render objects
into an image, making it suitable for application in many
domains. The algorithm functions in real-time, providing
the results instantly. The real-time performance allows
users to interact with the scene (e.g., pan, zoom, rotate).
However, the algorithm does not produce temporally
coherent label layouts [8]. Therefore, we do not show the
label layout during user interaction.

2 RELATED WORK

We divide the related work according to the positioning
of the labels into internal, external, and mixed labeling

methods. A lot of the labeling literature considers labeling
of point features, but here we only mention those that are
sampling a representative point per area feature to label
area features. Primarily, our focus is on methods specifically
designed for labeling of area features.

2.1 Internal Labeling Methods

In many domains, internal labels are the preferred style
of labeling area features. Cartography is a domain with
vast experience and established guidelines for internal label
placement of area features. Yoeli [5] recommends that a label
should be placed internally if its not occluding central parts
of other areas. Further, the internal label should overlap the
most central part of the labeled area and fit inside the area
if possible. Note that a label that fits inside the labeled area
may still occlude central parts of other areas if the areas are
not mutually exclusive (e.g., when we label semitransparent
objects). Further, to fit an internal label to the labeled 2D
area, the label text is allowed to follow the shape of the
labeled area [9].

A few automated approaches following the general car-
tographic placement guidelines have been developed in the
cartography domain. Van Roessel [10] presents an algorithm
for computing label candidates for axis-aligned rectangles
in a given polygonal area as needed for area labeling in
maps. Barrault [11] describes a fitness measure for candidate
positions of shape-fitted area labels and a corresponding
label selection method. Freeman [12] sketches a general
approach and guidelines for labeling point, line, and area
features, but no specific algorithms are given.

When internal labels are used to annotate surfaces of
3D objects, the labels often follow the shape of the 3D
surfaces. Ropinski et al. [13] are using 3D shape fitting to
annotate surfaces of 3D models for medical illustrations.
Cipriano and Gleicher [14] introduce a special text scaffold
surface that is computed on top of the given 3D model to
avoid occlusion and distortion of the labels of medical and
microbiological 3D models. Prado et al. [15] are projecting
multiple copies of labels directly onto the objects in the
3D scene. Maass and Döllner [16] integrate labels onto
important objects (e.g., buildings) in 3D virtual landscapes.



3

In all of the approaches mentioned above, the labels are
required to fit into their mutually disjoint areas. One ap-
proach where the internal labels are overlapping the labeled
areas only partially is the approach of Kouřil et al. [6], where
they place labels for hierarchically organized area features
in interactive 3D models. They determine a representative
anchor point for each area and use billboard labels with the
anchor point at its center. However, they do not provide a
mechanism to prevent overlaps of labels.

2.2 External Labeling Methods

In external labeling, labels are usually connected to their
features via additional leaders, which can be straight-line,
polyline, or smooth curves. This is the predominant style in
highly detailed technical and medical illustrations, where
text should not occlude important features of the back-
ground image [17].

To apply external labeling for area features, one can
either determine a representative point inside each feature
and then use a point-labeling method (see the recent survey
of Bekos et al. [17] for an overview) or use an algorithm that
combines the selection of a suitable leader endpoint together
with the leader and label placement. Some methods also
place external labels in the direct vicinity of area features,
e.g., islands in a map, by first generating and evaluating
candidate positions and then using simulated annealing for
label optimization [18].

Many algorithms for external labeling actually consider
a bounding box of the illustration and place the labels
on its boundary; this is known as boundary labeling. Exact
algorithms, typically minimizing the total leader length for
a given set of point features and unit-height labels, are
known for different leader shapes and placement of labels
on the different sides of the bounding box [17]. Most of the
algorithms use dynamic programming. The more bounding
box sides are used for the labels simultaneously, the more
the solution space grows, and thus the more complex the
algorithms get. While many algorithms use pre-defined
but exchangeable label positions, others allow moving the
labels along the boundary to find the best positions [19],
[20]. Preim et al. [21] consider straight-line leaders and
temporally consistent labels for interactive illustrations, al-
though this can result in intersecting leaders. Some bound-
ary labeling algorithms are specifically designed for area
features. Bekos et al. [22] minimize the length of crossing-
free polyline leaders over all possible anchor points within
the given set of area features using an exact, matching-based
algorithm. Bekos et al. [23], as well as Löffler et al. [24], use
two types of labels for point features: labels that are close to
the points and do not need a leader and external labels with
a leader. They present exact algorithms, where the objective
is to maximize the number of internally labeled points,
while the remaining points are labeled externally on one
side of the illustration using leaders. Please note that these
methods are designed for point features, and there is no
imediate generalization to area features, as the established
guidelines for area feature and point feature labeling differ.

For more general image contours, e.g., a convex hull, an
enclosing circle or some other convex shape that is enclos-
ing all labeled objects, most algorithms apply straight-line

leaders. Ali et al. [2] describe a variety of external labeling
algorithms in this general setting using local optimization
techniques. Čmolı́k and Bittner [7], [25] propose a real-time
greedy method for labeling interactive 3D models along a
convex contour with different leader types. Niedermann et
al. [26] place labels with radially monotone cost-minimal
straight-line leaders around convex contours using dynamic
programming. Techniques for excentric labeling define a
(circular) focus lens and arrange labels of features inside
the lens along the lens boundary [27].

For even more general image contours, e.g., silhouettes
of the labeled objects, Stein and Décoret [28] place label
boxes with straight-line leaders in the free space of complex
scenes; Wu et al. [29] present an approach to place text labels
and images for annotating metro maps without intersecting
the individual metro lines. They use external labels without
leaders where possible and external labels with straight-
line leaders in the free space where necessary. Maass and
Döllner [30] use billboard labels with vertical leaders to
connect anchors to distant labels in virtual landscapes, but
not strictly placing the labels outside the image, whereas
Gemsa et al. [31] optimize the placement of the same type
of labels above the image.

In our approach, we use a part of the approach of Čmolı́k
and Bittner [7], [25].

2.3 Mixed Labeling Methods

Neither exclusively internal nor exclusively external label
layouts for area features provide a satisfying solution for
many real-world labeling problems. While the former fail
in situations dealing with objects that are smaller than their
labels, the latter often waste space and introduce labels that
are unnecessarily far away from their features due to not
permitting any internal labels. Therefore, in the most general
case, label layouts can be composed of a mix of internal and
external labels mitigating the aforementioned issues. Bell et
al. [32] present a view management system for VR and AR
applications, in which area objects are labeled internally, if
there is sufficient space, or otherwise, possibly, an external
label is placed in the free space using a front-to-back greedy
placement. Götzelmann et al. [9], [33], [34] also present
real-time methods for labeling interactive 3D illustrations
with both internal and external labels. Luboschik et al. [35]
present a fast heuristic for labeling point, line, and area fea-
tures that selects greedily the locally best available position
for each label, starting with internal labels and proceeding
to external labels if necessary. For the sake of speed, some
aesthetic trade-offs are made, e.g., leaders may cross.

The above methods divide the labeled objects into two
groups, where one group is labeled internally, and the
second group is labeled externally. The label layout for
each group is determined independently from the other
group. Such an approach leads to potential overlaps of the
leaders of external labels with the internal labels. The strict
separation into internal and external labels also discards all
labels that are only partially inside an object, but could still
be associated easily with the object. As a consequence, it
is impossible to label small objects with long labels inter-
nally. When these labels are all positioned fully externally,
the resulting label layout may become unnecessarily large.



4

2D or 3D scene

Metadata

Rendering

Mixed Labeling

Id buffer Color buffer

Fig. 2. Overview of the proposed method. The method takes an id buffer, color buffer synthesized from the scene, and metadata in the form of short
annotations as the input. The method determines the label layout based on the information encoded in the id buffer and overlays the color buffer
with the label layout. Please see the supplementary material for graphical overview of the first two steps of the algorithm with all used buffers.

Positioning the labels partly inside and partly outside of
the objects gives us more flexibility in the label layout and
typically also yields a more compact layout.

3 OUR APPROACH TO MIXED LABELING

In this section, we present our approach to the mixed label-
ing of area features. Unlike the state-of-the-art methods [9],
[33], [34], our approach can position internal labels partly
outside of the areas of the labeled objects and eliminate the
overlaps of the labels. The user is able to control the allowed
ambiguity of the internal labels with the ambiguity thresh-
old ta. The internal labels that would be placed on positions
with ambiguity greater than the given threshold are placed
externally instead. For external labels, we use straight-line
leaders (also denoted as leader lines), which have been shown
to be one of the two most readable leader types (together
with 1-bend orthogonal polylines) by Barth et al. [36]. Our
approach further eliminates overlaps of internal labels with
external labels or leader lines. The positions of the external
labels are again determined to minimize the ambiguity of
the association between labels and labeled objects.

3.1 Overview of the Proposed Mixed Labeling Method

The proposed method is a screen-space technique operating
in an image space where the 2D objects or the projected
3D objects are encoded. In other words, the technique is
working with buffers, i.e., 2D raster images allowed to store
other information than just the color for each pixel.

Our method takes two buffers that encode the properties
of the objects to be labeled as an input, see Figure 2. The
color buffer contains the color of the objects, and the id buffer
contains unique ids of the objects. A further input of the
method is metadata in the form of short textual annotations.
Our method requires the annotation for each unique id in
the id buffer as the input.

We denote each region in the id buffer with a unique id
as an area of one of the objects. The number n of unique ids
in the id buffer gives us the set A = {A1, . . . , An} containing
all n areas to be labeled.

To support the labeling of semi-transparent objects,
where the areas of the objects are not mutually disjoint and
may overlap, we represent the id of one area in the id buffer
as one bit in the pixel of the buffer. We use an unsigned

integer RGBA buffer with 32 bits per channel for the id
buffer, which allows us to store 128 ids in one pixel. In other
words, the id buffer can contain up to 128 overlapping areas
of the objects, which was sufficient for our experiments. If
one needs to store more areas in the id buffer, then one can
use multiple RGBA buffers to represent the id buffer.

We expect that the rendering method providing the color
buffer and id buffer is using the approach of Čmolı́k and
Bittner [7] to discard ids in regions of the areas where the
objects are too transparent, or other almost opaque objects
occlude them. This is the case in Figure 2, where some parts
of the intersection of Object A (blue) and Object B (red) are
assigned exclusively to one object, whereas only the violet
part of the intersection is assigned to both objects.

Determining the label layout for a configuration of
objects encoded in the id buffer is an optimization task.
In our proposed method, we use heuristics and a greedy
algorithm to determine the label layout. Here, we describe
the overview of our method first and explain the details in
the following sections, as referenced in parentheses below:

1) Establish internal label candidates and external label
candidates for each area Ai ∈ A. (3.2)

2) Establish buffers for the labeling criteria. (3.4)
3) While there is an unlabeled area in A:

a) Select the unlabeled area with the lowest capacity,
indicating the quality of label candidates, as the area
AS for labeling. (3.5)

b) Find the internal label candidate with maximum fit-
ness as the internal label for the selected areaAS . (3.6)

c) If the fitness of the best internal label candidate is
lower than the ambiguity threshold ta

i) Find the external label candidate with maxi-
mum fitness as the external label for the selected
area AS .

ii) If the best external candidate exists then discard
internal and external label candidates of yet un-
labeled areas that intersect with the determined
external label.

d) Otherwise discard all internal and external label can-
didates of yet unlabeled areas that intersect with the
determined internal label. (3.7)

4) Render the labels over the color buffer.



5

3.2 Establishing Label Candidates

To establish both internal and external label candidates, we
first determine the dimensions di = (wi, hi) of the label for
each area Ai from the provided textual annotations, where
wi is the width, and hi is the height of the label. We create a
list of the dimensions D = {d1, . . .dn}. We also determine
the maximal width wmax and the maximal height hmax of
all the label dimensions.

A label candidate is representing one possible position
of a label placed over the color buffer. We represent one label
candidate as one pixel of a buffer with the same resolution
as the color buffer and id buffer. This way, we can evaluate the
fitness of all label candidates in parallel and store the results
in a 2D buffer of positions that correspond to the positions
of the label candidates.

We represent each internal label candidate cI as the pixel
on the position of the lower-left corner l of the label box,
which encloses the label. Therefore, we establish the internal
label candidates of each areaAi in the id buffer by dilatingAi

to the left by the width wi and downwards by the height hi
of the label and storing them in the internal candidates buffer.
This way, the label box of each internal label candidate of
an area Ai will overlap at least one pixel of the area. Note
that one pixel of the internal candidates buffer can represent
candidates of more than one area as the extruded areas of
the objects will typically overlap. Therefore, we represent
the id of an area as one bit from the 128 bits available in the
pixel of the internal candidates buffer as well as in the id buffer.
In the following examples, we demonstrate the principle
with 3 bits only as the remaining 125 bits are 0.

In Figure 3(a), we depict the internal label candidates for
the configuration of three simple objects from Figure 2. Each
pixel of the blue (id = 001b), red (id = 010b), and green (id
= 100b) regions represents one internal label candidate of
Object A, Object B, and Object C, respectively. We depict
label boxes of several internal label candidates for each
region. In the violet region (id = 001b ∨ 010b = 011b), the
pixels represent internal label candidates of both Object A
and Object B. The width and height of the label boxes of
the candidates are given by the values in the list of the
dimensions D. Note that in the violet region, the dimensions
of the label boxes of the internal label candidates of Object
A are different from the dimensions of the label boxes of the
internal label candidates of Object B.

To establish the external label candidates, we are using
the approach of Čmolı́k and Bittner [25] modified to allow
placement of external labels close to objects with non-convex
shape. We have changed the definition of the internal area.
We use the combined area of all objects, instead of the
convex hull of the objects, as the internal area.

We define an external label candidate cE as a triplet cE =
(a,π, l). The anchor a is a pixel of the area of the labeled
object. The port π is the pixel located on the silhouette of
the dilated internal area (dashed line in Figure 3(b)) that is
closest to the anchor a. The line connecting the anchor a
and the port π defines the leader line of the external label
candidate cE. The label box is connected to the port π in a
corner point of the label box or a midpoint of one of its sides.
We can determine the position of the label box from the
angle α between the positive direction of the x-axis and the

(a) (b)

Fig. 3. (a) Internal label candidates obtained by dilating each area in
the id buffer to the left by the width of the corresponding label and
downwards by the height of the corresponding label. This way, the label
box of each internal label candidate will overlap at least one pixel of the
corresponding area in the id buffer. (b) External label candidates.

leader line pointing from the anchor a to the port π. Based
on the angle, the following corner of the label box is at the
position of the port π: bottom left corner for α ∈ (0◦, 90◦),
bottom right corner for α ∈ [90◦, 180◦), top right corner for
α ∈ (180◦, 270◦), and top left corner for α ∈ [270◦, 360◦).
If the angle α is 0◦ or 180◦, then the midpoint of the left
or right side of the label box is at the position of the port π,
respectively. From the label box position and its dimensions,
it is straightforward to determine the position of the lower-
left corner l of the label box. As both π and l depend on the
position of the anchor a, we represent each external label
candidate cE as a pixel of the external candidates buffer whose
position corresponds to the position of the anchor a.

We can also restrict the directions of the leader lines (e.g.,
only to the left and right, only upwards and downwards).
Without restricting the directions of the leader lines, the
leader lines are perpendicular to the silhouette of the dilated
internal area.

In Figure 3(b), we depict some external label candi-
dates for the configuration of the three simple objects from
Figure 2. Again, each pixel of the blue (id = 001b), red
(id = 010b), and green (id = 100b) regions represents one
external label candidate of Object A, Object B, and Object
C, respectively. The width and height of the label boxes of
the external label candidates are again given by the values
in the list of the dimensions D. We depict the label boxes
and leader lines of several external candidates. Similarly, as
for the internal label candidates, in the violet region (id =
001b ∨ 010b = 011b), the external label candidates represent
candidates of both Object A and Object B. For the three
simple objects, the internal area is the combined area of
Object A, Object B, and Object C. In this case, the internal
area is disconnected and non-convex. The dilated silhouette
of the internal area is depicted with a dashed line.

We need to ensure that both the internal and the external
labels are entirely inside of the color buffer. Otherwise, the
labels would not be fully visible. Thus, we discard both the
internal and the external label candidates whose label boxes
are not entirely inside of the color buffer. We depict those
label candidates in Figures 3(a) and 3(b) with a lighter color.

Further, we need to ensure that the external labels do
not overlap the internal area heavily. Such overlaps are
possible as the internal area can have a non-convex shape,
see Figure 3(b), where label boxes of two external label



6

(a) Internal salience buffer (b) Voronoi buffer (c) Evaluation of internal label can-
didates

(d) Evaluation of external label
candidates

Fig. 4. (a) The salience of the pixels in the internal salience buffer is computed as the distance to the closest point on the area outlines defined as
discontinuities in the id buffer; lighter color means higher salience. The outlines are depicted in white color. (b) Voronoi buffer with regions color-
coded based on the object ids. (c) Evaluation of label salience of four internal label candidates. (d) Evaluation of label salience of three external
label candidates.

candidates of Object B (red and violet area) overlap Object
C. We allow to control whether such overlaps are allowed
and how big they can be with an overlap threshold to. We
discard all external label candidates whose overlap of their
label boxes with the internal area exceeds the threshold to.
Both the overlap and the overlap threshold to are expressed
in pixels (e.g., number of pixels of the internal area that the
label boxes can overlap).

3.3 Labeling Criteria

To determine the positions of the labels, we evaluate each
label candidate according to five criteria. To aggregate the
criteria into the fitness F of the label candidate, we utilize
Multiple Criteria Decision Making based on fuzzy logic [37].
We model each criterion Ci, i ∈ {1, . . . , 5} as a fuzzy
membership function where we obtain a value in the range
[0, 1] for each label candidate. Further, we use weights Wi,
i ∈ {1, . . . , 5} to control the strength of each criterion. To
combine all the criteria together, we use non-compensating
fuzzy aggregation, where one criterion cannot compensate
for another criterion. More specifically, we use the natural T-
norm that corresponds to standard multiplication. To aggre-
gate all criteria for a label candidate into the fitness F of the
candidate, we compute the product of all membership func-
tions CWi

i of the five criteria. In the following paragraphs,
we describe the used criteria in detail.

Label Salience of Internal Label Candidates

To prioritize the unambiguous positions of the internal
labels, we need to position each internal label into a central
part of the area of the associated object. If the internal label
does not fit entirely into the area of the associated object,
then we need to minimize the overlap of the label with the
areas of other objects, especially with their central parts. In
such a case, we prefer overlap of the label with space outside
of the internal area that is close to the associated object, but
not close to areas of other objects.

To achieve this, we need to calculate the salience of each
internal label candidate as an estimate of the ambiguity
of the candidate. Higher salience corresponds to lower
ambiguity. To do so, we utilize two additional buffers: an
internal salience buffer and a Voronoi buffer. We create both
these buffers by utilizing the information in the id buffer. The

internal salience buffer, see Figure 4(a), stores in each pixel p
its salience S(p) calculated as

S(p) =

{
sI if Id(p) = 0,

(1− sI) · dist(p,o)dmax
+ sI otherwise,

(1)

where dist(p,o) is the distance from the pixel p to the
closest pixel o on the outlines detected as discontinuities in
the id buffer. Please note that for each pixel of the id buffer, the
discontinuity is a binary value: 0 if the ids of all neighboring
pixels equal the id of the pixel and 1 otherwise. Alterna-
tively, we can see dist(p,o) as the radius of the largest
circle with center at p inscribed in the corresponding area.
When we establish external label candidates, we determine
the length of their leader lines. We take dmax as the length of
the longest leader line. Since dist(p,o) ≤ dmax, we ensure
that S(p) ∈ [0, 1]. Id(p) is the value stored in the id buffer
at the position of pixel p; if the value is 0, then no ids are
stored at the position. Finally, sI ∈ [0, 1] is a user-defined
parameter specifying the salience of pixels outside of the
internal area.

The Voronoi buffer stores in each pixel p the id of the area
whose outline is the closest to the pixel p, see Figure 4(b). We
use the Voronoi buffer as an estimate of the area the viewer
will associate with a pixel on the screen. Moreover, we use
the internal salience buffer as an estimate of the strength of
this association. In Figure 4(c), the pixels are color-coded
based on the ids in the Voronoi buffer. The lightness of
the color indicates the salience of the pixels; lighter color
corresponds to more salient pixels.

In Figure 4(c), we depict four possible placements of an
internal label of Object A to illustrate how we can evaluate
the salience of the internal label candidates based on the
internal salience buffer and the Voronoi buffer. From the four
depicted internal labels, we prefer Label 1 in the most
central part of Object A as such an internal label can be very
easily associated with Object A. If the internal label cannot
be positioned entirely inside of Object A, then we prefer
Label 2 that is not overlapping the red and green regions.
Such an internal label can be again easily associated with
Object A, as it is not near any other object. The remaining
Labels 3 and 4, overlapping the red region, are not preferred
as they reduce the space available for both internal and
external labels of Object B. Further, Label 4 overlaps Object



7

B and thus is ambiguous as it can also be associated with
Object B.

To achieve the unambiguous positioning of internal
labels, we define two criteria to evaluate the salience of
internal label candidates. The criteria are evaluated with
respect to the area AS selected for labeling.

The criterion C1 evaluates the salience of the internal
label candidate cI with respect to the region RS in the
Voronoi buffer with the same id as the area AS selected for
labeling, (e.g., the blue region in Figure 4(c)) to favor the
internal label candidates that overlap salient pixels in the
area AS as much as possible.

C1(cI) = (1− p1) · avg(cI, RS) + p1, (2)

where avg(cI, RS) is the average salience of pixels in the re-
gion RS and inside of the label box of the candidate cI. With
the parameter p1 ∈ [0, 1], the user can increase the salience
of label candidates of the area AS selected for labeling. Note
that avg(cI, RS) ∈ [0, 1], therefore C1(cI) ∈ [0, 1].

On the other hand, the criterion C2 penalizes those
internal label candidates that overlap with the set of regions
R in the Voronoi buffer with an id different from the area AS

selected for labeling. The criterion is calculated as

C2(cI) =
∏
R∈R

(1− avg(cI, R)), (3)

where avg(cI, R) is the average salience of pixels in the
region R ∈ R and inside of the label box of the candidate cI.
Note that since avg(cI, R) ∈ [0, 1], therefore C2(cI) ∈ [0, 1].

Label Salience of External Label Candidates
Similarly, as for internal labels, to prioritize the unambigu-
ous positions of external labels, we need to position each
external label next to the area of the associated object, but
not close to areas of other objects. Further, we need the
anchor of its leader line to be in a central region of the area
of the associated object.

We use the same criteria C1 and C2 to evaluate the
salience of each external label candidate. To evaluate the
salience, we use an external salience buffer calculated with
Equation 1 where we use sE ∈ [0, 1] instead of sI .

Further, for the criterion C2, we treat the internal area as
an additional region to penalize overlap of the external label
with its associated object in case the associated object has a
non-convex shape and overlaps of external labels with the
internal area are allowed. Figure 4(d) shows our example
with three simple objects, where the pixels are color-coded
based on the ids in the Voronoi buffer except for the internal
area. The lightness of the color indicates the salience of
pixels; lighter color corresponds to more salient pixels.

In Figure 4(d), we depict three possible placements of an
external label of Object A to illustrate how we can evaluate
the salience of the external label candidates based on the
external salience buffer and the Voronoi buffer. From the three
external labels, Label 1, which is entirely in the blue region
is preferred the most. Note that such an external label can
be very easily associated with Object A since it is not near
any other object. Label 2, overlapping the green region, is
less preferred as it reduces the space available for external
labels of Object C. Label 3 overlaps the red and green regions
and is not preferred as it can reduce the space available for
external labels of both Objects B and C.

Anchor Salience of External Label Candidates
For each external label candidate, whose position is deter-
mined by the position of the anchor of its leader line, we
further need to evaluate its salience. Again, the salience of
each anchor is an estimate of the ambiguity of the anchor.
Higher salience corresponds to lower ambiguity. We calcu-
late the salience with the approach of Čmolı́k and Bittner [7]
as

C3(cE) =
dist(a,o)

dmax
, (4)

where a is the position of the anchor of the external label
candidate cE, o is position of the closest point to anchor
a on the outlines detected as discontinuities in the id buffer,
dmax is the maximum length of the leader line of all external
label candidates, and dist gives us the distance between the
two points. Note that dist(a,o) ≤ dmax, which means that
C3(cE) ∈ [0, 1]. Further, note that the distance is stored in
the external salience buffer at the position of the anchor a of
the external label candidate cE. For internal label candidates
the criterion C3 is always 1 as they do not have anchors.

Leader Line Length
The leader lines of the external labels should be as short as
possible, while still pointing to the central part of the area
of the associated object. Therefore, we evaluate the length
of the leader line for each external label candidate with the
approach of Čmolı́k and Bittner [7] as

C4(cE) = 1− dist(a,π)

dmax
, (5)

where dist(a,π) is the distance between the position of the
anchor a and the position of the port π of the external label
candidate cE, and dmax is the length of the longest leader
line. Note that dist(a,π) ≤ dmax and, therefore, C4(cE) ∈
[0, 1]. As internal label candidates do not have leader lines,
the criterion C4 is always 1 for internal label candidates.

Area Ambiguity
In case that the labeled objects are semi-transparent, we
prefer positioning the internal labels or anchors of the
external labels to regions where the areas of the objects are
overlapping as little as possible. Otherwise, the association
of the labels to the labeled objects can be ambiguous. To
evaluate the area overlaps, we calculate the number of ids
in each pixel of the id buffer and store it in the count buffer.
For pixels outside of the internal area, we put 1 in the count
buffer. Otherwise, we would prefer internal label candidates
that are overlapping the internal area as little as possible.
Figure 5(a) shows the count buffer of the example with three
simple objects and ambiguous positions of the labels.

To evaluate internal label candidates, we use the criterion

C5(cI) = 1− k

m
, (6)

where k is the average number of areas for all pixels in the
label box of cI and m is the maximum number of areas. To
efficiently obtain the average number of areas, we calculate
the Summed Area Table of the count buffer.

Similarly, to evaluate the external label candidates, we
use again the approach of Čmolı́k and Bittner [7] that results
in the same equation, but k is the number of areas in the
pixel at the anchor position of the external label candidate.



8

(a) Count buffer (b) Eliminated internal label candi-
dates

(c) Eliminated external label candi-
dates

(d) Lookup buffer

Fig. 5. (a) Count buffer with an example of the ambiguous placement of labels. (b) Eliminated internal label candidates and (c) eliminated external
label candidates, depicted in a light color, after placement of one internal and one external label. (d) Lookup buffer created from the Voronoi buffer.
We need to look up one tile for the blue, red, and green regions. Two tiles for the cyan, violet, and brown regions. And tree tiles for the grey region.

3.4 Establishing Buffers for the Labeling Criteria
As a preprocessing step, we evaluate the fitness of all internal
and external label candidates by the criteria C3, C4, and C5

only. We store the fitness of the internal label candidates in
the internal fitness buffer. Similarly, we store the fitness of the
external label candidates in the external fitness buffer.

Further, we create the internal salience buffer and Voronoi
buffer in this preprocessing step. However, we evaluate
the internal and external label candidates according to the
criteria C1 and C2 using these two buffers later, when we
search for the best internal and best external label candidate.

3.5 Selecting an Area for Labeling
The order in which the labels are placed over the illustration
is crucial as our method is based on a greedy algorithm, and
we cannot recover from a bad partial solution, i.e., a state
when some unlabeled area has no further label candidates.
We could use a genetic algorithm, as in [29], to alter the
order in which we position the labels in case of a bad partial
solution. However, such an approach would result in higher
computation times and, in turn, the algorithm would not
operate in real-time.

Placing a label for one area over the illustration can
reduce the number of available label candidates of the other
areas. Therefore, we should label the areas with a low
number of good label candidates first.

To select one of the unlabeled areas as the area AS for
labeling, we calculate the capacity of each area as the sum
of the salience of all internal label candidates of the area
and choose the unlabeled area for which the capacity is the
lowest. We use the salience of internal label candidates to
calculate the capacity as we try to label the objects with
internal labels first. To evaluate the salience of each internal
label candidate, we use only the criterion C1. Note that we
need to recalculate the capacities of the areas each time that
we place a new label over the illustration. Further, when we
place the label for the selected area AS over the illustration,
we need to mark the selected area AS as labeled.

3.6 Finding the Best Label Candidate
To find the best internal label candidate cI for the selected
area AS , we need to find the internal label candidate with
the maximum fitness F . To do so, we evaluate all internal
label candidates of the area AS by the criteria C1 and C2.

We calculate the fitness F of each candidate by multiplying
the value stored in the internal fitness buffer with C1 and C2.

If the fitness of the best internal label candidate cI is
lower than the user-specified ambiguity threshold ta, then
we need to find the best external label candidate cE with
the maximum fitness F . Similarly, as for the internal label
candidates, we evaluate all external label candidates of the
areaAS according to the criteriaC1 andC2 and calculate the
fitness F of each candidate by multiplying the value stored
in the external fitness buffer with C1 and C2.

At this point, we do not compare the quality of the best
external label candidate with the quality of the best internal
label candidate and always use the best external label can-
didate. Further research in this direction is required. Only
if there are no external label candidates, then we use the
best internal label candidate cI with fitness F below the
ambiguity threshold ta.

3.7 Eliminating Overlapping Label Candidates
We need to ensure that the placed labels do not overlap with
each other. For the external labels, we further need to ensure
that their leader lines do not overlap with the internal labels.

To prevent such overlaps, we simply update the internal
label candidates buffer and the external label candidates buffer
and discard those label candidates that overlap with the
new label determined for the selected area AS . If the label
determined for the selected area is positioned externally,
then we also discard label candidates in the internal label
candidates buffer that overlap with the leader line of the
determined external label.

In Figure 5(b), we depict the internal label candidates
discarded after one internal label and one external label are
determined. Similarly, in Figure 5(c), we depict the external
label candidates discarded after one internal label and one
external label are determined. In both figures, the discarded
label candidates are indicated with a lighter color.

3.8 Implementation Details
In this section, we present the technical details related to
the implementation of the first two steps of the proposed
method. For a graphical overview with all used buffers,
please refer to the supplementary material.

We establish the internal label candidates by dilating
each area Ai in the id buffer to the left by the width wi of



9

the label and down by the height hi of the label with Jump
flooding [38]. To establish the external label candidates, we
are using the approach of Čmolı́k and Bittner [25] adapted
to support non-convex shapes of internal areas.

To eliminate external label candidates that overlap the in-
ternal area, we create an image with a black background and
the internal area in white color. We calculate the Summed
Area Table [39] of the image that allows us to obtain the sum
of values of pixels (i.e., the number of white pixels in this
case) in every rectangle in the image with just four texture
lookups. Using the Summed Area Table of the image, we
obtain the number of white pixels inside of the label box
of each external label candidate and discard the external
label candidates for which the number of pixels inside of the
internal area is larger than the given overlap threshold to.

We are using Jump flooding to create the internal salience
buffer and Voronoi buffer by calculating the Voronoi diagram
of the outlines detected as discontinuities in the id buffer.

We use scattering [40] to efficiently find both the internal
and external label candidates with the maximum fitness
F . Further, to efficiently evaluate the criteria C1 and C2,
in particular, the average salience of pixels inside of the
label box of each internal label candidate with respect to
the regions in the Voronoi buffer, we distribute the internal
salience buffer into tiles of the internal tile buffer using the ids
in the Voronoi buffer such that each tile of the internal tile
buffer contains only the salience of pixels in one region of
the Voronoi buffer. E.g., each tile will contain only one of the
three color-coded regions in Figure 4(c). The violet region
will be both in the tile of the blue area and in the tile of the
red area. Then, we calculate the Summed Area Table of each
tile that allows us to obtain the sum in every rectangle in the
tile with just four texture lookups.

To further speed up the calculation of criterion C2, we
dilate the cells of the Voronoi diagram in the Voronoi buffer
to the left by the maximum width of all labels wmax and
down by the maximum height of all labels hmax and store
them in the lookup buffer. We use the ids in the lookup buffer
at the position of an internal label candidate to reduce the
number of tiles, which we need to look up to evaluate
criterionC2 for the candidate. Figure 5(d) shows an example
of the lookup buffer with one internal label candidate. For
the internal label inside of Object A, we need to look up
only the blue tile of the internal tile buffer as the label cannot
overlap any other region in the Voronoi buffer.

Similarly, as for the internal label candidates, we dis-
tribute the external salience buffer into tiles of an external
tile buffer using the ids in the Voronoi buffer and the id
buffer. Each tile of the external tile buffer contains only the
salience of pixels in one region of the Voronoi buffer that
are outside of the internal area, and we add one tile for
the internal area. E.g., each tile will contain only one of
the three color-coded regions in Figure 4(d). The fourth tile
for the internal area will contain the grey region. Then, we
calculate the Summed Area Table of each tile and use the
lookup buffer to reduce the number of lookups needed to
evaluate criterion C2. We always look up the tile of the
internal area. Figure 5(d) shows an example of the lookup
buffer with the label box of one external label candidate. For
the external label candidate, we need to look up the blue,
green, and internal area tiles of the external tile buffer based

on the position l of its label box.

4 RESULTS

We evaluated the proposed method with implementation
in Java and OpenGL. For all label layouts presented in this
paper, the supplementary material, and the supplementary
video, we used the same parameters sI = 0.1, sE = 0.1,
p1 = 0.1, overlap threshold to = 0, and weights of the cri-
teria W1 = 1, W2 = 5, W3 = 1, W4 = 1, W5 = 5 except for
the 3D model of a head where we used the weights W1 = 1,
W2 = 1, W3 = 1, W4 = 1, W5 = 0.5 due to heavy overlaps
of the objects. The only other parameter that is varying for
the presented label layouts is the ambiguity threshold ta.
The values of the weights, parameters, and thresholds were
selected as values for which most of the label layouts looked
the best after experimenting with various values.

The main contribution of the proposed method is the
ability to place both internal and external labels over the
illustration, while the internal labels can also partially over-
lap the labeled object, no two labels overlap, and no label is
intersecting the leader lines of the external labels.

We demonstrate the benefits of using internal labels that
only partially overlap the labeled objects on the example of
the Gapminder dataset [41]. If we use only labels that are
fully enclosed in their corresponding objects (Figure 6(a)),
then we can label only four objects. If we add external labels
to the labels that are fully enclosed in their corresponding
objects (Figure 6(b)), then we can label most of the objects,
but five of the objects still remain unlabeled. When we allow
the internal labels to overlap their corresponding objects
only partially (Figure 6(c)), then we are able to label all
objects. Note that all objects except two are labeled with
internal labels. Another possibility is to increase the ambi-
guity threshold ta to use labels partially overlapping areas
of the corresponding objects only for the unlabeled objects
in Figure 6(b). Please see Figure 6(d) for the result and refer
to the supplementary material for more examples.

As we can see, the user can set the ambiguity threshold
ta to control the allowed ambiguity of the internal labels
and force the method to use external labels instead of the
ambiguous internal labels. Figure 1 shows another example.

By changing the ambiguity threshold ta, we are able to
produce label layout styles for area features in cartography
(Figure 10(a)) and for data visualizations (Figure 6) where
partial overlaps of internal labels are allowed, for medical
illustrations where internal labels are typically inside of the
labeled objects (Figure 9(a)), and for technical illustrations
where the objects are labeled externally (Figure 7(d)).

We can use the proposed method with various directions
of the leader lines of external labels. In Figure 7, we show
several mixed label layouts with various directions of leader
lines of external labels.

The proposed method is able to position external labels
around a non-convex internal area, which allows the use of
the label layout even when we zoom in close to the labeled
objects. We demonstrate this ability in Figure 7(e).

Further, the proposed method is able to position labels
over renderings of semi-transparent objects. We have used
an extended approach of Kruger et al. [42] to render the



10

(a) (b)

(c) (d)

Fig. 6. Visualizations of the Gapminder data set labeled with various combinations of label types: (a) Only labels fully contained inside of their
corresponding areas. The unlabeled areas are highlighted in a darker color. (b) Labels fully contained inside of their corresponding areas together
with external labels. The unlabeled areas are highlighted in a darker color. (c) Labels fully contained inside of their corresponding areas together
with labels partially overlapping their corresponding areas and few external labels. (d) Labels fully contained inside of their corresponding areas
together with external labels and few labels partially overlapping their corresponding areas.

(a) (b) (c)

(d)

(e)

Fig. 7. Label layouts with various directions of the leader lines: (a) to the left only, (b) to the left and to the right, (c) all directions. (d) Technical
illustration using only external labels. (e) An example of zooming into a non-convex region of the internal area.



11

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e 
[m

s]

Number of labels

Fig. 8. Average time needed to calculate the mixed label layout in
dependency on the number of labeled objects. The lower error bars
represent the time needed to calculate the label layout with all labels
positioned internally. The upper error bars represent the time needed to
calculate the label layout with all labels positioned externally.

semi-transparent objects. In Figures 1 and 7, we utilize the
proposed method to label semi-transparent objects.

Nevertheless, we can use the proposed method with any
algorithm capable of producing the color buffer and id buffer.
To demonstrate this ability, we have created an application
that produces the color buffer and id buffer for the Gapminder
dataset, see Figure 6. Further, we have created an application
that is able to load images of the color buffer and id buffer.
We have used the application to create label layouts for a
handmade illustration, see Figure 9(c), and a map of the
Caribbean, see Figure 10(a).

The asymptotic computational complexity of the pro-
posed method is O(n2) as the method sequentially deter-
mines positions of n labels, and to determine the position
of each label, it needs to look up O(n) tiles (to calculate
the criterion C2) in the worst case. However, with the
lookup buffer, the method needs to look up only O(1) tiles
for most configurations of the objects. Therefore, for most
configurations of the objects, the computational complexity
will be O(n), which matches the measured performance
of the proposed method in dependency on the number of
labeled objects depicted in Figure 8.

For the performance measurements, we have used a PC
running Windows 10 with 64 GB of DDR4 RAM, Intel Xeon
W-2125 CPU with 4 cores running at 4 GHz, and NVIDIA
TITAN Xp GPU equipped with 12 GB of GDDR5X RAM,
3840 unified shaders, and 240 texture units. We have used
scenes with 6 to 46 objects to be labeled with 1024×1024
color buffer. Resolution of all other buffers and each tile of the
tile buffers was 512×512. For all tested scenes, the proposed
method calculates the label layout in under 100 ms. In other
words, according to the classification of response times by
Nielsen [43, Section 5.5], the proposed method gives the
results immediately. The supplementary video shows a live
capture of the prototype application.

5 LIMITATIONS

The proposed method has several limitations. We give ex-
amples for a selected subset of them in the supplementary
material. While it is able to position external labels around
a non-convex internal area, in certain cases, a large number
of external label candidates will point their leader lines to
the same location. In such a case some of the objects cannot
be labeled externally as there is no room for all labels of
the objects. Still, such objects will be labeled internally and
potentially ambiguously in the proposed method.

Similar issues will arise if we restrict the direction of
leader lines to the vertical direction only. Then, the external
labels, especially longer labels, will occupy all the free space
for external labels, and some of the objects will not be
labeled externally. Again, such objects will be labeled inter-
nally and potentially ambiguously in the proposed method.

For rare configurations of objects, the algorithm can
discard all label candidates of a certain object before the
object is labeled. In such a case, the algorithm will yield a
solution, where the object is not labeled. In other words,
it is not guaranteed that the algorithm will always find a
solution where all objects are labeled. However, we have
not experienced such a case in our experiments. To resolve
such situations, the labels could be replaced with shorter
references (numbers, letters, or abbreviations) to a legend
containing the full labels.

The proposed method does not take into account the
semantics of the labeled objects, which could influence what
parts of the objects are more or less important. A simple so-
lution might be to let the user mark semantically important
regions on the 2D or 3D model and use this information
when calculating the salience of label candidates.

The proposed method is able to work with one-line
labels that are aligned with the horizontal axis only. In the
future, we would like to extend our method to support
multi-line labels and labels not aligned with the horizontal
axis that are utilized for labeling of long and thin area
features in the approach of Götzelmann et al. [9].

The proposed method does not make the movement of
the labels temporally coherent, and the labels may jump
abruptly during interaction with the scene, especially with
a 3D scene. Therefore, we hide and do not calculate the
label layout during the interaction. We have tried to in-
corporate the criteria for temporal coherence of Čmolı́k
and Bittner [25] but did not achieve temporally coherent
movement of the labels. Due to semi-transparent objects,
there are many more discontinuities in the internal salience
buffer and external salience buffer. Further, in our approach,
the labels can change their type from internal to external
and vice versa. We would like to combine our approach with
the approaches of Tatzgern et al. [44] and Kouřil et al. [6] to
label 3D scenes during interaction in the future.

6 EXPERT EVALUATION

To assess the feasibility of the proposed method, we have
conducted an expert evaluation with an infographics illus-
trator. The main interests of the evaluation were to what
extent the proposed method can satisfy a professional illus-
trator and what are the essential factors for a good label
layout from a professional point of view.

We invited a professional illustrator with over five years
of experience in infographics design. She mainly works on
signage and guidance diagrams for visitors inside buildings,
and most of her work includes labeling tasks.

In the evaluation, we have used three datasets: a 3D
model of a human head, an illustration of the Zika virus, and
a map of the Caribbean. We asked the illustrator to perform
two tasks on each dataset: (1) Design an appropriate label
placement for the dataset, and (2) evaluate the result of the



12

(a) (b) (c) (d)

Fig. 9. The label layout calculated with the proposed method for the 3D model of a head (a) and the label layout created manually by a professional
illustrator (b). The label layout calculated with the proposed method for the illustration of the Zika virus by David S. Goodsell (CC-BY-4.0) with the id
buffer (c), and the label layout created by the professional illustrator (d). Note that the illustrator accidentally switched the labels for RNA and Capsid
proteins. In order to have better readability in the paper, the leader lines drawn by the illustrator are thickened through image editing in (b) and (d).

(a) (b)

Fig. 10. The label layout calculated with the proposed method for the map of the Caribbean with the id buffer (a) and the label layout created
manually by the professional illustrator (b). Note that we accidentally misspelled Guadeloupe as Guadaloupe in the system. We keep the typo here
to have a fair comparison with the result created by the illustrator.

proposed method (which was created before the evaluation)
and point out and explain any insufficiencies.

For each dataset, we provided the illustrator with a
background image together with the corresponding labels
printed on transparent film cut into several small pieces.
For each labeled object, the illustrator was allowed to place
the label internally or externally with a straight leader line
based on her preference. However, all labels had to be fully
embedded within the image domain. Additional instruc-
tions regarding the context of the labels were provided and
explained on demand.

Figures 9(b), 9(d), and 10(b) show the label layouts
created by the illustrator. She created each label layout in
10 to 15 minutes. In the following, we describe rules that
we have obtained directly from the illustrator (e.g., she
explained to us that she is using such rules). Regarding the
Global Strategies, three ideas are often incorporated. These
include (G1) to first place internal labels, and then external
labels, (G2) if possible, labels should not overlap objects
that are also labeled, and (G3) identify regions without
important features for the label placement. As rules for the
Internal Labels, (I1) internal labels are often placed in the

most central part of the objects. (I2) If the object is too small
to accommodate the entire internal label, then place the left
side of the internal label inside of the object. If that is not
possible, then place the right side of the internal label inside
of the object. If that is also not possible, place the center
of the internal label inside of the object. As rules for the
External Labels, (E1) a leader line is added to the target object
for labels that are overlapping with other objects. (E2) If
possible, the external labels are positioned with leader lines
such that the leader lines are short.

Once the label layouts were finished, we showed her
the results generated using our implemented method and
asked for comments from a professional perspective. She
was impressed by the results, especially being created by
an algorithm, but she also pointed out labels violating her
above-mentioned labeling rules in each result.

The 3D model of a head was considered by her as a
simple scene to embed all labels as internal labels. She
placed as many internal labels as possible, but for small and
overlapping objects, she added a leader line to specify the
exact object to be labeled. In particular, she connected the
pituitary and spinal cord labels with the target objects with



13

leader lines, since the target objects are small and overlap-
ping with temporal lobe and spine, respectively. However, she
positioned these labels on top of another object and not on
the background to avoid long leader lines.

She placed the skin label outside of the head contour to
point out that the skin is a container object covering the
entire head. In the result of the proposed method, most of
the internal labels are on positions close to those chosen by
the illustrator. However, the external labels are positioned
outside of the internal area and connected with the objects
with long leader lines (violation of rule E2). Further, the
label for skin is positioned as an internal label as the pro-
posed method cannot derive contextual information such as
the skin being a tissue covering the whole head.

The illustrator considered the Zika virus as a complex
scene composed of several repetitive structures. To her,
the only structure big enough to accommodate an internal
label was the Zika virus itself. She suggested to adjust
color contrast or add semi-transparent background boxes
to differentiate the background image and text labels. One
interesting property that she mentioned for this dataset is to
add many-to-one leader lines to indicate multiple instances
with the same semantic. Again, the leader lines in the result
of our method are longer than in the label layout created
by the illustrator (violation of rule E2). The illustrator put
the label Envelope proteins such that it overlaps the Alpha-
helix protein (the green branching structure) to emphasize
Envelope proteins in both depicted Zika viruses.

For the map of the Caribbean, the illustrator placed the
labels inside of the islands (rule G1) and determined their
position based on how precise the labels can describe the
region. Since most of the islands are round, placing the label
over them is not an issue. However, some islands, such
as Guadeloupe, have a characteristic shape, and therefore
should not be covered by the label. If possible, she posi-
tioned the left or right side of the internal labels inside of the
small islands. She did not find it necessary to use leader lines
for this data set unless she would need to highlight a specific
island. The centers of most labels are positioned inside of
the small islands (violation of rule I2) in the result of our
proposed method. Further, our method does not distinguish
between round islands and islands with a characteristic
shape. She liked the result for the map of the Caribbean
the best among the three automated results overall.

In general, the proposed method positions the labels at
similar locations as the illustrator. In future work, we aim
to resolve when to apply rule I2 and when to position the
label externally. Further, we need to allow external labels to
be positioned over other objects (rule E1) and resolve when
such placement should be preferred over positioning of an
external label over the background. We believe that both
these problems are highly dependent on the context and
designers’ preferences, and therefore require more sophisti-
cated algorithms.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method capable of mixed
labeling of 2D and 3D objects, where the objects are labeled
with both internal labels placed over (parts of) the objects
and external labels placed in the space around the objects

and connected with the labeled objects with leader lines.
The presented method determines the position and type of
each label based on the user-specified ambiguity threshold
and eliminates overlaps between the labels and between the
internal labels and the leader lines of external labels. The
method is a screen-space technique that takes two images,
where the 2D objects or projected 3D objects are encoded
as the input. In other words, we can use the algorithm
whenever we can render the objects as an image, which
makes the algorithm fit for use in many domains. The
method operates in real-time, giving the results immedi-
ately. We have presented the results of the proposed method
to a professional illustrator and asked her to evaluate the
label layouts produced with the proposed algorithm. The
feedback from the illustrator was very positive. However,
she pointed out one rule for the internal labels and one rule
for the external labels that the proposed method is not yet
considering. In the future, we would like to address the
limitations of the proposed method and add the missing
rules pointed out by the professional illustrator during the
expert evaluation.

ACKNOWLEDGMENTS

This research has been supported by MEYS of Czechia
OP VVV grant No. CZ.02.1.01/0.0/0.0/16 019/0000765 –
Research Center for Informatics, Grant Agency of CTU in
Prague grant No. SGS19/179/OHK3/3T/13, EU Horizon
2020 MSCA grant No. 747985, and the Austrian Science
Fund (FWF) grant P 31119.

REFERENCES

[1] E. R. Tufte, The visual display of quantitative information, 2nd ed.
Graphics Press, 2001.

[2] K. Ali, K. Hartmann, and T. Strothotte, “Label layout for interac-
tive 3D illustrations,” Journal of the WSCG, vol. 13, no. 1, pp. 1–8,
2005.

[3] C. Richards, “Technical and scientific illustration,” in Information
Design: Research and Practice. Taylor & Francis, 2017, ch. 5, pp.
85–106.

[4] S. Oeltze-Jafra and B. Preim, “Survey of labeling techniques in
medical visualizations,” in VCBM’14. Eurographics Association,
2014, pp. 199–208.

[5] P. Yoeli, “The logic of automated map lettering,” The Cartographic
Journal, vol. 9, no. 2, pp. 99–108, 1972.

[6] D. Kouřil, L. Čmolı́k, B. Kozlı́ková, H. Wu, G. Johnson, D. S.
Goodsell, A. Olson, M. E. Gröller, and I. Viola, “Labels on levels:
Labeling of multi-scale multi-instance and crowded 3D biological
environments,” IEEE TVCG, vol. 25, no. 1, pp. 977–986, 2019.

[7] L. Čmolı́k and J. Bittner, “Real-time external labeling of ghosted
views,” IEEE TVCG, vol. 25, no. 7, pp. 2458–2470, 2019.

[8] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff, “Optimizing
active ranges for consistent dynamic map labeling,” Computational
Geometry: Theory and Applications, vol. 43, no. 3, pp. 312–328, 2010.

[9] T. Götzelmann, K. Hartmann, and T. Strothotte, “Agent-based
annotation of interactive 3D visualizations,” in Smart Graphics, ser.
LNCS, vol. 6543. Springer, 2006, pp. 24–35.

[10] J. W. van Roessel, “An algorithm for locating candidate labeling
boxes within a polygon,” The American Cartographer, vol. 16, no. 3,
pp. 201–209, 1989.

[11] M. Barrault, “A methodology for placement and evaluation of area
map labels,” Computers, Environment and Urban Systems, vol. 25,
no. 1, pp. 33–52, 2001.

[12] H. Freeman, “Automated cartographic text placement,” Pattern
Recognition Letters, vol. 26, no. 3, pp. 287–297, 2005.

[13] T. Ropinski, J.-S. Praßni, J. Roters, and K. Hinrichs, “Internal labels
as shape cues for medical illustration,” in Vision, Modeling, and
Visualization (VMV), 2007, pp. 203–212.



14

[14] G. Cipriano and M. Gleicher, “Text scaffolds for effective surface
labeling,” IEEE TVCG, vol. 14, no. 6, pp. 1675–1682, 2008.

[15] R. D. Prado and A. B. Raposo, “Real-time label visualization in
massive CAD models,” in Int. Conf. Computer-Aided Design and
Computer Graphics. IEEE, 2013, pp. 337–344.

[16] S. Maass and J. Döllner, “Dynamic annotation of interactive en-
vironments using object-integrated billboards,” in Int. Conf. in
Central Europe on Computer Graphics, Visualization and Computer
Vision. Pilsen, Czech Republic: Václav Skala-UNION Agency,
2006, pp. 327–334.

[17] M. A. Bekos, B. Niedermann, and M. Nöllenburg, “External la-
beling techniques: A taxonomy and survey,” Computer Graphics
Forum, vol. 38, no. 3, pp. 833–860, 2019.

[18] M. Rylov and A. Reimer, “A practical algorithm for the external
annotation of area features,” Cartographic Journal, vol. 54, no. 1, pp.
61–76, 2017.

[19] M. Nöllenburg, V. Polishchuk, and M. Sysikaski, “Dynamic one-
sided boundary labeling,” in SIGSPATIAL Int. Conf. Advances in
Geographic Information Systems. ACM, 2010, pp. 310–319.

[20] Z.-D. Huang, S.-H. Poon, and C.-C. Lin, “Boundary labeling with
flexible label positions,” in Algorithms and Computation (WAL-
COM), ser. LNCS, vol. 8344. Springer, 2014, pp. 44–55.

[21] B. Preim, A. Ritter, T. Strothotte, T. Pohle, D. R. Forsey, and
L. Bartram, “Consistency of rendered images and their textual
labels,” in Proc. of Edu + CompuGraphics. Queluz, Portugal:
GRASP, 1995, pp. 201–210.

[22] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis, “Area-
feature boundary labeling,” The Computer Journal, vol. 53, no. 6,
pp. 827–841, 2010.

[23] M. Bekos, M. Kaufmann, D. Papadopoulos, and A. Symvonis,
“Combining traditional map labeling with boundary labeling,” in
Current Trends in Theory and Practice of Computer Science (SOFSEM),
ser. LNCS, vol. 6543. Springer, 2011, pp. 111–122.

[24] M. Löffler, M. Nöllenburg, and F. Staals, “Mixed map labeling,”
Journal of Spatial Information Science, vol. 13, pp. 3–32, 2016.

[25] L. Čmolı́k and J. Bittner, “Layout-aware optimization for interac-
tive labeling of 3D models,” Computers & Graphics, vol. 34, no. 4,
pp. 378–387, 2010.

[26] B. Niedermann, M. Nöllenburg, and I. Rutter, “Radial contour
labeling with straight leaders,” in IEEE Pacific Visualization Sym-
posium (PacificVis). IEEE, 2017, pp. 295–304.

[27] J.-D. Fekete and C. Plaisant, “Excentric labeling: Dynamic neigh-
borhood labeling for data visualizaition,” in Proc. of CHI’99. ACM,
1999, pp. 512–519.

[28] T. Stein and X. Décoret, “Dynamic label placement for improved
interactive exploration,” in Int. Symp. Non-photorealistic Animation
and Rendering (NPAR). ACM, 2008, pp. 15–21.

[29] H. Wu, S. Takahashi, C. Lin, and H. Yen, “A zone-based approach
for placing annotation labels on metro maps,” in Smart Graphics,
ser. LNCS, vol. 6815. Springer, 2011, pp. 91–102.

[30] S. Maass and J. Döllner, “Efficient view management for dynamic
annotation placement in virtual landscapes,” in Smart Graphics,
ser. LNCS, vol. 4073. Springer, 2006, pp. 1–12.

[31] A. Gemsa, J.-H. Haunert, and M. Nöllenburg, “Multi-row
boundary-labeling algorithms for panorama images,” ACM TSAS,
vol. 1, no. 1, pp. 289–298, 2014.

[32] B. Bell, S. Feiner, and T. Höllerer, “View management for virtual
and augmented reality,” in ACM Symp. User Interface Software and
Technology (UIST). ACM, 2001, pp. 101–110.

[33] T. Götzelmann, K. Ali, K. Hartmann, and T. Strothotte, “Form
follows function: Aesthetic interactive labels,” in Eurographics
Conf. Computational Aesthetics in Graphics, Visualization and Imaging.
Eurographics Association, 2005, pp. 193–200.

[34] T. Götzelmann, K. Ali, K. Hartmann, and T. Strothotte, “Adaptive
labeling for illustrations,” in Proc. of Pacific Graphics, vol. 2005,
2005, pp. 64–66.

[35] M. Luboschik, H. Schumann, and H. Cords, “Particle-based la-
beling: Fast point-feature labeling without obscuring other visual
features,” IEEE TVCG, vol. 14, no. 6, pp. 1237–1244, 2008.

[36] L. Barth, A. Gemsa, B. Niedermann, and M. Nöllenburg, “On the
readability of leaders in boundary labeling,” Information Visualiza-
tion, vol. 18, no. 1, pp. 110–132, 2019.

[37] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy
environment,” Management Science, vol. 17, no. 4, pp. B–141–164,
1970.

[38] G. Rong and T.-S. Tan, “Jump flooding in GPU with applications
to Voronoi diagram and distance transform,” in Symp. Interactive
3D Graphics and Games (I3D). ACM, 2006, pp. 109–116.

[39] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra,
“Fast summed-area table generation and its applications,” Com-
puter Graphics Forum, vol. 24, no. 3, pp. 547–555, 2005.

[40] T. Scheuermann and J. Hensley, “Efficient histogram generation
using scattering on GPUs,” in Symp. Interactive 3D Graphics and
Games (I3D). ACM, 2007, pp. 33–37.

[41] Gapminder Foundation, https://www.gapminder.org/data/.
[Online; accessed 19-June-2019].

[42] J. Krüger, J. Schneider, and R. Westermann, “Clearview: An inter-
active context preserving hotspot visualization technique,” IEEE
TVCG, vol. 12, no. 5, pp. 941–948, 2006.

[43] J. Nielsen, Usability engineering. Elsevier, 1994.
[44] M. Tatzgern, D. Kalkofen, R. Grasset, and D. Schmalstieg, “Hedge-

hog labeling: View management techniques for external labels in
3D space,” in IEEE Virtual Reality (VR). IEEE, 2014, pp. 27–32.

Ladislav Čmolı́k is an assistant professor at the
Department of Computer Graphics and Interac-
tion of the Czech Technical University in Prague,
Czechia. He received his PhD from the same
institution in 2011. His research interests include
illustrative visualization, non-photorealistic ren-
dering, and HCI.

Václav Pavlovec is a PhD student at the Czech
Technical University in Prague, Czechia. He re-
ceived his master degree from the same insti-
tution in 2019. His research interests include
illustrative visualization and HCI.

Hsiang-Yun Wu is a Postdoctoral Research
Fellow at the Institute of Visual Computing &
Human-Centered Technology, TU Wien, Austria.
She received her PhD from The University of
Tokyo, Japan in 2013. Her research interests in-
clude the algorithm development of customized
graph representations, and she has been work-
ing on map labeling, railway map design, and
complex network visualization.

Martin Nöllenburg is an associate professor
for graph and geometric algorithms in the Algo-
rithms and Complexity Group, TU Wien, Vienna,
Austria. He received his PhD and habilitation
degrees in computer science from Karlsruhe In-
stitute of Technology (KIT) in 2009 and 2015. His
research interests include graph drawing algo-
rithms, computational geometry, and information
visualization.


