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Abstract

The classic notion of truthfulness requires that no agent has a profitable manipulation — an
untruthful report that, for some combination of reports of the other agents, increases her utility.
This strong notion implicitly assumes that the manipulating agent either knows what all other
agents are going to report, or is willing to take the risk and act as-if she knows their reports.
Without knowledge of the others’ reports, most manipulations are risky — they might decrease
the manipulator’s utility for some other combinations of reports by the other agents. Accordingly,
a recent paper (Bu, Song and Tao, “On the existence of truthful fair cake cutting mechanisms”,
Artificial Intelligence 319 (2023), 103904) suggests a relaxed notion, which we refer to as risk-
avoiding truthfulness (RAT), which requires only that no agent can gain from a safe manipulation
— one that is sometimes beneficial and never harmful.

Truthfulness and RAT are two extremes: the former considers manipulators with complete
knowledge of others, whereas the latter considers manipulators with no knowledge at all. In
reality, agents often know about some — but not all — of the other agents. This paper introduces
the RAT-degree of a mechanism, defined as the smallest number of agents whose reports, if known,
may allow another agent to safely manipulate, or n if there is no such number. This notion
interpolates between classic truthfulness (degree n) and RAT (degree at least 1): a mechanism
with a higher RAT-degree is harder to manipulate safely.

To illustrate the generality and applicability of this concept, we analyze the RAT-degree of
prominent mechanisms across various social choice settings, including auctions, indivisible
goods allocations, cake-cutting, voting, and two-sided matching.

Full Version: https://arxiv.org/abs/2502.18805

1 Introduction

The Holy Grail of mechanism design is the truthful mechanism — a mechanism in which the (weakly)
dominant strategy of each agent is truthfully reporting her type. But in most settings, there is provably
no truthful mechanism that satisfies other desirable properties such as budget-balance, efficiency or
fairness. Practical mechanisms are thus manipulable in the sense that some agent a; has a profitable
manipulation - for some combination of reports by the other agents, agent a; can induce the mechanism
to yield an outcome (strictly) better for her by reporting non-truthfully.

This notion of manipulability implicitly assumes that the manipulating agent either knows the reports
made by all other agents, or is willing to take the risk and act as-if she knows their reports. Without
knowledge of the others’ reports, most manipulations are risky — they might decrease the manipulator’s
utility for some other combinations of reports by the other agents. In practice, many agents are risk-
avoiding and will not manipulate in such cases. This highlights a gap between the standard definition
and the nature of such agents.

To illustrate, consider a simple example in the context of voting. Under the Plurality rule, agents vote
for their favorite candidate, and the candidate with the most votes wins. If an agent knows that her
preferred candidate has no chance of winning, she may find it beneficial to vote for her second-choice
candidate to prevent an even less preferred candidate from winning. However, if the agent lacks precise
knowledge of the other votes and decides to vote for her second choice, it may backfire — she might


https://ar xiv.org/abs/2502.18805

inadvertently cause an outcome worse than if she had voted truthfully. For instance, if the other agents
vote in a way that makes the agent the tie-breaker.

Indeed, various papers on cake-cutting (e.g. [13, 15]), voting (e.g. [46, 47, 31]) stable matching (e.g.
Fernandez [26], Chen and Moller [18]) and coalition formation [54] studies truthfulness among such
agents. In particular, Bu et al. [15] introduced a weaker notion of truthfulness, suitable for risk-avoiding
agents, for cake-cutting. Their definition can be adapted to any problem as follows.

Let us first define a safe manipulation as a non-truthful report that may never harm the agent’s utility.
Based on that, a mechanism is safely manipulable if some agent a; has a manipulation that is both
profitable and safe; otherwise, the mechanism is Risk-Avoiding Truthful (RAT).

Standard truthfulness and RAT can be seen as two extremes with respect to safe-and-profitable manip-
ulations: the former considers manipulators with complete knowledge of others, whereas the latter
considers manipulators with no knowledge at all. In reality, agents often know about some — but not
all — of the other agents.

This paper introduces the RAT-Degree — a new measurement that quantifies how robust a mechanism is
to such safe-and-profitable manipulations. The RAT-Degree of a mechanism is an integer d € {0, ..., n},
which represents — roughly — the smallest number of agents whose reports, if known, may allow
another agent to safely manipulate; or n if there is no such number. (See Section 3 for formal definition).

This measure allows us to position mechanisms along a spectrum. A higher degree implies that an
agent has to work harder in order to collect the information required for a successful manipulation;
therefore it is less likely that mechanism will be manipulated. On one end of the spectrum are truthful
mechanisms — where no agent can safely manipulate even with complete knowledge of all the other
agents. The RAT-degree of such mechanisms is 7. While on the other end are mechanisms that are
safely manipulable — no knowledge about other agents is required to safely manipulate. The RAT-degree
of such mechanisms is 0.

Importantly, the RAT-degree is determined by the worst-case scenario for the mechanism designer,
which corresponds to the best-case scenario for the manipulating agents. The way we measure the
amount of knowledge is based on a general objective applicable to all social choice settings.

Contributions. Our main contribution is the definition of the RAT-degree.

To illustrate the generality and usefulness of this concept, we selected several different social choice
domains, and analyzed the RAT-degree of some prominent mechanisms in each domain. As our goal is
mainly to illustrate the new concepts, we did not attempt to analyze all mechanisms and all special cases
of each mechanism, but rather focused on some cases that allowed for a more simple analysis. To prove
an upper bound on the RAT-degree, we need to show a profitable manipulation. However, in contrast
to usual proofs of manipulability, we also have to analyze more carefully, how much knowledge on
other agents is sufficient in order to guarantee the safety of the manipulation. This analysis gives more
insight on the kind of manipulations possible in each mechanism, and on potential ways to avoid them.
For clarity, we detail the results for each social choice setting in its corresponding section.

Organization. Section 2 introduces the model and required definitions. Section 3 presents the definition
of RAT-degree. Section 4 explores auctions for a single good. Section 5 examines indivisible goods
allocations. Section 5 focuses on cake cutting. Section 7 addresses single-winner ranked voting. Section 8
considers two-sided matching. Section 9 concludes with some future work directions.

Due to space constraints, this version provides only a summary of our results, together with intuition,
main conclusions, and several open questions. Please refer to the extended version for more details.
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1.1 Related Word

There is a vast body of work on truthfulness relaxations and alternative measurements of manipulability.
Due to space constraints, we provide only a brief overview here; a more in-depth discussion of these
works and their relation to RAT-degree can be found in Appendix B of the extended version.

Truthfulness Relaxations. Various truthfulness relaxations focus on a certain subset of all possible
manipulations, which are considered more “likely”. It requires that none of the manipulations from
this subset is profitable. Different relaxations consider different subsets of “likely” manipulations.
Brams et al. [13] propose maximin strategy-proofness, where an agent manipulates only if it is always
beneficial. Waxman et al. [54] were the first (as far as we know) to use the term safe manipulation.!
They examined the possible manipulations of agents with three different levels of knowledge on the
social networks. Bu et al. [15] called a mechanism for cake-cutting, in which no agent has a
safe-and-profitable manipulation, risk-averse truthful (RAT); we prefer to call such a mechanism risk-
avoiding truthful, as the definition assumes that agents completely avoid any risk. We extend their
work by generalizing RAT to any social choice problem, and by suggesting a quantitative measure of
the robustness of a mechanism to such manipulations. Troyan and Morrill [52] introduce not-obvious
manipulability (NOM), which assumes agents consider only extreme best or worst cases. RAT and NOM
are independent notions. Fernandez [26] define regret-free truth-telling (RFTT), where agents never
regret truth-telling after observing the outcome. RAT and RFTT do not imply each other. Additionally,
Slinko and White [46, 47], Hazon and Elkind [31] study "safe manipulations” in voting, but they consider
coalition of voters and a different type of risk - that too many or too few participants will perform the
exact safe manipulation. One can take a similar approach to measuring the degree with respect to most
of these definitions. We believe this is an intriguing direction and leave it for future work.

Alternative Measurements. There are many approaches for quantifying manipulability from different
perspectives. One approach considers the computational complexity of finding a profitable manipulation
—e.g., [10, 11] (see [25, 53] for surveys). Another measurement is the number of bits an agent needs to
know in order to have a safe manipulation, in the spirit of communication complexity, e.g., [40, 30, 14, 8]
and compilation complexity - e.g., [21, 56, 33]. A third approach evaluates the probability that a profitable
manipulation exists —e.g., [9, 35, 36]. The incentive ratio, which measures how much an agent can
improve their utility by manipulating, is also widely studied—e.g., [16, 17, 38, 20, 19, 12, 51]. Other
metrics include assessing the average and maximum gain per manipulation [2] and counting the number
of agents who benefit from manipulating [4, 5]. Please refer to Appendix B of the extended version for
a more thorough discussion of these alternative notions, and their relation to our notion.

2 Preliminaries

We consider a generic social choice setting, with a set of n agents N = {aq,...,a,}, and a set of
potential outcomes X. Each agent, a; € N, has preferences over the set of outcomes X, that can be
described in one of two ways: (a) a linear ordering of the outcomes, or (b) a utility function from X to
R. The set of all possible preferences for agent a; is denoted by D;, and is referred to as the agent’s
domain. We denote the agent’s true preferences by 7; € D;. Unless otherwise stated, when agent a;
weakly prefers the outcome 1 over z9, it is denoted by 1 >; z2; and when she strictly prefers x1 over
T, it is denoted by x1 >; ws.

A mechanism or rule is a function f : Dy x --- x D, — X, which takes as input a list of reported
preferences P, ..., P, (which may differ from the true preferences), and returns the chosen outcome.
In this paper, we focus on deterministic and single-valued mechanisms.

For any agent a; € N, we denote by (P;, P_;) the preference profile in which agent a; reports P; € D;,

'"They use “safe manipulation” for a manipulation that is both safe and profitable.
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and the other agents report P_; € D_; (where D_; := X jen (4 Dj).

Truthfulness. A manipulation for a mechanism f and agent a; € N is an untruthful report P; € D;\{T;}.
A manipulation is profitable if there exists a set of preferences of the other agents for which it increases
the manipulator’s utility:

dP_,eD_;: f(PZ,P_Z) > f(TZ,P_Z) (1)

A mechanism f is called manipulable if some agent a; has a profitable manipulation; otherwise f is

called truthful.

RAT. A manipulation is safe if it never harms the manipulator’s utility — it is weakly preferred over
telling the truth for any possible preferences of the other agents:

VP_;eD_;: f(P,P_;) = f(T;,P_y) (2)

A mechanism f is called safely-manipulable if some agent a; has a manipulations that is profitable and
safe; otherwise f is called risk-avoiding truthful (RAT).

3 The RAT-Degree

Leta; € N, ke {0,...,n— 1}, K € N\{a;} with |K| = k and K := N\({a;} U K). We denote by
(P, P, P ) the preference profile in which the preferences of agent a; are P, the preferences of the
agents in K are P, and the preferences of the agents in K are P .

Definition 1. Given an agent a;, a subset K < N\{a;} and preferences for them Py € Dk

A manipulation P; is called profitable for a; given K and P if

Pz eDi: f(P, Pk, Pg) > f(T;,Pk,Pg) (3)

A manipulation P; is called safe for a; given K and P g if

VPi e Dg: f(P,Pk,Pg)>; f(T;,Pk,Pg) (4)

In words: The agents in K are those whose preferences are Known to a;; the agents in K are those whose
preferences are unknown to a;. Given that the preferences of the known agents are P , Equation (3)
says that there exist a preference profile of the unknown agents that makes the manipulation profitable
for agent a;; while Equation (4) says that the manipulation is safe — it is weakly preferred over telling
the truth for any preference profile of the unknown-agents.

The previous two definitions are special cases of Definition 1: Equation (1) - which defines a profitable
manipulation - is equivalent to P; being profitable given ¢%; and Equation (2) - which defines a safe
manipulation - is equivalent to P; being safe given (.

Definition 2. A mechanism f is called k-known-agents safely-manipulable if for some agent a;, some
subset K € N\{a;} with |K| = k and some preferences for them P ., there exists a manipulation P;
that is both profitable and safe for a; given K and Pg.

Proposition 3.1. Letk € {0,...,n — 2}. If a mechanism is k-known-agents safely-manipulable, then it
is also (k + 1)-known-agents safely-manipulable.

Proposition 3.1 justifies the following definition:

Definition 3. The RAT-degree of a mechanism f is the minimum & for which the mechanism is
k-known-agent safely-manipulable, or n if there is no such k.



Intuitively, a mechanism with a higher RAT-degree is harder to manipulate, as a risk-avoiding agent
would need to collect more information in order to find a safe manipulation.

Observation 3.2. (a) A mechanism is truthful if-and-only-if its RAT-degree isn.
(b) A mechanism is RAT if-and-only-if its RAT-degree is at least 1.

Figure 1 illustrates the relation between classes of different RAT-degree.

(n — 1)-KA Safely-Manipulable
(n — 2)-KA Safely-Manipulable

2-KA Safely-Manipulable
1-KA Safely-Manipulable
Safely-Manipulable

RAT-Degree: 0 1 2 n—1 n

Truthful
Risk-Avoiding Truthful (RAT)

Figure 1: Hierarchy of the Manipulability and Truthfulness Classes with respect to the RAT-Degree. The
horizontal axis represents the RAT-Degree, from 0 (safely-manipulable) to n (truthful). Labels above the axis
correspond to Manipulability Classes, while labels below the axis correspond to Truthfulness Classes. KA stands
for Known-Agents.

3.1 An Intuitive Point of View

Consider Table 1. We adopt the point of view of a particular agent a;. The rows T;, PL,..., P3
correspond to the possible reports of agent a;, where 7; is the truthful report and the rest are potential
manipulations. The columns P!, P2, ... represent possible strategy profiles of the remaining n — 1
agents. The values x1, x5 ... indicate the utility of agent a; under each of these profiles when she

reports truthfully.

When the risk-avoiding agent has no information (0-known-agents), a profitable-and-safe manipulation
is a row in the table that represents an alternative report P; # T;, that (strictly) dominates 7;. That is,
in each column, the outcome of the manipulation is at least as good as the truthful outcome, and in at
least one column it is strictly better. In this example, P! satisfies this property.

When the risk-avoiding agent has more information (k-known-agents, when k > 0), it is equivalent
to considering a strict subset of the columns. For instance, suppose the agent can infer—based on
the information she has over some k other agents—that only the profiles P? ,, P*, P . are possible.
Then P? is safe and profitable given this set. Notice that the utilities of agent a; in profiles not among
P3, P*. P® are irrelevant, since a; considers them impossible.

Lastly, when the risk-avoiding agent has a full information ((n — 1)-known-agents), she knows the
exact strategy profile of the other agents, so it is equivalent to consider only one column in which the
manipulation is profitable. P? in the table illustrates this type of manipulation.

4 Auction for a Single Good

We consider a seller owning a single good, and n potential buyers (the agents). The true preferences T;
of buyer a; are given by real values v; > 0, representing her happiness from receiving the good. The



P, | P2, | P, | P | P>, | PO, | P,
T; x1 ) x3 x4 x5 Z6 x7
Pl#T, | 2o | x| 223 | >34 | =25 | =76 | =7
Pi2 # T =23 | >XTy | = Ts
Pi3 # T; > Ty

Table 1: A Safe-And-Profitable Manipulation from an Agent Perspective. Dark-gray cells mean the value must be
strictly higher, light-gray means it must be at least as high, and white means any value is allowed.

reported preferences P; are the “bids” b; > 0. A mechanism in this context has to determine the winner
— the agent who will receive the good, and the price — how much the winner will pay. We assume that
agents are quasi-linear — meaning their valuations can be interpreted in monetary units. Thus, the
utility of the winning agent is the valuation minus the price; while the utility of the other agents is zero.

Results. Table 2 provides a summary of our results. The two most well-known mechanisms in this
context are first-price auction and second-price auctions. First-price auction maximizes the seller’s
revenue when all buyers are truthful; but this assumption is, of course, unrealistic, as it is known to
be manipulable. In fact, it is even safely-manipulable, so its RAT-degree is 0. We then prove that a
first-price auction with a (fixed) positive discount has RAT-degree 1. Second-price auction is known
to be truthful, so its RAT-degree is n. However, it has some important practical disadvantages [6]. In
particular, when buyers are risk-averse, the expected revenue of a second-price auction is lower than
that of a first-price auction [41]; even when the buyers are risk-neutral, a risk-averse seller would prefer
the revenue distribution of a first-price auction [34].

This raises the question of whether it is possible to combine the advantages of both auction types.
Indeed, we prove that any auction that applies a weighted average between the first-price and the
second-price? achieves a RAT-degree of n — 1, which is very close to being fully truthful (RAT-degree n).
This implies that a manipulator agent would need to obtain information about all n — 1 other agents to
safely manipulate — which is a very challenging task. The seller’s revenue from such an auction is higher
compared to the second-price auction, giving this mechanism a significant advantage in this context.
This result opens the door to exploring new mechanisms that are not truthful but come very close it.
Such mechanisms may enable desirable properties that are unattainable with truthful mechanisms.

Mechanism RAT-Degree
First-Price 0
First-Price With Positive Discount 1
Average Between First and Second Price n—1
Second-Price n

Table 2: Auctions for a Single Good: Summary of Results

5 Indivisible Goods Allocations

In this section, we consider several mechanisms to allocate m indivisible goods G = {g1,...,9m}
among the n agents. Here, the true preferences 7; of agent a; are given by m real values: v; y > 0 for
any g¢ € G, representing her happiness from receiving the good gy. The reported preferences P; are
real values 7; y > 0. We assume the agents have additive valuations over the goods. Given a bundle

The average price auction is mentioned as an exercise in [34] (Problem 2.4).



S < G, letv;(S) = X, vi,e be agent a;’s utility upon receiving the bundle S. A mechanism in this
context gets n (potentially untruthful) reports from all the agents and determines the allocation — a
partition (A1,..., A,) of G, where A; is the bundle received by agent a;.

Results. Table 3 summarizes our results. We start by considering a simple mechanism, the utilitarian
goods allocation — which assigns each good to the agent who reports the highest value for it. This
mechanism always returns an allocation that maximizes the social welfare (i.e., sum of utilities) and is
thus Pareto Optimal — there does not exist another allocation that all agents weakly prefer and at-least
one strictly prefers. This mechanism is safely manipulable (RAT-degree = 0). We then show that the
RAT-degree can be increased to 1 by requiring normalization — the values reported by each agent are
scaled such that the set of all items has the same value for all agents.

We then consider the famous round-robin mechanism. It is easy to compute (specifically, polynomial)
and guarantees envy-freeness up to one good (EF1) — each agent weakly prefers their own bundle over
each other agent’s bundle by the removal of at most one of the goods. Amanatidis et al. [3] prove that
EF1 is incompatible with truthfulness for m > 5, which implies that the degree is at most n — 1. We
prove that the situation is much worse, the RAT-degree of round-robin is at most 1. The proof relies on
weak preferences (i.e., preferences that allow ties). In sharp contrast, we prove that when all agents
have strict preferences, the RAT-degree is the best possible n — 1.

Lastly, we design a new mechanism that we call volatile priority. It satisfies EF1 and attains the best
possible RAT-degree of n — 1 for all types of preferences; but does not run in polynomial time. The main
observation behind our approach is that, in many cases, there are multiple solutions (here, allocations)
that satisfy the required fairness properties (here, EF1). We use a priority order over the agents,
determined by their reported valuations, to select among these solutions. Importantly, the priority
ordering depends on all the agents’ valuations to all the items. It is constructed such that, even a small
change in one value, might induce a drastic change in the priority (see Section 5.4 in the extended
version for details). As a result, a manipulating agent who lacks information about all other agents’
valuations may unintentionally lower her priority by misreporting, and thus end up worse off. This
makes manipulations risky. This raises the following open question regarding the computational
complexity:

Open Question 5.1. Is there a polynomial time EF1 goods allocation rule with RAT-degreen — 1?

A natural candidate is The Envy-Cycle Elimination Mechanism by Lipton et al. [39].
Open Question 5.2. What is the RAT-degree of The Envy-Cycle Elimination Mechanism?

Mechanism RAT-Degree | Properties
Utilitarian 0 Pareto Efficient
] L Pareto Efficient
Normalized Utilitarian 1
(w.r.t. the normalized values)
Any preferences 1
Round-Robin (for n > m) .yp EF1, Polynomial-time
Strict preferences n—1
Volatile Priority” n—1 EF1

Table 3: Indivisible Goods Allocations: Summary of Results. (*) marks mechanisms introduced in this paper.

6 Cake Cutting

In this section, we study the cake cutting problem: the allocation of a divisible heterogeneous resource
to n agents. The cake cutting problem was proposed by Steinhaus [48, 49], and it is a widely studied
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subject in mathematics, computer science, economics, and political science.

In the cake cutting problem, the resource/cake is modeled as an interval [0, 1], and it is to be allocated
among a set of n agents N = {ay,...,a,}. Anallocation is denoted by (A1, ..., A;,) where A; < [0, 1]
is the share allocated to agent a;. We require that each A; is a union of finitely many closed non-
intersecting intervals, and, for each pair of 7, j € [n], 4; and Aj can only intersect at interval endpoints,
i.e., the measure of A; N A; is 0.

The true preferences T; of agent a; are given by a value density function v; : [0, 1] — R that describes
agent a;’s preference over the cake. To enable succinct encoding of the value density function, we adopt
the widely considered assumption that each v; is piecewise constant: there exist finitely many points
T30, Tily Ti2, - - -, Tik, With 0 = zj0 < Tj1 < T2 < - -+ < 24, = 1 such that v; is a constant on every
interval (w4, 7;(¢41)), £ = 0,1,...,k; — 1. Given a subset S < [0, 1] that is a union of finitely many
closed non-intersecting intervals, agent a;’s value for receiving S is then given by V;(S) = {4 v;(z)dzx.

Lastly, we define an additional notion, uniform segment, which will be used throughout this section.
Given n value density functions vy, . . ., vy, (that are piecewise constant by our assumptions), we identify
the set of points of discontinuity for each v; and take the union of the n sets. Sorting these points by
ascending order, we let 1, ..., x,,—1 be all points of discontinuity for all the n value density functions.
Let 9 = 0 and x,,, = 1. These points define k intervals, (2o, z1), (z1,22), .- ., (Tm—1, Tm), such that
each v; is a constant on each of these intervals. We will call each of these intervals a uniform segment,
and we will denote X; = (z4_1, ;) foreacht = 1,... ,m.

Results. Our results are summarized in Table 4. We start by considering the utilitarian mechanism
that outputs an allocation with the maximum social welfare. We show that the RAT-degree of this
mechanism is 0. Similar as it is in the case of indivisible goods, we also consider the normalized variant
of this mechanism, and we show that the RAT-degree is 1. Both mechanisms are Pareto Efficient, they
always returns an allocation that is Pareto Optimal — there is no other allocation that all agents weakly
prefer, and at least one agent strictly prefers.

We then consider several fair mechanisms that have been considered by Bu et al. [15]. Their paper
studies whether or not these mechanisms are risk-avoiding truthful (in our language, whether the
RAT-degree is positive). Here we provide a more fine-grained view.

Each mechanism is guaranteed to return an allocation satisfying at least one of the following properties:
Envy free (EF) — each agent weakly prefers their own bundle to the bundle of any other agent, Proportional
— each agent receives at least 1/n of the total value of the cake, according to their own valuation; and
Connected pieces — each agent receives a single connected piece.

We start by considering equal division mechanisms — where we evenly allocate each uniform segment
X, to all agents. The output allocation is always envy-free and proportional. However, we show that
the RAT-degree relies heavily on the order in which we allocate the pieces of each segment. Specifically,
with fixed order (e.g., let agent a1 get the left-most interval and agent a,, get the right-most interval),
Bu et al. [15] already proved that it is not even RAT, which means that its RAT-degree is 0. To avoid this
type of manipulation, a different tie-breaking rule was considered by Bu et al. [15] (See Mechanism 3 in
their paper). We prove that its RAT-degree is n — 1. Tao [50] shows that no EF mechanism can also
be truthful, so n — 1 is the best possible RAT-degree. However, this mechanism requires quite many
cuts on the cake, and has a very poor performance in terms of pareto efficiency — it gives each agent a
value of exactly 1/n and nothing more, which intuitively is the most inefficient allocation among the
proportional ones.

We then focus on proportional mechanisms with connected pieces. Bu et al. [15] prove that the Dubins-
Spanier’s Moving-Knife [23] is not RAT, which in our terms means that its RAT-degree is 0. There was
hope for those proven by Bu et al. [15] to have a positive RAT-degree: Bu, Song, and Tao’s moving knife
[15] (two variants - Mechanisms 4 and 5 in their paper); and Ortega and Segal-Halevi’s moving knife



[42]. We show that they all have a very low RAT-degree of 1. This invoke the following question:

Open Question 6.1. Is there a proportional connected cake-cutting rule with RAT-degree at least 27

A natural candidate to consider is the classic Even—Paz algorithm [24]; we conjecture that its RAT-degree
is [n/2], but the question remains open.

Open Question 6.2. What is the RAT-degree of the Even-Paz algorithm?

Lastly, we adapt our volatile priority approach from the indivisible goods problem (Section 5), and
propose a new mechanism that always returns a proportional and Pareto-efficient allocation, with the
best possible RAT-degree of n — 1. Unlike its counterpart, this mechanism runs in polynomial time.
Given this result, it is natural to ask if the fairness guarantee can be strengthened to envy-freeness. A
compelling candidate is the mechanism that always outputs allocations with maximum Nash welfare —
the product of agents utilities. It is well-known that such an allocation is EF and Pareto-efficient. We
conjecture the answer is n — 1.

Open Question 6.3. What is the RAT-degree of the maximum Nash welfare mechanism?

Mechanism RAT-Degree | Properties

Utilitarian 0 Pareto Efficient

Equal Division With Fixed Order 0 Proportional, EF
Dubins-Spanier’s Moving-Knife [23] 0 Proportional, Connected

) o Pareto Efficient
Normalized Utilitarian 1
(w.r.t. the normalized values)

Bu, Song, and Tao’s Moving Knife [15]

1 Proportional, Connected
(Mechanism 4 and 5)
Ortega and Segal-Halevi’s Moving Knife [42] 1 Proportional, Connected
Bu, Song, and Tao’s Equal Division [15] )
n—1 Proportional, EF
(Mechanism 3)
Volatile Priority* n—1 Proportional, Pareto Efficient

Table 4: Cake Cutting: Summary of Results. (*) indicates that the mechanism was proposed in this paper. Gray
cells indicate indicate results proven by Bu et al. [15].

7 Single-Winner Ranked Voting

We consider n voters (the agents) who need to elect one winner from a set C' of m candidates. The
agents’ preferences are given by strict linear orderings >; over the candidates. When there are only
two candidates, the majority rules and its variants (weighted majority rules) are truthful. With three or
more candidates, the Gibbard—Satterthwaite Theorem [28, 44] implies that the only truthful rules are
dictatorships. Our goal is to find non-dictatorial rules with a high RAT-degree.

We focus on positional voting rules, which parameterized by a vector of scores, s = (s1,. .., Sy, ), where
§1 < --- < Sy, and s < S,. Each voter reports his entire ranking of the m candidates. Each such
ranking is translated to an assignment of a score to each candidate: the lowest-ranked candidate is
given a score of sq, the second-lowest candidate is given s, etc., and the highest-ranked candidate
is given a score of s,,. The total score of each candidate is the sum of scores he received from the
rankings of all n voters. The winner is the candidate with the highest total score. If there are several



agents with the same maximum score, then the outcome is considered a tie. Common special cases
of positional voting are plurality voting, in which s = (0,0,0,...,0, 1), and anti-plurality voting, in
whichs = (0,1,1,...,1,1). By the Gibbard-Satterthwaite theorem, all positional voting rules are
manipulable, so their RAT-degree is smaller than n. But, as we will show next, some positional rules
have a higher RAT-degree than others.

Results. We show that all positional voting rules have an RAT-degree between ~ n/m and ~ n/2.
These bounds are almost tight: the upper bound is attained by plurality and the lower bound is attained
by anti-plurality (up to small additive constants). These results raise the question of whether some other,
non-positional voting rules have RAT-degrees substantially higher than n/2. Using our volatile priority
approach (see Section 5), we could choose a “dictator”, and take her first choice. This deterministic
mechanism has RAT-degree n — 1, any manipulation risks losing the chance to be the dictator. However,
besides the fact that this is an unnatural mechanism, it suffers from other problems such as the no-show
paradox (a participating voter might affect the selection rule in a way that will make another agent a
dictator, which might be worse than not participating at all). Our main open problem is therefore to
devise natural voting rules with a high RAT-degree.

Open Question 7.1. Does there exist a non-dictatorial voting rule that satisfies the participation criterion
(i.e. does not suffer from the no-show paradox), with RAT-degree larger than [n/2] + 1?

RAT-Degree
Lower Bound | Upper Bound
n=2m) | |(n+1)/m]—1 [n/2] +1
Plurality (assuming n > 5) n/2] +1 [n/2] +1
n=m? | |(n+1)/m|-1] [n/m]+1

Mechanism

Positional Voting Rules  (assuming

Anti-Plurality (assuming

Table 5: Single-Winner Ranked Voting with m > 3: Summary of Results.

8 Two-sided Matching

In this section, we consider mechanisms for two-sided matching. Here, the n agents are divided into
two disjoint subsets, M and W, that need to be matched to each other. The most common examples are
men and women or students and universities. Each agent has a strict preference order over the agents
in the other set and being unmatched - for each m € M, an order >, over W u {¢}; and for each
w € W an order, >,,, over M U {¢}. A matching between M to W is a mapping p from M v W to
M oW U {¢} such that (1) u(m) € W U {¢} for each m € M, (2) p(w) € M U {¢} for each w € W,
and (3) p(m) = w if and only if p(w) = m for any (m,w) € M x W. When u(a) = ¢ it means that
agent a is unmatched under p. A mechanism in this context gets the preference orders of all agents
and returns a matching. See Gonczarowski and Thomas [29] for a recent description of the structure of
matching mechanisms.

Results. Our results for this problem are preliminary, so we provide only a brief overview here, with
full descriptions and proofs in the appendix. We believe, however, that this is an important problem
and that our new definition opens the door to many interesting questions.

We start with the well-known deferred acceptance mechanism of Gale and Shapley [27], which always
returns a stable matching—no agent prefers being unmatched over their assigned match, and there is
no pair of agents who would both prefer to be matched to each other over their current assignments. It
is known that no stable matching mechanism is truthful for all agents [43]. Indeed, deferred acceptance
is known to be truthful only for one side of the market. But what happens on the other side? Our



analysis reveals that the RAT-degree of deferred acceptance is very low: it is at least 1 and at most
3. The proof of the upper bound relies on truncation, where an agent falsely reports preferring to
remain unmatched over certain options. We further show that even when agents are required to report
complete preferences—thus ruling out this type of manipulation—the RAT-degree is at most 5. This
raises the following important and interesting question:

Open Question 8.1. Is there a stable matching mechanism with RAT-degree in Q(n)?

We also examine the Boston mechanism [1], which is a widely used in practice for assigning students to
schools. We establish an upper bound of 2 on its RAT-degree.

. RAT-Degree .
Mechanism Properties
Lower Bound | Upper Bound
Deferred A t DA 1 3
cferred Acceptance (DA) Stable, Truthful for M
DA under Complete Preferences 1 )
Boston 0 2

Table 6: Matchings: Summary of Results.

9 Discussion and Future Work

Our main goal in this paper is to encourage a more quantitative approach to truthfulness that can be
applied to various problems. When truthfulness is incompatible with other desirable properties, we aim
to find mechanisms that are “as hard to manipulate as possible”, where hardness is measured by the
amount of knowledge required for a safe manipulation.

Avoiding Risk. Our definition applies only to agents who entirely avoid even a small risk. This
definition can be justified based on the well-known behavioral phenomenon called "zero-risk bias"[22,
55]. For example, experiments reported in the paper "Prospect Theory: An Analysis of Decision under
Risk’, by Kahneman and Tversky [32], indicates that people underweight outcomes that are merely
probable, in comparison with outcomes that are obtained with certainty. Another justification stems
from our distinction between two types of risk: the risk due to the randomization of the mechanism, and
the risk due to uncertainty about other agents’ preferences. Our risk-avoidance assumption concerns
only the second type of risk, for which there is usually no known probability distribution. Without
such knowledge, agents are facing a non-quantifiable unknown risk (often referred to as ambiguity).’
We believe that it is more reasonable to assume agents avoid this unknown risk altogether as they
cannot even reliably distinguish between high and low risks. To compute expected utility with respect
to this risk, one would need to adopt a Bayesian framework, which often requires strong and somewhat
artificial assumptions about the strategies of other agents. We leave this direction for future work.

Randomized Mechanisms. This distinction between the two types of risk naturally leads to the
topic of randomized mechanisms. In some settings, RAT-degree is more interesting for deterministic
mechanisms, as many impossibility results apply only to deterministic mechanisms. However, in
contexts such as voting, where there are impossibility results for randomized mechanisms too, the
RAT-degree is applicable and potentially useful. In such settings, one can assume that agents avoid the
non-quantifiable unknown risk that comes from the uncertainty about other agents’ preferences, while
treating the known risk induced by the mechanism construction using standard risk models—such as
risk-neutral or risk-averse—aimed at maximizing expected utility.

Utility: Zero vs. Positive. Our model assumes that even a small positive gain can have a significant
impact on behavior. For instance, the RAT-degree of the first-price auction is 0, but increases to 1

*This is related to another behavioral phenomenon known as "ambiguity aversion" or "uncertainty aversion".



when we introduce a fixed positive discount, even when the discount is arbitrarily small (see Section 4).
This assumption is supported by findings in behavioral economics. For example, the paper *Zero as a
Special Price: The True Value of Free Products’, by Shampanier et al. [45], shows that behavior changes
significantly when something is free versus when it carries even a tiny cost. A related real-world
example is the shift in behavior following the introduction of a small charge on plastic bags in many
countries. When bags were free, most people used them without thinking; even a tiny positive cost was
sufficient for ‘nudging’ people to bring reusable bags.

Tradeoffs. A particularly interesting future direction is to explore the tradeoffs between a high RAT-
degree and other desirable properties, such as fairness. For example, in the case of two-sided matching
(Section 8), we know that stability can be achieved with a low RAT-degree of at most 3, but is impossible
to achieve with a RAT-degree of n. Where exactly does the boundary lie? Can we characterize the
RAT-degree in relation to different fairness properties?

Beyond Worst-Case. We defined the RAT-degree as a “worst case” concept: to prove an upper
bound, we find a single example of a safe manipulation. This is similar to the situation with the
classic truthfulness notion, where to prove non-truthfulness, it is sufficient to find a single example
of a manipulation. To go beyond the worst case, one could follow relaxations of truthfulness, such as
truthful-in-expectation [37] or strategyproofness-in-the-large [7], and define similarly “RAT-degree in
expectation” or “RAT-degree in the large”.

Information About the Known-Agents. Our definition assumes that whenever an agent is known,
we know their exact preference—that is, the precise preferences P; they will report from their domain
D;. In practice, however, we often have only partial information on the known-agents; for example,
we might know that their preferences belong to a smaller subset of their domain. Consider Table 1 in
Section 3.1. Such information still allows us to consider only a strict subset of the columns, leading
to a weaker requirement than standard truthfulness. However, our results show that even under the
assumption that we know the exact preferences, identifying the RAT-degree can already be highly
nontrivial. For this reason, we only highlight this direction as a promising avenue for future research.

Changing Quantifiers. One could argue for a stronger definition requiring that a safe manipulation
exists for every possible set of £ known-agents, rather than for some set, or similarly for every possible
preference profile for the known agents rather than just in some profile. However, we believe such
definitions would be less informative, as in many cases, a manipulation that is possible for some set of
k known-agents, is not possible for any such set. For example, in the first-price auction with discount
(see Section 4), the RAT-degree is 1 under our definition. But if we required the the knowledge on any
agent’s bid would allow manipulation rather than just one, the degree would automatically jump to
n — 1, making the measure far less meaningful.

Combining the "known agents" concept with other notions. We believe that the “known agents”
approach can be used to quantify the degree to which a mechanism is robust to other types of manipula-
tions (besides safe manipulations), such as “always-profitable” manipulations or “obvious” manipulation.
Accordingly, one can define the “max-min-strategyproofness degree” or the “NOM degree” (see Appendix
B of the extended version).

Alternative Information Measurements. Another avenue for future work is to study other ways to
quantify truthfulness. For example, instead of counting the number of known agents, one could count
the number of bits that an agent should know about other agents’ preferences in order to have a safe
manipulation. The disadvantage of this approach is that different domains have different input formats,
and therefore it would be hard to compare numbers of bits in different domains (see Appendix B of the
extended version for more details).

Other applications. The RAT-degree can potentially be useful in any social-choice setting in which
truthful mechanisms are not known, or lack other desirable properties. Examples include combinatorial
auctions, multiwinner voting, budget aggregation and facility location.
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