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Abstract

When allocating indivisible items to agents, it is known that the only strategyproof mechanisms
that satisfy a set of rather mild conditions are constrained serial dictatorships: given a fixed order
over agents, at each step the designated agent chooses a given number of items (depending on
her position in the sequence). Agents who come earlier in the sequence have a larger choice of
items; however, this advantage can be compensated by a higher number of items received by
those who come later. How to balance priority in the sequence and number of items received
is a nontrivial question. We use a previous model, parameterized by a mapping from ranks
to scores, a social welfare functional, and a distribution over preference profiles. For several
meaningful choices of parameters, we show that the optimal sequence can be computed exactly
in polynomial time or approximated using sampling. Our results hold for several probabilistic
models on preference profiles, with an emphasis on the Plackett-Luce model. We conclude with
experimental results showing how the optimal sequence is impacted by various parameters.

1 Introduction

In an ideal world, a mechanism for dividing a set of indivisible goods (or items, we use both terms
interchangeably) should be at the same time efficient, fair, and insensitive to strategic behaviour. Now,
strategyproofness is a very strong requirement that severely limits the choice of mechanisms. The
question we address in this paper is, how can we design strategyproof mechanisms while retaining an
acceptable level of fairness and/or efficiency?

It is known that under mild conditions, the only strategyproof mechanisms are within the family of serial
dictatorships (although the landscape is less dramatic when there are only two agents, see our related
work section). A standard serial dictatorship is defined by a permutation of the set of agents; at each
step, the designated agent chooses all the items she likes from those that are still available. A constrained
serial dictatorship (CSD), also called quota serial dictatorship, is similar except that at each step, the
designated agent chooses a predefined number of items. Notice that constrained serial dictatorship
is actually a particular case of the picking sequence protocol [e.g 11], restricted to non-interleaving
sequences where every agent picks all her entitled items in a row.

(Constrained or unconstrained) serial dictatorships are strategyproof and elicitation-free: they do not
require to know the agents preferences, which are only revealed through their picking choices. This
is a major property, as in many contexts, it is not realistic to hope eliciting all the agents preferences,
because it would be too big a communication burden, and also for privacy reasons. However, are they
acceptable on efficiency and fairness grounds? Unconstrained serial dictatorships are clearly not: if
the first agent likes all items then she will pick them all. Constrained serial dictatorships do better, at
the price of the loss of Pareto-efficiency; but still, agents appearing early in the sequence have a much
larger choice than those appearing late. This is patent in the case where there are as many items as
agents, each agent being entitled to only one item, CSDs cannot do better than this: the first agent will
get her preferred item, and the last agent will have no choice and might receive her least preferred item.

However, when there are more items than agents, and agents can receive several items, things become
better, because the advantage towards agents who come early in the sequence can be compensated by a
higher number of items received by those who come later. Suppose, as a simple example, that three
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items have to be assigned to two agents, A(nn) and B(ob). Assuming that Ann picks first, there are three
CSDs: (A:3,B:0) (Ann picks all items), (A:2,B:1) (Ann picks two, Bob one), and (A:1, B:2) (Ann picks one,
Bob two). It is intuitively clear that (A:1,B:2) is optimal, but how can optimality be defined? With four
items, things are less clear: (A:4,B:0) and (A:3,B:1) are clearly less desirable than (A:2,B:2) and (A:1,B:3),
but which of these two should we choose? And what if we have five agents and seventeen items?

To sum up: strategyproofness leaves us almost no choice but (constrained) serial dictatorship; some
are intuitively better than others. What remains to be done is to define formal optimality criteria for
choosing between CSDs, and to compute optimal ones. Our paper addresses these questions.

A way of answering the first question has been suggested by Bouveret and Lang [11], and further
studied by Kalinowski et al. [30] (in the more general context of picking sequences).” A standard way
of estimating the efficiency and fairness of a CSD consists in evaluating the expected social welfare,
according to some social welfare functional [22] — egalitarian, Nash, utilitarian® — of the allocation
resulting from the application of the serial dictatorship. Because the agents’ values for items are not
known, Bouveret and Lang [11] estimate them from the ranks of items in an agent’s preference relation:
for each agent 7, the value of item ranked in position j is a fixed value s;, independent from 7. To
estimate the expected social welfare, in addition to the non-increasing scoring vector (s, ..., S;,) one
also needs to assume a probability distribution over ordinal preference profiles. These preferences
can be drawn following different models as impartial culture, or more generally the Mallows [36], or
Plackett-Luce models [35, 39].

These three components (scoring vector, probability over profiles, social welfare functional) allow to
associate an expected social welfare with any CSD. We define optimal CSDs this way, for various scoring
vectors, three social welfare functionals, and various probability distributions.

For egalitarian social welfare, we provide a simple algorithm which returns an optimal CSD given that
one can compute the expected utility obtained by an agent when a CSD is used. This algorithm makes
it possible to compute an optimal (respectively, close to optimal) CSD when this expected utility is
polynomial-time computable (respectively, can be approximately evaluated, e.g., by sampling). We
also provide a dynamic programming algorithm that computes an optimal CSD for utilitarian, Nash or
egalitarian social welfare under a specific condition, which is met when preferences are fully correlated,
or when they are fully independent and follow the impartial culture or more generally the Plackett-Luce
model.

Sections 2 and 3 discuss related work and present our model. Section 4 presents our algorithms for
computing an optimal CSD. These algorithms assume the existence of an oracle which can compute
or estimate the expected utility of a picker given a CSD. Section 5 designs such oracles under various
model assumptions. Section 6 gives results for small values of n, and depicts and comments on the
evolution of the optimal sequences when all criteria except one are fixed.

2 Related Work

Strategyproof allocation of indivisible goods Various characterization theorems state that, under
mild additional conditions, strategyproof allocation mechanisms all have a serial dictatorship flavour:
with strict preferences over subsets, only serial dictatorships are strategyproof, neutral, and nonbossy
[43], whereas only sequential dictatorships (a generalization of serial dictatorship where the identity of
the agent picking in position k depends on the items assigned to the agents in positions 1 to £ — 1) are
strategyproof, Pareto-efficient, and nonbossy [41]. If preferences are quantity-monotonic (a bundle of

®Picking sequences are more general as agents don’t necessarily pick their items in a row; for instance, the sequence
where Ann picks one item, Bob two, and Ann picks the last remaining item, is not a CSD. Round Robin (perfect alternation) is
another example. CSDs coincide with non-interleaving picking sequences.

*If our main objective is fairness, utilitarian social welfare may not fit well. We will see further that it is the case indeed.



larger cardinality is always preferred to one of lower cardinality) then a mechanism is strategyproof,
nonbossy, Pareto-efficient and neutral if and only if it is a CSD (also called a quota serial dictatorship)
[38]. Similar characterizations hold replacing quantity-monotonic by lexicographic preferences [28, 29].
With standard monotonicity, only quasi-dictatorships remain, where only the first agent in the sequence
is allowed to pick more than one item [38]. Variants of these characterizations have been established by
Ehlers and Klaus [23], Bogomolnaia et al. [9] and Hatfield [26]. Ignoring Pareto-efficiency or neutrality
opens the door to more complex strategyproof mechanisms; a full characterization in the two-agent
case is given by Amanatidis et al. [2]. Amanatidis et al. [1] show that the CSD where all agents
except the last one pick only one item is a 1/| »=7+2 |-approximation to maxmin fair share. Weakening
strategyproofness into non obvious manipulability opens the door for more possibilities [40].

Nguyen et al. [37] show that when agents have preferences over sets of items defined from preferences
over single items by an extension principle, some scoring rules are strategyproof for some extension
principles. Allowing randomized mechanisms offers more possibilities, but not much [16, 25, 28, 33].

CSDs are also considered in chore allocation [5].

Picking sequences Sequential allocation of indivisible goods, also known as picking sequences,
originates from Kohler and Chandrasekaran [32], with a game-theoretic study of the alternating
sequence for two agents. Still for two agents, Brams and Taylor [15] consider other particular sequences.
Bouveret and Lang [11] define a more general class of sequences, for any number of agents, and argue
that sequences can be compared with respect to their expected social welfare, using a scoring vector
and a prior distribution over profiles. Kalinowski et al. [30] show that computing the expected utility
of a sequence is polynomial under full independence, and that strict alternation is optimal for two
agents, utilitarian social welfare and Borda scoring. The manipulation of picking sequences is studied by
Bouveret and Lang [12], Tominaga et al. [44] and Aziz et al. [4]. Flammini and Gilbert [24] and Xiao and
Ling [45] study the parameterized complexity of computing an optimal manipulation. Game-theoretic
aspects of picking sequences are addressed by Kalinowski et al. [31]. Chakraborty et al. [19] study
picking sequences for agents with different entitlements. While all these works are oblivious to agent
identities, Caragiannis and Rathi [17] try to find an approximately optimum order of agents in a serial
dictatorship with a limited number of queries.

Maximizing social welfare in allocation of indivisible goods A classic way of guaranteeing a
level of fairness and/or efficiency consists in finding an allocation maximizing social welfare, under
the assumption that the input contains, for each agent, her utility function over all bundles of goods
(usually assumed additive). Egalitarian social welfare places fairness above all, utilitarian social welfare
only cares about efficiency, and Nash social welfare is considered as a sweet spot in-between. See
[3, 6, 13, 34] for surveys. These mechanisms are not strategyproof.

3 Preliminaries: The Model

Given n € N*, we use [n] to denote {1,...,n} and [n]y to denote {0, 1, ..., n}. Bold symbols represent
vectors.

Let A = {a1,...,a,} beaset of n agents with a; the i’ agent to intervene in the allocation process and
G =1{g1,-..,9m} aset of m goods. A preference profile P =(>,, ..., >4, ) describes the preferences

of the agents: > is a ranking that specifies the preferences of agent a over the goods in G. We denote
by rk%(g), the rank of item g in the ranking of a, given profile P. The preference profile is hidden, and
therefore not part of the input: we will assume that rankings are drawn independently according to some
probabilistic model, that we denote by .

Two well-known probabilistic models are the Mallows and Plackett-Luce models [35, 36, 39]:



« The Mallows model is parameterized by a dispersion parameter ¢ € [0, 1] and a ranking u. We
denote this model by M11, 4. In this model, the probability of a ranking r is proportional to
(;SdKT(T’“), with dgr(r, i), the Kendall-Tau distance between rankings 7 and p.

« The Plackett-Luce (PL) model is parameterized by a value vector v = (v, ..., Uy, ). Intuitively,
v; > 0 represents the social value of good g¢;. In this model, which we denote by PL,, the
probability of a ranking r = g;; > gi, > ... > gi,, is:

m

o
™ .

The Plackett-Luce model has proven particularly good for learning a preference relation over a
set of items (a.k.a. label ranking) [20] so it fits particularly well here.

These models generalize the two following sub-cases:

o Impartial Culture, denoted by IC, in which each preference ranking is drawn u.a.r. from the set of
all possible rankings. Impartial culture is obtained when ¢ = 1 for the Mallows model and when
all values in v are equal for the Plackett-Luce model.

« The Full Correlation case, denoted by FC stipulates that all agents have exactly the same preference
ranking. Full correlation is obtained when ¢ = 0 for the Mallows model (and also as the limit of
Plackett-Luce models v = (M™~1 ... M,1) when M — c0).

In the sequel, we obtain different results for ¥ € {FC,IC,M11, 4,PL, }.

The items are allocated to the different agents according to a CSD: given a vector k = (k1,...,ky)
of n non-negative integers, agent a; will first pick k; goods, then ay will pick k2 goods within the
remaining ones, and so on until a,, picks k,, items. In most cases, we will consider complete CSDs, in
the sense that > ;" , k; = m. However, we may also consider incomplete CSDs such that >~ | k; < m.
We assume that agents behave greedily by choosing their preferred goods within the remaining ones.
This sequential process leads to an allocation that we denote by 7r§“_—,. More formally, Trfé, is a function
such that 7% (a) is the set of goods that agent a has obtained at the end of the sequential allocation
process, given preference profile P and vector k.

The utility of an agent for obtaining an item ¢ will be derived using a scoring vector. Stated otherwise,
there is a vector s = (s1,...,5mn) € Q7" such that s; > s;;1 for all i € [m — 1]. The value received
by an agent for obtaining her j** preferred item is s;. Different scoring vectors can be considered. An
important example is the Borda scoring vector, where s; = m — ¢ + 1. Using scores as a proxy for
utilities is classic in social choice: this is exactly how positional scoring voting rules (e.g., the Borda
rule) are defined, and they are also used in fair division settings [7, 14, 21].

We denote by Uk(a) =
EUk(a) = Ep.y[UE(a)] her expected utility given model W. This assumes that agents have additive
preferences, which is very common in fair division. The utilitarian social welfare (USW) SW (k),

egalitarian social welfare (ESW) SWE (k), and Nash social welfare (NSW) SWJ' (k) are then defined
by:

ger (a) Srks,(g) the utility obtained by a when receiving 7% (a) and by

SWi (k) =Y _EUG(a),  SW(k) = min EUj(a),
a€A
SWy (k) = [ [ EUS(a).
acA

Note that our social welfare notions are meant ex ante, i.e., we define them on the expected utility
values of the agents. This is different from the notion of ex post social welfare which considers the



utility of the agents once the profile P issued from V¥ is determined.

Our objective is to study the following class of optimization problems OptSD-¥-z with = € {U, E/, N'}.

OpTSD-V-2

Input: A number n of agents, a number m of
goods, and a scoring vector s.

Find: A vector k& = (k1,...,k,) of n non-
negative integers with )" | k; = m maximiz-

ing SWE (k).

The following easy observation will be useful:

Observation 1. For given n and m, the number of vectors k = (k1,. .., k) such that > | ki = m

equals ("1™ 1) )

From this observation, we can deduce that the number of potential vectors is lower-bounded by (’Z%)l,
This number does not take into account a natural further assumption that the optimal sequence is
non-decreasing, that is, that k1 < ko < ... < k,,. We will see further that this assumption holds for
ESW (under a mild condition), but not for USW. When the assumption holds, we can restrict the search
to non-decreasing vectors; their number is the number of integer partitions m into n numbers; it is still
exponentially large, but no closed form expression is known.

4 Computing an Optimal CSD

We now investigate the problem OptSD-W¥-z with z € {U, E, N'}. All algorithms in this Section assume
access to an oracle algorithm Ty (k, i) computing EU¥(a;) in time K (n,m, ). The computation of
expected utilities of agents for various models will be addressed in Section 5.

We start by a positive result for Egalitarian Social Welfare: the optimal CSD can be computed by the
greedy-like Algorithm 1. Completion(k) denotes, for any partial CSD k, the complete CSD such that
Completion(k); =k; for i€ [n — 1] and Completion(k),=m—3_,;c,_q) ki. In informal terms, k is
completed by giving all remaining goods to the last agent.

Algorithm 1 GreedyESW

Require: the number of agents n, the number of goods m, the scoring vector s, the oracle algorithm
Tw

: k<« (0,...,0) # empty CSD

max_k,max_esw < k,0

: fort =1tomdo
i < any value in arg min,c[,) EU§ ()
if SWE (k) > max_esw then

max_k, max_esw < k, SWF (k)

end if

end for

10: return Completion(max_k);

R I T R A > A v

At line 1, we start with an empty CSD, that we will modify in a greedy fashion. In the for loop (lines
3-9), we identify an agent with minimal expected utility (line 4) and increment the number of goods



that she gets (line 5). The CSD that is returned is not necessarily this CSD k. During the algorithm,
we keep in variables max _esw and max _k, the maximum ESW found so far and the corresponding
(partial) CSD. The algorithm returns max _k completed by giving all remaining goods to the last agent
(line 10). The completion step is not really necessary (the partial sequence obtained at line 9 already has
maximum expected egalitarian social welfare); its role is to ensure that no good is left unallocated. The
reason why one needs the test at line 6 is that letting the currently least happy agent pick one more
good may decrease the ESW, as can be seen on the following example.

Example 1. Letn = 2, m = 5, s = (50,10,4,2,1), and ¥ = IC. We show below the partial CSDs
obtained in each iteration t together with the expected utilities of both agents (they can be computed easily,
as we will see in Section 5) and the values of i and max _esw.

t| k max_k EUE(a;) EUE(az) i max_esw
1[(0,0) (0,0) 0 0 1 0
21 (1,0) (0,0) 50 0 2 0
30 (1,1 (L,1) 50 2 2 42
4](1,2) (1,2 50 496 2 496
50 (1,3)  (1,3) 50 524 1 50
62,3 (1,3) 60 402 1 50

At iteration 5, the least happy agent is a1; however, letting a, pick one more good, that is, k = (2, 3)
gives EUE(a1) = 60 and EUE(a1) = 40.2 (iteration 6), decreasing the currently optimal expected
ESW. Therefore, max _k is not replaced by k = (2, 3) at line 6 of the algorithm. The algorithm returns
Completion(max_k) = (1,4) (with expected utilities 50 and 53.6) with the remaining good given to as.

Proposition 1. Algorithm 1 returns a CSD k maximizing SWg(k), solving problem OptSD-V-E, in
time O(nmK (n,m, s)).

The proof is based on the following lemma:

Lemma 1. Let k be a CSD. Let max_esw', k' and it denote max _esw, k and i after line 4 of iteration t
of the for loop in Algorithm 1. For all t, a necessary condition for SW.E (k) > max_esw! is that k; > /{:5

forall j € [n)], and k; > kL.

Proof. By induction. At iteration 0, the claim is obvious. Assume that the claim holds for iteration ¢,
and let k be a CSD such that S wg (k) > max_esw't!. Then obviously S wk (k) > max_esw' as
max_esw!t! > max _eswt. Because the condition holds for iteration ¢ and by construction of Aan
we have that l%j > k:;t-Jrl for all j € [n]. Now suppose that k;i1 = /{:fttll In that case, SW\I',E(I%) <

EUF™ (a;+1) < max_esw'"!, a contradiction with the induction hypothesis. The first inequality is
due to the fact that a;+1 will get the same number of goods in k and k'*! while the agents picking
before her will get at least as many goods in k than in k‘*'. The second inequality is due to the
definition of #'*1. O

Proof of Proposition 1. Suppose that there exists a CSD k such that S wE (I%) > max _esw. Lemma 1
applied at iteration ¢ = m implies that each agent receives more objects with k than with the greedily
constructed complete CSD k obtained at the end of the for loop. As they both have m objects to allocate,
they must be equal. This is a contradiction of the hypothesis as max _esw > SWE (k). U

We now go beyond egalitarian social welfare. For utilitarian and Nash social welfare, we do not know
of an efficient algorithm which would work for any distribution. A general approach could be to sample
a large but hopefully reasonable number of preference profiles from ¥ and find a CSD with maximal



social welfare considering the average utility of each agent. Yet, we prove in Appendix B that such an
approach leads to an NP-hard problem for USW.

However, provided the distribution satisfies a natural condition, a CSD maximizing utilitarian and Nash
social welfare can be computed by dynamic programming. This condition on V¥ states that EUE ()
only depends on the number of items picked by a, and the number of items that have been picked before
a, but not on the number of agents who have picked before and how many items they have picked each.

Definition 1. A distribution U satisfies prefix independence if for any sequence k and i € [n], ifa is
the it picker in k, then EUE(a) only depends on (1) k = k;, the number of goods that she picks, and (2)
T = Z;;ll k;, the number of goods that have been picked before she starts picking.

Under prefix independence, the utility that agent a gets when picking s goods while 7 have already
been picked, eu(x, 7), is well-defined, and is exactly equal to EUE (a) when a is the i'" picker k=Fk;
and 7= 23;11 k;.

For pedagogical purposes, let us first focus on maximising USW. When prefix independence is met, one
can use the following dynamic programming equations:
F(i,7) = max (eu(k,7)+F(i+ 1,7+ K)),
KE[m—T]o
Vi, T € [n — 1] x [m]o, (1)
F(n,r) =eu(m — 7,7),Y7 € [m]o,

where F'(i,7) corresponds to the maximum USW that can be obtained by agents {a;, a;+1,...,a,} in
the situation in which 7 goods have already been allocated and we allocate the m — 7 remaining goods
to them. Of course the optimal value is given by F'(1,0).

The other problems can be solved similarly. For problem OptSD-W-F (resp. OptSD-W-N), one should
adapt Equation 1 by replacing the sum operation between eu(x, 7) and F'(i + 1,7 + ) by a min (resp.
multiplication) operation.

Proposition 2. If U satisfies prefix independence, problems OptSD-V-U, OptSD-V-E and OptSD-¥-N
can be solved in O(nm?K (n,m, s)) time.

We conclude by giving a structural property satisfied by an optimal CSD for ESW when prefix indepen-
dence holds. We will see that such property does not necessarily hold for USW (see Appendix B and
Section 6).

Proposition 3. Under prefix independence, there exists an optimal solution to OptSD-V-E which is
non-decreasing, i.e., in which the earlier an agent picks, the less goods she gets.

This property is not true with utilitarian social welfare. Take n = 4, m = 10, the IC model and the
Borda scoring vector. Then k = (3, 3,2, 2) is optimal for utilitarian social welfare, k = (2,2, 3, 3) for
Nash social welfare, and k = (2,2, 2,4) for egalitarian social welfare. Utilitarianism gives the first
two agents more goods than the last two; the first agents have the cake and eat it, as they pick more
goods and have more choice. The intuition is that late agents may end up with items of low utility;
egalitarianism compensates by giving them more, while utilitarianism avoids this "waste" by favoring
earlier agents, who are more likely to secure high-utility items.

5 Computing the Expected Utility of an Agent

In this section, we address the computation of EU, ’\ﬁ (a). Prefix independence again plays a crucial role:
when it is satisfied, EU¥ (a) only depends on the number of items picked by a, and the number of items
that have been picked before a, but not on the number of agents who have picked before and how many
items they have picked each. We first investigate which of our different probabilistic models satisfy it.



Proposition 4. VU € {FC, IC} satisfy prefix independence.

Proof. Consider a situation where an agent starts picking while 7 goods have previously been picked.
When ¥ = FC or ¥ = IC, the probability distribution on the set S of goods that have previously
been picked only depends on 7: for ¥ = FC, this probability distribution assigns probability 1 to the
set composed of the 7 (unanimously) most preferred goods; for ¥ = IC, this probability distribution
assigns equal probability to all sets of size 7 and 0 to others. Note that, given the set S, the utility that
the agents get is then determined by the number of goods she picks. O

More interestingly, the PL,, model, which generalizes FC and IC, also satisfies prefix independence.

Proposition 5. ¥ = PL,, satisfies prefix independence.

To reason on the Plackett-Luce model, one can use the vase model metaphor [42] Consider a vase filled
with m types of balls, the proportion of balls of type j being f(j) = % The ranking is then
generated by the following sequential process. At each stage, a ball is taken from the vase such that a
ball of type j is chosen with probability f(j). If the ball is of a different type than the ones previously
picked, it yields the next good in the ranking. In either case, the ball is put back in the vase and the
process continues. Using this metaphor, one can prove the following lemma (whose formal proof is

postponed to Appendix C).

Lemma 2. Let [ = (i1,...,1iq) be a sequence of q different indices in [m|. Consider the following two
cases:

i) Agent ay picks g goods;

ii) Agent ay picks q1 goods and agent ay picks qa goods with q1 + q2 = q.
For the PL model, the probability that for allt € [q|, g, is picked at timestep t is the same in cases i and ii.

Proof of Proposition 5. We recall that the preference rankings of the agents are drawn independently
from PL,. Using Lemma 2 and a simple induction argument, we get that the probability of a specific
sequence of ¢ consecutive picks is the same regardless of whether they were picked by one, two or
more agents. This entails that the probability distribution on the set S of goods that have been picked
after 7 timesteps only depends on the value of 7. Hence, the expected utility that an agent gets when
choosing k goods once 7 have been picked only depends on the values of x and 7. O

Unfortunately, things are different for the Mallows model:

Proposition 6. There exists ¢ € (0,1) and a ranking j such that W = M11y , does not satisfy prefix
independence.

This holds even for 3 agents and 3 goods. See Appendix C for the proof.

Computation of EUY(a) Under prefix independence, we show how to compute eu(, 7) efficiently,
starting by FC.

Proposition 7. If UV = FC, eu(k, 7) = Z:i:-u s;. All values eu(k, T) can be computed in time O(m?)
with the recursive formula eu(k,7) = eu(k — 1,7) + Sitr.



We then turn to ¥ = IC, and show that the values eu(k, 7) can be computed using a recursive formula.
Let T'(j, k, T) denote the utility that an agent can get if she can pick x goods within the ones of rank in
{j,...,m}, given that 7 of these goods have been picked by preceding agents. Then, it is clear that we
have:

eu(k,7) =T(1,k,7), Yk, T € [m]p X [m — Ko

T

The key point is that there is a probability 1 — P that the good of rank j is free and in this case
the agent will pick this good, and a probability of m+3+1 that this good is one of the 7 goods that have
previously been picked. In both cases, we move to goods of rank in {j + 1, ..., m}. In the first case,
we decrease x by one as the agent has picked a good. In the second case, we decrease 7 by 1 as we have
identified one of the goods picked within the ones of rank j to m. Hence, eu(k, 7) can be computed by
the following formula:

T(j —(l-——— V(s +TG+1,5—1
(]7'%37_) ( m—]+1)(8]+ (]+ y R 77_))
T
—T(5+1 —1
o (J+1,k,7-1),
Vi, k, T € [m — 1]xX[m — j + 1ljoX[m — j — k + 1], (2)

with the following base cases:

T(j7077—) :O,Vj,’f € [m] X [m_.7+1]0
T(j,k,0)= Y 8,4,k € [m] x [m—j+1o.

J<i<jtr
By computing all values 7'(j, s, 7) in O(m?) operations, we obtain the following result.

Proposition 8. If U = IC, then all values eu(r, ) can be computed in time O(m3) by using Equation 2.

Propositions 2, 7, and 8 imply that OptSD-W-z for € {U, E, N} can be solved in polynomial time for
U = FCand ¥ = IC, in O(nm?) for ¥ = FC and O(m? max(n,m)) for ¥ = IC, by precomputing all
values eu(k, 7) before running the dynamic programming algorithm.

For U ¢ {IC,FC}, one can still use GreedyESW and the dynamic programming algorithm with values
E U’g (a) approximated by sampling, providing close-to optimal CSDs: the returned CSD is optimal
with expected utility values replaced by their approximate values.*

For the general PL,, model beyond FC and IC, we do not know whether values eu(x, 7) can be computed
exactly in polynomial time; however, they can be efficiently approximated by sampling preference
profiles from ¥ and averaging the utility values obtained on the samples, with approximation guarantees
from Hoeffding’s (1963) inequality.

To present this guarantee, let u,, - (P, s) denote the utility value obtained by the second picker when
she picks her k preferred (available) goods, while the first picker has picked her 7 preferred ones, given
the preference profile P.

Proposition 9. Let e >0 and § € (0, 1) two fixed values, and Y an upper bound on values eu(x, ) (e.g.,
2oty si).

Let euy,  be the value computed by averaging the values u,. - (P;, s) over N preference profiles P; sampled
independently from W. If N > (Y2 1n (2m?/8))/2€%, then it holds with probability 1 — § that:

leu(k, T) — eun r| < €,Vk, 7 € [m] X [m — K.

*Some mild monotonicity conditions are required on the approximated EU& (a) values for the validity of Algorithm 1.



Moreover, we show that these utility values can be computed exactly in time FPT (Fixed-Parameter
Tractable) with respect to parameter m and XP (slicewise polynomial) with respect to p, where p is the
number of distinct values in v. This seems particularly appealing as goods may often be partitioned in
categories. When p = 1, all goods are in the same category and we obtain the IC model; when p equals
2 or 3 we obtain categories {high value, low value} or {high value, medium value, low value}.

Proposition 10. If ¥ = PL,, then all values eu(k, ) can be computed in time O (4™ Poly(m)).

Proposition 11. If ¥ = PL,, then all values eu(k, T) can be computed in time O(m?’ Poly(m)).

6 Numerical Tests

We performed several experiments to explore the properties of the CSDs obtained by maximizing either
USW, NSW or ESW. More precisely, we explored the impact of increasing one of the parameters, all
other parameters being fixed.

Impact of the number of goods Figure 1 displays the proportion of utility (left-hand side) and
goods (right-hand side) obtained for n = 5 and increasing the number of goods m from 5 to 300 in steps
of 5. To generate both figures, the IC model and the Borda scoring vector were used and we optimized
either USW, ESW or NSW.

Several comments can be made. First, as expected, in the egalitarian case (middle of Figure 1), we
observe that as m increases, the distribution of utility received by each agent converges towards equal
share.” In order to achieve this, the agents who arrive later in the sequence receive more items.

Second, with Borda and utilitarianism, the first agent in the sequence may pick more items than others
(plots on top of Figure 1). More generally, on this plot, the utility of an agent seems to decrease with
the position in the sequence.

Finally, for the Borda scoring vector, the Nash social welfare objective seems to yield somewhat
intermediate results between the utilitarian and the egalitarian ones, but seems to be closer to the latter.

Impact of correlation We explore the impact of correlation, through the parameters ¢ and v of
models PL,, and M11,4 ,. We use the Borda scoring vector and maximize ESW. To run Algorithm 1,
we approximate the expected utility values of the agents by sampling 10000 preference profiles from
PL, and from M11,4 , with the PrefSampling library [8]. Figure 2 displays the utility value (plots at
the bottom) and the number of items (top) received by each of 5 agents with m = 70 goods, for
models PL,, (right) and M11, ,, (left), for ESW and Borda scoring vector®. In the former model, we use
v® = (2™, 2™, ... 2') and decrease x from 1.5 (which already yields very correlated preference
profiles in similar to FC) to 1 (IC) in steps of 0.01. In the latter model, we increase ¢ from 0 (FC) to 1

(IC) in steps of 0.02.

Several comments are in order. First, as can be seen in Figure 2, the utility values of all agents (and hence
their sum) increase when x decreases or ¢ increases. Indeed, as we come closer to IC, the preferences
of the agents become more different, allowing some agents to receive some of their preferred items
even if they pick late in the allocation process.

Second, the number of goods received by the first agents in the CSD increases while it decreases for
the last ones. Indeed, as these latter agents can receive more preferred goods, the CSD needs less to
compensate by giving them a high number of goods (recall that we optimize ESW).

3This observation is proven formally in Appendix D.
SThis choice was motivated by the fact that Borda is the most standard scoring vector and the ESW naturally conveys
fairness.
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Figure 1: Portion of total utility (plots on the left) and of goods (right) received by each of 5 agents with m
increasing from 5 to 300 in steps of 5. Maximizing USW (plots at the top), NSW (bottom), or ESW (middle), using
Borda scoring vector and IC. The 1st picker corresponds to the color blue (at the bottom of each plot) while the
5th and last agent to pick corresponds to the color purple (at the top of each plot). Moreover, note that the values
plotted are in fact cumulative values.

Third, we notice that both models PL,, and M11, ,, yield very similar plots as we decrease the level of
correlation.

Code and an interactive demo are available at https://github.com/GuillaumeMeroue/CSD-can-be-Fair
and https://guillaumemeroue.github.io/IJCAI25. This Web application makes it possible to explore the
characteristics of optimal CSDs for various scoring vectors, probabilistic models, number of agents and
goods.

7 Discussion

The practical use of our setting raises a few questions.

First, we need to choose a distribution. The choice has to be tailored to the domain at hand, and
distributions can be learnt using some preference learning models and techniques. If computation time
is an important issue then it is wise to learn a Plackett-Luce model [20].

Second, we need to choose a scoring vector as a proxy for agents’ valuations over items. Again, this
depends on the specific domain at hand. For each context, the scores can be estimated by an experiment
where subjects are presented with a list of items to elicit their valuations; see Appendix E.

Third, we need to choose a social welfare functional. We have seen that, unsurprisingly, utilitarianism
may lead to clearly unfair solutions and should be used only with care. As usual, egalitarianism may
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Figure 2: Number of goods received per agent (top); expected utility value per agent (bottom) as a function of ¢
for M11, , and x for PL,». Maximizing ESW, Borda scoring vector, n = 5, m = 70.

lead to a loss of efficiency, but is easier to compute or approximate; Nash is a good trade-off (see [18] for
a manifesto towards using Nash social welfare in fair division) but is hard to compute if the distribution
does not satisfy prefix independence.

Four, once a CSD is found, it is anonymous: for instance, with two agents, if the output is (1, 2), it does
not say who should start picking. Assigning agents to positions in the sequence has no impact on ex
ante social welfare, but it may have an impact on ex post social welfare (see Appendix F).

8 Conclusion

Our main messages are: (1) imposing strategyproofness does not leave much choice beyond constrained
serial dictatorships; (2) some constrained serial dictatorships are fairer than others; (3) their efficiency
and fairness can be measured by expected social welfare, defined by a scoring vector, a distribution
over profiles, and a social welfare functional; (4) depending on the social welfare functional and the
distribution, the optimal sequence can be polynomial-time computable, efficiently approximated by
sampling, or hard to approximate by sampling. The following table summarizes the results obtained. PI
means that prefix independence is satisfied, poly means “polynomial-time computable”, and approx
means “efficiently approximable by sampling”.

v PI EUE(a;) Egal Nash Uti
FC yes poly poly poly poly
IC yes poly poly poly poly
PL, yes  approx  approx approx approx
Mlls, | no  approx  approx ? ?

Even in the cases where we are able to compute optimal sequences in polynomial time, we do not know
any closed-form formulas for these optimal sequences.

If items were bads (e.g., chores) instead of goods, a similar methodology would work, with values in the
scoring vector representing costs. Of course, agents coming first in the sequence should now take more
items than those coming later.
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Supplementary material to submission “Constrained Serial
Dictatorships can be Fair”

A Omitted Proofs of Section 3

Observation 1. For given n and m, the number of vectors k = (ki, ..., ky) such that > | ki = m
equals ("1™ 1).

Proof. Choosing n numbers (ki, ..., ky,) matching the definition amounts to partition [m| into n
subintervals, which in turn amounts to choose n — 1 “separation bars”. Said otherwise, this comes
down to choose n — 1 increasing numbers [y < ... <[,y among m + 1. Here, k; = [; — [;_1, with

the convention that [y = 0. This problem can be equivalently formulated as the one of drawing n — 1
different numbers among n + m — 1. For each such draw, we can obtain a set of increasing numbers
I <...< l;b_l between 1 and n + m — 1, that can be cast to increasing numbers between 0 and m by
choosing l; = I} — 4. Since there are ("—;Tl_l) subsets of n — 1 elements among n + m — 1, we obtain
the result. d

B Omitted Proofs of Section 4

We now show that prefix independence entails a specific property for the optimal solutions of
OptSD-V-E.

Proposition 3. Under prefix independence, there exists an optimal solution to OptSD-W-E which is
non-decreasing, i.e., in which the earlier an agent picks, the less goods she gets.

Proof. Let eu(k, 7) denote the utility obtained by an agent if we allocate « items to her knowing
that 7 items have already been allocated. As items have positive valuations and agent’s prefer-
ence rankings are drawn independently from the same probabilistic model, it is easy to prove that
eu(k, 7) is non-decreasing in x and non-increasing in 7. Let us consider a solution k = (ky, ..., k),
which is not a non-decreasing vector. Then, there exists i € [n — 1] such that k; > k;;1. We set
T = 23;11 kj, Tiy1 = t; + k; and 7/ 41 = ti + kit1. From the properties of function eu, it is clear
that min(eu(k;, 7;), eu(kiy1, 7i41)) = eu(kiy1, 7ip1) < min(eu(kiy1,7), eu(ks, 75,,)). Hence, by
swapping k; and k;11 in k, we do not decrease the egalitarian score of k (note that this swap does not
affect the utility values received by agents other than a; and a;;1). The repetition of this argument
shows that there exists an optimal solution to OptSD-W-FE which is a non-decreasing vector. O

We will see in the following example that this property fails for utilitarian social welfare. For Nash
social welfare, we conjecture it holds, but so far we do not have a proof.

Example 2. Letn = 3, m = 7 and the Borda scoring vector. By dynamic programming we find the values
eu(k, T) displayed on Table 1. For USW, we obtain an optimal vector k = (3,2, 2), yielding expected social
welfare 37.2. For maximizing ESW and NSW, we obtain k = (2,2, 3), with expected social welfare 12
and 1872 respectively. Note that the optimal vectors for ESW and NSW may be different: withn = 4 and
m = 10 and the Borda scoring vector, k = (2,2,2,4) is optimal for ESW ; and k = (2,2,3,3) for NSW.

We see on Example 2 that the optimal sequence for utilitarian social welfare, IC, and Borda scoring, is
not non-decreasing, and thus clearly not fair: the first agent in the sequence not only has a larger choice
of items but picks one more than the other two! It is not new that utilitarianism may clash fairness
when looking for optimal CSDs: for instance, it is known that the optimal sequence for utilitarianism,
Borda scoring, FI, n = 2 and m even is perfect alternation 1212. .. 12, which is obviously not fair [30].
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Table 1: Utilities eu(k, 7) in Example 2; m = 7, IC model.

R\T || 0 1 2 3 4 5 617
0 0 0 0 0 0 00
1 7 | 68 | 667 | 64 | 6 | 533 |4 | -
2 13 | 12.57 12 11.2 | 10 8 -] -
3 18 | 17.14 16 14.4 | 12 - -] -
4 22 | 20.57 | 18.67 | 16 - - -] -
5 25 | 22.86 20 - - - - -
6 27 24 - - - - -] -
7 28 - - - - - - -

(Still, we continue to include utilitarianism in our study, first for the sake of comparison, and second
because utilitarianism is relevant in some situations.)

The following result concerns utilitarian social welfare:

Proposition 12. Given a scoring vector s, a finite set P of n-agent preference profiles over a set of goods
and an integer K, the problem of determining whether there is a CSD k such that the average utilitarian
social welfare of k over all profiles of P is greater than or equal to K is NP-complete.

Proof. We will prove the proposition by reduction from Exact-Cover-By-3-Sets (X3C):

X3C

Input: Aset X = {x1,...,z,} of n elements; a
collection S = {51, .., Sm} of m subsets such
that VS € S, S contains exactly three elements
of X.

Question: Does there exist a subcollection
C C S, suchthat (Jgep S = X and SN S =
0,vSs,s" eC.

Let (X, S) be an X3C instance. From that instance, we create an instance of our problem with n goods
and 3m agents such that the set of goods is exactly X (by notation abuse), and such that there are 3
agents agg, a%, and a% for eachset S € S.

For each set S = {a, b, c} € S, we create 3 rankings re, 'rg, rg such that ¢ starts with a, r% starts with

b, and r¢ starts with c (the rest of the ranking does not matter). Then for each pair of agents (a%, a7.)
with S # T, we create 9 profiles as follows:

« if S = {a,b,c}, agents a}g, a%, a% have rankings from {(r¢, r%, r%), (T%, rG,1re), (g, re, Tg)};

« if T'={d,e, [}, agents a%w, a%, a:} have rankings from {(1“%, %, r%), (r%, T:};, r%), (T:];, T%, r$)}

. for each X = {z,y, 2} different from S and T', agents a’., a%, a% have rankings (r%,r%,7%).

This thus makes % profiles in total. Now, the scoring vector is such that the top object has

utility 1 while all the other items have utility 0. We will prove that there exists an exact cover iff there
exists a CSD with average utility at least n.

=) IfC C S is an exact cover, let agents a%, for S € Cand i € {1,2, 3} pick one item. By construction,
(=) g S p y
for each profile, these agents will all have their top choices yielding a utility of n.
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(<) Conversely, let k be a CSD yielding utility n for all profiles. Necessarily k gives exactly one item to
n agents. Let a’ and a7, be two such agents, with S # T'. Suppose that SNT # @ and letx € SNT.
In the profile where ais has ranking r§ and agq has ranking r7 both agents have the same top object.
Hence, the utility yielded by k is necessarily strictly lower than n for this profile, a contradiction with
the hypothesis. This proves that all the agents afg and a7 receiving an object in k are such that either
S =T or SNT = (). Hence, we necessarily obtain n/3 sets who are pairwise disjoint and hence
provide an exact cover.

O

C Omitted Proofs of Section 5

To prove Lemma 2, we first need to prove the following Lemma.

Lemma 3. Let7 : g;; = gi, = ... = gi, be an incomplete ranking over G with ¢ < m. Under the PL
model, the probability to generate a ranking r which is a consistent extension of v is equal to:

HZZ] Vi

Proof. Let S € G be the set of goods on which 7 express preferences. The lemma can easily be derived
from the vase model metaphor. Consider the following slightly different sequential process. At each
stage, a ball is taken from the vase such that a ball of type j is chosen with probability f(j). If the ball
is of a different type than the ones previously picked, and is a ball of a type corresponding to an element
of S, then it yields the next item in the ranking. In either case, the ball is put back in the vase and the
process continues. This process generates a ranking on the elements of S according to the original PL
model. We get that the probability of 7 is:

fig
DALY

O

Lemma 2. Let I = (i1,...,1,) be a sequence of q different indices in [m]. Consider the following two

cases:

i) Agent ay picks q goods;

ii) Agent ay picks g1 goods and agent ay picks g2 goods with q1 + q2 = q.
For the PL model, the probability that for allt € [q|, g, is picked at timestep t is the same in cases i and ii.

Proof. We will show that in both cases, the probability that for all ¢ € [q] g;, is picked at timestep ¢ is:

Vi]
pr = H L Vi + Zpe

N\ Yp

In case i), g;, is picked at timestep ¢ for all ¢ € [¢] if rk’p (g;,) = t for all ¢ € [g]. Under the PL model,
this occurs with probability p;.
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In case ii), let I; (resp. I2) be the subsequence composed of the g; first (resp. g2 last) elements of I and
S1={Giy,--- ’gizn} (resp. So = {giqﬁl, .-+, 9i, })- In the PL model, the probability that a; picks g;, at
timestep ¢ for all ¢ € [g;] is:

q1
1 Vi;
pr = .
]1;[1 2ol Vit Lpefm\1 Vo

Then, the probability that ag picks g;, at timestep ¢ for all £ € [¢] \ [¢1] corresponds to the probability
that g;, is ranked at position ¢ — g1, when restricting ourselves to the goods in G \ \S;. Put another way,
goods in S should be ranked in the top g2 positions in the partial ranking which only ranks goods
inG\ Sp. Let7: iy = Giy =7 G, be one such ranking over G \ S7 with 9it = Gitg, 10 for all
[ € [g2]. Resorting to Lemma 3, 7 occurs with probability:

q2 Uit m—qi Usr

11 % 11 %
m—q m—q

o1 2=y Vi e 2=y Vil

By marginalizing over all such rankings, the second product vanishes as we obtain the sum of probabili-
ties over all rankings over G \ (S7 U S2) under PL,. Hence, we get probability:

2 qH2 Z/’L'/A
pbr = -
i i Vi Epelm Vo
The product of p} and p? yields exactly py. O

Proposition 6. There exists ¢ € (0,1) and a ranking p such that V = M11, ,, does not satisfy prefix
independence.

Proof. To see why, consider the case of m = 3 items and n = 3 agents, and a Mallows model with
center it = a > b > c and parameter ¢. The probability of a ranking r to occur is 957 (") /C' where
C =1+ 2¢ + 2¢* + ¢? is a normalization constant. The probabilities of the different rankings are
described on the table below.

Probability | Ranking
1/C a-b>c
»/C a>-c+b
»/C b>a>c
#?/C b=cwa
»?/C c-a>b
#3/C c=b=a

AN VT W DN =

If the expected utility that an agent gets in the allocation process only depend on the number of goods
that she picks and that have been picked before she started picking, then it should be the same for a3 if
(1) a1 and a9 both picked one and if (2) a; picked two and ay picked zero items. We will see that it is
not the case. Let us assume that s = (1, 1,0) so that a3 only cares about not getting her least preferred
item. The probability that a (resp. b, ¢) is her least preferred good is ¢?(1 + ¢)/C (resp. ¢(1 + ¢)/C,

(1+09)/0C).

We can compute the probability that the first two goods picked (by agent 1 and 2) are @ and b in the
two cases. In the first case, either agent 1 picks a first (so it has ranking 1 or 2) and agent 2 picks b (so it
has ranking 1, 3 or 4), or agent 1 picks b first (ranking 3 or 4) and agent 2 picks a (ranking 1 or 2 or 3).
The probability of this is
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14+ ¢l+o+¢* ¢+¢*14+0+9

C C C C
(1+¢)(1+2¢+ 3¢%)
— =

In the second case, the probability that agent 1 picks both a and b is the probability of rankings 1 and 3,
which is:

1+¢ (14 ¢)(1+2¢+2¢% + ¢°)
c C?

Similarly:

« The probability that items a and c are picked by the first two agents is ¢(1 + ¢)/C' in cases 1 and
2.

« The probability that items b and c are picked by the first two agents is ¢ (1 + ¢) (3 +2¢ + ¢?) /C?
in case 1 and ¢?(1 + ¢)/C in case 2.

As a result, the probability that as gets her least preferred good is:

(14 ) (1+2¢ + 3¢%) +gﬁQ(l + ¢)?
C?2 C C?2
14+ ¢)2 (3¢ +2¢% + ¢°
+¢A 02)( s )
in case 1 and
1+ ¢) 1+ ¢) 1+ ¢)
( 02)+¢ﬂ 02)+¢A 02)

in case 2. These are two different values, e.g., for ¢ = 0.5 we obtain 0.440 in case 1 and 0.429 in case

2. O

Proposition 9. Lete>0 and 6 € (0, 1) two fixed values, and Y an upper bound on values eu(k, 7) (e.g.,
2lity i)

Let euy,  be the value computed by averaging the values u,. - (P;, s) over N preference profiles P; sampled
independently from W. If N > (Y2 1n (2m?/§))/2€%, then it holds with probability 1 — § that:

leu(k, T) — eux | < €, Vi, T € [m] X [m — K.
Proof. Let eufw represent the utility of an agent receiving ¢ items after k items have already been taken,
for the preference profile P; such that eu, » = Y ;" | eu}, .

We aim to show that with probability at least 1 — §, the sampled value of utility is close to the expected
utility within e. Formally, we want:

§€>21—5
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However, this form is not directly suitable for applying Hoeffding’s inequality, so we first perform some
manipulations. We have:

Pr ( et _ eu, | < e) =1-Pr (’ She,r euy | > e>
n n
>1-—Pr (‘ et _ euy, r| > 6)
n
Hoeffding’s inequality gives us:
el - o2n2e2 )
Pr{|—— —eu >e€ §2exp<—
< n m > > (b — a;)?

Given that eu,  are identically distributed, we can rewrite 7", (b; — a;)* as n x (b — a)?, where
a = Y.'_, 5(i) when the agent receives the items they like the least, and b = S°%_, s(m — i) when the
agent receives the items they prefer the most. For simplicity, we set a = 0 (no selected item) and b = T
(all items are selected).

Substituting these expressions into the inequality, we get:

Ine?
§6)21—Zexp<— ?;)

We want this probability to be at least 1 — §, which gives us:

92 2
1—2€Xp<— ;Z)zl—&

This rearranges to:

Then let E,; ; denote the event that eu,, - is an e-additive approximation of eu,, . This event occurs
with probability 1 — .

We want to determine the probability that all events £ ; hold simultaneously. This is equivalent to
computing;:

Pr(NesErr) =1—Pr(Ue Eer)
Applying the union bound, we get:

Pr(MesBxr) >1— > Pr(Ees)
kte[m)]

Given that Pr (E,.w) < ¢, we have:

Pr(Ng+Ekr)>1— m2s
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For this probability to be at least 1 — A, we require:
1-m*>1-A

This rearranges to:

A
5SW

Substituting this condition into the sample size inequality, we find that n must satisfy:

Y21n (M)
n>__ N8/
- 2¢2

Proposition 10. If U = PL,, then all values eu(k, ) can be computed in time O (4™ Poly(m)).

Proof. Let S C G be asetof goodsand g € S, we denote by ££(g, S) = vy/(3_ /e 5 V), the probability
that g is ranked first among the elements of .S according to PL,.

The proof relies on recursive equations. Let us consider the following setting. The picker under
consideration should pick k goods within a set S of goods occupying the |S| last positions of her
ranking. Goods in G \ S, occupy the top m — S ranks in her ranking and have already been picked,
either by her or by other agents. Moreover, the set S’ C S have already been picked by previous pickers.
We are interested in computing the expected utility U (k, S, S”) of the k picks of the agent in such a
situation. We argue that U(k, S, S’) satisfies the following recursive equations:

Uk, S,8) = > £t(g,9)U(k, S\ {g}, 5\ {g})

gesns
+ ) £t(g,9) (Smysj1 + Uk — 1,8\ {g},5")) (3)
geS\S
U,5,8)=0 V5,9 (4)
Uk, S0) = sp_jsiei 5,8 (5)
=1

In Equation 3, we consider all possible goods which could be placed at rank m — |S| + 1. This occurs
for good g € S with probability £t(g, S). If g € S, this good as already been picked and the agent still
has to picked x goods within the goods in S\ {g} which are ranked in last position, hence we consider
U(k, S\ {g},S\ {g}) I g ¢S, this good is picked by the agent leading to a utility s,,_|5|—; and the
agent still has to picked k — 1 goods within the goods in S\ {g} which are ranked in last position,
hence we consider U(k — 1,5\ {g}, S). Equations 4 and 5 provide the base cases.

Next, we consider the probability P(.S,S") that goods in S are ranked in the top |S| positions among a
set S” of goods. P(S, S’) trivially satisfies the following recursive equation.

P(S,8) => £t(g,8)P(S\ {s}, 5\ {s})

ges
P®,S) =1

Once values U (k, S, 5) and P(S, S’) have been computed, we use the fact that:

euk,7)= >  P(S,Q)U(kG,S").
S'CG,|S =T

To do the computation, we use memoization to store the different values U (, S, S’) and P(S, S") (which
represents O(m4"") values), avoid redundant computation, and obtain the desired time complexity. [J
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Proposition 11. If ¥ = PL,, then all values eu(k, T) can be computed in time O(m?’ Poly(m)).

Proof. Let i = (m1,ma, ..., m,) be a vector representing a set containing m; goods of value v;. For
i € [p], we denote by ££(i, ) = vim;/(3_ [, ™;;), the probability that a good with parameter v; is
ranked first among the elements of the set represented by 7 according to PL,. We further define 772[—i]
as the vector defined as m[—i]; = m; — 1 and m[—i]; = m; for j € [p| \ {i} and sum(m) = >_0_; m,.

The proof relies on recursive equations. Let us consider the following setting. The picker under
consideration should pick x goods within a set S of goods occupying the |S| last positions of her
ranking. This set is represented by a vector Tig. Goods in G \ S, occupy the top m — S ranks in her
ranking and have already been picked, either by her or by other agents. Moreover, the set S’ C S have
already been picked by previous pickers. The set S’ is represented by a vector Tg: such that mg < Tmg.
We are interested in computing the expected utility U (x, g, Mg/ ) of the & picks of the agent in such a
situation. We argue that U (k, Mg, M) satisfies the following recursive equations:

Uk, Mg, Ms) = ft(i,mg)(ZiU(/i,ms[—i},mgz[—i})

i€[p]
m; — m o
+T(Sm—sum(ms)+1 +U(k — 1,mg[—i],mg)) (6)
U(07m5am3') =0 VS, s’ (7)
Uk, mg,my) = Z Sm—sun(mg)+i VK, S (8)

i=1

In Equation 6, we consider all possible goods which could be placed at rank m — |S| +1 = m —
sum(g) + 1, considering only their value in v. This occurs for a good g with parameter v; with
probability £t(i,mg). Let us assume that this good as indeed value v;. This good is in (resp. out of)
S’ with probability m//m; (resp (m; —m!)/m;). If g € S, this good as already been picked and the
agent still has to picked k goods within the goods in S\ {¢} which are ranked in last position, hence
we consider U (k, mg[—i],mg/[—i]). If ¢ & S, this good is picked by the agent leading to a utility
Sym—|5|—1 and the agent still has to picked x — 1 goods within the goods in S\ {g} which are ranked in
last position, hence we consider U (k — 1,mg[—i], Mg/ ). Equations 7 and 8 provide the base cases.

Next, we consider the probability P (7, ') that a set of good S with vector g = 7 are ranked in the
top sum(m) positions among a set S’ of goods with vector mg = m'. P(m,m’) trivially satisfies the
following recursive equation.

Pmm)= > ft(i,m)P(ml—i,m i)
iG[p],mi#O
P(m@,m’) =1
Once values U (k,m,m') and P(m,m’) have been computed, we use the fact that:
eu(k, ) = > P, mg)U (k, Mg, 7).
m' <mg,sum(m’)=7

To do the computation, we use memoization to store the different values U (k, g, mg/) and P(m,m’)
(which represents O(m X m2p ) values), avoid redundant computation, and obtain the desired time
complexity. O

D Omitted Proofs of Section 6

Figure 3 displays our results using the lexicographic scoring vector (where s; = 2 ~%), showing the
proportion of utility (left-hand side) and goods (right-hand side) obtained for n = 5 and increasing the
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Figure 3: Portion of the total utility (plot on the left) and of goods (right) received by each of 5 agents with m
increasing from 5 to 300 in steps of 5. Maximizing ESW and using the lexicographic scoring vector and FI.

number of goods m from 5 to 300 in steps of 5. The IC model was used and we optimized ESW. We
see that because of the lexicographic scoring vector, almost all goods are given to the last picker to
compensate for this disadvantageous position.

We now provide a property of optimal CSDs when maximizing ESW and for a large number of goods.

Proposition 13. Assume there are n agents (n being fixed), and let K}, be the set of allocation vectors
maximizing SW (k) when there are m items. Then, if one uses the lexicographic (resp. Borda) scoring
vector, then for any value € > 0, there exists a value M (dependent on n) such that m > M implies that
(maxee 4 EUE (a) — minge 4 EU%(a)) /(3,4 EUE(a)) < € for any (resp. an element) k € KCj,,.

Proof. We treat the cases of the Borda and lexicographic scoring vectors using two different proofs.

The lexicographic case. Let us fix n the number of agents, a value € > 0, and [ an integer such that
€/2 > 1/2.. As m (> nl) increases, we can ensure with a probability tending towards one that each
agent receives her [ preferred items. Indeed, because of the independence and uniformity assumptions
of the IC model, the probability that these sets of items do not intersect tends towards one. Hence,
for € > 0, there exists a value M such that if m > M, this event (the sets being disjoint) occurs with
probability 1 — ¢/2. Using the lexicographic scoring vector, this event implies that each agent will
receive a proportion greater than or equal to (1 — 1/2!) of the total utility she gives to items, i.e.,
ZTZI Sm = 2™ — 1. To sum up, if m > M, we can ensure that each agent receives an expected utility
greater than:

(1-¢/22@™ ~ 1)
(1—e)(2™ —1).

(1—-¢/2)(1-1/2")(2" - 1)

>
>

Moreover, note that this expected utility is upper bounded by Z;”Zl Sm = 2™ — 1 and that
> wea EUE () is lower bounded by > i1 8m = 2™ — 1. Hence, for any k € Kj,.:

‘EUIkc(ai) - EUIkc(aj)’ < ’EUIkc(ai) - EUIkc(aj)‘
>aca EUfg(a) — — 2m -1
_@r - (-gen -1
- 2m — 1
<e

The Borda case. We wish to show that for any e, there always exists an optimal egalitarian solution
for which the difference in portions of total utility assigned to any two different agents is smaller than e
when m is high enough. However, instead of reasoning on the portion of total expected utility received
by an agent, we will work on a proxy, denoted by P¥(a) = 2EU.(a)/m(m + 1). Note that, compared
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to EUE(a)/ (3 pca EU%(a)), P¥(a) replaces the expected total utility received by the n agents by a
lower bound on it given by > 7%, s, = m(m + 1)/2.

Let € > 0 be a positive value. We set € = €/n, and m = 2/€¢’. We now show by induction on [ the fol-
lowing: For any value 7 € {i/m,i € [m]o}, there exists a solution k maximizing min,e(q,,....q;} P¥(a)
under the constraint that a proportion 7 of the picks are assigned to the [ first pickers which ensures
that | P*(a;) — P*(a;)| < l¢ for any i, j € [I]>. We denote by P/ the previous optimization problem
and I'] its optimal value.

The claim is trivially true for | = 1. Assume, it is true for [ > 1. We seek a solution maximizing
Milge(ay,.. a1} P¥(a) given that they receive a proportion 7 of the items. The [ first agents will
receive a proportion 7/ € [0, 7] of the items, and we can assume wlog that the allocation to the [
first agents is the one maximizing P/ " insuring our inductive property. Note that if 7/ increases (resp.
decrease) by 1/m, this may only increase (resp. decrease) FZH/m by 2/m, i.e., I’z-/ﬂ/m < FlT/ +2/m
and decrease (resp. increase) the P¥(a;y;) value of the (I + 1) picker by 2/m and that I'] (resp.
P*(a;41)) is non-decreasing (resp. non-increasing) in 7. Hence, by adjusting the value of 7/, we can
ensure that there exists a solution k optimal for 7P/, ; and such that |P¥(aj1) —T7'| < €. Therefore, by
the inductive property, | P¥(a;) — P*(a;)| < (I + 1)€’ for any i, j € [I + 1]2. This proves the inductive
property. Using | = n, and 7 = 1, we obtain the claimed result as

| EUfg(a:) — EUgg(ay)]

[PH(an) = PHay)| < =8

O]

A note on computation times All tests were run with Python 3.10.12 on a personal computer
with Ubuntu 22.04.4 LTS, 8 Intel(R) Core(TM) CPU i7-1185G7 3.00GHz cores and 32 GB RAM. With
n = 5 and m = 70, and a sample size of 1000 profiles, the computation of the optimal allocation
using Equation 1, given that prefix independence is satisfied, takes approximately 50 seconds. By
contrast, the use of Algorithm 1 (GreedyESW) reduces the computation time to approximately 7 seconds.
Furthermore, when applicable, the exact computation using Equation 2 is highly efficient, requiring
only approximately 0.07 seconds.

E Finding a suitable scoring vector

A question that has been overlooked until now’ is, where does the vector of scores come from? In order
to address it we suggest, and test, the following methodology. For the specific domain at hand, prepare
a questionnaire where some users, considered representative of the population of users, are presented a
set of items: for instance, if the problem is about allocating time slots for using a tennis court, users are
presented several time slots. Once this scoring vector has been elicited, it is used to determine optimal
CSDs, which can be applied many times, with different sets of users. A similar method has been used
for voting by Boutilier et al. [10] (see Section 5.6).

We designed an online experiment. To each user taking part in it, we present 12 ice-cream flavours
uniformly selected among 62 possible and elicit their utility on a scale [0,100].

We first ask the user to tell which is their preferred flavour (PF) among the 12, and we tell them that
the value for PF is fixed to 100. Then, for each flavour F' (including PF’), we present the user a slider,
with which they indicate the value of F' between 0 and 100.

"Not only in this paper but also in previous papers on fair division who also use scoring vectors (e.g [7]).
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Comparison of Borda and Experiment vector

I T T T T
100 —e— Experiment ||
—=— Borda
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Figure 4: Comparison of the Borda scoring score (rescaled to [0,100]) with the scoring vector obtained through
our experiment by taking the expectation of the participants’ answers.

Once all vectors are collected, we rearrange them non-increasingly. Then all vectors are averaged
among all users. We obtain a scoring vector s = (s1, ..., S12): s; is the average value, among all users,
of their ith most preferred item.

We had 54 participants. Screenshots of the experiment, information on how consents and the data were
collected, as well as the list of the 54 gathered vectors are included in the Appendix. Their average is

51 =914 53=76.6 s3=0682 s34 =569
s5 =48.6 s =41 s7=234.3 sg=26.1
S9 — 21.1 S10 — 16.5 S11 — 10.2 S12 = 5.3

Figure 4 shows how this vector compares to the Borda vector (rescaled such that the score of one’s
preferred flavor is 100)®.

The ice-cream experiment

We provide additional information on the experiment used for estimating an adequate scoring vector
for the application of allocating ice creams with different flavors.

The list of all ice-cream flavors used for the experiment is the following one :

[Kiwi, Litchi, Mango, Mandarin, Melon, Mirabelle, Blackberry, Blueberry, Orange, Blood orange,
Apricot, Pineapple, Banana, Lemon, Lime, Cherry, Cassis, Raspberry, Coco, Fig, Strawberry, Passion
fruit, Pear, Rhubarb, Grapefruit, Honey-Pine nuts, Tiramisu, Chocolate ginger, Tagada strawberry,
Nougat, Speculoos, Coffee, Milk jam, Pistachio, Licorice, Lavender, Caramel, Dragibus, Avocado,
Chewing gum, Olive, Chili chocolate, Tomato-Basil, Cinnamon, White chocolate, Chocolate, Almond,
Poppy, Cookies, Gingerbread, Cactus, Beer, Oreo, Nutella, Vanilla, Candy floss, Rum-Raisin, Pumpkin,
Chestnut, Wild pollen, Rice pudding, Salted butter caramel].

Each participant was presented a subset of 12 of these flavors, sampled uniformly at random with a
seed set according to the Math.Random() Javascript method. Note that this method sets the seed for
simulating randomness in a way that depends on the browser of the user.

We tested two different ways of explaining the experiment to participants. Indeed, we wanted to
evaluate the impact of describing the experiment in one way or another.

Note that by averaging we lost some interesting information about variance: some users have rapidly decreasing, and
some others slowly decreasing valuations. Moreover, note that the highest score of the averaged vector is not 100 as several
users did not respect this constraint.
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« For half of the participants’, we presented the scores assigned to the ice-cream flavours as Von
Neumann-Morgenstein utility values. We first ask the user to tell which is their preferred flavour
(PF) among the 12, and we tell them that the value for PF' is fixed to 100. Then, for each
flavour F (including PF’), we present the user a slider, with which they will indicate the value
of F' between 0 and 100. They are told that they can interpret the chosen value V' as the exact
point where they are indifferent between receiving PF' with probability % and nothing with
probability 1 — 1—‘60, or receiving F for sure. A screenshot of this process is reported in Figure 6.

« For the other half of participants, we tested simpler directives. As done previously, we explain
to users that the value for their preferred flavour should be fixed to 100. Then, for each flavour
F, we present the user a slider, with which they should indicate the value of F' between 0 and
100, without mentioning any probabilistic interpretation for these values. A screenshot of this
process is reported in Figure 7.

The 27 scoring vectors of the participants who followed the first (resp. second) directives are displayed
on Table 2 (resp. Table 3).

A comparison of the resulting averaged scoring vectors with the Borda scoring vector is provided in
Figure 5. We observe that the two averaged scoring vectors obtained for each set of directives have
a similar shape with one being slightly above the other one. Indeed, more participants following the
simpler directives did not follow the constraint that their preferred flavour among the 12 should receive
a value of 100, leading to smaller values in the averaged scoring vector. This is probably due to an
ambiguity about the fact that the preferred flavour of the participant should be understood as the
most preferred one among the ones which are presented. While this finding points out a possible
improvement for our experiment, we insist on the fact that it should be understood here as a proof
of concept illustrating the feasibility of such an approach to estimate a relevant scoring vector for
the domain at hand. As the results were similar for the two ways of describing the experiment, we
decided to merge the two list of vectors for plotting the Figure 4 presented in the main document of the
submission.

Collect of Consents and Data The data which was collected was completely anonymous; indeed,
we did not collect any piece of information about the participants besides the scores assigned to the
ice-cream flavors. Moreover, we checked with the ethic committee of one of the authors’ university
that the experiment complies with the data protection regulation. Last, as illustrated in Figure 9, all
the participants to the experiment had to check a box, confirming that they agreed that their answers
would be stored and used for research purposes.

°In fact, each participant had a probability 0.5 of getting one set of directives or the other. Luckily this procedure split the
set of participants in two sets of equal sizes.

100 |- —e— Lottery-based ||
—=—  Simpler

80 |

60 |-

Utility

40 -

20 |-

Figure 5: Scoring vectors obtained through our experiment. The scoring vector “Lottery-based” (resp. “Simpler”)
was obtained by averaging the answers of the participants receiving the directives which mentioned (resp. did
not mention) a probabilistic interpretation for values assigned to ice-cream flavours.
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The aim of this survey is to observe the distribution of the intensity of your preferences in an interesting topic for many: ice-cream flavors. If you like neither ice-creams nor sorbets, this survey will probably bore you
and we would suggest you not to do it.

First question : from the following twelve flavors:

Which one is your favorite?

[ Sated utr caramet v/

We will ask you to express your preferences among the other flavors, knowing the following constraint is imposed : Salted butter caramel worth 100 points. One way to evaluate the number of points to associate to one flavor i the following : s the number such that you are indifferent
between being sure of having this flavor, and having x% chance of getting your favorite flavor and (100-)% chance of getting nothing at all

For example

*You are indifferent between being sure of having Tiramisu, and having 50% chance of getting Salted butter caramel and 50% chance of getting nothing at all, then you can give 50 points to Tiramisu
*You are indifferent between being sure of having Pistachio, and having 30% chance of getting Salted butter caramel and 70% chance of getting nothing at all then you can give 30 points to Pistachio,
*You are indifferent between being sure of having Raspberry, and having 90% chance of getting Salted butter caramel and 10% chance of getting nothing at all, then you can give 90 points to Raspberry.

Figure 6: Screenshot of our questionnaire. Directives to the user mentioning a probabilistic interpretation for
the scores assigned to ice-cream flavors.

The aim of this survey is to observe the distribution of the intensity of your preferences in an interesting topic for many: ice-cream flavors. If you like neither ice-creams nor sorbets, this survey

will probably bore you and we would suggest you not to do it.

Give each flavour a score on a scale 0-100

100 s the score that you give to your preferred flavour.

0 is the score you give to a flavour what you would definitely not eat.

The intermediate scores between 0 and 100 have to be interpreted as increasing taste for the flavour, for instance you may interpret 50 as "l like it half as much as my preferred flavour”

Figure 7: Screenshot of our questionnaire. Directives to the user not mentioning a probabilistic interpretation
for the scores assigned to ice-cream flavors.

Figure 8: Screenshot of our questionnaire. The sliders make it possible for the participants to assign a value to
each flavor.

By checking this box | agree that my preferences will be stored anonymously for two years and may be used for research purposes

Figure 9: Screenshot of our questionnaire. Participants had to check a box, agreeing that their answers could be
used for research purposes.
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F The price of the assignment of agents to positions

By abuse of notation, we may also use notation SW§ (k) (for z € {U, E, N}) when V¥ is the degenerate
probability distribution for which profile P occurs with probability 1.

So far, we have considered probability distributions over profiles that treat all agents in an interchange-
able way. Hence, deciding who should be agent a; and pick first, who should be agent a5 and pick second
et caetera, has no impact on ex ante social welfare. What about its impact on ex post social welfare? We
now study this impact, in terms of loss of social welfare between the best possible assignment and the
worst possible assignments of agents to positions.

Let S,, denotes the set of permutations of [n]. Given 7 € S,, and P a preference profile, P, denotes
the preference profile obtained from P by permuting agents rankings according to 7.

Definition 2. Given a CSD with vector k and a preference profile P, the utilitarian, egalitarian and Nash
price of assignment of agents to positions, denoted by P4, », P%, o, and P}, » respectively, are defined

by:

U
PU maxqes, SWp_ (k)’
° minges, SWEW (k)
735 _ WaXres, SW}% (k)
toP minges, SW}%r (k)’
7)114\7 _ WaXres, SI/VIJQCr (k)
toP? mingeg,, SWIJQCr k)

We make the two following easy observations which hold whatever the notion of social welfare which
is used:

1. The worst social welfare that can be obtained when allocating resources using a CSD is obtained
when for all j € [m], the j* good that is picked by an agent is her j*" preferred good. In
particular, this results in a utilitarian social welfare of Z;’;l 5j.

2. The best social welfare that can be obtained when allocating resources using a picking sequence
(not necessarily non-interleaving) where a; picks k; goods for all i € [n] is obtained when
each agent picks her k; preferred goods. This results in a social welfare of x"_; 251:1 55, where
* = >, ] or min depending on the chosen notion of social welfare.

Hence, upper bounds on Pgto s Pft op> and 7?1{4\;0 p are given by:
n kz kmin n kl
> ie1 Zj:l Sj Zj:l 55 and Hizl(Zj:l 55)
m . Y . _;’_k; ) L+kL M
Zj:l S mMiN;e[n) Z;ch;ﬂ Sj H?:1(Z§:ci+1 Sj)

where ¢; = > ;_; ky and ki, = min{k;|i € [n]}.
We show that there exists a preference profile and a CSD, such that this bound is closely matched.
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Proposition 14. Assumem = d X n with d € N*. There exists a preference profile and a CSD such that:

d 2d d
(=1 si+ D 5 n) s
j=1 j=d+1 j=1
m < PAtOP <
D8 s
j=1 7=1
2d d
> s Z
Jj=d+1 E
m < PAtoP S — m ’
Z 5j Z 55
j=(n—1)d+1 j=(n—1)d+1
d (n=1) 2d d "
Yol %Y >
j=1 j=d+1 N J=1
n id S 7DAifOP < .
I > my
i=1 j=(i—1)d+1 i=1j=(i-1)d+1
Proof. Consider the CSD with vector k such that k1 = ko = ... = k, = d. Given the previously

defined vector k, we build a preference profile P as follows. Let S; be a set of d goods fori € {2,...,n}
such that S; NS =0 foralli # j € {2,...,n}, S1 = Sz, and Sp11 = G\ U;_, Si. We let S; be the
preferred goods of agent a; for i € [n]. Additionally, each agent a; with j € [n] prefers any good in S,
to any good in S; if s < t and s,t € [n] \ {j}. Lastly, we assume each agent a; with j € {2,...,n}
ranks goods in S, last and that a; ranks these goods just after the ones in 5.

One can easily check that for all i € [n], Uk(a;) = Z;‘i(i_l) d+1 55+ If we otherwise consider the

permutation 7 = (2,3,...,n,1), we obtain that the first n — 1 agents get utility Z?Zl sj while the
last agent of the sequence (agent a;) gets utility Z?d: d+15j- The three lower bounds follow. O

To give an example, let us take the Borda scoring vector. The price of assignment of agents to positions
is reasonable for utilitarianism, as it tends to 2 when m grows; it is much larger for egalitarianism
(it is in the order of m when m grows), with Nash being even worse (especially if n grows and d is
kept constant, P, - explodes). As a consequence, optimizing the CSD gives good ex ante fairness
guarantees, but much less ex post fairness guarantees (it is consistent with the well-known general
observation, in fair division, that ex post fairness guarantees are harder to obtain than ex post fairness
guarantees).

G Examples

All examples were computed using a sample of k& = 1000 preference profiles drawn from the distribution
of the table. Note that with FC and utilitarianism, every allocation is optimal.
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Table 4: Results for FC

(n,m) | SW | Best Policy Best Utilities
ESW {, 3) [4.0, 6.0]
24) [ NSW | (1, 3) [4.0, 6.0]
USW | (4,0) [10.0, 0.0]
ESW (2, 5) [13.0, 15.0]
27) [NSW | (2, 5) [13.0, 15.0]
USW | (7,0) [28.0, 0.0]
ESW 3,7) [27.0, 28.0]
(2,10) | NSW | (3,7) [27.0, 28.0]
UsSw (10, 0) [55.0, 0.0]
ESW | (L, 1,2) [4.0, 3.0, 3.0]
(3,4) [NSW | (L, 1,2) [4.0, 3.0, 3.0]
USW | (4,0, 0) [10.0, 0.0, 0.0]
ESW | (1,2, 4) [7.0, 11.0, 10.0]
(3,7) [NSW | (1,2 4) [7.0, 11.0, 10.0]
USW | (7,0,0) [28.0, 0.0, 0.0]
ESW | (2,3,5) [19.0, 21.0, 15.0]
(3,10) [NSW | (2,3, 5) [19.0, 21.0, 15.0]
USW | (10, 0, 0) [55.0, 0.0, 0.0]
ESW | (1, 1,1, 1) [4.0, 3.0, 2.0, 1.0]
(44) [NSW | (1,1, 1,1) [4.0, 3.0, 2.0, 1.0]
USW | (4,0,0,0) | [10.0, 0.0, 0.0, 0.0]
ESW | (1, 1,2 3) [7.0, 6.0, 9.0, 6.0]
(47) [NSW | (1, 1,2, 3) (7.0, 6.0, 9.0, 6.0]
USW | (7,0,0,0) | [28.0,0.0, 0.0, 0.0]
ESW | (2,2, 2,4) | [19.0, 15.0, 11.0, 10.0]
(4,10) [ NSW | (1,2,2,5) | [10.0, 17.0, 13.0, 15.0]
USW | (10,0,0,0) | [55.0, 0.0, 0.0, 0.0]
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Table 5: Results for IC

(n,m) | SW | Best Policy Best Utilities
ESW (2, 2) [7.0, 4.97]
24) [ NSW | (2, 2) (7.0, 4.97]
USW (2, 2) [7.0, 4.97]
ESW (3, 4) [18.0, 16.02]
27) [ NSW | (3, 4) [18.0, 16.02]
USW (4, 3) [22.0, 12.04]
ESW (4, 6) [34.0, 33.05]
(2,10) [ NSW | (4, 6) [34.0, 33.05]
USW (5, 5) [40.0, 27.59]
ESW | (1, 1,2) [4.0, 3.75, 4.97]
(34) [NSW | (1, 1,2) [4.0, 3.75, 4.97]
USW | (2,1, 1) [7.0, 3.34, 2.45]
ESW | (2 2, 3) [13.0, 12.0, 11.85]
3,7) [NSW | (2,2 3) [13.0, 12.0, 11.85]
USW | (3,2, 2) [18.0, 11.19, 7.96]
ESW | (3,3, 4) [27.0, 24.86, 22.11]
(3,10) [NSW | (3,3, 9) [27.0, 24.86, 22.11]
USW | (4,3,3) [34.0, 23.76, 16.64]
ESW | (1,1, 1,1) [4.0, 3.74, 3.35, 2.46]
(44) [NSW | (1, 1,1,1) [4.0, 3.74, 3.35, 2.46]
USW | (L1,1,1) [4.0, 3.74, 3.35, 2.46]
ESW | (1,2,2,2) | [7.0,1258, 11.16, 7.78]
(47) [NSW | (1,2,2,2) | [7.0,12.58, 11.16, 7.78]
USW | (2,2,2,1) [13.0, 11.99, 9.97, 3.9]
ESW | (2,2,2,4) | [19.0, 18.34, 17.35, 22.15]
(4,10) [ NSW | (2,2,3,3) | [19.0, 18.34, 23.59, 16.58]
USW | (3,3,2,2) | [27.0,24.79, 15.4, 10.92]
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Table 6: Results for PL,, with v = (1.1™,1.1™~1 ... 1.11)
(n,m) | SW | Best Policy Best Utilities
ESW (2, 2) [7.0, 4.96]
24) [NSW | (2,2) (7.0, 4.96]
USW | (2,2 [7.0, 4.96]
ESW (3, 4) [18.0, 15.9]
27) [ NSW | (3, 4) [18.0, 15.9]
USW | (4,3) [22.0, 11.92]
ESW (4, 6) [34.0, 32.37]
(2,10) [ NSW | (4, 6) [34.0, 32.37]
USWwW (5,5) [40.0, 26.74]
ESW | (1, 1,2) [4.0, 3.74, 5.06]
(34) [NSW | (1, 1,2) [4.0, 3.74, 5.06]
USW | (2,1, 1) [7.0, 3.33, 2.48]
ESW | (2 2, 3) [13.0, 11.94, 11.73]
3,7) [NSW | (2,2 3) [13.0, 11.94, 11.73]
USW | (3,2, 2) [18.0, 11.08, 7.9]
ESW | (3,3, 4) [27.0, 24.66, 21.45]
(3,10) [NSW | (3,3, 9) [27.0, 24.66, 21.45]
USW | (4 3,3) [34.0, 23.31, 16.0]
ESW | (1,1,1,1) [4.0, 3.76, 3.33, 2.47]
(44) [NSW | (1, 1,1,1) [4.0, 3.76, 3.33, 2.47]
USW | (1,1,1,1) [4.0, 3.76, 3.33, 2.47]
ESW | (1,2,2,2) | [7.0,1255, 11.17, 8.03]
(47) [NSW | (1,2,2,2) | [7.0,1255,11.17, 8.03]
USW | (2,2,1,2) [13.0, 11.98, 5.98, 8.09]
ESW | (2,2,2,4) | [19.0, 18.26, 17.09, 21.33]
(4,10) [ NSW | (2,2,2,4) | [19.0, 18.26, 17.09, 21.33]
USW | (3,3,2,2) | [27.0, 24,5, 14.89, 10.35]
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Table 7: Results for M11, ,, with ¢ = 0.8

(n,m) | SW | Best Policy Best Utilities
ESW (2, 2) [7.0, 5.03]
24) [ NSW | (2, 2) (7.0, 5.03]
USW (2, 2) [7.0, 5.03]
ESW (3, 4) [18.0, 15.45]
27) [ NSW | (3, 4) [18.0, 15.45]
USW (4, 3) [22.0, 11.51]
ESW (4, 6) [34.0, 31.33]
(2,10) [ NSW | (4, 6) [34.0, 31.33]
USW (5, 5) [40.0, 25.79]
ESW | (1,1,2) [4.0, 3.75, 4.98]
(34) [NSW | (1, 1,2) [4.0, 3.75, 4.98]
USW | (2,1, 1) [7.0, 3.32, 2.43]
ESW | (2 2, 3) [13.0, 11.86, 11.29]
3,7) [NSW | (2,2 3) [13.0, 11.86, 11.29]
USW | (3,2, 2) [18.0, 10.95, 7.36]
ESW | (3,3, 4) [27.0, 24.06, 20.22]
(3,10) [NSW | (3,3, 9) [27.0, 24.06, 20.22]
USW | (4 3,3) [34.0, 22.61, 14.93]
ESW | (1,1,1,1) [4.0, 3.73, 3.32, 2.42]
(44) [NSW | (1, 1,1,1) [4.0, 3.73, 3.32, 2.42]
USW | (L1,1,1) [4.0, 3.73, 3.32, 2.42]
ESW | (1,2,2,2) | [7.0,1251, 10.84, 7.68]
(47) [NSW | (1,2,2,2) | [7.0,12.51, 10.84, 7.68]
USW | (2,2,1,2) [13.0, 11.84, 5.77, 7.58]
ESW | (2,2,2,4) | [19.0, 18.11, 16.69, 19.98]
(4,10) [ NSW | (2,2,2,4) | [19.0, 18.11, 16.69, 19.98]
USW | (3,3,2,2) | [27.0, 24.02, 14.41, 9.49]
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100 95 9% 30 20 o0 O O O O O
100 12 11 0 o o o o o0 o0 o0
100 100 100 100 93 90 73 59 52 48 10
100 93 93 9 63 50 33 13 10 10 O
100 100 100 70 50 50 40 40 30 30 30 25
91 75 59 17 17 15 12 5 0 0 0 O
99 90 8 80 61 60 32 30 24 21 18 17
100 9 9% 8 60 50 10 10 5 5 O O
100 95 9 8 70 60 60 50 45 30 25 10
100 9 &8 8 8 70 60 52 40 30 20 10
100 8 75 60 50 15 10 S5 5 3 1 0
100 40 30 20 20 10 10 5 5 5 2 O
100 9 79 76 76 66 64 51 32 26 18 10
100 100 9 9 90 89 88 8 84 80 75 59
100 70 60 60 40 30 20 15 10 10 10 10
95 93 92 54 50 42 37 27 25 23 20

100 30 30 30 20 20 20 10 10 O O

100 98 94 94 94 92 92 92 90 80 68 10

S N © O

100 43 36 35 31 27 18 17 14 8 5 0
100 &8 8 70 25 15 15 10 5 S5 2 O
100 70 70 50 50 30 30 0 O O O O
100 82 81 7675 74 53 31 21 14 0 O
100 9 79 73 56 50 48 45 33 15 10 9
9 83 81 61 53 50 50 50 50 50 20 4
100 75 53 47 44 36 30 23 12 5 0 O
100 9 8 51 50 50 50 40 40 20 10 2
100 80 8 70 60 60 60 50 40 30 30 10

Table 2: List of the 27 scoring vectors (one per row) obtained for participants following the directives mentioning
a probabilistic interpretation for values assigned to ice-cream flavours.
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83 82 80 78 73 70 65 65 57 50 13 12
91 387 76 55 42 41 40 37 36 18 15 10
100 80 70 60 60 50 50 40 40 30 20 10
60 45 40 19 0 O O O O 0 0 O
80 80 73 73 65 59 56 34 O O 0 O
83 81 78 77 76 69 68 25 13 6 4 3
91 91 8 61 54 51 19 11 10 10 O O
8 82 74 72 48 6 0 O O O O O
8% 70 13 11 8 7 O O O O O O
49 49 40 35 30 20 14 10 10 S5 O O
76 70 68 60 57 55 55 55 40 40 25 10
100 66 0 0 O O O O o o0 o0 o0
8 8 82 80 73 71 69 61 60 52 43 34
9% 380 72 63 55 54 13 9 6 0O 0 O
100 99 80 70 65 60 51 4 3 2 1 0
100 92 88 78 73 62 50 41 40 28 7 3
97 92 77 59 49 43 33 30 18 0 0 O
100 78 70 21 0 O O O O O O O
79 59 52 43 32 20 15 14 12 12 11 10

8 78 78 75 71 49 32 16 & 0 O O
100 80 80 70 70 60 60 60 50 50 20 O
8 40 30 22 13 0 O O O O O O
72 64 61 61 41 34 31 28 26 18 12 11
91 8 74 67 64 62 57 15 10 9 0 O
8 75 70 58 55 27 16 O O O O O
8% 60 59 41 33 31 31 29 15 8 4 2
30 27 24 20 18 14 13 8 6 3 0 O

Table 3: List of the 27 scoring vectors (one per row) obtained for participants following the directives which did
not mention a probabilistic interpretation for values assigned to ice-cream flavours.
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