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Abstract

When allocating indivisible items to agents, it is known that the only strategyproof mechanisms

that satisfy a set of rather mild conditions are constrained serial dictatorships: given a �xed order

over agents, at each step the designated agent chooses a given number of items (depending on

her position in the sequence). Agents who come earlier in the sequence have a larger choice of

items; however, this advantage can be compensated by a higher number of items received by

those who come later. How to balance priority in the sequence and number of items received

is a nontrivial question. We use a previous model, parameterized by a mapping from ranks

to scores, a social welfare functional, and a distribution over preference pro�les. For several

meaningful choices of parameters, we show that the optimal sequence can be computed exactly

in polynomial time or approximated using sampling. Our results hold for several probabilistic

models on preference pro�les, with an emphasis on the Plackett-Luce model. We conclude with

experimental results showing how the optimal sequence is impacted by various parameters.

1 Introduction

In an ideal world, a mechanism for dividing a set of indivisible goods (or items, we use both terms

interchangeably) should be at the same time e�cient, fair, and insensitive to strategic behaviour. Now,

strategyproofness is a very strong requirement that severely limits the choice of mechanisms. The

question we address in this paper is, how can we design strategyproof mechanisms while retaining an
acceptable level of fairness and/or e�ciency?

It is known that under mild conditions, the only strategyproof mechanisms are within the family of serial
dictatorships (although the landscape is less dramatic when there are only two agents, see our related

work section). A standard serial dictatorship is de�ned by a permutation of the set of agents; at each

step, the designated agent chooses all the items she likes from those that are still available. A constrained
serial dictatorship (CSD), also called quota serial dictatorship, is similar except that at each step, the

designated agent chooses a prede�ned number of items. Notice that constrained serial dictatorship

is actually a particular case of the picking sequence protocol [e.g 11], restricted to non-interleaving
sequences where every agent picks all her entitled items in a row.

(Constrained or unconstrained) serial dictatorships are strategyproof and elicitation-free: they do not

require to know the agents preferences, which are only revealed through their picking choices. This

is a major property, as in many contexts, it is not realistic to hope eliciting all the agents preferences,

because it would be too big a communication burden, and also for privacy reasons. However, are they

acceptable on e�ciency and fairness grounds? Unconstrained serial dictatorships are clearly not: if

the �rst agent likes all items then she will pick them all. Constrained serial dictatorships do better, at

the price of the loss of Pareto-e�ciency; but still, agents appearing early in the sequence have a much

larger choice than those appearing late. This is patent in the case where there are as many items as

agents, each agent being entitled to only one item, CSDs cannot do better than this: the �rst agent will

get her preferred item, and the last agent will have no choice and might receive her least preferred item.

However, when there are more items than agents, and agents can receive several items, things become

better, because the advantage towards agents who come early in the sequence can be compensated by a

higher number of items received by those who come later. Suppose, as a simple example, that three
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items have to be assigned to two agents, A(nn) and B(ob). Assuming that Ann picks �rst, there are three

CSDs: (A:3,B:0) (Ann picks all items), (A:2,B:1) (Ann picks two, Bob one), and (A:1, B:2) (Ann picks one,

Bob two). It is intuitively clear that (A:1,B:2) is optimal, but how can optimality be de�ned? With four

items, things are less clear: (A:4,B:0) and (A:3,B:1) are clearly less desirable than (A:2,B:2) and (A:1,B:3),

but which of these two should we choose? And what if we have �ve agents and seventeen items?

To sum up: strategyproofness leaves us almost no choice but (constrained) serial dictatorship; some

are intuitively better than others. What remains to be done is to de�ne formal optimality criteria for
choosing between CSDs, and to compute optimal ones. Our paper addresses these questions.

A way of answering the �rst question has been suggested by Bouveret and Lang [11], and further

studied by Kalinowski et al. [30] (in the more general context of picking sequences).2 A standard way

of estimating the e�ciency and fairness of a CSD consists in evaluating the expected social welfare,
according to some social welfare functional [22] – egalitarian, Nash, utilitarian

3
– of the allocation

resulting from the application of the serial dictatorship. Because the agents’ values for items are not

known, Bouveret and Lang [11] estimate them from the ranks of items in an agent’s preference relation:

for each agent i, the value of item ranked in position j is a �xed value sj , independent from i. To
estimate the expected social welfare, in addition to the non-increasing scoring vector (s1, . . . , sm) one
also needs to assume a probability distribution over ordinal preference pro�les. These preferences

can be drawn following di�erent models as impartial culture, or more generally the Mallows [36], or

Plackett-Luce models [35, 39].

These three components (scoring vector, probability over pro�les, social welfare functional) allow to

associate an expected social welfare with any CSD. We de�ne optimal CSDs this way, for various scoring

vectors, three social welfare functionals, and various probability distributions.

For egalitarian social welfare, we provide a simple algorithm which returns an optimal CSD given that

one can compute the expected utility obtained by an agent when a CSD is used. This algorithm makes

it possible to compute an optimal (respectively, close to optimal) CSD when this expected utility is

polynomial-time computable (respectively, can be approximately evaluated, e.g., by sampling). We

also provide a dynamic programming algorithm that computes an optimal CSD for utilitarian, Nash or

egalitarian social welfare under a speci�c condition, which is met when preferences are fully correlated,

or when they are fully independent and follow the impartial culture or more generally the Plackett-Luce

model.

Sections 2 and 3 discuss related work and present our model. Section 4 presents our algorithms for

computing an optimal CSD. These algorithms assume the existence of an oracle which can compute

or estimate the expected utility of a picker given a CSD. Section 5 designs such oracles under various

model assumptions. Section 6 gives results for small values of n, and depicts and comments on the

evolution of the optimal sequences when all criteria except one are �xed.

2 Related Work

Strategyproof allocation of indivisible goods Various characterization theorems state that, under

mild additional conditions, strategyproof allocation mechanisms all have a serial dictatorship �avour:

with strict preferences over subsets, only serial dictatorships are strategyproof, neutral, and nonbossy

[43], whereas only sequential dictatorships (a generalization of serial dictatorship where the identity of

the agent picking in position k depends on the items assigned to the agents in positions 1 to k − 1) are
strategyproof, Pareto-e�cient, and nonbossy [41]. If preferences are quantity-monotonic (a bundle of
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larger cardinality is always preferred to one of lower cardinality) then a mechanism is strategyproof,

nonbossy, Pareto-e�cient and neutral if and only if it is a CSD (also called a quota serial dictatorship)

[38]. Similar characterizations hold replacing quantity-monotonic by lexicographic preferences [28, 29].

With standard monotonicity, only quasi-dictatorships remain, where only the �rst agent in the sequence

is allowed to pick more than one item [38]. Variants of these characterizations have been established by

Ehlers and Klaus [23], Bogomolnaia et al. [9] and Hat�eld [26]. Ignoring Pareto-e�ciency or neutrality

opens the door to more complex strategyproof mechanisms; a full characterization in the two-agent

case is given by Amanatidis et al. [2]. Amanatidis et al. [1] show that the CSD where all agents

except the last one pick only one item is a 1/bn−m+2
2

c-approximation to maxmin fair share. Weakening

strategyproofness into non obvious manipulability opens the door for more possibilities [40].

Nguyen et al. [37] show that when agents have preferences over sets of items de�ned from preferences

over single items by an extension principle, some scoring rules are strategyproof for some extension

principles. Allowing randomized mechanisms o�ers more possibilities, but not much [16, 25, 28, 33].

CSDs are also considered in chore allocation [5].

Picking sequences Sequential allocation of indivisible goods, also known as picking sequences,

originates from Kohler and Chandrasekaran [32], with a game-theoretic study of the alternating

sequence for two agents. Still for two agents, Brams and Taylor [15] consider other particular sequences.

Bouveret and Lang [11] de�ne a more general class of sequences, for any number of agents, and argue

that sequences can be compared with respect to their expected social welfare, using a scoring vector

and a prior distribution over pro�les. Kalinowski et al. [30] show that computing the expected utility

of a sequence is polynomial under full independence, and that strict alternation is optimal for two

agents, utilitarian social welfare and Borda scoring. The manipulation of picking sequences is studied by

Bouveret and Lang [12], Tominaga et al. [44] and Aziz et al. [4]. Flammini and Gilbert [24] and Xiao and

Ling [45] study the parameterized complexity of computing an optimal manipulation. Game-theoretic

aspects of picking sequences are addressed by Kalinowski et al. [31]. Chakraborty et al. [19] study

picking sequences for agents with di�erent entitlements. While all these works are oblivious to agent

identities, Caragiannis and Rathi [17] try to �nd an approximately optimum order of agents in a serial

dictatorship with a limited number of queries.

Maximizing social welfare in allocation of indivisible goods A classic way of guaranteeing a

level of fairness and/or e�ciency consists in �nding an allocation maximizing social welfare, under
the assumption that the input contains, for each agent, her utility function over all bundles of goods

(usually assumed additive). Egalitarian social welfare places fairness above all, utilitarian social welfare

only cares about e�ciency, and Nash social welfare is considered as a sweet spot in-between. See

[3, 6, 13, 34] for surveys. These mechanisms are not strategyproof.

3 Preliminaries: The Model

Given n ∈ N∗
, we use [n] to denote {1, . . . , n} and [n]0 to denote {0, 1, . . . , n}. Bold symbols represent

vectors.

LetA = {a1, . . . , an} be a set of n agents with ai the i
th
agent to intervene in the allocation process and

G = {g1, . . . , gm} a set ofm goods. A preference pro�le P =(�a1 , . . . ,�an) describes the preferences
of the agents: �a is a ranking that speci�es the preferences of agent a over the goods in G. We denote

by rkaP (g), the rank of item g in the ranking of a, given pro�le P . The preference pro�le is hidden, and
therefore not part of the input: we will assume that rankings are drawn independently according to some

probabilistic model, that we denote by Ψ.

Two well-known probabilistic models are the Mallows and Plackett-Luce models [35, 36, 39]:
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• The Mallows model is parameterized by a dispersion parameter φ ∈ [0, 1] and a ranking µ. We

denote this model by Mllµ,φ. In this model, the probability of a ranking r is proportional to

φdKT(r,µ)
, with dKT(r, µ), the Kendall-Tau distance between rankings r and µ.

• The Plackett-Luce (PL) model is parameterized by a value vector ν = (ν1, . . . , νm). Intuitively,
νi > 0 represents the social value of good gi. In this model, which we denote by PLν , the

probability of a ranking r = gi1 � gi2 � ... � gim is:

m∏
j=1

νij∑m
l=j νil

.

The Plackett-Luce model has proven particularly good for learning a preference relation over a

set of items (a.k.a. label ranking) [20] so it �ts particularly well here.

These models generalize the two following sub-cases:

• Impartial Culture, denoted by IC, in which each preference ranking is drawn u.a.r. from the set of

all possible rankings. Impartial culture is obtained when φ = 1 for the Mallows model and when

all values in ν are equal for the Plackett-Luce model.

• The Full Correlation case, denoted by FC stipulates that all agents have exactly the same preference

ranking. Full correlation is obtained when φ = 0 for the Mallows model (and also as the limit of

Plackett-Luce models νM = (Mm−1, . . . ,M, 1) when M →∞).

In the sequel, we obtain di�erent results for Ψ ∈ {FC, IC, Mllµ,φ, PLν}.

The items are allocated to the di�erent agents according to a CSD: given a vector k = (k1, . . . , kn)
of n non-negative integers, agent a1 will �rst pick k1 goods, then a2 will pick k2 goods within the

remaining ones, and so on until an picks kn items. In most cases, we will consider complete CSDs, in

the sense that

∑n
i=1 ki = m. However, we may also consider incomplete CSDs such that

∑n
i=1 ki < m.

We assume that agents behave greedily by choosing their preferred goods within the remaining ones.

This sequential process leads to an allocation that we denote by πk
P . More formally, πk

P is a function

such that πk
P (a) is the set of goods that agent a has obtained at the end of the sequential allocation

process, given preference pro�le P and vector k.

The utility of an agent for obtaining an item i will be derived using a scoring vector. Stated otherwise,

there is a vector s = (s1, . . . , sm) ∈ Q+m
such that si ≥ si+1 for all i ∈ [m− 1]. The value received

by an agent for obtaining her jth preferred item is sj . Di�erent scoring vectors can be considered. An

important example is the Borda scoring vector, where si = m − i + 1. Using scores as a proxy for

utilities is classic in social choice: this is exactly how positional scoring voting rules (e.g., the Borda

rule) are de�ned, and they are also used in fair division settings [7, 14, 21].

We denote by Uk
P (a) =

∑
g∈πk

P (a) srkaP (g) the utility obtained by a when receiving πk
P (a) and by

EUk
Ψ(a) = EP∼Ψ[U

k
P (a)] her expected utility given model Ψ. This assumes that agents have additive

preferences, which is very common in fair division. The utilitarian social welfare (USW) SWU
Ψ (k),

egalitarian social welfare (ESW) SWE
Ψ (k), and Nash social welfare (NSW) SWN

Ψ (k) are then de�ned

by:

SWU
Ψ (k) =

∑
a∈A

EUk
Ψ(a), SWE

Ψ (k) = min
a∈A

EUk
Ψ(a),

SWN
Ψ (k) =

∏
a∈A

EUk
Ψ(a).

Note that our social welfare notions are meant ex ante, i.e., we de�ne them on the expected utility

values of the agents. This is di�erent from the notion of ex post social welfare which considers the
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utility of the agents once the pro�le P issued from Ψ is determined.

Our objective is to study the following class of optimization problems OptSD-Ψ-x with x ∈ {U,E,N}.

OptSD-Ψ-x

Input: A number n of agents, a number m of

goods, and a scoring vector s.
Find: A vector k = (k1, . . . , kn) of n non-

negative integers with

∑n
i=1 ki = m maximiz-

ing SW x
Ψ(k).

The following easy observation will be useful:

Observation 1. For given n and m, the number of vectors k = (k1, . . . , kn) such that
∑n

i=1 ki = m
equals

(
n+m−1
n−1

)
.

From this observation, we can deduce that the number of potential vectors is lower-bounded by
mn−1

(n−1)! .

This number does not take into account a natural further assumption that the optimal sequence is

non-decreasing, that is, that k1 ≤ k2 ≤ . . . ≤ kn. We will see further that this assumption holds for

ESW (under a mild condition), but not for USW. When the assumption holds, we can restrict the search

to non-decreasing vectors; their number is the number of integer partitionsm into n numbers; it is still

exponentially large, but no closed form expression is known.

4 Computing an Optimal CSD

We now investigate the problem OptSD-Ψ-x with x ∈ {U,E,N}. All algorithms in this Section assume

access to an oracle algorithm TΨ(k, i) computing EUk
Ψ(ai) in time K(n,m, s). The computation of

expected utilities of agents for various models will be addressed in Section 5.

We start by a positive result for Egalitarian Social Welfare: the optimal CSD can be computed by the

greedy-like Algorithm 1. Completion(k) denotes, for any partial CSD k, the complete CSD such that

Completion(k)i=ki for i∈ [n− 1] and Completion(k)n=m−
∑

i∈[n−1] ki. In informal terms, k is

completed by giving all remaining goods to the last agent.

Algorithm 1 GreedyESW

Require: the number of agents n, the number of goods m, the scoring vector s, the oracle algorithm
TΨ

1: k← (0, . . . , 0) # empty CSD

2: max_k,max _esw ← k, 0
3: for t = 1 tom do
4: i← any value in argmini∈[n]EUk

Ψ(ai)
5: ki ← ki + 1
6: if SWE

Ψ (k) > max _esw then
7: max_k,max _esw ← k, SWE

Ψ (k)
8: end if
9: end for
10: return Completion(max_k);

At line 1, we start with an empty CSD, that we will modify in a greedy fashion. In the for loop (lines

3-9), we identify an agent with minimal expected utility (line 4) and increment the number of goods
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that she gets (line 5). The CSD that is returned is not necessarily this CSD k. During the algorithm,

we keep in variablesmax _esw andmax _k, the maximum ESW found so far and the corresponding

(partial) CSD. The algorithm returnsmax _k completed by giving all remaining goods to the last agent

(line 10). The completion step is not really necessary (the partial sequence obtained at line 9 already has

maximum expected egalitarian social welfare); its role is to ensure that no good is left unallocated. The

reason why one needs the test at line 6 is that letting the currently least happy agent pick one more

good may decrease the ESW, as can be seen on the following example.

Example 1. Let n = 2, m = 5, s = (50, 10, 4, 2, 1), and Ψ = IC. We show below the partial CSDs
obtained in each iteration t together with the expected utilities of both agents (they can be computed easily,
as we will see in Section 5) and the values of i andmax _esw.

t k max _k EUk
Ψ(a1) EUk

Ψ(a2) i max _esw
1 (0, 0) (0, 0) 0 0 1 0
2 (1, 0) (0, 0) 50 0 2 0
3 (1, 1) (1, 1) 50 42 2 42
4 (1, 2) (1, 2) 50 49.6 2 49.6
5 (1, 3) (1, 3) 50 52.4 1 50
6 (2, 3) (1, 3) 60 40.2 1 50

At iteration 5, the least happy agent is a1; however, letting a1 pick one more good, that is, k = (2, 3)
gives EUk

Ψ(a1) = 60 and EUk
Ψ(a1) = 40.2 (iteration 6), decreasing the currently optimal expected

ESW. Therefore,max _k is not replaced by k = (2, 3) at line 6 of the algorithm. The algorithm returns
Completion(max_k) = (1, 4) (with expected utilities 50 and 53.6) with the remaining good given to a2.

Proposition 1. Algorithm 1 returns a CSD k maximizing SWE
Ψ (k), solving problem OptSD-Ψ-E, in

time O(nmK(n,m, s)).

The proof is based on the following lemma:

Lemma 1. Let k̂ be a CSD. Let max _eswt, kt and it denote max _esw, k and i after line 4 of iteration t
of the for loop in Algorithm 1. For all t, a necessary condition for SWE

Ψ (k̂) > max _eswt is that k̂j ≥ ktj
for all j ∈ [n], and k̂it > ktit .

Proof. By induction. At iteration 0, the claim is obvious. Assume that the claim holds for iteration t,
and let k̂ be a CSD such that SWE

Ψ (k̂) > max _eswt+1
. Then obviously SWE

Ψ (k̂) > max _eswt
as

max _eswt+1 ≥ max _eswt
. Because the condition holds for iteration t and by construction of kt+1

we have that k̂j ≥ kt+1
j for all j ∈ [n]. Now suppose that k̂it+1 = kt+1

it+1 . In that case, SWE
Ψ (k̂) ≤

EUkt+1
(ait+1) ≤ max _eswt+1

, a contradiction with the induction hypothesis. The �rst inequality is

due to the fact that ait+1 will get the same number of goods in k̂ and kt+1
while the agents picking

before her will get at least as many goods in k̂ than in kt+1
. The second inequality is due to the

de�nition of it+1
.

Proof of Proposition 1. Suppose that there exists a CSD k̂ such that SWE
Ψ (k̂) > max _esw. Lemma 1

applied at iteration t = m implies that each agent receives more objects with k̂ than with the greedily

constructed complete CSD k obtained at the end of the for loop. As they both havem objects to allocate,

they must be equal. This is a contradiction of the hypothesis as max _esw ≥ SWE
Ψ (k).

We now go beyond egalitarian social welfare. For utilitarian and Nash social welfare, we do not know

of an e�cient algorithm which would work for any distribution. A general approach could be to sample

a large but hopefully reasonable number of preference pro�les from Ψ and �nd a CSD with maximal
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social welfare considering the average utility of each agent. Yet, we prove in Appendix B that such an

approach leads to an NP-hard problem for USW.

However, provided the distribution satis�es a natural condition, a CSD maximizing utilitarian and Nash

social welfare can be computed by dynamic programming. This condition on Ψ states that EUk
Ψ(a)

only depends on the number of items picked by a, and the number of items that have been picked before

a, but not on the number of agents who have picked before and how many items they have picked each.

De�nition 1. A distribution Ψ satis�es pre�x independence if for any sequence k and i ∈ [n], if a is
the ith picker in k, then EUk

Ψ(a) only depends on (1) κ = ki, the number of goods that she picks, and (2)
τ =

∑i−1
j=1 kj , the number of goods that have been picked before she starts picking.

Under pre�x independence, the utility that agent a gets when picking κ goods while τ have already

been picked, eu(κ, τ), is well-de�ned, and is exactly equal to EUk
Ψ(a) when a is the ith picker κ=ki

and τ=
∑i−1

j=1 kj .

For pedagogical purposes, let us �rst focus on maximising USW. When pre�x independence is met, one

can use the following dynamic programming equations:

F (i, τ) = max
κ∈[m−τ ]0

(eu(κ, τ)+F (i+ 1, τ + κ)),

∀i, τ ∈ [n− 1]× [m]0, (1)

F (n, τ) =eu(m− τ, τ),∀τ ∈ [m]0,

where F (i, τ) corresponds to the maximum USW that can be obtained by agents {ai, ai+1, . . . , an} in
the situation in which τ goods have already been allocated and we allocate them− τ remaining goods

to them. Of course the optimal value is given by F (1, 0).

The other problems can be solved similarly. For problem OptSD-Ψ-E (resp. OptSD-Ψ-N ), one should

adapt Equation 1 by replacing the sum operation between eu(κ, τ) and F (i+ 1, τ + κ) by a min (resp.

multiplication) operation.

Proposition 2. If Ψ satis�es pre�x independence, problems OptSD-Ψ-U , OptSD-Ψ-E and OptSD-Ψ-N
can be solved in O(nm2K(n,m, s)) time.

We conclude by giving a structural property satis�ed by an optimal CSD for ESW when pre�x indepen-

dence holds. We will see that such property does not necessarily hold for USW (see Appendix B and

Section 6).

Proposition 3. Under pre�x independence, there exists an optimal solution to OptSD-Ψ-E which is
non-decreasing, i.e., in which the earlier an agent picks, the less goods she gets.

This property is not true with utilitarian social welfare. Take n = 4, m = 10, the IC model and the

Borda scoring vector. Then k = (3, 3, 2, 2) is optimal for utilitarian social welfare, k = (2, 2, 3, 3) for
Nash social welfare, and k = (2, 2, 2, 4) for egalitarian social welfare. Utilitarianism gives the �rst

two agents more goods than the last two; the �rst agents have the cake and eat it, as they pick more

goods and have more choice. The intuition is that late agents may end up with items of low utility;

egalitarianism compensates by giving them more, while utilitarianism avoids this "waste" by favoring

earlier agents, who are more likely to secure high-utility items.

5 Computing the Expected Utility of an Agent

In this section, we address the computation of EUk
Ψ(a). Pre�x independence again plays a crucial role:

when it is satis�ed, EUk
Ψ(a) only depends on the number of items picked by a, and the number of items

that have been picked before a, but not on the number of agents who have picked before and how many

items they have picked each. We �rst investigate which of our di�erent probabilistic models satisfy it.
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Proposition 4. Ψ ∈ {FC, IC} satisfy pre�x independence.

Proof. Consider a situation where an agent starts picking while τ goods have previously been picked.

When Ψ = FC or Ψ = IC, the probability distribution on the set S of goods that have previously

been picked only depends on τ : for Ψ = FC, this probability distribution assigns probability 1 to the

set composed of the τ (unanimously) most preferred goods; for Ψ = IC, this probability distribution

assigns equal probability to all sets of size τ and 0 to others. Note that, given the set S, the utility that

the agents get is then determined by the number of goods she picks.

More interestingly, the PLν model, which generalizes FC and IC, also satis�es pre�x independence.

Proposition 5. Ψ = PLν satis�es pre�x independence.

To reason on the Plackett-Luce model, one can use the vase model metaphor [42] Consider a vase �lled
with m types of balls, the proportion of balls of type j being f(j) =

νj∑m
l=1 νl

. The ranking is then

generated by the following sequential process. At each stage, a ball is taken from the vase such that a

ball of type j is chosen with probability f(j). If the ball is of a di�erent type than the ones previously

picked, it yields the next good in the ranking. In either case, the ball is put back in the vase and the

process continues. Using this metaphor, one can prove the following lemma (whose formal proof is

postponed to Appendix C).

Lemma 2. Let I = (i1, . . . , iq) be a sequence of q di�erent indices in [m]. Consider the following two
cases:

i) Agent a1 picks q goods;

ii) Agent a1 picks q1 goods and agent a2 picks q2 goods with q1 + q2 = q.

For the PL model, the probability that for all t ∈ [q], git is picked at timestep t is the same in cases i and ii.

Proof of Proposition 5. We recall that the preference rankings of the agents are drawn independently

from PLν . Using Lemma 2 and a simple induction argument, we get that the probability of a speci�c

sequence of q consecutive picks is the same regardless of whether they were picked by one, two or

more agents. This entails that the probability distribution on the set S of goods that have been picked

after τ timesteps only depends on the value of τ . Hence, the expected utility that an agent gets when

choosing κ goods once τ have been picked only depends on the values of κ and τ .

Unfortunately, things are di�erent for the Mallows model:

Proposition 6. There exists φ ∈ (0, 1) and a ranking µ such that Ψ = Mllφ,µ does not satisfy pre�x
independence.

This holds even for 3 agents and 3 goods. See Appendix C for the proof.

Computation of EUk
Ψ(a) Under pre�x independence, we show how to compute eu(κ, τ) e�ciently,

starting by FC.

Proposition 7. If Ψ = FC, eu(κ, τ) =
∑τ+κ

i=τ+1 si. All values eu(κ, τ) can be computed in time O(m2)
with the recursive formula eu(κ, τ) = eu(κ− 1, τ) + sκ+τ .
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We then turn to Ψ = IC, and show that the values eu(κ, τ) can be computed using a recursive formula.

Let T (j, κ, τ) denote the utility that an agent can get if she can pick κ goods within the ones of rank in

{j, . . . ,m}, given that τ of these goods have been picked by preceding agents. Then, it is clear that we

have:

eu(κ, τ) = T (1, κ, τ),∀κ, τ ∈ [m]0 × [m− κ]0

The key point is that there is a probability 1− τ
m−j+1 that the good of rank j is free and in this case

the agent will pick this good, and a probability of
τ

m−j+1 that this good is one of the τ goods that have

previously been picked. In both cases, we move to goods of rank in {j + 1, . . . ,m}. In the �rst case,

we decrease κ by one as the agent has picked a good. In the second case, we decrease τ by 1 as we have

identi�ed one of the goods picked within the ones of rank j to m. Hence, eu(κ, τ) can be computed by

the following formula:

T (j, κ, τ) = (1− τ

m− j + 1
)(sj + T (j + 1, κ− 1, τ))

+
τ

m−j+1
T (j+1, κ, τ−1),

∀j, κ, τ ∈ [m− 1]×[m− j + 1]0×[m− j − κ+ 1], (2)

with the following base cases:

T (j, 0, τ) = 0, ∀j, τ ∈ [m]× [m− j + 1]0

T (j, κ, 0) =
∑

j≤i<j+κ

si, ∀j, κ ∈ [m]× [m− j + 1]0.

By computing all values T (j, κ, τ) in O(m3) operations, we obtain the following result.

Proposition 8. If Ψ = IC, then all values eu(κ, τ) can be computed in time O(m3) by using Equation 2.

Propositions 2, 7, and 8 imply that OptSD-Ψ-x for x ∈ {U,E,N} can be solved in polynomial time for

Ψ = FC and Ψ = IC, in O(nm2) for Ψ = FC and O(m2max(n,m)) for Ψ = IC, by precomputing all

values eu(κ, τ) before running the dynamic programming algorithm.

For Ψ 6∈ {IC, FC}, one can still use GreedyESW and the dynamic programming algorithm with values

EUk
Ψ(a) approximated by sampling, providing close-to optimal CSDs: the returned CSD is optimal

with expected utility values replaced by their approximate values.
4

For the general PLν model beyond FC and IC, we do not know whether values eu(κ, τ) can be computed

exactly in polynomial time; however, they can be e�ciently approximated by sampling preference

pro�les fromΨ and averaging the utility values obtained on the samples, with approximation guarantees

from Hoe�ding’s (1963) inequality.

To present this guarantee, let uκ,τ (P , s) denote the utility value obtained by the second picker when

she picks her κ preferred (available) goods, while the �rst picker has picked her τ preferred ones, given

the preference pro�le P .

Proposition 9. Let ε>0 and δ∈(0, 1) two �xed values, and Υ an upper bound on values eu(κ, τ) (e.g.,∑m
i=1 si).

Let ẽuκ,τ be the value computed by averaging the values uκ,τ (P i, s) overN preference pro�lesP i sampled
independently from Ψ. If N ≥ (Υ2 ln (2m2/δ))/2ε2, then it holds with probability 1− δ that:

|eu(κ, τ)− ẽuκ,τ | ≤ ε, ∀κ, τ ∈ [m]× [m− κ].

4

Some mild monotonicity conditions are required on the approximated EUk
Ψ(a) values for the validity of Algorithm 1.
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Moreover, we show that these utility values can be computed exactly in time FPT (Fixed-Parameter

Tractable) with respect to parameter m and XP (slicewise polynomial) with respect to ρ, where ρ is the

number of distinct values in ν. This seems particularly appealing as goods may often be partitioned in

categories. When ρ = 1, all goods are in the same category and we obtain the IC model; when ρ equals

2 or 3 we obtain categories {high value, low value} or {high value, medium value, low value}.

Proposition 10. If Ψ = PLν , then all values eu(κ, τ) can be computed in time O(4mPoly(m)).

Proposition 11. If Ψ = PLν , then all values eu(κ, τ) can be computed in time O(m2ρPoly(m)).

6 Numerical Tests

We performed several experiments to explore the properties of the CSDs obtained by maximizing either

USW, NSW or ESW. More precisely, we explored the impact of increasing one of the parameters, all

other parameters being �xed.

Impact of the number of goods Figure 1 displays the proportion of utility (left-hand side) and

goods (right-hand side) obtained for n = 5 and increasing the number of goodsm from 5 to 300 in steps

of 5. To generate both �gures, the IC model and the Borda scoring vector were used and we optimized

either USW, ESW or NSW.

Several comments can be made. First, as expected, in the egalitarian case (middle of Figure 1), we

observe that as m increases, the distribution of utility received by each agent converges towards equal

share.
5
In order to achieve this, the agents who arrive later in the sequence receive more items.

Second, with Borda and utilitarianism, the �rst agent in the sequence may pick more items than others

(plots on top of Figure 1). More generally, on this plot, the utility of an agent seems to decrease with

the position in the sequence.

Finally, for the Borda scoring vector, the Nash social welfare objective seems to yield somewhat

intermediate results between the utilitarian and the egalitarian ones, but seems to be closer to the latter.

Impact of correlation We explore the impact of correlation, through the parameters φ and ν of

models PLν and Mllφ,µ. We use the Borda scoring vector and maximize ESW. To run Algorithm 1,

we approximate the expected utility values of the agents by sampling 10000 preference pro�les from
PLν and from Mllφ,µ with the PrefSampling library [8]. Figure 2 displays the utility value (plots at

the bottom) and the number of items (top) received by each of 5 agents with m = 70 goods, for

models PLν (right) and Mllφ,µ (left), for ESW and Borda scoring vector
6
. In the former model, we use

νx = (xm, xm−1, . . . , x1) and decrease x from 1.5 (which already yields very correlated preference

pro�les in similar to FC) to 1 (IC) in steps of 0.01. In the latter model, we increase φ from 0 (FC) to 1

(IC) in steps of 0.02.

Several comments are in order. First, as can be seen in Figure 2, the utility values of all agents (and hence

their sum) increase when x decreases or φ increases. Indeed, as we come closer to IC, the preferences

of the agents become more di�erent, allowing some agents to receive some of their preferred items

even if they pick late in the allocation process.

Second, the number of goods received by the �rst agents in the CSD increases while it decreases for

the last ones. Indeed, as these latter agents can receive more preferred goods, the CSD needs less to

compensate by giving them a high number of goods (recall that we optimize ESW).

5

This observation is proven formally in Appendix D.

6

This choice was motivated by the fact that Borda is the most standard scoring vector and the ESW naturally conveys

fairness.
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Figure 1: Portion of total utility (plots on the left) and of goods (right) received by each of 5 agents with m
increasing from 5 to 300 in steps of 5. Maximizing USW (plots at the top), NSW (bottom), or ESW (middle), using

Borda scoring vector and IC. The 1st picker corresponds to the color blue (at the bottom of each plot) while the

5th and last agent to pick corresponds to the color purple (at the top of each plot). Moreover, note that the values

plotted are in fact cumulative values.

Third, we notice that both models PLν and Mllφ,µ yield very similar plots as we decrease the level of

correlation.

Code and an interactive demo are available at https://github.com/GuillaumeMeroue/CSD-can-be-Fair

and https://guillaumemeroue.github.io/IJCAI25. This Web application makes it possible to explore the

characteristics of optimal CSDs for various scoring vectors, probabilistic models, number of agents and

goods.

7 Discussion

The practical use of our setting raises a few questions.

First, we need to choose a distribution. The choice has to be tailored to the domain at hand, and

distributions can be learnt using some preference learning models and techniques. If computation time

is an important issue then it is wise to learn a Plackett-Luce model [20].

Second, we need to choose a scoring vector as a proxy for agents’ valuations over items. Again, this

depends on the speci�c domain at hand. For each context, the scores can be estimated by an experiment

where subjects are presented with a list of items to elicit their valuations; see Appendix E.

Third, we need to choose a social welfare functional. We have seen that, unsurprisingly, utilitarianism

may lead to clearly unfair solutions and should be used only with care. As usual, egalitarianism may
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Figure 2: Number of goods received per agent (top); expected utility value per agent (bottom) as a function of φ
for Mllφ,µ and x for PLνx . Maximizing ESW, Borda scoring vector, n = 5,m = 70.

lead to a loss of e�ciency, but is easier to compute or approximate; Nash is a good trade-o� (see [18] for

a manifesto towards using Nash social welfare in fair division) but is hard to compute if the distribution

does not satisfy pre�x independence.

Four, once a CSD is found, it is anonymous: for instance, with two agents, if the output is (1, 2), it does
not say who should start picking. Assigning agents to positions in the sequence has no impact on ex
ante social welfare, but it may have an impact on ex post social welfare (see Appendix F).

8 Conclusion

Our main messages are: (1) imposing strategyproofness does not leave much choice beyond constrained

serial dictatorships; (2) some constrained serial dictatorships are fairer than others; (3) their e�ciency

and fairness can be measured by expected social welfare, de�ned by a scoring vector, a distribution

over pro�les, and a social welfare functional; (4) depending on the social welfare functional and the

distribution, the optimal sequence can be polynomial-time computable, e�ciently approximated by

sampling, or hard to approximate by sampling. The following table summarizes the results obtained. PI

means that pre�x independence is satis�ed, poly means “polynomial-time computable”, and approx

means “e�ciently approximable by sampling”.

Ψ PI EUk
Ψ(ai) Egal Nash Uti

FC yes poly poly poly poly

IC yes poly poly poly poly

PLν yes approx approx approx approx

Mllφ,µ no approx approx ? ?

Even in the cases where we are able to compute optimal sequences in polynomial time, we do not know

any closed-form formulas for these optimal sequences.

If items were bads (e.g., chores) instead of goods, a similar methodology would work, with values in the

scoring vector representing costs. Of course, agents coming �rst in the sequence should now take more
items than those coming later.
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Supplementary material to submission “Constrained Serial
Dictatorships can be Fair”

A Omitted Proofs of Section 3

Observation 1. For given n and m, the number of vectors k = (k1, . . . , kn) such that
∑n

i=1 ki = m
equals

(
n+m−1
n−1

)
.

Proof. Choosing n numbers (k1, . . . , kn) matching the de�nition amounts to partition [m] into n
subintervals, which in turn amounts to choose n − 1 “separation bars”. Said otherwise, this comes

down to choose n− 1 increasing numbers l1 ≤ . . . ≤ ln−1 among m+ 1. Here, ki = li − li−1, with

the convention that l0 = 0. This problem can be equivalently formulated as the one of drawing n− 1
di�erent numbers among n+m− 1. For each such draw, we can obtain a set of increasing numbers

l′1 ≤ . . . ≤ l′n−1 between 1 and n+m− 1, that can be cast to increasing numbers between 0 andm by

choosing li = l′i − i. Since there are
(
n+m−1
n−1

)
subsets of n− 1 elements among n+m− 1, we obtain

the result.

B Omitted Proofs of Section 4

We now show that pre�x independence entails a speci�c property for the optimal solutions of

OptSD-Ψ-E.

Proposition 3. Under pre�x independence, there exists an optimal solution to OptSD-Ψ-E which is
non-decreasing, i.e., in which the earlier an agent picks, the less goods she gets.

Proof. Let eu(κ, τ) denote the utility obtained by an agent if we allocate κ items to her knowing

that τ items have already been allocated. As items have positive valuations and agent’s prefer-

ence rankings are drawn independently from the same probabilistic model, it is easy to prove that

eu(κ, τ) is non-decreasing in κ and non-increasing in τ . Let us consider a solution k = (k1, . . . , kn),
which is not a non-decreasing vector. Then, there exists i ∈ [n − 1] such that ki > ki+1. We set

τi =
∑i−1

j=1 kj , τi+1 = ti + ki and τ ′i+1 = ti + ki+1. From the properties of function eu, it is clear

that min(eu(ki, τi), eu(ki+1, τi+1)) = eu(ki+1, τi+1) ≤ min(eu(ki+1, τi), eu(ki, τ
′
i+1)). Hence, by

swapping ki and ki+1 in k, we do not decrease the egalitarian score of k (note that this swap does not

a�ect the utility values received by agents other than ai and ai+1). The repetition of this argument

shows that there exists an optimal solution to OptSD-Ψ-E which is a non-decreasing vector.

We will see in the following example that this property fails for utilitarian social welfare. For Nash

social welfare, we conjecture it holds, but so far we do not have a proof.

Example 2. Let n = 3,m = 7 and the Borda scoring vector. By dynamic programming we �nd the values
eu(κ, τ) displayed on Table 1. For USW, we obtain an optimal vector k = (3, 2, 2), yielding expected social
welfare 37.2. For maximizing ESW and NSW, we obtain k = (2, 2, 3), with expected social welfare 12
and 1872 respectively. Note that the optimal vectors for ESW and NSW may be di�erent: with n = 4 and
m = 10 and the Borda scoring vector, k = (2, 2, 2, 4) is optimal for ESW ; and k = (2, 2, 3, 3) for NSW.

We see on Example 2 that the optimal sequence for utilitarian social welfare, IC, and Borda scoring, is

not non-decreasing, and thus clearly not fair: the �rst agent in the sequence not only has a larger choice

of items but picks one more than the other two! It is not new that utilitarianism may clash fairness

when looking for optimal CSDs: for instance, it is known that the optimal sequence for utilitarianism,

Borda scoring, FI, n = 2 and m even is perfect alternation 1212 . . . 12, which is obviously not fair [30].
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Table 1: Utilities eu(κ, τ) in Example 2; m = 7, IC model.

κ\τ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 7 6.86 6.67 6.4 6 5.33 4 -

2 13 12.57 12 11.2 10 8 - -

3 18 17.14 16 14.4 12 - - -

4 22 20.57 18.67 16 - - - -

5 25 22.86 20 - - - - -

6 27 24 - - - - - -

7 28 - - - - - - -

(Still, we continue to include utilitarianism in our study, �rst for the sake of comparison, and second

because utilitarianism is relevant in some situations.)

The following result concerns utilitarian social welfare:

Proposition 12. Given a scoring vector s, a �nite set P of n-agent preference pro�les over a set of goods
and an integerK , the problem of determining whether there is a CSD k such that the average utilitarian
social welfare of k over all pro�les of P is greater than or equal to K is NP-complete.

Proof. We will prove the proposition by reduction from Exact-Cover-By-3-Sets (X3C):

X3C

Input: A setX = {x1, . . . , xn} of n elements; a

collection S = {S1, . . . , Sm} ofm subsets such

that ∀S ∈ S , S contains exactly three elements

of X .
Question: Does there exist a subcollection

C ⊆ S , such that

⋃
S∈C S = X and S ∩ S′ =

∅,∀S, S′ ∈ C.

Let (X ,S) be an X3C instance. From that instance, we create an instance of our problem with n goods

and 3m agents such that the set of goods is exactly X (by notation abuse), and such that there are 3

agents a1S , a
2
S , and a3S for each set S ∈ S .

For each set S = {a, b, c} ∈ S , we create 3 rankings raS , rbS , rcS such that raS starts with a, rbS starts with

b, and rcS starts with c (the rest of the ranking does not matter). Then for each pair of agents (aiS , a
j
T )

with S 6= T , we create 9 pro�les as follows:

• if S = {a, b, c}, agents a1S , a2S , a3S have rankings from {(raS , rbS , rcS), (rbS , rcS , raS), (rcS , raS , rbS)};

• if T = {d, e, f}, agents a1T , a2T , a3T have rankings from {(rdT , reT , r
f
T ), (r

e
T , r

f
T , r

d
T ), (r

f
T , r

d
T , r

e
T )};

• for each X = {x, y, z} di�erent from S and T , agents a1X , a2X , a3X have rankings (rxX , ryX , rzX).

This thus makes
81m(m−1)

2 pro�les in total. Now, the scoring vector is such that the top object has

utility 1 while all the other items have utility 0. We will prove that there exists an exact cover i� there

exists a CSD with average utility at least n.

(⇒) If C ⊆ S is an exact cover, let agents aiS for S ∈ C and i ∈ {1, 2, 3} pick one item. By construction,

for each pro�le, these agents will all have their top choices yielding a utility of n.
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(⇐) Conversely, let k be a CSD yielding utility n for all pro�les. Necessarily k gives exactly one item to

n agents. Let aiS and ajT be two such agents, with S 6= T . Suppose that S ∩ T 6= ∅ and let x ∈ S ∩ T .

In the pro�le where aiS has ranking rxS and ajT has ranking rxT both agents have the same top object.

Hence, the utility yielded by k is necessarily strictly lower than n for this pro�le, a contradiction with

the hypothesis. This proves that all the agents aiS and ajT receiving an object in k are such that either

S = T or S ∩ T = ∅. Hence, we necessarily obtain n/3 sets who are pairwise disjoint and hence

provide an exact cover.

C Omitted Proofs of Section 5

To prove Lemma 2, we �rst need to prove the following Lemma.

Lemma 3. Let r̃ : gi1 � gi2 � . . . � giq be an incomplete ranking over G with q ≤ m. Under the PL
model, the probability to generate a ranking r which is a consistent extension of r̃ is equal to:

q∏
j=1

νij∑q
l=j νil

Proof. Let S ∈ G be the set of goods on which r̃ express preferences. The lemma can easily be derived

from the vase model metaphor. Consider the following slightly di�erent sequential process. At each

stage, a ball is taken from the vase such that a ball of type j is chosen with probability f(j). If the ball
is of a di�erent type than the ones previously picked, and is a ball of a type corresponding to an element
of S, then it yields the next item in the ranking. In either case, the ball is put back in the vase and the

process continues. This process generates a ranking on the elements of S according to the original PL

model. We get that the probability of r̃ is:

q∏
j=1

νij∑q
l=j νil

.

Lemma 2. Let I = (i1, . . . , iq) be a sequence of q di�erent indices in [m]. Consider the following two
cases:

i) Agent a1 picks q goods;

ii) Agent a1 picks q1 goods and agent a2 picks q2 goods with q1 + q2 = q.

For the PL model, the probability that for all t ∈ [q], git is picked at timestep t is the same in cases i and ii.

Proof. We will show that in both cases, the probability that for all t ∈ [q] git is picked at timestep t is:

pI =

q∏
j=1

νij∑q
l=j νil +

∑
p∈[m]\I νp

.

In case i), git is picked at timestep t for all t ∈ [q] if rka1P (git) = t for all t ∈ [q]. Under the PL model,

this occurs with probability pI .
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In case ii), let I1 (resp. I2) be the subsequence composed of the q1 �rst (resp. q2 last) elements of I and

S1 = {gi1 , . . . , giq1} (resp. S2 = {giq1+1 , . . . , giq}). In the PL model, the probability that a1 picks git at
timestep t for all t ∈ [q1] is:

p1I =

q1∏
j=1

νij∑q
l=j νil +

∑
p∈[m]\I νp

.

Then, the probability that a2 picks git at timestep t for all t ∈ [q] \ [q1] corresponds to the probability

that git is ranked at position t− q1, when restricting ourselves to the goods in G \ S1. Put another way,

goods in S2 should be ranked in the top q2 positions in the partial ranking which only ranks goods

in G \ S1. Let r̃ : gi′1 � gi′2 � . . . � gi′m−q1
be one such ranking over G \ S1 with gi′l = gi(q1+l)

for all

l ∈ [q2]. Resorting to Lemma 3, r̃ occurs with probability:

q2∏
j=1

νi′j∑m−q1
l=j νi′l

m−q1∏
j=q2+1

νi′j∑m−q1
l=j νi′l

.

By marginalizing over all such rankings, the second product vanishes as we obtain the sum of probabili-

ties over all rankings over G \ (S1 ∪ S2) under PLν . Hence, we get probability:

p2I =

q2∏
j=1

νi′j∑q2
l=j νi′l +

∑
p∈[m]\I νp

.

The product of p1I and p2I yields exactly pI .

Proposition 6. There exists φ ∈ (0, 1) and a ranking µ such that Ψ = Mllφ,µ does not satisfy pre�x
independence.

Proof. To see why, consider the case of m = 3 items and n = 3 agents, and a Mallows model with

center µ = a � b � c and parameter φ. The probability of a ranking r to occur is φdKT (r,µ)/C where

C = 1 + 2φ + 2φ2 + φ3
is a normalization constant. The probabilities of the di�erent rankings are

described on the table below.

Probability Ranking

1 1/C a � b � c
2 φ/C a � c � b
3 φ/C b � a � c
4 φ2/C b � c � a
5 φ2/C c � a � b
6 φ3/C c � b � a

If the expected utility that an agent gets in the allocation process only depend on the number of goods

that she picks and that have been picked before she started picking, then it should be the same for a3 if
(1) a1 and a2 both picked one and if (2) a1 picked two and a2 picked zero items. We will see that it is

not the case. Let us assume that s = (1, 1, 0) so that a3 only cares about not getting her least preferred

item. The probability that a (resp. b, c) is her least preferred good is φ2(1 + φ)/C (resp. φ(1 + φ)/C ,

(1 + φ)/C).

We can compute the probability that the �rst two goods picked (by agent 1 and 2) are a and b in the

two cases. In the �rst case, either agent 1 picks a �rst (so it has ranking 1 or 2) and agent 2 picks b (so it
has ranking 1, 3 or 4), or agent 1 picks b �rst (ranking 3 or 4) and agent 2 picks a (ranking 1 or 2 or 3).

The probability of this is
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1 + φ

C

1 + φ+ φ2

C
+

φ+ φ2

C

1 + φ+ φ

C

=
(1 + φ)(1 + 2φ+ 3φ2)

C2

In the second case, the probability that agent 1 picks both a and b is the probability of rankings 1 and 3,

which is:

1 + φ

C
=

(1 + φ)(1 + 2φ+ 2φ2 + φ3)

C2
.

Similarly:

• The probability that items a and c are picked by the �rst two agents is φ(1 + φ)/C in cases 1 and

2.

• The probability that items b and c are picked by the �rst two agents is φ3(1+φ)(3+2φ+φ2)/C2

in case 1 and φ2(1 + φ)/C in case 2.

As a result, the probability that a3 gets her least preferred good is:

(1 + φ)2

C2

(1 + 2φ+ 3φ2)

C
+ φ2 (1 + φ)2

C2

+φ4 (1 + φ)2

C2

(3φ+ 2φ2 + φ3)

C

in case 1 and

(1 + φ)2

C2
+ φ2 (1 + φ)2

C2
+ φ4 (1 + φ)2

C2

in case 2. These are two di�erent values, e.g., for φ = 0.5 we obtain 0.440 in case 1 and 0.429 in case

2.

Proposition 9. Let ε>0 and δ∈(0, 1) two �xed values, and Υ an upper bound on values eu(κ, τ) (e.g.,∑m
i=1 si).

Let ẽuκ,τ be the value computed by averaging the values uκ,τ (P i, s) overN preference pro�lesP i sampled
independently from Ψ. If N ≥ (Υ2 ln (2m2/δ))/2ε2, then it holds with probability 1− δ that:

|eu(κ, τ)− ẽuκ,τ | ≤ ε, ∀κ, τ ∈ [m]× [m− κ].

Proof. Let euiκ,τ represent the utility of an agent receiving t items after k items have already been taken,

for the preference pro�le Pi such that ẽuκ,τ =
∑n

i=1 eu
i
κ,τ .

We aim to show that with probability at least 1− δ, the sampled value of utility is close to the expected

utility within ε. Formally, we want:

Pr

(∣∣∣∣ ẽuκ,τn
− euκ,τ

∣∣∣∣ ≤ ε

)
≥ 1− δ
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However, this form is not directly suitable for applying Hoe�ding’s inequality, so we �rst perform some

manipulations. We have:

Pr

(∣∣∣∣ ẽuκ,τn
− euκ,τ

∣∣∣∣ ≤ ε

)
= 1− Pr

(∣∣∣∣ ẽuκ,τn
− euκ,τ

∣∣∣∣ > ε

)
≥ 1− Pr

(∣∣∣∣ ẽuκ,τn
− euκ,τ

∣∣∣∣ ≥ ε

)

Hoe�ding’s inequality gives us:

Pr

(∣∣∣∣ ẽuκ,τn
− euκ,τ

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)

Given that euiκ,τ are identically distributed, we can rewrite

∑n
i=1(bi − ai)

2
as n × (b − a)2, where

a =
∑t

i=1 s(i) when the agent receives the items they like the least, and b =
∑t

i=1 s(m− i) when the

agent receives the items they prefer the most. For simplicity, we set a = 0 (no selected item) and b = Υ
(all items are selected).

Substituting these expressions into the inequality, we get:

Pr

(∣∣∣∣ ẽuκ,τn
− euκ,τ

∣∣∣∣ ≤ ε

)
≥ 1− 2 exp

(
−2nε2

Υ2

)

We want this probability to be at least 1− δ, which gives us:

1− 2 exp

(
−2nε2

Υ2

)
≥ 1− δ

This rearranges to:

exp

(
2nε2

Υ2

)
≥ 2

δ

Thus, for the probability to be at least 1− δ, the number of samples n must satisfy the inequality below.

n ≥
Υ2 ln

(
2
δ

)
2ε2

Then let Eκ,τ denote the event that ẽuκ,τ is an ε-additive approximation of euκ,τ . This event occurs

with probability 1− δ.

We want to determine the probability that all events Eκ,τ hold simultaneously. This is equivalent to

computing:

Pr (∩κ,τEκ,τ ) = 1− Pr
(
∪κ,τEκ,τ

)
Applying the union bound, we get:

Pr (∩κ,τEκ,τ ) ≥ 1−
∑

k,t∈[m]

Pr
(
Eκ,τ

)

Given that Pr
(
Eκ,τ

)
≤ δ, we have:

Pr (∩κ,τEκ,τ ) ≥ 1−m2δ
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For this probability to be at least 1−∆, we require:

1−m2δ ≥ 1−∆

This rearranges to:

δ ≤ ∆

m2

Substituting this condition into the sample size inequality, we �nd that n must satisfy:

n ≥
Υ2 ln

(
2m2

∆

)
2ε2

Proposition 10. If Ψ = PLν , then all values eu(κ, τ) can be computed in time O(4mPoly(m)).

Proof. Let S ⊆ G be a set of goods and g ∈ S, we denote by ft(g, S) = νg/(
∑

g′∈S νg′), the probability
that g is ranked �rst among the elements of S according to PLν .

The proof relies on recursive equations. Let us consider the following setting. The picker under

consideration should pick κ goods within a set S of goods occupying the |S| last positions of her
ranking. Goods in G \ S, occupy the top m− S ranks in her ranking and have already been picked,

either by her or by other agents. Moreover, the set S′ ⊆ S have already been picked by previous pickers.

We are interested in computing the expected utility U(κ, S, S′) of the κ picks of the agent in such a

situation. We argue that U(κ, S, S′) satis�es the following recursive equations:

U(κ, S, S) =
∑

g∈S∩S
ft(g, S)U(κ, S \ {g}, S \ {g})

+
∑

g∈S\S

ft(g, S)(sm−|S|+1 + U(κ− 1, S \ {g}, S′)) (3)

U(0, S, S) = 0 ∀S, S′
(4)

U(κ, S, ∅) =
κ∑

i=1

sm−|S|+i ∀κ, S (5)

In Equation 3, we consider all possible goods which could be placed at rank m− |S|+ 1. This occurs
for good g ∈ S with probability ft(g, S). If g ∈ S′

, this good as already been picked and the agent still

has to picked κ goods within the goods in S \ {g} which are ranked in last position, hence we consider

U(κ, S \ {g}, S \ {g}). If g 6∈ S′
, this good is picked by the agent leading to a utility sm−|S|−1 and the

agent still has to picked κ − 1 goods within the goods in S \ {g} which are ranked in last position,

hence we consider U(κ− 1, S \ {g}, S). Equations 4 and 5 provide the base cases.

Next, we consider the probability P (S, S′) that goods in S are ranked in the top |S| positions among a

set S′
of goods. P (S, S′) trivially satis�es the following recursive equation.

P (S, S′) =
∑
g∈S

ft(g, S′)P (S \ {s}, S′ \ {s})

P (∅, S′) = 1

Once values U(κ, S, S′) and P (S, S′) have been computed, we use the fact that:

eu(κ, τ) =
∑

S′⊂G,|S′|=τ

P (S′, G)U(κ,G, S′).

To do the computation, we use memoization to store the di�erent valuesU(κ, S, S′) andP (S, S′) (which
represents O(m4m) values), avoid redundant computation, and obtain the desired time complexity.
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Proposition 11. If Ψ = PLν , then all values eu(κ, τ) can be computed in time O(m2ρPoly(m)).

Proof. Letm = (m1,m2, . . . ,mρ) be a vector representing a set containingmi goods of value νi. For
i ∈ [ρ], we denote by ft(i,m) = νimi/(

∑
j∈[ρ]mjνj), the probability that a good with parameter νi is

ranked �rst among the elements of the set represented bym according to PLν . We further de�nem[−i]
as the vector de�ned as m[−i]i = mi − 1 and m[−i]j = mj for j ∈ [ρ] \ {i} and sum(m) =

∑ρ
i=1mi.

The proof relies on recursive equations. Let us consider the following setting. The picker under

consideration should pick κ goods within a set S of goods occupying the |S| last positions of her
ranking. This set is represented by a vectormS . Goods in G \ S, occupy the topm− S ranks in her

ranking and have already been picked, either by her or by other agents. Moreover, the set S′ ⊆ S have

already been picked by previous pickers. The set S′
is represented by a vectormS′ such thatmS′ ≤ mS .

We are interested in computing the expected utility U(κ,mS ,mS′) of the κ picks of the agent in such a

situation. We argue that U(κ,mS ,mS′) satis�es the following recursive equations:

U(κ,mS ,mS′) =
∑
i∈[ρ]

ft(i,mS)(
m′

i

mi
U(κ,mS [−i],mS′ [−i])

+
mi −m′

i

mi
(sm−sum(mS)+1 + U(κ− 1,mS [−i],mS′)) (6)

U(0,mS ,mS′) = 0 ∀S, S′
(7)

U(κ,mS ,m∅) =

κ∑
i=1

sm−sum(mS)+i ∀κ, S (8)

In Equation 6, we consider all possible goods which could be placed at rank m − |S| + 1 = m −
sum(mS) + 1, considering only their value in ν. This occurs for a good g with parameter νi with
probability ft(i,mS). Let us assume that this good as indeed value νi. This good is in (resp. out of)

S′
with probabilitym′

i/mi (resp (mi −m′
i)/mi). If g ∈ S′

, this good as already been picked and the

agent still has to picked κ goods within the goods in S \ {g} which are ranked in last position, hence

we consider U(κ,mS [−i],mS′ [−i]). If g 6∈ S′
, this good is picked by the agent leading to a utility

sm−|S|−1 and the agent still has to picked κ− 1 goods within the goods in S \ {g} which are ranked in

last position, hence we consider U(κ− 1,mS [−i],mS′). Equations 7 and 8 provide the base cases.

Next, we consider the probability P (m,m′) that a set of good S with vectormS = m are ranked in the

top sum(m) positions among a set S′
of goods with vectormS′ = m′

. P (m,m′) trivially satis�es the

following recursive equation.

P (m,m′) =
∑

i∈[ρ],mi 6=0

ft(i,m′)P (m[−i],m′[−i]])

P (m∅,m
′) = 1

Once values U(κ,m,m′) and P (m,m′) have been computed, we use the fact that:

eu(κ, τ) =
∑

m′≤mG,sum(m′)=τ

P (m′,mG)U(κ,mG,m
′).

To do the computation, we use memoization to store the di�erent values U(κ,mS ,mS′) and P (m,m′)
(which represents O(m ×m2ρ) values), avoid redundant computation, and obtain the desired time

complexity.

D Omitted Proofs of Section 6

Figure 3 displays our results using the lexicographic scoring vector (where si = 2m−i
), showing the

proportion of utility (left-hand side) and goods (right-hand side) obtained for n = 5 and increasing the
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Figure 3: Portion of the total utility (plot on the left) and of goods (right) received by each of 5 agents withm
increasing from 5 to 300 in steps of 5. Maximizing ESW and using the lexicographic scoring vector and FI.

number of goods m from 5 to 300 in steps of 5. The IC model was used and we optimized ESW. We

see that because of the lexicographic scoring vector, almost all goods are given to the last picker to

compensate for this disadvantageous position.

We now provide a property of optimal CSDs when maximizing ESW and for a large number of goods.

Proposition 13. Assume there are n agents (n being �xed), and let K∗
m be the set of allocation vectors

maximizing SWE
IC(k) when there arem items. Then, if one uses the lexicographic (resp. Borda) scoring

vector, then for any value ε > 0, there exists a valueM (dependent on n) such thatm ≥M implies that
(maxa∈AEUk

IC(a)−mina∈AEUk
IC(a))/(

∑
a∈AEUk

IC(a)) < ε for any (resp. an element) k ∈ K∗
m.

Proof. We treat the cases of the Borda and lexicographic scoring vectors using two di�erent proofs.

The lexicographic case. Let us �x n the number of agents, a value ε > 0, and l an integer such that

ε/2 ≥ 1/2l. As m (> nl) increases, we can ensure with a probability tending towards one that each

agent receives her l preferred items. Indeed, because of the independence and uniformity assumptions

of the IC model, the probability that these sets of items do not intersect tends towards one. Hence,

for ε > 0, there exists a valueM such that ifm > M , this event (the sets being disjoint) occurs with

probability 1 − ε/2. Using the lexicographic scoring vector, this event implies that each agent will

receive a proportion greater than or equal to (1 − 1/2l) of the total utility she gives to items, i.e.,∑m
j=1 sm = 2m − 1. To sum up, if m ≥M , we can ensure that each agent receives an expected utility

greater than:

(1− ε/2)(1− 1/2l)(2m − 1) ≥ (1− ε/2)2(2m − 1)

≥ (1− ε)(2m − 1).

Moreover, note that this expected utility is upper bounded by

∑m
j=1 sm = 2m − 1 and that∑

a∈AEUk
IC(a) is lower bounded by

∑m
j=1 sm = 2m − 1. Hence, for any k ∈ K∗

m:

|EUk
IC(ai)− EUk

IC(aj)|∑
a∈AEUk

IC(a)
≤ |EUk

IC(ai)− EUk
IC(aj)|

2m − 1

≤ (2m − 1)− (1− ε)(2m − 1)

2m − 1

≤ ε.

The Borda case. We wish to show that for any ε, there always exists an optimal egalitarian solution

for which the di�erence in portions of total utility assigned to any two di�erent agents is smaller than ε
when m is high enough. However, instead of reasoning on the portion of total expected utility received

by an agent, we will work on a proxy, denoted by P̃k(a) = 2EUk
IC(a)/m(m+ 1). Note that, compared
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to EUk
IC(a)/(

∑
a∈AEUk

IC(a)), P̃
k(a) replaces the expected total utility received by the n agents by a

lower bound on it given by

∑m
j=1 sm = m(m+ 1)/2.

Let ε > 0 be a positive value. We set ε′ = ε/n, andm = 2/ε′. We now show by induction on l the fol-
lowing: For any value τ ∈ {i/m, i ∈ [m]0}, there exists a solution k maximizing mina∈{a1,...,al} P̃

k(a)
under the constraint that a proportion τ of the picks are assigned to the l �rst pickers which ensures

that |P̃k(ai)− P̃k(aj)| ≤ lε′ for any i, j ∈ [l]2. We denote by Pτ
l the previous optimization problem

and Γτ
l its optimal value.

The claim is trivially true for l = 1. Assume, it is true for l ≥ 1. We seek a solution maximizing

mina∈{a1,...,al+1} P̃
k(a) given that they receive a proportion τ of the items. The l �rst agents will

receive a proportion τ ′ ∈ [0, τ ] of the items, and we can assume wlog that the allocation to the l
�rst agents is the one maximizing Pτ ′

l insuring our inductive property. Note that if τ ′ increases (resp.

decrease) by 1/m, this may only increase (resp. decrease) Γ
τ+1/m
l by 2/m, i.e., Γ

τ ′+1/m
l ≤ Γτ ′

l + 2/m

and decrease (resp. increase) the P̃k(al+1) value of the (l + 1)th picker by 2/m and that Γτ
l (resp.

P̃k(al+1)) is non-decreasing (resp. non-increasing) in τ . Hence, by adjusting the value of τ ′, we can
ensure that there exists a solution k optimal for Pτ

l+1 and such that |P̃k(al+1)−Γτ ′
l | ≤ ε′. Therefore, by

the inductive property, |P̃k(ai)− P̃k(aj)| ≤ (l+ 1)ε′ for any i, j ∈ [l+ 1]2. This proves the inductive
property. Using l = n, and τ = 1, we obtain the claimed result as

|P̃k(ai)− P̃k(aj)| ≤
|EUk

IC(ai)− EUk
IC(aj)|∑

a∈AEUk
IC(a)

.

A note on computation times All tests were run with Python 3.10.12 on a personal computer

with Ubuntu 22.04.4 LTS, 8 Intel(R) Core(TM) CPU i7-1185G7 3.00GHz cores and 32 GB RAM. With

n = 5 and m = 70, and a sample size of 1000 pro�les, the computation of the optimal allocation

using Equation 1, given that pre�x independence is satis�ed, takes approximately 50 seconds. By

contrast, the use of Algorithm 1 (GreedyESW) reduces the computation time to approximately 7 seconds.

Furthermore, when applicable, the exact computation using Equation 2 is highly e�cient, requiring

only approximately 0.07 seconds.

E Finding a suitable scoring vector

A question that has been overlooked until now
7
is, where does the vector of scores come from? In order

to address it we suggest, and test, the following methodology. For the speci�c domain at hand, prepare

a questionnaire where some users, considered representative of the population of users, are presented a

set of items: for instance, if the problem is about allocating time slots for using a tennis court, users are

presented several time slots. Once this scoring vector has been elicited, it is used to determine optimal

CSDs, which can be applied many times, with di�erent sets of users. A similar method has been used

for voting by Boutilier et al. [10] (see Section 5.6).

We designed an online experiment. To each user taking part in it, we present 12 ice-cream �avours

uniformly selected among 62 possible and elicit their utility on a scale [0,100].

We �rst ask the user to tell which is their preferred �avour (PF ) among the 12, and we tell them that

the value for PF is �xed to 100. Then, for each �avour F (including PF ), we present the user a slider,

with which they indicate the value of F between 0 and 100.

7

Not only in this paper but also in previous papers on fair division who also use scoring vectors (e.g [7]).
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Figure 4: Comparison of the Borda scoring score (rescaled to [0,100]) with the scoring vector obtained through

our experiment by taking the expectation of the participants’ answers.

Once all vectors are collected, we rearrange them non-increasingly. Then all vectors are averaged

among all users. We obtain a scoring vector s = (s1, . . . , s12): si is the average value, among all users,

of their ith most preferred item.

We had 54 participants. Screenshots of the experiment, information on how consents and the data were

collected, as well as the list of the 54 gathered vectors are included in the Appendix. Their average is

s1 = 91.4 s2 = 76.6 s3 = 68.2 s4 = 56.9
s5 = 48.6 s6 = 41 s7 = 34.3 s8 = 26.1
s9 = 21.1 s10 = 16.5 s11 = 10.2 s12 = 5.3

Figure 4 shows how this vector compares to the Borda vector (rescaled such that the score of one’s

preferred �avor is 100)
8
.

The ice-cream experiment

We provide additional information on the experiment used for estimating an adequate scoring vector

for the application of allocating ice creams with di�erent �avors.

The list of all ice-cream �avors used for the experiment is the following one :

[Kiwi, Litchi, Mango, Mandarin, Melon, Mirabelle, Blackberry, Blueberry, Orange, Blood orange,

Apricot, Pineapple, Banana, Lemon, Lime, Cherry, Cassis, Raspberry, Coco, Fig, Strawberry, Passion

fruit, Pear, Rhubarb, Grapefruit, Honey-Pine nuts, Tiramisu, Chocolate ginger, Tagada strawberry,

Nougat, Speculoos, Co�ee, Milk jam, Pistachio, Licorice, Lavender, Caramel, Dragibus, Avocado,

Chewing gum, Olive, Chili chocolate, Tomato-Basil, Cinnamon, White chocolate, Chocolate, Almond,

Poppy, Cookies, Gingerbread, Cactus, Beer, Oreo, Nutella, Vanilla, Candy �oss, Rum-Raisin, Pumpkin,

Chestnut, Wild pollen, Rice pudding, Salted butter caramel].

Each participant was presented a subset of 12 of these �avors, sampled uniformly at random with a

seed set according to the Math.Random() Javascript method. Note that this method sets the seed for

simulating randomness in a way that depends on the browser of the user.

We tested two di�erent ways of explaining the experiment to participants. Indeed, we wanted to

evaluate the impact of describing the experiment in one way or another.

8

Note that by averaging we lost some interesting information about variance: some users have rapidly decreasing, and

some others slowly decreasing valuations. Moreover, note that the highest score of the averaged vector is not 100 as several

users did not respect this constraint.
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• For half of the participants
9
, we presented the scores assigned to the ice-cream �avours as Von

Neumann-Morgenstein utility values. We �rst ask the user to tell which is their preferred �avour

(PF ) among the 12, and we tell them that the value for PF is �xed to 100. Then, for each

�avour F (including PF ), we present the user a slider, with which they will indicate the value

of F between 0 and 100. They are told that they can interpret the chosen value V as the exact

point where they are indi�erent between receiving PF with probability
V
100 and nothing with

probability 1− V
100 , or receiving F for sure. A screenshot of this process is reported in Figure 6.

• For the other half of participants, we tested simpler directives. As done previously, we explain

to users that the value for their preferred �avour should be �xed to 100. Then, for each �avour

F , we present the user a slider, with which they should indicate the value of F between 0 and

100, without mentioning any probabilistic interpretation for these values. A screenshot of this

process is reported in Figure 7.

The 27 scoring vectors of the participants who followed the �rst (resp. second) directives are displayed

on Table 2 (resp. Table 3).

A comparison of the resulting averaged scoring vectors with the Borda scoring vector is provided in

Figure 5. We observe that the two averaged scoring vectors obtained for each set of directives have

a similar shape with one being slightly above the other one. Indeed, more participants following the

simpler directives did not follow the constraint that their preferred �avour among the 12 should receive

a value of 100, leading to smaller values in the averaged scoring vector. This is probably due to an

ambiguity about the fact that the preferred �avour of the participant should be understood as the

most preferred one among the ones which are presented. While this �nding points out a possible

improvement for our experiment, we insist on the fact that it should be understood here as a proof

of concept illustrating the feasibility of such an approach to estimate a relevant scoring vector for

the domain at hand. As the results were similar for the two ways of describing the experiment, we

decided to merge the two list of vectors for plotting the Figure 4 presented in the main document of the

submission.

Collect of Consents and Data The data which was collected was completely anonymous; indeed,

we did not collect any piece of information about the participants besides the scores assigned to the

ice-cream �avors. Moreover, we checked with the ethic committee of one of the authors’ university

that the experiment complies with the data protection regulation. Last, as illustrated in Figure 9, all

the participants to the experiment had to check a box, con�rming that they agreed that their answers

would be stored and used for research purposes.

9

In fact, each participant had a probability 0.5 of getting one set of directives or the other. Luckily this procedure split the

set of participants in two sets of equal sizes.
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Figure 5: Scoring vectors obtained through our experiment. The scoring vector “Lottery-based” (resp. “Simpler”)

was obtained by averaging the answers of the participants receiving the directives which mentioned (resp. did

not mention) a probabilistic interpretation for values assigned to ice-cream �avours.
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Figure 6: Screenshot of our questionnaire. Directives to the user mentioning a probabilistic interpretation for

the scores assigned to ice-cream �avors.

Figure 7: Screenshot of our questionnaire. Directives to the user not mentioning a probabilistic interpretation

for the scores assigned to ice-cream �avors.

Figure 8: Screenshot of our questionnaire. The sliders make it possible for the participants to assign a value to

each �avor.

Figure 9: Screenshot of our questionnaire. Participants had to check a box, agreeing that their answers could be

used for research purposes.
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F The price of the assignment of agents to positions

By abuse of notation, we may also use notation SW x
P (k) (for x ∈ {U,E,N}) whenΨ is the degenerate

probability distribution for which pro�le P occurs with probability 1.

So far, we have considered probability distributions over pro�les that treat all agents in an interchange-

able way. Hence, deciding who should be agent a1 and pick �rst, who should be agent a2 and pick second
et caetera, has no impact on ex ante social welfare. What about its impact on ex post social welfare? We

now study this impact, in terms of loss of social welfare between the best possible assignment and the

worst possible assignments of agents to positions.

Let Sn denotes the set of permutations of [n]. Given π ∈ Sn and P a preference pro�le, P π denotes

the preference pro�le obtained from P by permuting agents rankings according to π.

De�nition 2. Given a CSD with vector k and a preference pro�le P , the utilitarian, egalitarian and Nash
price of assignment of agents to positions, denoted by Pu

AtoP , PE
AtoP , and PN

AtoP respectively, are de�ned
by:

PU
AtoP =

maxπ∈Sn SW
U
P π

(k)

minπ∈Sn SW
U
P π

(k)
,

PE
AtoP =

maxπ∈Sn SW
E
P π

(k)

minπ∈Sn SW
E
P π

(k)
,

PN
AtoP =

maxπ∈Sn SW
N
P π

(k)

minπ∈Sn SW
N
P π

(k)
.

We make the two following easy observations which hold whatever the notion of social welfare which

is used:

1. The worst social welfare that can be obtained when allocating resources using a CSD is obtained

when for all j ∈ [m], the jth good that is picked by an agent is her jth preferred good. In

particular, this results in a utilitarian social welfare of

∑m
j=1 sj .

2. The best social welfare that can be obtained when allocating resources using a picking sequence

(not necessarily non-interleaving) where ai picks ki goods for all i ∈ [n] is obtained when

each agent picks her ki preferred goods. This results in a social welfare of ?ni=1

∑ki
j=1 sj , where

? =
∑

,
∏

ormin depending on the chosen notion of social welfare.

Hence, upper bounds on PU
AtoP , PE

AtoP , and PN
AtoP are given by:∑n

i=1

∑ki
j=1 sj∑m

j=1 sj
,

∑kmin
j=1 sj

mini∈[n]
∑ci+ki

j=ci+1 sj
, and

∏n
i=1(

∑ki
j=1 sj)∏n

i=1(
∑ci+ki

j=ci+1 sj)
.

where ci =
∑

l<i kl and kmin = min{ki|i ∈ [n]}.

We show that there exists a preference pro�le and a CSD, such that this bound is closely matched.
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Proposition 14. Assume m = d× n with d ∈ N∗. There exists a preference pro�le and a CSD such that:

(n− 1)

d∑
j=1

sj +

2d∑
j=d+1

sj

m∑
j=1

sj

≤ PU
AtoP ≤

n

d∑
j=1

sj

m∑
j=1

sj

,

2d∑
j=d+1

sj

m∑
j=(n−1)d+1

sj

≤ PE
AtoP ≤

d∑
j=1

sj

m∑
j=(n−1)d+1

sj

,

 d∑
j=1

sj

(n−1)

×
2d∑

j=d+1

sj

n∏
i=1

id∑
j=(i−1)d+1

sj

≤ PN
AtoP ≤

 d∑
j=1

sj

n

n∏
i=1

id∑
j=(i−1)d+1

sj

.

Proof. Consider the CSD with vector k such that k1 = k2 = . . . = kn = d. Given the previously

de�ned vector k, we build a preference pro�leP as follows. Let Si be a set of d goods for i ∈ {2, . . . , n}
such that Si ∩ Sj = ∅ for all i 6= j ∈ {2, . . . , n}, S1 = S2, and Sn+1 = G \

⋃n
i=2 Si. We let Si be the

preferred goods of agent ai for i ∈ [n]. Additionally, each agent aj with j ∈ [n] prefers any good in Ss

to any good in St if s < t and s, t ∈ [n] \ {j}. Lastly, we assume each agent aj with j ∈ {2, . . . , n}
ranks goods in Sn+1 last and that a1 ranks these goods just after the ones in S1.

One can easily check that for all i ∈ [n], Uk
P (ai) =

∑id
j=(i−1)d+1 sj . If we otherwise consider the

permutation π = (2, 3, . . . , n, 1), we obtain that the �rst n − 1 agents get utility

∑d
j=1 sj while the

last agent of the sequence (agent a1) gets utility
∑2d

j=d+1 sj . The three lower bounds follow.

To give an example, let us take the Borda scoring vector. The price of assignment of agents to positions

is reasonable for utilitarianism, as it tends to 2 when m grows; it is much larger for egalitarianism

(it is in the order of m when m grows), with Nash being even worse (especially if n grows and d is

kept constant, PN
AtoP explodes). As a consequence, optimizing the CSD gives good ex ante fairness

guarantees, but much less ex post fairness guarantees (it is consistent with the well-known general

observation, in fair division, that ex post fairness guarantees are harder to obtain than ex post fairness

guarantees).

G Examples

All examples were computed using a sample of k = 1000 preference pro�les drawn from the distribution

of the table. Note that with FC and utilitarianism, every allocation is optimal.
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Table 4: Results for FC

(n,m) SW Best Policy Best Utilities

ESW (1, 3) [4.0, 6.0]

(2,4) NSW (1, 3) [4.0, 6.0]

USW (4, 0) [10.0, 0.0]

ESW (2, 5) [13.0, 15.0]

(2,7) NSW (2, 5) [13.0, 15.0]

USW (7, 0) [28.0, 0.0]

ESW (3, 7) [27.0, 28.0]

(2,10) NSW (3, 7) [27.0, 28.0]

USW (10, 0) [55.0, 0.0]

ESW (1, 1, 2) [4.0, 3.0, 3.0]

(3,4) NSW (1, 1, 2) [4.0, 3.0, 3.0]

USW (4, 0, 0) [10.0, 0.0, 0.0]

ESW (1, 2, 4) [7.0, 11.0, 10.0]

(3,7) NSW (1, 2, 4) [7.0, 11.0, 10.0]

USW (7, 0, 0) [28.0, 0.0, 0.0]

ESW (2, 3, 5) [19.0, 21.0, 15.0]

(3,10) NSW (2, 3, 5) [19.0, 21.0, 15.0]

USW (10, 0, 0) [55.0, 0.0, 0.0]

ESW (1, 1, 1, 1) [4.0, 3.0, 2.0, 1.0]

(4,4) NSW (1, 1, 1, 1) [4.0, 3.0, 2.0, 1.0]

USW (4, 0, 0, 0) [10.0, 0.0, 0.0, 0.0]

ESW (1, 1, 2, 3) [7.0, 6.0, 9.0, 6.0]

(4,7) NSW (1, 1, 2, 3) [7.0, 6.0, 9.0, 6.0]

USW (7, 0, 0, 0) [28.0, 0.0, 0.0, 0.0]

ESW (2, 2, 2, 4) [19.0, 15.0, 11.0, 10.0]

(4,10) NSW (1, 2, 2, 5) [10.0, 17.0, 13.0, 15.0]

USW (10, 0, 0, 0) [55.0, 0.0, 0.0, 0.0]
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Table 5: Results for IC

(n,m) SW Best Policy Best Utilities

ESW (2, 2) [7.0, 4.97]

(2,4) NSW (2, 2) [7.0, 4.97]

USW (2, 2) [7.0, 4.97]

ESW (3, 4) [18.0, 16.02]

(2,7) NSW (3, 4) [18.0, 16.02]

USW (4, 3) [22.0, 12.04]

ESW (4, 6) [34.0, 33.05]

(2,10) NSW (4, 6) [34.0, 33.05]

USW (5, 5) [40.0, 27.59]

ESW (1, 1, 2) [4.0, 3.75, 4.97]

(3,4) NSW (1, 1, 2) [4.0, 3.75, 4.97]

USW (2, 1, 1) [7.0, 3.34, 2.45]

ESW (2, 2, 3) [13.0, 12.0, 11.85]

(3,7) NSW (2, 2, 3) [13.0, 12.0, 11.85]

USW (3, 2, 2) [18.0, 11.19, 7.96]

ESW (3, 3, 4) [27.0, 24.86, 22.11]

(3,10) NSW (3, 3, 4) [27.0, 24.86, 22.11]

USW (4, 3, 3) [34.0, 23.76, 16.64]

ESW (1, 1, 1, 1) [4.0, 3.74, 3.35, 2.46]

(4,4) NSW (1, 1, 1, 1) [4.0, 3.74, 3.35, 2.46]

USW (1, 1, 1, 1) [4.0, 3.74, 3.35, 2.46]

ESW (1, 2, 2, 2) [7.0, 12.58, 11.16, 7.78]

(4,7) NSW (1, 2, 2, 2) [7.0, 12.58, 11.16, 7.78]

USW (2, 2, 2, 1) [13.0, 11.99, 9.97, 3.9]

ESW (2, 2, 2, 4) [19.0, 18.34, 17.35, 22.15]

(4,10) NSW (2, 2, 3, 3) [19.0, 18.34, 23.59, 16.58]

USW (3, 3, 2, 2) [27.0, 24.79, 15.4, 10.92]

32



Table 6: Results for PLν with ν = (1.1m, 1.1m−1, . . . , 1.11)

(n,m) SW Best Policy Best Utilities

ESW (2, 2) [7.0, 4.96]

(2,4) NSW (2, 2) [7.0, 4.96]

USW (2, 2) [7.0, 4.96]

ESW (3, 4) [18.0, 15.9]

(2,7) NSW (3, 4) [18.0, 15.9]

USW (4, 3) [22.0, 11.92]

ESW (4, 6) [34.0, 32.37]

(2,10) NSW (4, 6) [34.0, 32.37]

USW (5, 5) [40.0, 26.74]

ESW (1, 1, 2) [4.0, 3.74, 5.06]

(3,4) NSW (1, 1, 2) [4.0, 3.74, 5.06]

USW (2, 1, 1) [7.0, 3.33, 2.48]

ESW (2, 2, 3) [13.0, 11.94, 11.73]

(3,7) NSW (2, 2, 3) [13.0, 11.94, 11.73]

USW (3, 2, 2) [18.0, 11.08, 7.9]

ESW (3, 3, 4) [27.0, 24.66, 21.45]

(3,10) NSW (3, 3, 4) [27.0, 24.66, 21.45]

USW (4, 3, 3) [34.0, 23.31, 16.0]

ESW (1, 1, 1, 1) [4.0, 3.76, 3.33, 2.47]

(4,4) NSW (1, 1, 1, 1) [4.0, 3.76, 3.33, 2.47]

USW (1, 1, 1, 1) [4.0, 3.76, 3.33, 2.47]

ESW (1, 2, 2, 2) [7.0, 12.55, 11.17, 8.03]

(4,7) NSW (1, 2, 2, 2) [7.0, 12.55, 11.17, 8.03]

USW (2, 2, 1, 2) [13.0, 11.98, 5.98, 8.09]

ESW (2, 2, 2, 4) [19.0, 18.26, 17.09, 21.33]

(4,10) NSW (2, 2, 2, 4) [19.0, 18.26, 17.09, 21.33]

USW (3, 3, 2, 2) [27.0, 24.5, 14.89, 10.35]
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Table 7: Results for Mllφ,µ with φ = 0.8

(n,m) SW Best Policy Best Utilities

ESW (2, 2) [7.0, 5.03]

(2,4) NSW (2, 2) [7.0, 5.03]

USW (2, 2) [7.0, 5.03]

ESW (3, 4) [18.0, 15.45]

(2,7) NSW (3, 4) [18.0, 15.45]

USW (4, 3) [22.0, 11.51]

ESW (4, 6) [34.0, 31.33]

(2,10) NSW (4, 6) [34.0, 31.33]

USW (5, 5) [40.0, 25.79]

ESW (1, 1, 2) [4.0, 3.75, 4.98]

(3,4) NSW (1, 1, 2) [4.0, 3.75, 4.98]

USW (2, 1, 1) [7.0, 3.32, 2.43]

ESW (2, 2, 3) [13.0, 11.86, 11.29]

(3,7) NSW (2, 2, 3) [13.0, 11.86, 11.29]

USW (3, 2, 2) [18.0, 10.95, 7.36]

ESW (3, 3, 4) [27.0, 24.06, 20.22]

(3,10) NSW (3, 3, 4) [27.0, 24.06, 20.22]

USW (4, 3, 3) [34.0, 22.61, 14.93]

ESW (1, 1, 1, 1) [4.0, 3.73, 3.32, 2.42]

(4,4) NSW (1, 1, 1, 1) [4.0, 3.73, 3.32, 2.42]

USW (1, 1, 1, 1) [4.0, 3.73, 3.32, 2.42]

ESW (1, 2, 2, 2) [7.0, 12.51, 10.84, 7.68]

(4,7) NSW (1, 2, 2, 2) [7.0, 12.51, 10.84, 7.68]

USW (2, 2, 1, 2) [13.0, 11.84, 5.77, 7.58]

ESW (2, 2, 2, 4) [19.0, 18.11, 16.69, 19.98]

(4,10) NSW (2, 2, 2, 4) [19.0, 18.11, 16.69, 19.98]

USW (3, 3, 2, 2) [27.0, 24.02, 14.41, 9.49]
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100 95 90 30 20 0 0 0 0 0 0 0

100 12 11 0 0 0 0 0 0 0 0 0

100 100 100 100 93 90 73 59 52 48 10 6

100 93 93 90 63 50 33 13 10 10 0 0

100 100 100 70 50 50 40 40 30 30 30 25

91 75 59 17 17 15 12 5 0 0 0 0

99 90 86 80 61 60 32 30 24 21 18 17

100 95 90 80 60 50 10 10 5 5 0 0

100 95 90 80 70 60 60 50 45 30 25 10

100 95 85 80 80 70 60 52 40 30 20 10

100 80 75 60 50 15 10 5 5 3 1 0

100 40 30 20 20 10 10 5 5 5 2 0

100 90 79 76 76 66 64 51 32 26 18 10

100 100 90 90 90 89 88 86 84 80 75 59

100 70 60 60 40 30 20 15 10 10 10 10

95 93 92 54 50 42 37 27 25 23 20 0

100 30 30 30 20 20 20 10 10 0 0 0

100 98 94 94 94 92 92 92 90 80 68 10

100 43 36 35 31 27 18 17 14 8 5 0

100 85 80 70 25 15 15 10 5 5 2 0

100 70 70 50 50 30 30 0 0 0 0 0

100 82 81 76 75 74 53 31 21 14 0 0

100 95 79 73 56 50 48 45 33 15 10 9

90 88 81 61 53 50 50 50 50 50 20 4

100 75 53 47 44 36 30 23 12 5 0 0

100 90 80 51 50 50 50 40 40 20 10 2

100 80 80 70 60 60 60 50 40 30 30 10

Table 2: List of the 27 scoring vectors (one per row) obtained for participants following the directives mentioning

a probabilistic interpretation for values assigned to ice-cream �avours.
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83 82 80 78 73 70 65 65 57 50 13 12

91 87 76 55 42 41 40 37 36 18 15 10

100 80 70 60 60 50 50 40 40 30 20 10

60 45 40 19 0 0 0 0 0 0 0 0

80 80 73 73 65 59 56 34 0 0 0 0

83 81 78 77 76 69 68 25 13 6 4 3

91 91 80 61 54 51 19 11 10 10 0 0

86 82 74 72 48 6 0 0 0 0 0 0

85 70 13 11 8 7 0 0 0 0 0 0

49 49 40 35 30 20 14 10 10 5 0 0

76 70 68 60 57 55 55 55 40 40 25 10

100 65 0 0 0 0 0 0 0 0 0 0

89 86 82 80 73 71 69 61 60 52 43 34

90 80 72 63 55 54 13 9 6 0 0 0

100 99 80 70 65 60 51 4 3 2 1 0

100 92 88 78 73 62 50 41 40 28 7 3

97 92 77 59 49 43 33 30 18 0 0 0

100 78 70 21 0 0 0 0 0 0 0 0

79 59 52 43 32 20 15 14 12 12 11 10

82 78 78 75 71 49 32 16 8 0 0 0

100 80 80 70 70 60 60 60 50 50 20 0

81 40 30 22 13 0 0 0 0 0 0 0

72 64 61 61 41 34 31 28 26 18 12 11

91 86 74 67 64 62 57 15 10 9 0 0

81 75 70 58 55 27 16 0 0 0 0 0

85 60 59 41 33 31 31 29 15 8 4 2

30 27 24 20 18 14 13 8 6 3 0 0

Table 3: List of the 27 scoring vectors (one per row) obtained for participants following the directives which did

not mention a probabilistic interpretation for values assigned to ice-cream �avours.
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