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Abstract
We introduce two models of multiwinner elections with approval preferences and labelled
candidates that take the committee’s diversity into account. One model aims to find a committee
with maximal diversity given a scoring function (e.g. of a scoring-based voting rule) and a lower
bound for the score to be respected. The second model seeks to maximize the diversity given a
minimal satisfaction for each agent to be respected. To measure the diversity of a committee,
we use multiple diversity indices used in ecology and introduce one new index. We define
(desirable) properties of diversity indices, test the indices considered against these properties, and
characterize the new index. We analyze the computational complexity of computing a committee
for both models with most of the indices considered and scoring functions of well-known voting
rules, and investigate the influence of weakening the score or satisfaction constraints on the
diversity empirically.

1 Introduction

In the realm of decision-making, where alternatives are chosen from a larger pool of options, considera-
tions of both quality and diversity become crucial. This challenge presents itself in varied contexts, such
as project funding and academic committee selections. For instance, consider the scenario faced by a
city government engaging in participatory budgeting (PB). Here, residents propose community projects
characterized by target groups (e.g., children, seniors) and objectives (e.g., environmental protection,
education).2 Similarly, consider the formation of a university hiring committee, where the aim is to
select individuals who are not only seen as experts by the colleagues electing them, but also contribute
to a diverse range of perspectives (e.g., scientists, non-scientific staff) or disciplines (e.g., math, physics).
In both cases, the task becomes to select alternatives with both a high level of satisfaction for the voters
(which we measure by a score) and high level of diversity (which we measure by an index).

Traditional models, as seen in many previous studies, address this by setting hard quotas or constraints,
ensuring a specific representation of specific labels. While such an approach ensures a certain minimum
diversity, it often disregards the fluid and multifaceted nature of diversity itself. In particular, when
many labels are to be respected, it seems impossible to come up with any meaningful constraints without
restricting the possible satisfaction of the voters unpredictably. In contrast, our study introduces two
models that incorporate diversity indices rather than strict constraints, while ensuring that either
the total score of the committee or the satisfactions of the agents cannot be worsened arbitrarily.
This approach, applied to the multiwinner election context, allows for a more nuanced and dynamic
assessment of diversity. By employing established ecological indices alongside a newly proposed one,
we introduce this elsewhere-established approach into the area of computational social choice.

Our Contributions. We introduce two models for incorporating diversity indices into multiwinner
elections with approval preferences and labelled candidates. Our models aim to find a committee
with maximal diversity given (1) a scoring function and a lower bound for the score, or (2) a minimal
satisfaction for each agent. To measure diversity, we adapt multiple diversity indices used in ecology
and propose a new diversity index, the Lexicographic Counting Index, which is designed to measure

1Supported by Deutsche Forschungsgemeinschaft (DFG), project PACS (FL 1247/1-1, Nr. 522475669)
2Indeed, PB instances from Pabulib used in our experiments provide such characteristics. Nevertheless, we focus on the

plain multiwinner election scenario without prices and budget in this paper.
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the diversity of a committee transparently. We provide an analysis of the properties of the diversity
indices, including newly introduced properties, capturing, among others, the ability of voters to easily
understand why one solution is more diverse than another. With these properties, we characterize our
new diversity index and are able to differentiate between any two diversity indices considered.

We also analyze the computational complexity of computing a committee for both models with most
of the indices considered and scoring functions of well-known voting rules. We show that, while
computing maximally diverse committees (without any satisfaction goal) is polynomial-time solvable
for all indices, it is NP-hard to compute maximally diverse committees that provide some minimum
satisfaction for each voter. The computational complexity of computing maximally diverse committees
which provide some minimum score depends very much on the voting rule whose score we consider:
E.g., this problem is polynomial-solvable for each of the indices considered when using the score of
Approval Voting or Satisfaction Approval Voting, but not when using the score of Chamberlin-Courant.

Our experimental results provide insights into the influence of weakening the score or satisfaction
constraint on the diversity reached. We find that the diversity of the committees determined by scoring-
based approval rules can indeed be improved by using a diversity index: For example, allowing the score
to be reduced by 10% of the optimal score increases the average percentage of the optimal diversity
achieved by 12–19, depending on the index and score considered. However, a reduction of the score by
even 50% does not lead to the optimal diversity in some cases.

In the following, proofs marked with ⋆ are deferred to the appendix.

Related Work. A significant body of literature that addresses the intersection of diversity and labelled
multiwinner elections focuses on various models that include diversity constraints or quotas.

Celis et al. [10] and Bredereck et al. [9] introduce very similar models wherein candidates possess
(possibly structured) labels and diversity is reached through hard distributional constraints. Their
approach seeks an optimal committee that maximizes a performance score while meeting specified
label occurrence requirements, such as gender quotas. In a similar vein, Ianovski [14] explore a model
that accommodates “dominance constraints”, requiring certain labels to occur at least as frequently as
others, adding a layer of comparative label evaluation. The work by Aziz [2] provides a polynomial-time
algorithm computing committees that satisfy two axioms, one ensuring the given diversity constraints
are satisfied as much as possible and the other one integrating candidate excellence. Evequoz et al. [11]
present an innovative election process where voters initially decide on distributional constraints for
candidates’ attributes before electing candidates under those constraints, demonstrating this method in
a Swiss primary election study. In the domain of approval voting, Straszak et al. [33] proposed an integer
linear programming (ILP) framework to address diversity constraints across categorized candidate
labels, offering computational tools and real-world data applications. In a working paper, Takoulo et al.
[34] approach the integration of diversity constraints within the framework of multiwinner elections,
presenting a model where the committee selection prioritizes both high scores and diversity metrics.
Their work extends the class of well-known committee scoring rules by tailoring them to meet specified
diversity requirements and introduce new axioms for diverse committee selection under constraints.

Exploring applications beyond elections, Gawron and Faliszewski [13] utilize multiwinner voting to
refine search systems such as movie recommendations, balancing similarity with diversity without
relying on explicit diversity indices. The model from Relia [29] includes attributes for candidates
and voters, applying hard distributional constraints and ensuring population-based representation
within elected committees, enriching the voting model with demographic considerations. Lastly, Izsak
et al. [16] present a framework where alternatives are classified, and inter- and intraclass relations are
modeled through synergy functions, aiming to maximize both score-based and relational metrics—a
concept parallel to our work, where diversity indices could be interpreted as synergy measures under
score and satisfaction constraints.

Finding diverse solutions has also become important in other contexts of collective decision making.
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Benabbou et al. [6] analyze diversity constraints in context of (utilitarian) public housing allocation.
Aygün and Bó [1] explore diversity constraints for Brazilian college admissions through affirmative
action policies, examining the strategic complexities of multidimensional privileges and proposing a
fair, strategy-proof mechanism to ensure equitable student selection. Aziz and Sun [3] analyze diversity
in the context of school admissions by defining a rank-based diversity concept, where maximal diversity
is achieved by prioritizing student matches to seats that fulfill the institution’s most crucial diversity
criteria, thereby optimizing representation of key groups. Biró et al. [8] analyze the computational
complexity of stable-matching-based college admissions and incorporate lower quotas for individual
colleges and common quotas for groups of colleges allowing to manage collective diversity targets.

2 The Model

Let N and N0 be the natural numbers excluding and including zero, respectively, [t] the set {1, . . . , t}
for any integer t, and P(X) the power set of any set X . We write (xi)

b
i=a short for a se-

quence (xa, xa+1, . . . , xb).

We consider elections of committees with approval preferences where candidates have labels, i.e.,
elections of the form E = (A,C,U, k, L, λ) consisting of a set A of agents, a candidate set C (e.g.,
projects), an approval profile U : A → P(C), and a desired committee size 0 < k ≤ |C|. L =
{l1, . . . , lm} is a set ofm labels (e.g., education and sport as the target of the projects) and λ : C → L
assigns a label to each candidate. In addition, for i ∈ [m] and a committee S ⊆ C , let

Clabel (E , S, i) := {c ∈ S : λ(c) = li} ,
ni(E , S) := |Clabel (E , S, i)| , and pi(E , S) := ni(E , S) / |S|

be the set, number, and proportion of candidates in S with label li, respectively. Furthermore, let

distr(E , S) := (|{i ∈ [m] : ni(E , S) = j}|)|S|j=0 ,

where the j-th entry indicates the number of labels occurring j − 1 times in S.

A rule R maps an election to at least one k-sized subset of C , i.e., R : E → P({S ⊆ C : |S| = k}).
We denote by Rvld(E) := {S ⊆ C : |S| = k} the rule that outputs all committees of size k and by
Rs(E) = arg maxS∈Rvld(E) s(E , S) the rule that outputs all S ∈ Rvld(E) with maximal score, where s
is a scoring function mapping an election and a committee to N. We only consider scoring functions
which take only A,C,U and k into account, i.e., information that is part of a “classical” election. For an
S ∈ Rvld(E), we measure the satisfaction of an agent as sat(E , S, a) := |S ∩ U(a) |, i.e. as the number
of chosen candidates agent a approves. To measure the diversity, we look at diversity indices which
assign a real number to an election E and committee S ∈ Rvld(E). In the following, we omit arguments
if they are clear from the context.

3 The Diversity Indices

In this section, we discuss the diversity indices we consider in this paper.
Example 1. As a running example, consider an election E with projects as candidates, m = 3 labels
with L =

{
, ,

}
( represents the label “health”, “education”, and “sport”)3, k = 10, and

the following committees (for each candidate, we indicate its label):
3The emoji graphics are taken from twemojis and licensed under CC-BY 4.0: https://creativecommons.org/

licenses/by/4.0/. Copyright 2019 Twitter, Inc and other contributors.
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S′ ∈ Rvld(E) distr(E , S′)

S′
1 = { , , , , , , , , , } (0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0)

S′
2 = { , , , , , , , , , } (0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0)

S′
3 = { , , , , , , , , , } (1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0)

Clearly, S′
1 appears as most diverse in the sense that it contains all three different labels and the labels

appear as evenly balanced as possible. Whether S′
2 is more diverse than S′

3 is in the eye of the beholder
or, put differently, depends, e.g., on whether someone finds it more important that as many labels as
possible are represented or that the labels represented appear as evenly as possible: S′

2 contains three
labels, but one label occurs much more frequently than the others, while S′

3 contains only two labels,
but these two labels occur equally often. ◁

Indices Used in Ecology. In the field of ecology, various indices have been defined to measure the
diversity of a community of species—see, e.g., [27] and [23] for an overview of diversity indices. We
directly adapt the following diversity indices often used in ecology so that they receive an election
E = (A,C,U, k, L, λ) as well as a committee S ∈ Rvld(E) as inputs. For each of the following indices,
a higher value indicates a higher diversity.

Richness [35] is a simple diversity index that does not take the proportions of the labels into account,
but only the number of labels present:

Ri(E , S) = |{i ∈ [m] : ni(E , S) > 0}| =
k∑

ℓ=1

distr(E , S)ℓ+1 = m− distr(E , S)1.

The Simpson index [32]4 considers the probability that two candidates chosen independently and at
random from the committee have the same label, i.e.,

Si(E , S) = −
∑
i∈[m]

pi(E , S)2 = −
k∑

ℓ=1

distr(E , S)ℓ+1 ·
(
ℓ

k

)2

.

Another popular index [24] is Shannon’s entropy [31], which is derived from information theory and
represents the uncertainty in predicting the label of a randomly chosen candidate from the committee:

Sh(E , S) = −
∑

i∈[m]:pi(E,S)>0

pi(E , S) · log(pi(E , S)) = −
k∑

ℓ=1

distr(E , S)ℓ+1 ·
ℓ

k
· log

(
ℓ

k

)
.

Remark 1. The indices rank the committees from Example 1 as follows: Ri(E , S′
1) = 3 = Ri(E , S′

2) >
Ri(E , S′

3) = 2, Sh(E , S′
1) ≈ 1.09 > Sh(E , S′

3) = 0.69 > Sh(E , S′
2) ≈ 0.64, and Si(E , S′

1) = −0.34 >
Si(E , S′

3) = −0.5 > Si(E , S′
2) = −0.66. Therefore, Ri classifies S′

3 as least diverse, while Sh and Si
both classify S′

2 as the least diverse. ◁

New Index. We introduce a new diversity index, the Lexicographic Counting Index (LC ). While the
idea of lexicographic ordering has been applied in various settings, it has not been used for defining a
diversity index before, to the best of our knowledge. The idea behind LC—which elevates the natural,
but simple, diversity index Ri—is the following: The primary goal is to maximize the number of labels

4In the literature, the Simpson index is usually stated unnegated. We add the negation in order to maximize each index.
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occurring at least once (like Ri does), the secondary goal is to maximize the number of labels occurring
at least twice, and so on:

LC (E , S) =
k∑

i=1

(min{m, k}+ 1)k+1−i · |σi(E , S)| , with σi(E , S) = {ℓ ∈ [m] : nℓ(E , S) ≥ i} .

Note that the base is min{m, k} + 1, as a committee consists of k candidates and each candidate
introduces at most one new label, i.e. σi(E , S) ≤ min{m, k} for all i ∈ [k]. In Appendix A.1, we evaluate
LC with respect to properties adapted from the literature: These results provide some arguments why
the new index can be called a diversity index.
Remark 2. LC classifies S′

1 as the most and S′
3 as the least diverse committee: LC (E , S′

1) = 410 · 3 +
49 · 3+48 · 3+47 = 4145152 > LC (E , S′

2) = 410 · 3+49+48+47+46+45+44+43 = 3495232 >
LC (E , S′

3) = 410 · 2 + 49 · 2 + 48 · 2 + 47 · 2 + 46 · 2 = 2793472. ◁

4 Which diversity indices to use?

Next, we want to distinguish formally between the aforementioned indices by defining properties and
testing the indices against them. Note that not all properties that we define should necessarily be
satisfied by a diversity index: The properties rather draw attention to differences between the indices,
which should be taken into account when picking a diversity index to be used. This is of interest when
electing committees consisting of at least six candidates, because Sh , Si , and LC behave the same for
small committees when deciding which committee is more diverse:

Observation 1 (⋆). For all elections E with k ≤ 5, it holds that ∀r, r′ ∈ {Sh,Si ,LC} , ⋄ ∈
{<,>,=} , S1, S2 ∈ Rvld(E) : r(E , S1) ⋄ r(E , S2) ⇔ r′(E , S1) ⋄ r′(E , S2).
In addition, for all elections E with k ≤ 7, it holds that ∀S1, S2 ∈ Rvld(E), ⋄ ∈ {<,>,=} :
Sh(E , S1) ⋄ Sh(E , S2) ⇔ LC (E , S1) ⋄ LC (E , S2).

However, the indices can behave differently for larger k. One reason for this is that only Ri and LC
consider the number of labels present to be more important than the evenness of the distribution of the
labels present, while Si and Sh do not—this can be seen, e.g., in Example 1. Thus, the first question
that one has to answer is whether having as many labels in the committees as possible has the highest
priority—this could be the case when electing a team working on an interdisciplinary project, where
having an expert from a discipline that is not covered otherwise is very valuable. We express this
through the following property:

Property 1 (Present Label Maximization). A diversity index D satisfies Present Label Maximization
if, for all elections E and S1, S2 ∈ Rvld(E) for which distr(E , S1)1 < distr(E , S2)1 (i.e., S1 contains
more different labels than S2), it holds that D(S1) > D(S2).

Observation 2 (⋆). Ri and LC satisfy Present Label Maximization, Si and Sh do not.

Another property which is quite natural and which should be satisfied by any diversity index is that
increasing the occurrences of a label by decreasing those of a more frequent label by at least two leads
to a higher (Occurrence Balancing) or at least the same (Weak Occurrence Balancing) diversity:

Property 2 (Occurrence Balancing). A diversity index D satisfies (Weak) Occurrence Balancing if for
all elections E and S′ ∈ Rvld(E) for which there are i, j ∈ [m] with ni(E , S′) + 2 ≤ nj(E , S′) and
ni(E , S′) < |Clabel (E , C, i)|, it holds that ∀ci ∈ Clabel (E , C, i) \ S′, cj ∈ Clabel (E , S′, j) : D(S′) <
D(S′′) (D(S′) ≤ D(S′′)) with S′′ = S′ \ {cj} ∪ {ci}.

The following result not only separates Ri from the other three indices, but is also the basis for showing
in Section 5.1 that finding a committee with the highest diversity—according to one of the diversity
indices considered—is in P.
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Observation 3 (⋆). Of the diversity indices considered, all satisfy Weak Occurrence Balancing, but only
Si , Sh , and LC satisfy Occurrence Balancing.

The properties introduced so far allow us to differentiate between any pair of diversity indices considered
apart from Si and Sh , which both take the evenness of the distribution into account. However, these
two indices differ in whether it is better to balance the occurrences of two labels when these labels are
relatively rare or relatively dominant. For this, we first define which pairs of labels whose occurrences
differ by d are balancable: balancable(E , S, d) returns, for a given election E and a committee S ∈
Rvld(E), all pairs (i, j) so that ni(E , S) + d = nj(E , S) and ni(E , S) + ⌊d2⌋ ≤ |Clabel (E , C, i)| (i.e. the
frequency of li could be increased by ⌊d2⌋ and the first label of the pair occurs d fewer times). The
function balance(E , S, d, (i, j)) actually balances such labels by taking, in addition to E and S, a label
pair (i, j) ∈ balancable(E , S, d) as an argument and returning a committee S′ ∈ Rvld(E) so that
ni(E , S′) = ni(E , S) + ⌊d2⌋, nj(E , S′) = nj(E , S)− ⌊d2⌋ and ∀e ∈ [m] \ {i, j} : ne(E , S′) = ne(E , S),
i.e. only the number of li and lj are balanced. Based on this, we can define the following property:

Property 3 (Prioritization of Rare Label Balancing). A diversity index D satisfies Prioritization of
Rare Label Balancing if, for all elections E , S ∈ Rvld(E) and d ≥ 2 for which there are (i, j), (k, l) ∈
balancable(E , S, d) with ni(E , S) < nk(E , S), it holds that D

(
E , S(i,j)

)
> D

(
E , S(k,l)

)
with S(i,j) :=

balance(E , S, d, (i, j)) and S(k,l) := balance(E , S, d, (k, l)).

Observation 4 (⋆). Sh and LC satisfy Prioritization of Rare Label Balancing, Si and Ri do not.

In some sense, this makes Sh more similar to LC than Si , as Sh and LC both prefer to increase the
frequency of the label that is rarest among the four labels. In contrast, Si rates both options as equally
good and thus does not differentiate whether you decrease the frequency of the most dominant label or
increase the frequency of the rarest label among the four labels at hand.

Next, we want to look at another property that separates Si and Sh from LC and that takes into
account that the index is to be used in an election: One important goal is to ensure that voters (or other
stakeholders) are able to understand why a committee has been chosen over a different one, which
is likely to promote acceptance of the result or at least a more informed debate about it (e.g., when
maximizing diversity is incorporated into elections). Hence, we want to focus on the obviousness of the
diversity indices next or, in other words, the effort required to decide which of two given committees
is more diverse according to the used diversity index. The only information necessary for this is how
many labels occur how often, which is provided by the distr vectors. Consider, for example, S′

2 and
S′
3 from Example 1 and their distr vectors and try to answer which of the committees is more diverse

according to one of the indices considered. When considering this question for the Shannon entropy,
for instance, the question probably cannot be answered without calculating the diversities with Sh’s
formula. This problem does not necessarily apply to each of the presented diversity indices:

LetD be one of the considered diversity indices and E some election such that there are two differently
diverse committees S1, S2 ∈ Rvld(E). When comparing distr(E , S1) and distr(E , S2) to determine
which one is more diverse, any i ∈ [k + 1] with distr(E , S1)i = distr(E , S2)i is irrelevant. Let
IR(E , S1, S2) = {i ∈ [k + 1] : distr(E , S1)i ̸= distr(E , S2)i} be the set of all indices that hence matter.
Note that IR(E , S1, S2) is non-empty; otherwise, the two committees would have the same diversity
(regardless of the index used). Based on this, we define rdistr(E , S1, S2) as the distr vector of S1 at the
indices in IR(E , S1, S2), with ρ as the vector of the elements of IR(E , S1, S2) in ascending order:

rdistr(E , S1, S2) := (distrρi(E , S1))
|IR(E,S1,S2)|
i=1

Remark 3. For the committees S′
2 and S′

3 in Example 1, we have IR(E , S′
2, S

′
3) = IR(E , S′

3, S
′
2) =

{1, 2, 6, 9}, rdistr(E , S′
2, S

′
3) = (0, 2, 0, 1), and rdistr(E , S′

3, S
′
2) = (1, 0, 2, 0). ◁

Based on this, the following property can be defined:
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Property 4 (Obviousness). A diversity indexD is obvious if there is a function f : N → N such that for
every election E and S1, S2 ∈ Rvld(E) for whichD(E , S1) ̸= D(E , S2) and l = |IR(E , S1, S2) | > 0, it
holds that D(E , S1) > D(E , S2) if and only if rdistr(E , S1, S2)f(l) < rdistr(E , S2, S1)f(l).

Intuitively, f maps to the index of rdistr where we can see which of two committees is more diverse.
Natural examples are f(l) = 1 for all l ∈ N, i.e., mapping to the first index, and f(l) = l for all l ∈ N,
i.e., mapping to the last index. For the indices we consider, we have the following which tells us that it
should be kept in mind that understanding why a committee is chosen over another when using Si or
Sh can be challenging:

Observation 5 (⋆). Ri and LC are obvious with f(l) = 1 for all l ∈ N. Sh and Si are not obvious.

Remark 4. Using Observation 5, we can directly see from the rdistr vectors given in Remark 3 that S′
2

is more diverse than S′
3 according to LC and Ri . ◁

Remark 5. f(l) = l holds, e.g., for the Berger-Parker index [7], which is defined as−maxi∈[m] pi(E , S)—
in the literature, it is usually defined without negation—and hence measures the dominance of the most
frequent label. We do not investigate this index further to have a clear focus.

Characterizing LC . As LC is the only diversity index considered that fulfills all properties introduced
so far, the question ariseswhether they characterize the behavior ofLC when comparing two committees
S1, S2 ∈ Rvld(E). This is not the case:
Example 2. Consider an election E with |C| = 12, labels l1, l2, l3, l4 with |Clabel (E , C, 1)| = 2,
|Clabel (E , C, 2)| = 3, |Clabel (E , C, 3)| = 3, |Clabel (E , C, 4)| = 4, and k = 10, which results in the
following possible distr vectors (we only indicate the first five elements as the rest are zeros):

distr(E , S1) = (1, 0, 0, 2, 1) ,distr(E , S2) = (0, 1, 1, 1, 1) ,distr(E , S3) = (0, 1, 0, 3, 0) ,

distr(E , S4) = (0, 0, 3, 0, 1) ,distr(E , S5) = (0, 0, 2, 2, 0) .

It holds that LC (E , S1) < LC (E , S2) < LC (E , S3) < LC (E , S4) < LC (E , S5). However, a diversity
indexD withD(E , S1) < D(E , S2) < D(E , S3) = D(E , S4) < D(E , S5) also satisfies the properties.◁

We therefore introduce another property which makes it impossible to rank S3 and S4 as equally diverse
in Example 2 and which expresses that an index is quite fine-grained:

Property 5 (Distribution Equivalence). A diversity index D satisfies Distribution Equivalence if for all
elections E and S1, S2 ∈ Rvld(E) it holds that D(E , S1) = D(E , S2) ⇔ distr(E , S1) = distr(E , S2).

Observation 6 (⋆). Of the diversity indices considered, only LC satisfies Distribution Equivalence.

This observation tells us that, if the distr vectors of two committees are different, LC will always
rank one committee as more diverse, which ensures that no additional tie-breaking (which can bear
the potential for conflict) between committees with different distr vectors (which could otherwise be
categorized as equally diverse) is necessary. This is not the case, e.g., for Ri—which is the only other
diversity index considered that satisfies Obviousness. Thus, LC is the only diversity index that satisfies
all the properties discussed so far, three of which suffice to characterize LC :

Theorem 1 (⋆). LC is characterized by the properties Distribution Equivalence, Obviousness, and Present
Label Maximization.

5 Incorporating Diversity Indices into Elections

In this section, we propose two ways to incorporate diversity (indices) into elections. One way is to
maximize the diversity given a minimal satisfaction for each agent:
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Definition 1 (MAX-D-DSAT). Given an election E = (A,C,U, k, L, λ) and a function h : A → N0,
find a committee with maximal diversity with respect to the diversity index D among all committees
S ∈ Rvld(E) for which ∀a ∈ A : sat(E , S, a) ≥ h(a).

On the one hand, this provides a certain amount of freedom in the search for a diverse committee, but
on the other hand, it gives the voters the certainty that their satisfaction cannot be worsened arbitrarily.
One possibility for defining h(a) is to compute a committee S with a well-known rule and to define h(a)
as the satisfaction of agent a with S minus one (which we will consider in our numerical experiments)
or to ensure the same minimum satisfaction for each agent.

A different way to incorporate diversity is to maximize the diversity given a scoring function (e.g., of a
scoring-based voting rule) and a minimum committee score:

Definition 2 (MAX-(D, s)-DSCR). Given an election E and a bound β ∈ N0, find a committee with
maximal diversity with respect to diversity index D among all committees S ∈ Rvld(E) for which
s(E , S) ≥ β, where s is a scoring function.

We will show results for the following, well-known scoring-based approval voting rules in the follow-
ing sections: Multi-Winner Approval Voting (AV), Satisfaction Approval Voting (SAV), Proportional
Approval Voting (PAV), and Approval Chamberlin-Courant (CC) (see, e.g., [19] for a definition of these
rules). We will refer to the score of the scoring-based voting ruleR as scoreR.

In the following, we refer to the decision variant of MAX-D-DSAT and MAX-(D, s)-DSCR, in which
the goal is to find a committee with a diversity which is at least a given value δ, as D-DSAT and
(D, s)-DSCR, respectively.

5.1 Complexity Results

First, we consider the computational complexity of finding a “diversity optimal” committee without
additional constraints. For this, we can exploit the fact that each index satisfies Weak Occurrence
Balancing. Therefore, the highest diversity is reached when starting with an empty committee and
iteratively adding a candidate with a label that, among the labels with unselected candidates, occurs
least often in the current committee:

Observation 7 (⋆). Given an election E and one of the diversity indices considered, choosing a committee
S ∈ Rvld(E) with the highest diversity is polynomial-time solvable.

Yet, D-DSAT is NP-hard for these indices. The same holds for (D, s)-DSCR if finding winning
committees isNP-hard forRs. We show this result for a broader class of diversity indices satisfying
the following, clearly desirable property:

Property 6 (Uniqueness Optimality). A diversity index D satisfies Uniqueness Optimality if for all
elections with m ≥ k, it holds that S ∈ Rvld(E) has optimal diversity if and only if no two candidates
in S have the same label.

Clearly, each of LC ,Si , and Sh satisfy this property because they satisfy Occurrence Balancing, and Ri
satisfies it because it is defined as m− distr(E , S)1 and distr(E , S)1 gets larger if labels occur more
than once. For such indices, we have the following:

Observation 8. IfD is a diversity index that satisfies Uniqueness Optimality, (1) (D, s)-DSCR isNP-hard
if the decision problem ofRs isNP-hard and (2) D-DSAT isNP-hard.

Proof. (1) The reduction from the NP-hard decision problem of Rs, i.e., where given an election
E = (A,C,U, k), the task is to decide whether there is S ∈ Rvld(E) with s(E , S) ≥ s∗, works as
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follows: Choose the election E ′ = (A,C,U, k, L′, λ′) with L′ = {lc : c ∈ C} as the possible labels and
λ′(c) = lc (i.e., each candidate has a different label). Set δ = D(E , S∗), where S∗ is a committee for E in
which k labels occur exactly once, and β = s∗. Thus, each committee of size k for E ′ has the diversity
D(E , S∗). Hence, (D, s)-DSCR has a solution if and only if there is a committee of score at least s∗.
(2) The reduction from the problem of finding a committee in which each agent has a satisfaction of at
least one, which is NP-hard [28], works analogously by giving each candidate a different label, setting
δ to D(E , S∗) with S∗ being a committee with k labels, and h(a) = 1 for all agents a ∈ A.

As the decision problems of CC and PAV areNP-hard [28, 4], we have that (D, scoreCC)-DSCR and
(D, scorePAV)-DSCR areNP-hard, where D is one of the indices considered.

In the remainder of this section, we want to focus on separable scoring functions:

Definition 3. A scoring function s is separable if there is a polynomial-time computable function w
mapping an election and a candidate to N such that for every election E and for every S ⊆ C , we have
that s(E , S) =

∑
c∈S w(E , c).

Clearly, a committee ofRs can be computed in polynomial time if s is separable. The scoring function of
AV is such a separable function with w(E , c) = | {a ∈ A : c ∈ U(a)} | ≤ |A|, and the scoring function
of SAV can be transformed into a separable function with w(E , c) =

∑
a∈A:c∈U(a) (ℓ/ |U(a)|), where

ℓ is the least common multiple of
⋃

a∈A {|U(a)|}, which can be computed in polynomial time using
binary representation. For separable functions, the following holds:

Theorem 2 (⋆). MAX-(D, s)-DSCR is in P if s is a separable function and D ∈ {Ri ,LC}.

Therefore, for D ∈ {Ri ,LC}, it holds that MAX-(D, scoreAV)-DSCR and MAX-(D, scoreSAV)-DSCR
are inP. The algorithm for Theorem 2 utilizes the lexicographic nature of LC . Next we show tractability
results for a class of diversity indices which we call label-wise diminishing, which includes Si and
Sh . An index D is called label-wise diminishing if D can be expressed as

∑
l∈[m]

∑nl
i=1 t(i) and, for all

i ∈ [k], it holds that 0 < t(i) and t(i) can be computed in time polynomial in the input size, and t is
strictly monotonically decreasing. We have the following.

Theorem 3. MAX-(D, s)-DSCR is in P if

• s is a separable function and there is an α ∈ N0 polynomial in the input size so that, for each c ∈ C ,
w(E , c) ≤ α,

• D is label-wise diminishing.

Proof. Given an instance ID of MAX-(D, s)-DSCR with n candidates, we construct an instance IK of
the 0-1 Knapsack problem in polynomial time. We assume that β ≤ k · α (β being the lower bound
for the score, see Definition 2), since there is no solution for ID otherwise. For each candidate ci,
we add an item xi with the weight wK(xi) := nα + 1 − w(ci) and the value v(xi) = t(π(ci)) + η,
where η := k · t(1) + 1 and π outputs ci’s position in a descending ordering of the candidates with the
same label as ci based on w. The knapsack’s bound is B := k(nα + 1) − β. Let, for a solution X of
IK , S(X) = {ci | xi ∈ X}, v(X) and wK(X) the value and weight of X , and, for a solution S of ID ,
X(S) = {xi : ci ∈ S}. We claim that IK has a solution X with value at least k · η if and only if S(X)
is a solution to ID and that ID is infeasible otherwise:

Let X be a solution to IK with value at least k · η. It follows that |X| ≥ k. Assume that |X| > k,
thenwK(X) ≥ (k+1)(nα+1)−w(S(X)) ≥ (k+1)(nα+1)−nα = k(nα+1)+1 > B, a contradiction.
Thus, |X| = k and wK(X) ≤ B ⇔ k(nα + 1) − w(S(X)) ≤ k(nα + 1) − β ⇔ β ≤ w(S(X)).
Thus, S(X) is of size exactly k and respects the score constraint. If X is a solution to IK with value
less than k · η, then |X| < k. Since X is maximal, there is no size-k solution respecting the capacity
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constraints and hence no solution to ID that respects the score constraint. Analogously, IK has no
solution with value at least k · η if ID has none.

Finally, we show that, for an optimal solution X∗
K of IK with value at least k · η, S(X∗

K) is an optimal
solution of ID. Note that, if, for a label lj , nj many items xi with λ(ci) = lj are chosen in X∗

K , the
nj items which come first in the order π are always chosen and thus v(X∗

K) = D(E , S(X∗
K)) + k · η.

Next, assume that ID has an optimal solution S∗
D ̸= S(X∗

K) with D(S∗
D) > D(S(X∗

K)). Consider the
committee S∗ with nl(E , S∗) = nl(E , S∗

D) for l ∈ [m] and c ∈ S∗ ⇔ π(c) ≤ nj(E , S∗
D) with lj = λ(c).

Thus, D(E , S∗) = D(E , S∗
D) = v(X(S∗))− k · η > D(E , S(X∗

K)) = v(X∗
K)− k · η, a contradiction.

Thus, the problem can be solved, e.g., by the solving the 0-1 Knapsack instance with dynamic program-
ming in O(nB) = O(n (k(nα+ 1)− β)) time.

Si is label-wise diminishing with t(i) = 2k + 1 − 2i, and Sh is label-wise diminishing with t(i) =
−i log(i) + (i− 1) log(i− 1) + log(k) + 2 where t(1) = log(k) + 2. Thus, we have:

Corollary 1 (⋆). MAX-(Si , scoreAV)-DSCR is in P and, if considering a computational model in which
the logarithm of natural numbers and addition and multiplication including a logarithm can be computed
in polynomial time,MAX-(Sh, scoreAV)-DSCR is in P.

However, we cannot apply Theorem 3 for SAV with the previously mentioned approach to transform
SAV’s score into a separable function, as it leads to weights that could not be bounded by a value
polynomial in the input size. Therefore, we show the following, which is also applicable to SAV:

Theorem 4 (⋆). (D, s)-DSCR is in P if

• s is a separable function and
• D is label-wise diminishing and there is a ζ ∈ N polynomial in the input size such that 0 < t(i) ≤ ζ
for all i ∈ [k].

The proof of Theorem 4 is similar to the proof of Theorem 3 in terms of constructing an instance of the
0-1 knapsack problem, but the diversity constraint is expressed with the help of the weights and the score
constraint with the help of the values of the items. While Sh does not fulfil the imposed conditions of
Theorem 4—leaving the question open whether (Sh, scoreSAV)-DSCR is inP—the previously mentioned
choice of t(i) for Si fulfills them. Therefore:

Corollary 2. (Si , scoreSAV)-DSCR is in P.

5.2 Experiments

To evaluate the problems, we use datasets with approval preferences from Pabulib [12]—a collection of
participatory budgeting data, a scenario in which incorporating diversity may be desirable—, in which
categories (e.g., urban greenery) and/or targets (e.g., adults) are assigned to the candidates: For each such
instance, we create up to three new instances of our model by assigning to a candidate as the label (1) the
categories, (2) the targets, or (3) the union of the categories and targets (e.g., {urban greenery, adults}
as a label and different sets forming different labels). We also transformed two datasets [21, 22] with
approval preferences from PrefLib [26] about the French presidential election in 2002, consisting of
seven instances overall, by assigning the combination of gender and political leaning as the label to
each candidate. The dimensions of the experimental data can be seen in Fig. 1. We removed instances
with |C| = m because each committee leads to the optimal diversity for them, as each diversity index
considered satisfies Uniqueness Optimality. In the following, we show results for k = 10. For this, we
discarded instances with |C| ≤ 10, which results in 687 instances. We conducted the same experiments
for k ∈ {6, 8} as well, the results of which are very similar and shown in Section D.
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Figure 1: The dimensions of the experimental data, where the color of each point represents the average number
of agents of all instances with the given number of labels and candidates.

Experimental Setup. To investigate the influence of weakening the score constraint on the diversity
reached (i.e. MAX-(D, s)-DSCR), we consider scoreAV and scoreSAV (for which solving MAX-(D, s)-
DSCR in P). For a given diversity index, let Rp

scr be the rule returning the committees with the highest
diversity among the committees reaching at least p% of the highest value of scoreR.

To examine the influence of the satisfaction constraints (i.e. MAX-D-DSAT), we additionally consider
CC, PAV, the Method of Equal Shares (Rule X), and Phragmén’s sequential rule (seq-Phragmén) (see
[19] for definitions) in Section D due to lack of space5. For each ruleR considered, we first compute
one committee S using the Python library abcvoting [20] with default parameters and refer to the rule
returning this committee as R. Based on the satisfactions of the agents with S, we look at the rule that
returns the committees with the highest diversity reachable when the satisfaction of each agent can be
decreased by at most one, which we denote asR−1

sat.

We also compute all winning committees for these rules with abcvoting to investigate whether the
diversity index could serve as a tiebreaker between them.

Experimental Results. Overall, the results—many of which can be seen from Fig. 2—are very similar
for AV and SAV and the following observations hold for both these rules: They achieve (without score or
satisfaction constraints) around 80% of the optimal diversity when measured with D ∈ {Ri ,LC ,Sh}
and around 70%when measured with Si . Thus, the diversity of the committees can indeed be improved.
In addition, for each diversity index, there are instances for which even allowing a score reduction
of 50% does not lead to the optimal diversity. Choosing the winning committee of AV or SAV with
the highest diversity rarely makes a difference. The most fundamental reason for this is that AV has
multiple winning committees for only around 5% of the instances and SAV even more rarely.6

We also compare the benefits of usingR−1
sat orR90

scr instead ofR: The experiments show that, on average,
a higher proportion of the optimal diversity is reached when usingR90

scr than when usingR−1
sat (with

only a few exceptions for k = 6 where these two approaches achieve very similar results overall): On
average,R90

scr reaches 4− 7% of the optimal diversity more thanR−1
sat (for k = 10). In addition,R90

scr

can lead to a noticeable change compared toR: The percentage of the optimal diversity achieved on
average increases by 12–19. It is also interesting that the gain in diversity is larger overall for R90

scr

compared to R than for R80
scr compared to R90

scr. The same holds true for the gain from R90
scr to R80

scr

compared to that from R80
scr to R70

scr (which can be seen in Section D), which suggests that there are
diminishing returns when weakening the score constraint. When comparing the four different diversity
indices, it seems most challenging to achieve the optimal diversity when using Si for each rule and
approach visualized in Fig. 2.

5seq-Phragmén, Rule X, and PAV perform very similarly overall to AV and SAV with regard to the diversity reached (with
or without satisfaction constraints), while CC reaches (slightly) higher diversities than the other rules on average.

6Using diversity as a tiebreaker leads to the greatest improved among all considered rules for CC (see Section D) which
has multiple winning committees for 209 instances.
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Figure 2: The proportion of the optimal diversity reached on the experimental data when using the specified
diversity index D. “R best” (“R worst”) refers to the rule choosing the committees with the highest (lowest)
diversity among the winning committees ofR. The red line indicates the median, the green cross the mean.

6 Epilogue

We adapted several diversity indices used in ecology to the context of committee elections and introduced
a new diversity index. We also introduced properties of diversity indices which allow us to differentiate
between any pair of indices we consider and tested the indices against them. Finally, we characterized
the new index via three of our properties. The underlying model assumes that each candidate has one
label: While this allows to define a label as a set of “sub-labels” (e.g. {urban greenery, adults} as one
label), all the indices we consider do not take the (dis)similarity or the importance of labels into account.
Further research could investigate diversity indices that incorporate such distances or different label
priorities, which also requires thinking about how such distances and priorities are determined.

From an algorithmic point of view, we proved that (D, s)-DSCR is in P in some cases if s is a separable
scoring function, despite, e.g., Si having a quadratic objective function. This includes the score of
AV and SAV for each diversity index considered apart from Sh in case of SAV—we left open whether
(Sh, scoreSAV)-DSCR is polynomial-time solvable. However, there are other s for which we prove that
(D, s)-DSCR isNP-hard, which is also the case for D-DSAT. Further work may study parameterized
complexity or approximation algorithms for these problems.

Our experiments revealed interesting trade-offs between satisfaction/scoring guarantees and diversity,
showing, among other results, that the diversity of committees can indeed be improved. It would also
be interesting to investigate how much the diversity indices differ on real world data or to evaluate past
elections regarding their scoring-diversity performance. This could be particularly interesting in the
context of participatory budgeting, which calls for an extension of our model in which the costs of the
projects and the respective budget becomes the third objective (next to voter satisfaction and diversity).
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Appendix

A Additional Material for Section 3

A.1 Testing the New Index against Adapted Properties

In this section, we adapt properties defined in the literature as desirable for diversity indices and test
our new diversity index LC against them. Not all of these properties are necessary in our context, but
we look at them to provide some reasons why we call the new index diversity index. We consider only
the new diversity index here, but we want to stress that not each of the indices that are used in ecology
and that we consider satisfies all following adapted properties.

Set Monotonicity. This property defined in [17] states that the diversity should increase if a new
species is added to a set of species. We adapt this property by replacing the species with the labels and
demanding the following:

A diversity index D satisfies Set Monotonicity if, for all elections E1 = (A,C,U, k, L, λ) and E2 =
(A,C,U, k + 1, L, λ) (i.e., only the committee size differs) with m > k and for all committees S1 ∈
Rvld(E1) and S2 ∈ Rvld(E2) with S2 = S1 ∪ {c′} and ni(E1, S1) = 0 with li = λ(c′), it holds that
D(S1) < D(S2).

LC satisfies this property, as

LC (E2, S2)− LC (E1, S1) =

(
k∑

i=1

(
(k + 2)k+2−i − (k + 1)k+1−i

)
· |σi|

)
+ (k + 2)k+1 > 0.

This property is not important in our context, as we search for a committee of a fixed size and, therefore,
only need to compare committees with this size based on the same candidate pool.

More Species do not Harm. This property mentioned in [17], [5], and in [15] states that the diversity
should not decrease if a new species is added to a set of species with equal frequencies in such a way
that the frequencies of all species are equal. We adapt this property by replacing the species with the
labels and demanding the following:

A diversity index D satisfies this property if for all elections E1 = (A,C,U, k, L, λ) withm labels for
which ∃i ∈ N : k = m · i and for all E2 = (A,C ∪ C ′, U, k + i, L′, λ′) with m+ 1 labels, |C ′| = i and
L′, λ′ leading to all candidates from C having the same labels as in E1 and all candidates from C ′ having
the same label lm+1 not present inL, it holds thatD(S1) ≤ D(S2) for allS1 ∈ Rvld(E1) , S2 ∈ Rvld(E2)
with ∀l ∈ [m] : nl(E1, S1) = nl(E2, S2) = i and nm+1(E2, S2) = i.

LC satisfies this property, as

LC (E1, S1) =

i∑
j=1

m · (m+ 1)k+1−j <

i∑
j=1

(m+ 1) · (m+ 2)k+i+1−j = LC (E2, S2) .

This property is not important in our context, either, for the same reasons as the previous property.

Equal Frequencies are Optimal. A property mentioned in [5] and [15] demands of a diversity index
(for a given number of species) that it is maximal if the frequencies of the species are equal. We adapt
this property by demanding the following:
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A diversity index D satisfies this property if, for all elections E = (A,C,U, k, L, λ) withm labels for
which ∃i ∈ N : k = m · i or for whichm ≥ k (let i = 1 in the latter case), it holds thatD(S1) is optimal
if S1 ∈ Rvld(E) and ∃L′ ⊆ L: |L′| = min{m, k} and ∀lj ∈ L′ : nj(E , S1) = i.

LC satisfies this property: Let S1 ∈ Rvld(E) be a committee satisfying this condition and S2 ∈ Rvld(E)
a committee violating this property, i.e., ∃l ∈ [m] : nl(E , S2) > i. S2 can be transformed into S1

iteratively by replacing a candidate with a label that occurs more than i times with a candidate with a
label that occurs less than i times, which leads to a strictly higher diversity. More formally:

1. Let l1 ∈ [m] be a label with i1 := nl1(E , S2) < i and l2 ∈ [m] be a label with i2 := nl2(E , S2) > i.

2. Let S3 ∈ Rvld(E) be a committee with nl1(E , S3) = i1+1, nl2(E , S3) = i2−1, and nf (E , S3) =
nf (E , S2) for f ∈ [m] \ {l1, l2}.

3. Set S2 = S3.

4. If there is a L′ ⊆ L with |L′| = m so that ∀lj ∈ L′ : nj(E , S2) = i, stop. Otherwise, continue
with the first step.

In the second step, the diversity of S3 is strictly higher than that of S2 according to LC , with η =
min{m, k}+ 1:

LC (S3)− LC (E , S2) = ηk−i1 − ηk+1−i2 = ηk−i1
(
1− η1−(i2−i1)

)
> 0 because i2 − i1 > 1.

Clearly, this property is desirable in our context: If it is possible that each label occurs equally often,
this should lead to the highest diversity.

Symmetry. This obviously desirable property mentioned in [25] and [15] demands from a diversity
index that its value remains the same regardless of the order of the species. When adapting this property
by replacing the species with the labels, LC fulfills this property trivially.

Effective Number. A property mentioned in [25] and [30] demands from a diversity index that its
value for a candidate set with s species equals s if each species has a frequency of s−1. We adapt his
property by demanding the following of a diversity index D: For all elections E = (A,C,U, k, L, λ)
withm labels for which ∃i ∈ N : k = m · i and S ∈ Rvld(E) with ∀l ∈ [m] : nl(E , S) = i, it holds that
D(S) = m.

This property is not fulfilled by LC , as LC (E , S) =
∑i

j=1m(m+ 1)k+1−j .

Because LC does not fulfill this property, it also does not fulfil a different property defined in [30],
which demands that the diversity is smaller than the number of species if the species do not have the
same frequency. Analogously, the diversity index does not satisfy a property defined in [25] which
requires an index’s value range to be {1, . . . , s}, where s is the number of species (which ism when
replacing species with labels).

Are these properties important in our context? It seems that this depends on the situation. It is useful,
for example, if it is desirable to derive information about the present species directly from the value of
the diversity index (i.e., the effective number of species; for more information see [18], for example). If,
on the other hand, the distr vector is given, the number of represented species and which of two given
sets is more diverse according to LC is easy to see (see Section 4). In such a situation, one could do
without this property. In addition, note that the other diversity indices we consider do not satisfy this
property, either, Ri being the only exception.
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Absent Species. This property mentioned in [25] requires an index’s value to remain the same if a
new species is added that occurs zero times. We adapt this property by replacing the species with the
labels and demanding the following from a diversity index D: For all elections E1 = (A,C,U, k, L, λ)
withm labels and for all E2 = (A,C ∪ {c′} , U, k, L′, λ′) with c′ /∈ C ,m+ 1 labels and L′, λ′ leading
to all candidates from C having the same labels as in E1 and c′ having label lm+1 not present in L, it
holds thatD(S1) = D(S2) with S1 ∈ Rvld(E1),S2 ∈ Rvld(E2), and ∀l ∈ [m] : nl(E1, S1) = nl(E2, S2)
and nm+1(E2, S2) = 0.

LC does not fulfill this property: Consider, for example, as E1 an election withm = 2 and each label
occurring twice (i.e., k = 4), then it holds that LC (E2, S2)− LC (E1, S1) = 424 > 0. This property is
not important in our context for the same reasons as for Set Monotonicity.

B Additional Material for Section 4

B.1 Proof of Observation 1

We observed this programmatically: For each committee size k ∈ {1, . . . , 7}, we iterated over each
possible number m of labels that can occur in the committee, i.e., m ∈ [k], as each candidate can
introduce at most one label. For each such combination of k and m, we looked at all possible distr
vectors and computed and compared the diversity indices of interest, exploiting the fact that the naming
and ordering of the candidates and agents as well as their votes do not matter for the diversity indices
at hand.

B.2 Proof of Observation 2

Diversity indices Sh and Si : Consider an election E with k = 10 and m = 3 labels, and two
committees S1, S2 ∈ Rvld(E) with p1(E , S1) = p2(E , S1) = 0.1, p3(E , S1) = 0.8, and p1(E , S2) =
0, p2(E , S2) = p3(E , S2) = 0.5. It holds that distr(E , S1)1 = 0 < 1 = distr(S2)1, but Sh(S1) ≈
0.64 < Sh(S2) ≈ 0.69, and Si(S1) = −0.66 < Si(S2) = −0.5.

Diversity index Ri : This follows directly from the definition of Ri asm− distr(E , S)1.

Diversity index LC : As distr(E , S1) ̸= distr(E , S2), it follows from Observation 6 that LC (E , S1) ̸=
LC (E , S2). Thus, it follows from Observation 5 (with ρ1 = 1) that LC (S1) > LC (S2).

B.3 Proof of Observation 3

In the following, let n′
l = nl(E , S′), n′′

l = nl(E , S′′) for l ∈ [m], distr′ = distr(E , S′), distr′′ =
distr(E , S′′). For the meaning of i, j, S′ and S′′ see the definition of Occurrence Balancing.

Diversity index Ri : If n′
i = 0 and thus distr′1 > distr′′1 , it holds that Ri(E , S′) = m − distr′1 <

m − distr′′1 = Ri(E , S′′). Otherwise, i.e., if distr′1 = distr′′1 , Ri(E , S′) = Ri(E , S′′) = m − distr′1.
Hence, Ri(S′) ≤ Ri(S′′).

Diversity index Sh: Let M ′
R = {i ∈ [m] : pi(E , S′) > 0} and M ′′

R = {i ∈ [m] : pi(E , S′′) > 0}. It
holds that Sh(E , S′′) − Sh(E , S′) > 0 ⇔

∑
p∈M ′

R

n′
p

k · log
(
n′
p

k

)
−
∑

p∈M ′′
R

n′′
p

k · log
(
n′′
p

k

)
> 0 ⇔∑

p∈MR
n′
p · log

(
n′
p

)
−
∑

p∈MR
n′′
p · log

(
n′′
p

)
> 0.

If n′
i = 0, this is equivalent to n′

j · log
(
n′
j

)
−
(
n′
j − 1

)
· log

(
n′
j − 1

)
> 0, which is true because

log is strictly monotonically increasing. Otherwise, i.e., if n′
i > 0, it is equivalent to n′

j · log
(
n′
j

)
−(

n′
j − 1

)
· log

(
n′
j − 1

)
+ n′

i · log(n′
i)− (n′

i + 1) · log(n′
i + 1) > 0, which we prove in the following:
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Let f(x) = x log(x) with f ′(x) = 1 + log(x) which is strictly monotonically increasing. According
to the mean value theorem, ∃c1 ∈

(
n′
j − 1, n′

j

)
, c2 ∈ (n′

i, n
′
i + 1) such that f

(
n′
j

)
− f

(
n′
j − 1

)
=

f ′(c1) = 1 + log(c1) and f(n′
i + 1) − f(n′

i) = f ′(c2) = 1 + log(c2). Thus, the former inequality is
equivalent to 1 + log(c1)− 1− log(c2) = log(c1)− log(c2) > 0, which is true due to c1 > c2.

Diversity index Si : It holds that Si(E , S′′) − Si(E , S′) > 0 ⇔
∑

p∈[m]

(
n′′
p

)2 −
(
n′
p

)2
< 0 ⇔(

n′
j − 1

)2
−
(
n′
j

)2
+(n′

i + 1)2− (n′
i)
2 < 0 ⇔ 2+2

(
n′
i − n′

j

)
< 0. The latter is true, as n′

i+1 < n′
j

and thus n′
i − n′

j ≤ −2.

Diversity index LC : Let δ := n′
j − n′

i and η = min{m, k}+ 1. It holds that

LC
(
S′′)− LC

(
S′) > 0 ⇔ ηk+1−n′

i−1 − ηk+1−n′
j = ηk−n′

i − ηk+1−n′
i−δ > 0 ⇔ 1− η1−δ > 0

which is true, as 1− δ < 0.

B.4 Proof of Observation 4

In the following, let α := ni(E , S) and d2 := ⌊d2⌋.

Diversity index Ri : If ni(E , S) ≥ 1, it holds that distr(E , S)1 = distr(E , S(i,j))1 = distr(E , S(k,l))1
and therefore Ri

(
S(i,j)

)
= m− distr(E , S)1 = Ri

(
S(k,l)

)
.

Diversity index Si : It holds that

Si
(
S(i,j)

)
− Si(S)

=
(
− (α+ d2)

2 − (α+ d− d2)
2 + α2 + (α+ d)2

)
/k2

=
(
−α2 − 2αd2 − d22 − α2 − 2α (d− d2)− (d− d2)

2 + α2 + α2 + 2αd+ d2
)
/k2

=
(
−d22 − (d− d2)

2 + d2
)
/k2

and analogously Si
(
S(k,l)

)
− Si(S) =

(
−d22 − (d− d2)

2 + d2
)
/k2. Hence, Si

(
S(i,j)

)
− Si

(
S(k,l)

)
=

Si
(
S(i,j)

)
− Si(S)−

(
Si
(
S(k,l)

)
− Si(S)

)
= 0.

Diversity index LC : This follows directly from LC being obvious with f(l) = 1 (see Observation 5) be-
cause rdistr

(
E , S(i,j), S(k,l)

)
1
= distr

(
E , S(i,j)

)
α+1

< rdistr
(
E , S(k,l), S(i,j)

)
1
= distr

(
E , S(k,l)

)
α+1

.

Diversity index Sh : Consider the function

f(x) =
− (x+ d2) log(x+ d2)− (x+ d− d2) log(x+ d− d2) + x log(x) + (x+ d) log(x+ d)

k
.

Hence, f(α) = Sh
(
S(i,j)

)
− Sh(S) and f(nk(E , S)) = Sh

(
S(k,l)

)
− Sh(S). The derivative is

f ′(x) = (log(x)+log(d+ x)−log(d− d2 + x)−log(d2 + x))/k = log

(
x (d+ x)

(d− d2 + x) (d2 + x)

)
/k.

As

x (d+ x)

(d− d2 + x) (d2 + x)
=

xd+ x2

dd2 + dx− d22 − d2x+ d2x+ x2
=

xd+ x2

xd+ x2 + dd2 − d22
< 1

due to d > d2, it holds that f ′(x) < 0 for x ≥ 0. Hence, f(x) is strictly monotonically decreasing
for x ≥ 0 and f(α) = Sh

(
S(i,j)

)
− Sh(S) > f(nk(E , S)) = Sh

(
S(k,l)

)
− Sh(S) ⇔ Sh

(
S(i,j)

)
>

Sh(S(k,l)).
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B.5 Proof of Observation 5

In the following, let rdistr(1) = rdistr(E , S1, S2), rdistr(2) = rdistr(E , S2, S1), distr(1) = distr(E , S1),
distr(2) = distr(E , S2), ρ the vector of the elements of IR(E , S1, S2) in ascending order, and η :=
min{m, k}+ 1.
Diversity indices Sh and Si : These two indices violate this property. A counterexample using an
election E with k = 8 and m = 6 is the following: Consider rdistr(1) = (2, 0, 4, 0) and rdistr(2) =
(0, 5, 0, 1) with ρ1 = 1, ρ2 = 2, ρ3 = 3, ρ4 = 4. Therefore, Si(E , S1) = −16

64 < Si(E , S2) = −14
64 and

Sh(E , S1) ≈ 1.39 < Sh(E , S2) ≈ 1.67. Thus, both indices categorize S2 as more diverse. This makes it
a counterexample for l′ = 2 and l′ = 4.

For l′ = 1, l′ = 3, and Si , the following is a counterexample: Consider rdistr(1) = (1, 4, 0, 1) and
rdistr(2) = (2, 0, 4, 0) with ρ1 = 1, ρ2 = 2, ρ3 = 3, ρ4 = 5. It holds that Si(E , S1) = −20

64 <
Si(E , S2) = −16

64 .

For l′ = 1, l′ = 3, and Sh , the following is a counterexample: Consider rdistr(1) = (0, 5, 0, 1) and
rdistr(2) = (1, 2, 3, 0) with ρ1 = 1, ρ2 = 2, ρ3 = 3, ρ4 = 4. It holds that Sh(E , S1) ≈ −1.67 <
Sh(E , S2) = −1.56.

Diversity index Ri : Ri is 1-obvious7. It follows from the definition of Ri that Ri(E , S1) =∑k
i=1 distr

(1)
i+1 = m− distr

(1)
1 and analogously for Ri(E , S2). As we assume that the corresponding

candidate sets are not equally diverse with respect to Ri , distr(1)1 ̸= distr
(2)
1 and ρ1 = 1 holds. Hence,

rdistr
(1)
1 < rdistr

(2)
1 ⇔ distr

(1)
1 < distr

(2)
1 ⇔ m− distr

(1)
1 > m− distr

(2)
1 ⇔ Ri(E , S1) > Ri(E , S2).

Diversity index LC : LC is 1-obvious: We first show that LC (E , S1) > LC (E , S2) ⇒ rdistr
(1)
1 <

rdistr
(2)
1 . For this, suppose that LC (E , S1) > LC (E , S2) and rdistr

(1)
1 > rdistr

(2)
1 , and let r = ρ1 and

η = min{m, k}+ 1.

Then it holds that ∀i ∈ [r − 1] : distr
(1)
i = distr

(2)
i ∧σ(E , S1)i = σ(E , S2)i and thus σ(E , S1)r <

σ(E , S2)r because rdistr
(1)
1 > rdistr

(2)
1 ⇔ distr

(1)
r > distr

(2)
r , which means that S1 has more labels

occurring r − 1 times than S2 and thus fewer labels occurring at least r times than S2. It holds that

LC (E , S1) > LC (E , S2) ⇔
k∑

i=1

ηk+1−i · (|σ(E , S1)i| − |σ(E , S2)i|) > 0

⇔ ηk+1−r · (|σ(E , S1)r| − |σ(E , S2)r|) +
k∑

i=r+1

ηk+1−i · (|σ(E , S1)i| − |σ(E , S2)i|) > 0. (1)

As σ(E , S1)r < σ(E , S2)r and ∀i ∈ [k] : η ≥ σ(E , S′)i ≥ 0 for S′ ∈ {S1, S2}, it follows (with the help
of the geometric series formula) that

(η + 1)k+1−r · (|σ(E , S1)r| − |σ(E , S2)r|) +
k∑

i=r+1

(η + 1)k+1−i · (|σ(E , S1)i| − |σ(E , S2)i|)

≤− (η + 1)k+1−r +

k∑
i=r+1

η · (η + 1)k+1−i < − (η + 1)k+1−r + η + 1 +

k∑
i=r+1

η · (η + 1)k+1−i

=− (η + 1)k+1−r + η + 1− (η + 1) + (η + 1)k+1−r = 0  to (1)

For rdistr(1)1 < rdistr
(2)
1 ⇒ LC (E , S1) > LC (E , S2), see the proof for LC for Observation 6.

7We write 1-obvious and l-obvious short for obvious with f(l) = 1 for all l ∈ N and f(l) = l for all l ∈ N, respectively.
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B.6 Proof of Observation 6

Diversity index Sh: Consider an election with m = 5 labels and k = 8, and two committees
S1, S2 ∈ Rvld(E) with distr(E , S1) = (1, 0, 4, 0, 0) and distr(E , S2) = (0, 4, 0, 0, 1). It holds that
distr(E , S1) ̸= distr(E , S2), but

Sh(E , S1) = −4 · 2
8
· log

(
2

8

)
= − (log(2)− log(8)) = −

(
1

2
(log(2) + log(2))− log(8)

)
= −

(
1

2
log(4)− log(8)

)
= −

(
4 · 1

8
log

(
1

8

)
+

1

2
log

(
4

8

))
= Sh(E , S2) .

Diversity index Si : Consider an election with m = 6 labels and k = 8, and two committees S1, S2 ∈
Rvld(E) with distr(E , S1) = (1, 2, 3, 0) and distr(E , S2) = (0, 5, 0, 1). It holds that Si(E , S1) =
− 1

64 (2 + 3 · 4) = − 1
64 (5 + 9) = Si(E , S2), although distr(E , S1) ̸= distr(E , S2).

Diversity index Ri : Consider an election with m = 2 labels and k = 4, and two committees S1, S2 ∈
Rvld(E) with distr(E , S1) = (0, 1, 0, 1) and distr(E , S2) = (0, 0, 2, 0). It holds that Ri(E , S1) = 2 =
Ri(E , S2), although distr(E , S1) ̸= distr(E , S2).

Diversity index LC : Clearly, if distr(E , S1) = distr(E , S2), it holds that LC (E , S1) = LC (E , S2).
Next, we assume that distr(E , S1) ̸= distr(E , S2). Thus, rdistr(1) = rdistr(E , S1, S2) and rdistr(2) =

rdistr(E , S2, S1) have a length l ≥ 1. Assume, w.l.o.g., rdistr(1)1 < rdistr
(2)
1 and let r = ρ1 and

η = min{m, k}+1. Thus, ∀i ∈ {1, . . . , r − 1} : distr
(1)
i = distr

(2)
i ∧σ(E , S1)i = σ(E , S2)i and hence

σ(E , S1)r > σ(E , S2)r because rdistr
(1)
1 < rdistr

(2)
1 ⇔ distr

(1)
r < distr

(2)
r , which means that S2 has

more labels occurring r − 1 times than S1 and thus fewer labels occurring at least r times than S1.
Based on this, it holds that

LC (E , S1)− LC (E , S2) =
k∑

i=1

ηk+1−i · (|σ(E , S1)i| − |E , σ(S2)i|)

= ηk+1−r · (|σ(E , S1)r| − |σ(E , S2)r|) +
k∑

i=r+1

ηk+1−i · (|σ(E , S1)i| − |σ(E , S2)i|) .

As σ(E , S1)r > σ(E , S2)r and ∀i ∈ {1, . . . , k} : η − 1 ≥ σ(E , S′)r ≥ 0 for S′ ∈ {S1, S2}, it follows
(with the help of the geometric series formula) that

LC (E , S1)− LC (E , S2) ≥ ηk+1−r −
k∑

i=r+1

(η − 1) · ηk+1−i

> ηk+1−r − η −
k∑

i=r+1

(η − 1) · ηk+1−i = ηk+1−r − η + η − ηk+1−r = 0.

Thus, LC (E , S2) < LC (E , S1).

B.7 Proof of Theorem 1

In the following, let rdistr(1) = rdistr(E , S1, S2), rdistr(2) = rdistr(E , S2, S1). In addition, let E be an
arbitrary, but fixed, election, and S1, S2 ∈ Rvld(E).

Let Dd be a diversity index satisfying Distribution Equivalence, Obviousness, and Present Label
Maximization. If LC (E , S1) = LC (E , S2) (Dd(E , S1) = Dd(E , S2)), it holds that Dd(E , S1) =
Dd(E , S2) (LC (E , S1) = LC (E , S2)), as this holds for both diversity indices if and only if distr(E , S1) =
distr(E , S2) because of Distribution Equivalence.
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If, however, distr(E , S1) ̸= distr(E , S2) we show that Dd satisfies Obviousness with f(l) = 1 if the
length l of the rdistr vectors is at least four and, otherwise, with such f(l) = l′ which are also valid for
LC . Thus, we show that LC (E , S1) > LC (E , S2) if and only if Dd(E , S1) > Dd(E , S2). For this, we
will use that the following holds with l being the length of the rdistr vectors of S1 and S2:

l∑
i=1

rdistr
(1)
i =

l∑
i=1

rdistr
(2)
i (2)

l∑
i=1

ρi · rdistr(1)i =

l∑
i=1

ρi · rdistr(2)i (3)

First, note that l < 3 is not possible: Assume that l = 1 is possible, then there is exactly one index r1 for
which distr(E , S1)r1 ̸= distr(E , S2)r1 and let w.l.o.g. distr(E , S1)r1 > distr(E , S2)r1 . However, there
must be an r2 with distr(E , S1)r2 < distr(E , S2)r2 because of Eq. (2), i.e., l needs to be at least two.
W.l.o.g., let r1 < r2. Assume, that l = 2 is possible and thus d := distr(E , S1)r1 − distr(E , S2)r1 =
distr(E , S2)r2 − distr(E , S1)r2 . Then, it holds that

∑
i∈[k+1] (i− 1) · (distr(E , S1)i − distr(E , S2)i) =

(r1 − 1) · d− (r2 − 1) · d = d · (r1 − r2) ̸= 0. This is a contradiction to Eq. (3). Thus, l is at least three.

Next, we assume that l ≥ 4 and show that Dd satisfies Obviousness only with f(l) = 1 (like LC does).
As a counterexample for f(l) = l′ ∈ {2, . . . , l − 1} consider an election E1 with m = l − 2 labels and
k =

∑l−1
j=2 j − 1 and consider S1 ∈ Rvld(E1) with

rdistr(E1, S1, S2)1 = 0

∀j ∈ {2, . . . , l − 1} : rdistr(E1, S1, S2)j = 1

rdistr(E1, S1, S2)l = 0

and S2 ∈ Rvld(E1) with

rdistr(E1, S2, S1)1 = l − 2− 1

∀j ∈ {2, . . . , l − 1} : rdistr(E1, S2, S1)j = 0

rdistr(E1, S2, S1)l = 1

with ∀j ∈ [l − 1] : ρj = j, and ρl = k. Thus, Dd(E1, S1) > Dd(E1, S2) and LC (E1, S1) > LC (E1, S2)
(because both indices satisfy Present Label Maximization) and l′ /∈ {2, . . . , l − 1}.
For a counterexample for f(l) = l′ = l consider an election E2 with m = l labels and k =(∑l−2

j=3 j − 1
)
+ 3 (l − 2) and consider S1 ∈ Rvld(E2) with

rdistr(E2, S1, S2)1 = 0

rdistr(E2, S1, S2)2 = l − 1

∀j ∈ {3, . . . , l − 2} : rdistr(E2, S1, S2)j = 0

rdistr(E2, S1, S2)l−1 = 0

rdistr(E2, S1, S2)l = 1

and S2 ∈ Rvld(E2) with

rdistr(E2, S2, S1)1 = 1

rdistr(E2, S2, S1)2 = 0

∀j ∈ {3, . . . , l − 2} : rdistr(E2, S2, S1)j = 1

rdistr(E2, S2, S1)l−1 = 3

rdistr(E2, S2, S1)l = 0
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with ρj = j ∀j ∈ [l − 1], and ρl = k − (l − 1). Thus, Dd(E2, S1) > Dd(E2, S2) and LC (E2, S1) >
LC (E2, S2) (because both indices satisfy Present Label Maximization) and l′ /∈ {2, l}. Therefore, Dd

satisfies Obviousness only with f(l) = 1 when l ≥ 4.

Next, we consider l = 3. Assume that f(l) = l′ ̸= 1 and w.l.o.g. Dd(E , S1) > Dd(E , S2). AsDd satisfies
Present Label Maximization, it needs to hold that rdistr(1)1 < rdistr

(2)
1 ⇒ rdistr

(1)
l′ < rdistr

(2)
l′ . We show

that rdistr(1)1 < rdistr
(2)
1 ⇒ rdistr

(1)
3 < rdistr

(2)
3 and rdistr

(1)
1 < rdistr

(2)
1 ⇒ rdistr

(1)
2 > rdistr

(2)
2 .

For this, assume that rdistr(1)1 < rdistr
(2)
1 and let ρ2 = ρ1 + δ1 and ρ3 = ρ1 + δ1 + δ2 with δ1, δ2 > 0.

Because of Eq. (3), it needs to hold that
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rdistr
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)
+ δ2 · rdistr(2)3

and, therefore, it needs to hold because of Eq. (2) that
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2 +rdistr
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Assume that rdistr
(1)
3 > rdistr

(2)
3 . Because of Eq. (2) and rdistr
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1 < rdistr

(2)
1 , it holds that
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3 and thus
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+ δ2 · rdistr(2)3 < δ1
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(1)
2 +rdistr

(1)
3

)
+ δ2 · rdistr(1)3

which is a contradiction to Eq. (4). Thus, rdistr(1)1 < rdistr
(2)
1 ⇒ rdistr

(1)
3 < rdistr

(2)
3 and, based on

this and Eq. (2), rdistr(1)1 < rdistr
(2)
1 ⇒ rdistr

(1)
2 > rdistr

(2)
2 . Therefore, Dd satisfies Obviousness with

l′ = 1 or l′ = 3.

Finally, we show that this also holds for LC by showing that rdistr(1)3 < rdistr
(2)
3 ⇒ rdistr

(1)
1 <

rdistr
(2)
1 . Assume that rdistr(1)3 < rdistr

(2)
3 , but rdistr(1)1 > rdistr

(2)
1 . Because of Eq. (4), it follows that

rdistr
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(2)
2 . Let δ′1 := rdistr

(1)
1 − rdistr

(2)
1 , δ′2 := rdistr

(1)
2 − rdistr

(2)
2 . It holds that δ′1, δ′2 > 0

and, because of Eq. (2), rdistr(2)3 = rdistr
(1)
3 +δ′1 + δ′2. Thus, it follows from Eq. (4) that it needs to hold

that

δ1

(
rdistr

(1)
2 +rdistr

(1)
3 − rdistr

(2)
2 − rdistr
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3
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+ δ2 ·

(
rdistr

(1)
3 − rdistr
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= δ1
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rdistr
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2 +rdistr
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3 − rdistr
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2 − rdistr
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3 −δ′1 − δ′2
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rdistr
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3 − rdistr

(1)
3 −δ′1 − δ′2
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= δ1

(
−δ′1

)
+ δ2

(
−δ′1 − δ′2

)
= 0,

a contradiction, as δ′1 > 0, δ′1 + δ′2 > 0, δ1 > 0, and δ2 > 0.

B.8 Further Information

Next, we show the connection between LC and Ri : If distr(E , S1) = distr(E , S2), LC (E , S2) =
LC (E , S1) (because LC satisfies Distribution Equivalence) and Ri(E , S1) = Ri(E , S2) clearly holds.
On the other hand, if LC (E , S1) > LC (E , S2), Ri either classifies both as equally diverse or S1 as
more diverse, because it is obvious with f(l) = 1, as is LC . Thus, we have the following:

Corollary 3. For each election E and S1, S2 ∈ Rvld(E), it holds that LC (E , S1) ≥ LC (E , S2) ⇒
Ri(E , S1) ≥ Ri(E , S2).
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C Additional Material for Section 5.1

C.1 Proof of Observation 7

The following algorithm yields a most diverse committee:

1. Start with an empty candidate set C ′ = ∅.
2. Pick an l′ ∈ arg minl∈L′ nl(E , C ′) with L′ = {l ∈ [m] : nl(E , C \ C ′) > 0} (i.e. a label is in L′

if it is assigned to at least one candidate not chosen yet).
3. Add a c ∈ Clabel (E , C \ C ′, l′) to C ′.
4. If |C ′| = k, stop. Otherwise, go to step 2.

Clearly, this returns a committeeC ′ satisfying the following property: ∀ (l, l′) ∈ [m]× [m] : nl′(E , C ′)+
1 < nl(E , C ′) ⇒ nl′(E , C \ C ′) = 0 (otherwise it would contradict step 2 and 3).

In the following, let distr′ = distr(E , C ′). First, we show that all committees fromRvld(E) fulfilling
the above property have the same distr vector and therefore the same diversity according to each
of the indices at hand. Assume this is not the case, i.e., there exists a C ′′ ∈ Rvld(E) with distr′′ :=
distr(E , C ′′) ̸= distr′ that fulfills the property. Thus, there are l ∈ [m], l′ ∈ [m] \ {l} and d, d′ ∈ N
such that nl(E , C ′) = nl(E , C ′′) + d and nl′(E , C ′) + d′ = nl′(E , C ′′) and, hence, nl(E , C \ C ′′) > 0.
We make a case distinction as to how much the number of occurrences of l and l′ differ in C ′—note that
nl(E , C ′) > nl′(E , C ′) + 1 is not possible because C ′ satisfies the property—, each of which leads to a
contradiction:

• nl(E , C ′) ≤ nl′(E , C ′): As the number of l is smaller in C ′′ than in C ′, nl(E , C \ C ′′) > 0
and nl′(E , C ′′) − nl(E , C ′′) > 1, because nl′(E , C ′′) > nl′(E , C ′) ≥ nl(E , C ′) > nl(E , C ′′).
Therefore, C ′′ violates the above property, a contradiction.

• nl(E , C ′) = nl′(E , C ′)+1: If d = d′ = 1, this pair of labels does not lead to the distr vectors being
different, i.e., there needs to be a different pair of labels for which the number of occurrences differ
between C ′ and C ′′ as described above (continue the case distinction for a different pair of labels).
Otherwise, nl′(E , C ′′)−nl(E , C ′′) > 1, because nl′(E , C ′′) = nl′(E , C ′)+d′ = nl(E , C ′)+d′−1
and nl(E , C ′) = nl(E , C ′′) + d and d, d′ ≥ 1 and d+ d′ > 2. Therefore, C ′′ violates the above
property, a contradiction.

Thus, each committee satisfying the property has the same diversity according to the indices at hand.
In addition, as these diversity indices satisfyWeak Occurrence Balancing, each committee C ′′ ∈ Rvld(E)
that does not fulfill the property is at most as diverse as C ′, making C ′ one of the most diverse
committees.

C.2 Proof of Theorem 2

First, we show the result for LC : In the following, let η = min{m,n} and

µ(i,Γ) :=

i∑
j=1

(η + 1))n+1−j · |σj(Γ)|with σj(Γ) = {l ∈ [m] : nl(E ,Γ) ≥ j} ,

Lj(Γ) := {l ∈ [m] : nl(E ,Γ) = j}

and therefore LC (E ,K) = µ(k,K). Note that for two committees S1 and S2 it holds, if ∃j ∈ [i] with
distrj(S1) ̸= distrj(S2), that

µ(i, S1) > µ(i,K2) ⇔ distrm′(S1) < distrm′(S2)

withm′ = min {j ∈ [i] : distrj(S1) ̸= distrj(S2)}, for an analogous reason to why LC is 1-obvious.

Our polynomial-time algorithm works as follows:
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1. Start with a committeeK∗ which the ruleRs determines and which therefore has the highest
score, set K = K∗ and j = 0. If s(E ,K) < β, stop, as there is no committee fulfilling the
condition regarding the score.

2. If j = k, returnK . Otherwise, let

Ij = {i ∈ [m] : ni(E ,K) = j ∧ ni(E , C) > j}

and, for i ∈ Ij , let wi = maxc∈Clabel (E,C,i)\K w(E , c), ci a candidate with label li that would
contribute the most to score among the candidates with this label that are not part of K , i.e.,
ci ∈ {c ∈ Clabel (E , C, i) \K : w(E , c) = wi}, Xs = {ci : i ∈ Ij}, and Xe = {}.

3. Pick a ca ∈ arg maxci∈Xs\Xe
wi. Let

Cp = {c ∈ K : ni(E ,K) > j + 1 with li = λ(c)} .

Pick a cr ∈ arg minc∈Cp
w(E , c), i.e., a candidate which is currently part of K , has a label which

occurs more than j + 1 times in K , and which contributes the least to the score among such
candidates. LetK ′ = K∪{ca}\{cr}. If s(E ,K ′) < β, set j = j+1 and go to step 2 (as we cannot
increase the number of occurrences of labels occurring j times (further) without decreasing the
number of labels occurring at most j + 1 times). Otherwise, setK = K ′, Xs = Xs \ {ca} and
Xe = Xe ∪ {ca}. If |Xs| = 0 (there are no labels occurring j times left), set j = j + 1 and go to
step 2. Otherwise, start with step 3 again.

We show by induction that, when visiting the second step for the i-th time, with i ∈ {2, . . . k + 1} and
Ki being the committee when reaching this step for the i-th time, there is

1. no other committee K ′ ∈ Rvld(E) with s(E ,K ′) ≥ β and µ(i− 1,K ′) > µ(i− 1,Ki) (later
referred to as the first condition).

2. no other committeeK ′′ ∈ Rvld(E) with µ(i− 1,K ′′) = µ(i− 1,Ki) and s(E ,K ′′) > s(E ,Ki)
(later referred to as the second condition).

Note that these conditions imply the following (later referred to as the third condition):

∀l ∈ [m] , l′ ∈ {ϕ ∈ [m] : nϕ(E ,Ki) < nl(E ,Ki)} ,
c ∈ Clabel (E ,Ki, l) , c

′ ∈ Clabel

(
E , C \Ki, l

′) : w(E , c′) ≤ w(E , c) .

Assume this is not the case, i.e., there are l, l′, c, c′ so that w(E , c′) > w(E , c). LetKd = Ki \ {c}∪{c′}.
Therefore, s(E ,Kd) > s(E ,Ki) ≥ β. In addition, if nl′(E ,Ki) ≥ i−1 or nl(E ,Ki) = nl′(E ,Ki)+1, it
follows that µ(i− 1,Kd) = µ(i− 1,Ki), which contradicts the second condition. On the other hand, if
nl′(E ,Ki) < i− 1 and nl(E ,Ki) > nl′(E ,Ki) + 1, it follows that µ(i− 1,Kd) > µ(i− 1,Ki), which
contradicts the first condition.

We start with i = 2, i.e., with visiting the second step for the second time: IfK1 = K∗ has either no
label occurring 0 times, or lp labels occurring 0 times and all other committees of size k which satisfy
the bound β have at least lp labels occurring 0 times, s(E ,K1) = s(E ,K2) ≥ s(E ,K ′) for all other
committeesK ′ of size k, asK1 = K∗ = K2. Otherwise, letK ′ ∈ Rvld(E) be a committee respecting β
in which ln < lp labels occur 0 times and, therefore, in which more labels occur at least once. We show
thatK2 has at most ln labels occurring 0 times and, if it has exactly ln many labels occurring 0 times, a
score which is at least as good.

First, we transformK ′ so that the score does not decrease and the number of labels occurring 0 times does
not increase. As long as ∃l′ ∈ [m] : nl′(E ,K ′) = 0 < nl′(E ,K1) and therefore ∃l ∈ [m] : nl(E ,K1) =
0 < nl(E ,K ′), we set K ′ = K ′ \ {c} ∪ {c′} with c′ ∈ Clabel (E ,K1, l

′) and c ∈ Clabel (E ,K ′, l), which
does not reduce the score (asK1 maximizes the score). Let ln be the number of labels occurring 0 times
in this updatedK ′.

Pick theLa ⊆ L0(K1)\L0(K
′)with |La| = lp−ln and for each l ∈ La a candidate c(l)a ∈ Clabel (E ,K ′, l)

and let Ca =
⋃

l∈La

{
c
(l)
a

}
. There needs to be a Cr ⊆ C with |Cr| = |Ca| = lp − ln such that
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∀c ∈ Cr : c ∈ K1 \ K ′ and nθ(E ,K1) − nθ(E , Cr) ≥ nθ(E ,K ′) > 0 with lθ = λ(c), as it needs
to hold that k =

∑
i∈[m] ni(K1) =

∑
i∈[m]\L0(K1)

ni(K1) =
∑

i∈[m]\L0(K1)
ni(K

′) +
∑

i∈La
ni(K

′)
with

∑
i∈La

ni(K
′) ≥ lp − ln.

It holds that s(E ,K ′ ∪ Cr \ Ca) ≤ s(E ,K1) and therefore it holds that s(E ,K1 \ Cr ∪ Ca) ≥
s(E ,K ′) ≥ β. Consequently, the algorithm will repeat the third step at least lp − ln times, in each step
removing a candidate from Cr or, alternatively, a candidate c′ of a label occurring at least 2 times with
a lower w(E , c′), and in each step adding a candidate from Ca or a candidate c′′ of a label occurring 0
times with a larger w(E , c′′). Thus, K2 has at most ln labels occurring 0 times and, if exactly ln labels
occur 0 times, a score at least as good as the score ofK ′.

Now, the inductive step i⇝ i+ 1 follows: Let lp be the number of labels occurring i− 1 times inKi.
Note that for a committeeK ′ ∈ Rvld(E) with µ(i,K ′) ≥ µ(i,Ki) and scoreAV(K ′) ≥ β, it has to hold
that µ(i− 1,K ′) = µ(i− 1,Ki) and thus σj(K ′) = σj(Ki) for j ∈ [i− 1] and |Lj(K

′)| = |Lj(Ki)|
for j ∈ {0, . . . , i− 2}.

If lp = 0 (and therefore the number of labels occurring at least i times is optimal) or all other committees
K ′ ∈ Rvld(E) which satisfy the bound β and for which µ(i− 1,K ′) = µ(i− 1,Ki) have at least lp
many labels occurring i− 1 times (and thus at most as many labels occurring at least i times asKi),
Ki+1 = Ki and s(E ,Ki) ≥ s(E ,K ′) due to the induction hypothesis.

Otherwise, let K ′ ∈ Rvld(E) be a committee respecting β in which ln < lp labels occur i − 1 times
and µ(i− 1,K ′) = µ(i− 1,Ki) and thus more labels occur at least i times. We show that Ki+1 has at
most ln labels occurring i− 1 times and, if exactly ln labels occur i− 1 times, a score which is at least
as good.

First, we transform K ′ so that µ(i− 1,K ′) remains unchanged, the score does not decrease, and
the number of labels occurring exactly i − 1 times does not increase. First, note that it is not
possible that ∃l, l′ ∈ [m] : nl(E ,K ′) ≤ i − 2, nl(E ,K ′) = nl′(E ,Ki) < nl(E ,Ki), and
nl′(E ,K ′) ≥ nl(E ,K ′) + 2: If this were possible, s(E ,K ′ \ {c′} ∪ {c}) ≥ s(E ,K ′) ≥ β with
c′ ∈ Clabel (E ,K ′, l′) \ Ki, c ∈ Clabel (E ,Ki, l) \ K ′ because of the third condition and, therefore,
µ(i− 1,K ′ \ {c′} ∪ {c}) > µ(i− 1,Ki), a contradiction to the induction hypothesis.

For j ∈ (0, . . . , i− 2), we do the following: As long as ∃l ∈ [m] : nl(E ,K ′) = j < nl(E ,Ki)
and therefore ∃l′ ∈ [m] : nl′(E ,Ki) = j < nl′(E ,K ′) = j + 1 (see the previous note), we set
K ′ = K ′ \ {c′} ∪ {c} with c′ ∈ Clabel (E ,K ′, l′) \ Ki and c ∈ Clabel (E ,Ki, l) \ K ′, which leaves
µ(i− 1,K ′) unchanged and does not reduce the score because of the third condition. This results in

Ld :=
{
l ∈ [m] : nl(E ,Ki) = nl

(
E ,K ′) ≤ i− 2

}
=
{
l ∈ [m] : nl(E ,Ki) ≤ i− 2 ∨ nl

(
E ,K ′) ≤ i− 2

}
.

Then, for j = i− 1, we do the following: As long as

• ∃l′ ∈ [m] : nl′(E ,Ki) > nl′(E ,K ′) = j
• and therefore ∃l ∈ [m] : nl(E ,K ′) > nl(E ,Ki) = j (because |Lj(Ki)| > |Lj(K

′)|)
• and ∃Ca ⊆ Ki \K ′ : |Ca| = nl(E ,K ′)−nl(E ,Ki) such that ∀c ∈ Ca : nθ(E ,K ′)+nθ(E , Ca) ≤
nθ(E ,Ki) with lθ = λ(c), and ∃cl′ ∈ Ca : cl′ ∈ Clabel (E ,Ki, l

′) (such a Ca exists, as it holds
that

∑
ϕ∈[m]\Ld\{l} nϕ(Ki) + nl(E ,Ki) =

∑
ϕ∈[m]\Ld\{l} nϕ(K

′) + nl(E ,K ′) and nl(E ,Ki) <

nl(E ,K ′)),

set K ′ = K ′ \ Cr ∪ Ca with Cr ⊆ Clabel (E ,K ′, l) \Ki and |Cr| = |Ca| so that l′ occurs more often
than j times in K ′, but now l occurs j times. This does not reduce the score either because of the third
condition, as we decrease the number of occurrences of label l′ inK ′ (by removing candidates with this
label that are not part ofKi) and as we increase the number of labels which occur more than j times
in Ki (by adding candidates with this label that are part of Ki which have a higher score s than the
removed candidates because of the third condition).
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For the resulting K ′, let ln be the number of labels occurring i− 1 times in this updated K ′, for which
∀l ∈ Li−1(K

′) : nl(E ,K ′) = nl(E ,Ki). Next, take La ⊆ Li−1(Ki) \ Li−1(K
′) for which it holds that

|La| = lp − ln such that ∀la ∈ La : Clabel (E ,K ′, la) > i− 1, pick a cla ∈ Clabel (E ,K ′, la) \Ki for all
la ∈ La, and letCa =

⋃
la∈La

cla . Additionally, there needs to be aCr ⊆ Ki \K ′ with |Cr| = |Ca| such
that ∀c ∈ Cr : nθ(E ,Ki) > nθ(E ,K ′) > i− 1 ∧ nθ(E ,Ki)− nθ(E , Cr) ≥ nθ(E ,K ′) with lθ = λ(c):
Such a Cr exists, as it holds, with L≥

i = [m] \ Ld \ Li−1(Ki) as the indices of labels which occur at
least i times inKi, that∑

l∈L≥
i

nl(E ,Ki) +
∑

Li−1(Ki)

nl(E ,Ki) =
∑
l∈L≥

i

nl

(
E ,K ′)+ ∑

Li−1(Ki)

nl

(
E ,K ′)

⇔
∑
l∈L≥

i

nl(E ,Ki) =
∑
l∈L≥

i

nl

(
E ,K ′)+ ∑

Li−1(Ki)

nl

(
E ,K ′)− lp (i− 1)

≥
∑
l∈L≥

i

nl

(
E ,K ′)+ lp − ln.

The last inequality holds because
∑

l∈Li−1(Ki)
nl(E ,K ′) ≥ ln (i− 1) + (lp − ln) i and ln (i− 1) +

(lp − ln) i− lp (i− 1) = (lp − ln) i− (lp − ln) (i− 1) = lp − ln.

s(E ,K ′ ∪ Cr \ Ca) ≤ s(E ,Ki) holds (because of the induction hypothesis and the third condition) and
hence s(E ,Ki \ Cr ∪ Ca) ≥ s(E ,K ′) ≥ β. Consequently, the algorithm will repeat the third step at
least lp − ln times, in each step removing a candidate from Cr or, alternatively, a candidate c′ of a label
occurring more than i times with a lower w(E , c′), and in each step adding a candidate from Ca or a
candidate c′′ of a label occurring i− 1 times with a larger w(E , c′′). Thus,Ki+1 has at most ln labels
occurring i− 1 times and, if exactly ln labels occur i− 1 times, a score at least as good as the score of
K ′.

The result for Ri follows directly from Corollary 3, which states that each optimal solution of LC is
also an optimal solution of Ri .

C.3 Proof of Corollary 1

For scoreAV it holds that w(E , c) = | {a ∈ A : c ∈ U(a)} | ≤ |A|, for each c ∈ C .

For Si , it holds that maximizing −
∑

i∈[m] p
2
i yields the same solutions (with a different objective value)

as maximizing
(∑

i∈[m]−n2
i

)
+ 2k2 =

∑
i∈[m]−n2

i + 2 · ni · k. Thus, t(i) = −2i + 1 + 2k can be
chosen (which is strictly monotonically decreasing), as it holds that 1 ≤ t(i) ≤ 2k + 1 for i ∈ [k] and∑n

i=1 2k − 2i+ 1 = 2kn− n2.

For Sh , letMr = {i ∈ [m] : pi(E , S) > 0}. It holds that maximizing

−
∑
i∈Mr

pi · log(pi) = −
∑
i∈Mr

ni

k
· log

(ni

k

)
= −1

k

(∑
i∈Mr

ni · (log(ni)− log(k))

)

= − 1

k

(
−k · log(k) +

∑
i∈Mr

ni · log(ni)

)
yields the same results as maximizing −

∑
i∈Mr

ni · log(ni) which, in turn, yields the same results as
maximizing

k · (log(k) + 2)−
∑
i∈Mr

ni · log(ni) = −
∑
i∈Mr

ni (log(ni)− log(k)− 2)

Thus, t(i) = −i log(i) + (i− 1) log(i− 1) + log(k) + 2 with t(1) = log(k) + 2 can be chosen, which
is strictly monotonically decreasing, and t(i) > 0 for i ∈ [k]:
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Let f(x) = x log(x) with f ′(x) = 1 + log(x). According to the mean value theorem, ∃c ∈ (i− 1, i)
such that f(i)− f(i− 1) = f ′(c) = 1 + log(c). Thus, it holds for all i ∈ [k] that

t(i) = −i log(i) + (i− 1) log(i− 1) + log(k) + 2 = − 1− log(c) + log(k) + 2 > 0,

as log(c) ≤ log(k) for i ∈ [k].

C.4 Proof of Theorem 4

Given an instance ID of (D, s)-DSCR with n candidates, β as the score bound, and δ as the diversity
bound, we construct an instance IK of the 0-1 Knapsack problem in polynomial time. We assume that
β ≥ 0; otherwise, we only need to optimize the diversity, which is in P for such diversity indices, as
the same approach as in the proof of Observation 7 can be used because t(i) is strictly monotonically
decreasing. In addition, we assume that δ ≥ 0; otherwise, the problem is in P, as we only need to find a
committee of size k fulfilling the score constraint which, if the problem is feasible, can be achieved by
choosing k many candidates with the highest weights. Furthermore, we assume that δ ≤ kζ (which
can be checked easily), as the problem is infeasible otherwise.

For each candidate ci, we add an item xi with the weight

wK(xi) := −t(π(ci)) + η with η := kζ + ζ + 1,

where π outputs ci’s position in a descending ordering of the candidates with the same label as ci based
on w, and the value

v(xi) := w(ci) + nα+ 1 where α := max
c∈C

w(E , c).

Thus, between two candidates ci, cj with the same label of which ci contributes more to the score, i.e.,
w(ci) > w(cj), it holds that v(xi) > v(xj) and t(π(xi)) > t(π(xj)) since π(xi) < π(xj), and hence
wK(xi) < wK(xj). Therefore, replacing an item xj in a solution to IK by an item xi with the same
label but with a smaller value of π will lead to a solution to IK with a higher value and a lower weight.
Furthermore, we set the knapsack’s bound to

B := −δ + kη.

Let, for a solution X of IK , S(X) = {ci | xi ∈ X}, v(X) and wK(X) be the value and weight of X ,
and, for a solution S of ID , X(S) = {xi | ci ∈ S}. We claim the following:

1. If X is a solution to IK with value at least uv := β + k (nα+ 1), then S(X) is a solution to ID .
2. IfS is a solution to ID , then there is a (possibly different) solutionS′ to ID such thatD(S) = D(S′)

and X(S′) is a solution to IK with value at least uv .

1. Let X be a solution to IK with value at least uv . It follows that |X| ≥ k, otherwise

v(X) ≤ (k − 1) (nα+ 1 + α) = k (nα+ 1) + kα− nα− 1− α
k≤n
< k (nα+ 1) ≤ uv,

a contradiction. Next, assume that |X| = k + i > k, then

wK(X) ≥ (k + 1) (−ζ + η) = (k + 1) (kζ + 1) = k2ζ + k + kζ + 1 > k2ζ + kζ + k = kη ≥ B,

a contradiction. Thus, |X| = k. In addition, −δ + kη = B ≥ wK(X) ≥ kη − D(S(X)) ⇔ δ ≤
D(S(X)) and v(X) = k (nα+ 1)+w(S(X)) ≥ uv = β+ k (nα+ 1) ⇔ w(S(X)) ≥ β. Thus, S(X)
fulfills the score and diversity constraints and is therefore a solution to ID .

2. Let S∗
D be a solution to ID . Consider the committee S∗ with nl(E , S∗) = nl(E , S∗

D) for every l ∈ [m]
and c ∈ S∗ ⇔ π(c) ≤ nj(E , S∗

D) with lj = λ(c). Thus,

(D(E , S∗) = −w(X(S∗)) + kη = D(E , S∗
D) ≥ δ) ⇒ (w(X(S∗)) ≤ −δ + kη)

(w(S∗) ≥ w(S∗
D) ≥ β) ⇒ (v(X(S∗)) = w(S∗) + k (nα+ 1) ≥ β + k (nα+ 1) = uv) .
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Therefore, X(S∗) is a solution to IK .

Thus, the problem can be solved by the solving the 0-1 Knapsack instance with dynamic programming
in O(nB) = O(n (kη − δ)) time.

D Additional Material for Section 5.2

The dimension of the experimental data when using k = 8 and k = 6 can be seen in Fig. 3. Note, that
the number of instances increases for smaller k (729 instances for k = 8, 773 for k = 6), because we
discard instances with at most k many candidates.

For each diversity index considered, the proportion of the optimal diversity reached over all experimental
data for the different rules (including the rules that represent our approaches of incorporating diversity,
i.e., R−1

sat and Rp
scr) are visualized using box plots in Figs. 4 to 15, which also include results for

k ∈ {6, 8, 10} and seq-Phragmén, Rule X, PAV, and CC.

Table 1 shows the average proportion of the optimal diversity that a rule reaches for each k ∈ {6, 8, 10},
diversity index, and rule considered. Similarly, the number of instances for which the rule achieves the
optimal diversity can be seen in Table 2. These results support the qualitative results mentioned in the
main body of the paper (including the footnotes). Here, we want to highlight the following, additional
observations based on these tables and plots:

As stated in the main body of the paper, a higher proportion of the optimal diversity is reached on
average when usingR90

scr than when usingR−1
sat withR ∈ {AV, SAV}, with only a few exceptions for

k = 6: These two proportions are the same for Ri together with AV, Sh together with SAV, and LC
together with SAV; a higher proportion of the optimal diversity is reached on average when using R−1

sat

than when usingR90
scr (i.e., the other way around) if SAV is used together with Ri or Si .

When decreasing k, it holds that, for the k investigated and for each rule and diversity index considered,
the proportion of instances for which the optimal diversity is reached increases, with the only exceptions
occurring when looking at AV40

scr,AV30
scr, SAV50

scr,AV40
scr, and AV30

scr (i.e. when the scoring constraints are
relatively weak), for which the proportions stay the same and the optimal diversity is already reached
for at least 97% of the instances with k = 10. The average percentage of the optimal diversity reached
also increases in most cases when decreasing k and R−1

sat is considered, with only a few exceptions
when using Sh . However, there are far more exceptions in which this percentage stays the same when
looking atRp

scr.

Lastly, we want to highlight that the optimal diversity is reached for at least 73% of the data when
reducing the score to be achieved by 20% of the optimal score (i.e. R80

scr) for each combination of
diversity index, k, and rule considered, and for at least 84% of the data when allowing a reduction of
the score by 30%.
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Index Ri Sh Si LC

k 10 8 6 10 8 6 10 8 6 10 8 6

AV 76 78 80 80 81 81 66 69 74 77 79 82
AV−1

sat 86 89 92 88 90 92 78 83 88 86 89 92
AV90

scr 91 92 92 93 93 93 85 87 89 92 92 93
AV80

scr 96 96 96 96 97 97 92 93 95 96 96 97
AV70

scr 98 98 98 98 98 98 96 97 97 98 98 98
AV60

scr 99 99 99 99 99 99 98 98 99 99 99 99
AV50

scr 100 100 100 100 100 100 99 100 100 100 100 100
AV40

scr 100 100 100 100 100 100 100 100 100 100 100 100
AV30

scr 100 100 100 100 100 100 100 100 100 100 100 100
SAV 77 79 81 81 82 83 67 70 76 78 80 83
SAV−1

sat 87 90 93 89 91 93 80 84 90 87 90 93
SAV90

scr 92 92 92 93 93 93 86 87 89 92 92 93
SAV80

scr 96 96 96 97 97 97 93 94 95 96 97 97
SAV70

scr 98 98 98 98 98 98 96 96 97 98 98 98
SAV60

scr 99 99 99 99 99 99 98 98 99 99 99 99
SAV50

scr 100 100 100 100 100 100 99 99 100 100 100 100
SAV40

scr 100 100 100 100 100 100 100 100 100 100 100 100
SAV30

scr 100 100 100 100 100 100 100 100 100 100 100 100
PAV 78 79 82 82 82 83 67 71 76 78 80 83
PAV−1

sat 87 90 93 89 91 93 80 84 90 88 90 93
seq-Phragmén 77 79 82 81 82 83 67 71 76 78 80 84
seq-Phragmén−1

sat 87 90 93 89 91 93 80 84 90 87 90 93
Rule X 77 79 82 81 82 83 67 71 76 78 81 83
Rule X−1

sat 87 90 93 89 91 93 79 85 90 87 90 93
CC 81 83 84 84 85 85 71 75 79 82 84 85
Rule CC−1

sat 90 92 94 92 93 95 84 88 92 91 93 95

Table 1: For each diversity index in {Ri ,Sh,Si}, each rule considered, and each k ∈ {6, 8, 10}, the average
percentage of the optimal diversity that the rule reaches is stated.
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Index Ri Sh Si LC

k 10 8 6 10 8 6 10 8 6 10 8 6

AV 17 23 35 14 22 35 14 22 35 14 22 35
AV−1

sat 42 55 69 36 52 68 36 52 68 36 52 68
AV90

scr 59 64 71 54 60 70 54 60 70 54 60 70
AV80

scr 78 81 84 73 77 83 73 77 83 73 77 83
AV70

scr 88 90 92 84 87 91 84 87 91 84 87 91
AV60

scr 92 94 96 91 92 95 91 92 95 91 92 95
AV50

scr 97 98 99 97 98 99 97 98 99 97 98 99
AV40

scr 99 100 100 99 100 100 99 100 100 99 100 100
AV30

scr 100 100 100 100 100 100 100 100 100 100 100 100
SAV 17 23 36 13 21 36 13 21 36 13 21 36
SAV−1

sat 43 58 75 38 54 73 38 54 73 38 54 73
SAV90

scr 57 63 70 51 59 69 51 59 69 51 59 69
SAV80

scr 79 83 84 74 79 83 74 79 83 74 79 83
SAV70

scr 88 89 91 85 86 90 85 86 90 85 86 90
SAV60

scr 92 94 95 90 92 95 90 92 95 90 92 95
SAV50

scr 97 97 99 97 97 99 97 97 99 97 97 99
SAV40

scr 99 100 100 99 100 100 99 100 100 99 100 100
SAV30

scr 100 100 100 100 100 100 100 100 100 100 100 100
PAV 17 24 38 14 22 37 14 22 37 14 22 37
PAV−1

sat 44 59 73 38 55 72 38 55 72 38 55 72
seq-Phragmén 18 24 39 14 22 38 14 22 38 14 22 38
seq-Phragmén−1

sat 43 58 74 38 54 72 38 54 72 38 54 72
Rule X 17 24 38 13 22 38 13 22 38 13 22 38
Rule X−1

sat 44 59 74 38 54 72 38 54 72 38 54 72
CC 23 32 42 18 28 41 18 28 41 18 28 41
Rule CC−1

sat 56 69 81 52 66 79 52 66 79 52 66 79

Table 2: For each diversity index in {Ri ,Sh,Si}, each rule considered, and each k ∈ {6, 8, 10}, the percentage
of instances for which the rule achieved the optimal diversity is stated.
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(b) k = 6.

Figure 3: The dimensions of the experimental data, where the color of each point represents the average number
of agents of all instances with the given number of labels and candidates.
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Figure 4: The proportion of the optimal diversity reached over all experimental data with k = 10 when using
Ri for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 5: The proportion of the optimal diversity reached over all experimental data with k = 8 when using
Ri for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 6: The proportion of the optimal diversity reached over all experimental data with k = 6 when using
Ri for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 7: The proportion of the optimal diversity reached over all experimental data with k = 10 when using
Sh for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 8: The proportion of the optimal diversity reached over all experimental data with k = 8 when using
Sh for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 9: The proportion of the optimal diversity reached over all experimental data with k = 6 when using
Sh for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 10: The proportion of the optimal diversity reached over all experimental data with k = 10 when using
Si for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 11: The proportion of the optimal diversity reached over all experimental data with k = 8 when using
Si for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 12: The proportion of the optimal diversity reached over all experimental data with k = 6 when using
Si for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 13: The proportion of the optimal diversity reached over all experimental data with k = 10 when using
LC for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 14: The proportion of the optimal diversity reached over all experimental data with k = 8 when using
LC for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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Figure 15: The proportion of the optimal diversity reached over all experimental data with k = 6 when using
LC for the different rules and approaches we consider. “R best” (“R worst”) refers to the rule that chooses the
committees with the highest (lowest) diversities among the winning committees of R. If only R is written, the
diversity of the winning committee that abcvoting returns for R is considered. The red line indicates the median,
the green cross the mean.
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