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Abstract
Participatory budgeting (PB) is a form of citizen participation that allows citizens
to decide how public funds are spent. Through an election, citizens express their
preferences on various projects (spending proposals). A voting mechanism then
determines which projects will be approved. The Method of Equal Shares (MES)
is the state of the art algorithm for a proportional, voting based approach to
participatory budgeting and has been implemented in cities across Poland and
Switzerland. A significant drawback of MES is that it is not exhaustive meaning
that it often leaves a portion of the budget unspent that could be used to fund
additional projects. To address this, in practice the algorithm is combined with
a completion heuristic - most often the “add-one" heuristic which artificially
increases the budget until a heuristically chosen threshold. This heuristic is
computationally inefficient and will become computationally impractical if PB
is employed on a larger scale. We propose the more efficient add-opt heuristic
for Exact Equal Shares (EES), a variation of MES that is known to retain many
of its desirable properties. We solve the problem of identifying the next budget
for which the outcome for EES changes in O(mn) time for approval utilities and
O(m2n) time for uniform utilities, where m is the number of projects and n is the
number of voters. Our solution to this problem inspires the efficient add-opt
heuristic which bypasses the need to search through each intermediary budget.
We perform comprehensive experiments on real-word PB instances from Pabulib
and show that completed EES outcomes usually match the proportion of budget
spent by completed MES outcomes. Furthermore, the add-opt heuristic matches
the proportion of budget spend by add-one for EES.

1 Introduction

Participatory budgeting is a democratic process that enables citizens to decide how
public funds should be spent. A natural tool for this task is voting: the governing body
(e.g., a city) runs an election to gather citizens’ preferences on various projects and
uses a voting mechanism to decide how to allocate the funds. The projects offered for a
public vote are specific proposals that come with predetermined scope and cost, made
publicly known before the election, e.g., “Build a cycle lane on Main Street for $10,000.".
So, rather than electing representatives who make budgetary decisions, citizens vote
directly on specific proposals. Today, participatory budgeting is used worldwide in
hundreds of cities [4, 18] as well as in decentralized autonomous organizations (DAOs)
[19, 3], which are blockchain-based self-governed communities. For example, in
community funding, members can contribute funds to the DAO and then vote on which
projects the funds should be granted to.

A commonly used, naive approach to determine which projects should be funded is
Greedy Approval (GrA): voters are asked to report which projects they approve, and then
projects are selected in descending order of approval count, skipping those that exceed
the remaining budget. However, GrA can be unfair: if 51% of voters support enough
projects to exhaust the entire budget, they effectively control 100% of the budget,
leaving the remaining 49% of voters unrepresented, whereas ideally, if 10% of citizens
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vote for, say, cycling-related projects, approximately 10% of the budget should be
allocated to the cycling infrastructure. This issue is addressed by the Method of Equal
Shares (MES), which is a state-of-the-art voting rule for participatory budgeting this
provides representation guarantees to groups of voters with shared preferences [12].
In a behavioral experiment by Yang et al. [20] voters consistently found the outcomes
of MES to be fairer than those of GrA. MES has been successfully implemented in
Świecie and Wieliczka in Poland, in Aarau and Winterthur in Switzerland, as well as
Assen in the Netherlands [13].

To overcome the limitations of GrA, MES adopts a market-based approach: The budget
is split evenly1 among all voters, and, for a project to be selected, it must be funded by
voters who support it, with all voters paying the same amount (with a caveat that if a
voter cannot afford to pay their share, they can contribute their entire remaining budget
instead). This limits how much of the budget any group of voters can control. Like
GrA, MES selects the projects sequentially; however, in contrast to GrA, the projects
are ranked based on the utility per unit of money paid by each fully contributing voter.
This twist turns out to capture proportionality as defined by the axiom of Extended
Justified Representation (EJR) [1, 15], which ensures that each group of voters with
shared preferences holds voting power proportional to its size.

A shortcoming of MES is that it often terminates when the leftover budget is large
enough to pay for projects that remained unfunded [13]. Consequently, MES is said to
be non-exhaustive. This underspending is undesirable: indeed, citizens are unhappy
when leftover funds could have been used to finance projects they voted for, and
many governments have a “use it or lose it” policy, where underspending results in
subsequent budgets being cut. This often leads to low-value projects being funded
when excess budget is available [11]. To mitigate the issue of underspending, the base
MES algorithm is supplemented with a heuristic, known as a completion method, to
complete the MES outcome.

The strategy currently used in practice is to run MES with a virtual budget that is larger
than the actual budget; the size of the virtual budget is selected so that the method
spends a larger fraction of the actual budget (but does not exceed it). This strategy is
appealing because it does not increase the conceptual complexity of the method: all
voters still have equal voting power and, as before, the most cost-efficient projects are
selected to be funded, until voters run out of money. In contrast, combining MES with
a different algorithm (such as, e.g., GrA) would be harder to explain to the stakeholders,
and therefore less appealing in practice.

The challenge, then, is how to determine the “correct” virtual budget. The commonly
used add-one heuristic iteratively increases each voter’s budget by one until either
(1) the solution becomes exhaustive or (2) the true budget is exceeded, and then
returns the last feasible solution. However, this approach is computationally expensive:
it often produces identical outcomes across most budget increments [8], thereby
wasting computational resources. This is especially relevant in the context of research
that simulates the method on random instances, as achieving statistical significance
requires many repetitions. Importantly, MES has only been employed in smaller
communities so far; the add-one heuristic may be infeasible for large cities or DAOs.
Another difficulty with the add-one heuristic is the non-monotonicity of MES: MES
may overspend at a virtual budget of b, but then produce a feasible solution at b′ > b.
This means that the add-one method could terminate early and miss the virtual

1MES can also operate if starting with unequal budget distribution, which may be appropriate in some
settings, such as DAOs.
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Figure 1: A real-world example where considering all budgets significantly
increases spending efficiency, i.e., the fraction of the actual budget spent.
The graph on the left shows the spending efficiency of the winning project
set for a given virtual budget. The graph on the right shows which projects
are selected for a given virtual budget. Here, the add-one heuristic stops as
soon as the budget is exceeded, which happens when the Asphalt project is
selected, resulting in less than 15% spending efficiency. A further increase
in budget leads to the Asphalt project being dropped in favor of the Gravel
project, as shown on the right, increasing the spending efficiency to 60%

budget that would spend the highest fraction of the budget. Figure 1 shows a real-life
example of this phenomenon. Perhaps even more importantly, even if the costs of all
projects are integer, the optimal virtual budget may be non-integer, so add-opt may
skip over the optimal virtual budget. Indeed, our analysis in Section 5 shows that for a
non-trivial number of real-life instances there are outcomes that can only be achieved
by a fractional budget.

Relatedly, the complexity of finding the optimal virtual budget under MES remains
unknown. It is not even clear if the associated decision problem (given a value b′ ≤ b,
determining if there is a virtual budget b∗ such that MES with budget b∗ spends at
least b′) is in NP: while b∗ can be assumed to be rational: due to its sequential nature,
MES may potentially produce numbers with super-polynomial bit complexity.

Contribution We consider a simplified variant of MES, which we call the Exact Equal
Shares (EES) method. Under this rule, all voters who contribute to a project pay exactly
the same amount (eliminating the caveat that the voters who are about to run out of
money are allowed to contribute their entire budget); we will explain the differences
between the two methods in Section 3. This rule was implicit in the work of Peters
et al. [14] and Kraiczy and Elkind [8], whose results imply that it retains desirable
proportionality properties of MES, but neither paper explicitly defines it.

The simplicity of EES enables us to propose a more principled and efficient approach
to finding a good virtual budget. Our main theoretical contribution is a completion
method add-opt for EES, which finds the minimum per-voter budget increase that
results in changing the set of selected projects or the set of voters paying for a project.
The runtime of add-opt is linear in the number of voters n. More specifically, for
approval utilities (i.e., when we evaluate the projects assuming that each voter derives
one unit of utility from each selected project they approve), its runtime is O(mn),
whereas for the more general model of uniform utilities defined in Section 3 (which
subsumes, e.g., cost utilities [15]), its runtime is O(m2n).
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By using add-opt, we can iterate through all outcomes that can be accomplished
by running EES with a virtual budget, and thereby ensure that we do not miss the
optimal virtual budget; on the other hand, in contrast to add-one, add-opt avoids
redundant computation. Another advantage of add-opt over add-one is that it is
currency agnostic, i.e., the results remain consistent across currencies. In contrast,
when using add-one, the practitioners need to decide what is an appropriate unit of
currency: this choice is non-trivial as, e.g., one US dollar is approximately equal to
16,000 Indonesian rupiahs.

The add-opt heuristic goes through all projects (including ones currently selected),
and checks if, by increasing the virtual budget, it can increase the number of voters
contributing to that project. While considering all projects is important for ensuring
that the optimal virtual budget is not missed, we can achieve faster runtime by only
considering projects that are not currently selected; we refer to the resulting heuristic
as add-opt-skip.

In order to evaluate the performance of EES with add-opt and add-opt-skip, we
perform extensive experiments on real-life participatory budgeting instances. Our
results indicate that, on average, EES with add-opt-skip spends the same proportion
of the budget as MES with add-one while enjoying far higher computational efficiency
and eliminating counterintuitive phenomena such as the one illustrated in Figure 1.

Complete proofs of results marked by ♠ are deferred to the appendix.

Related Work Much of the progress in participatory budgeting builds on prior work
in multiwinner voting, i.e., participatory budgeting with unit costs [10]. The Extended
Justified Representation (EJR) axiom was first stated in this context by Aziz et al. [1].

Besides MES, Phragmén’s method [16] and Proportional Approval Voting (PAV) [17]
are well-established proportional rules in the multiwinner voting setting; Janson [7]
provides an excellent overview. PAV satisfies EJR [1] and has optimal proportional-
ity degree, but is NP-hard to compute. Its threshold-based local search variant is
polynomial-time computable [2, 9], but may be hard to explain to voters. Phragmén’s
sequential method is also market-based. Unlike MES, it is exhaustive, but it does not
satisfy EJR. Moreover, while Peters et al. [15] extended MES to participatory budgeting
with general additive utilities, neither PAV nor Phragmén have been adapted to this
general setting.

Exact Equal Shares for approval utilities was implicitly studied by Peters et al. [14] and
Kraiczy and Elkind [8]. Peters et al. [14] introduce a stability notion for participatory
budgeting that is satisfied by the outcome of Exact Equal Shares. Kraiczy and Elkind
[8] propose an adaptive version of EES for approval utilities, which uses the outcome
of EES for a smaller budget to compute the outcome of EES for a larger budget more
efficiently, an alternative approach that complements our work. They also consider the
problem of finding the minimum budget increment that changes the election outcome,
and propose an O(n2m) algorithm for this problem in the context of approval utilities.
However, in practice, both in cities and in DAOs, the number of voters (n) is usually
large, while the number of projects (m) is relatively small. As EES itself has a linear
dependency on n, a completion method with quadratic dependency on n is undesirable.
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2 Preliminaries

For each t ∈ N, we write [t] = {1, 2, . . . , t}.

Participatory Budgeting (PB) We first introduce the model of participatory budgeting
with approval ballots. An election is a tuple E(b) = (N,P, {Ai}i∈N , cost , b), where b ∈ Q≥0

is the available budget; P = {p1, . . . , pm} is the set of projects (for the purposes of
tie-breaking, we fix a total order ◁ on P , and write p = maxQ for Q ⊆ P whenever p′ ◁ p
for all p′ ∈ Q \ {p}); N = [n] is the set of voters, and for each i ∈ N the set Ai ⊆ P is the
ballot of voter i; and cost : P → Q≥0 is a function that for each p ∈ P indicates the cost
of selecting p. For each Q ⊆ P , we denote the total cost of Q by cost(Q) =

∑
p∈Q cost(p).

Given a project p ∈ P , we write Np = {i ∈ N | p ∈ Ai} for the set of voters who approve p.
An outcome for an election E(b) is a set of projects W ⊆ P that is feasible, i.e., satisfies
cost(W ) ≤ b. Our goal is to select an outcome based on voters’ ballots. An aggregation
rule (or, in short, a rule) is a function R that for each election E selects a feasible
outcome R(E) = W .

Utility Models We assume that voters’ utilities are induced by a uniform utility
function u : P → Q≥0 so that the utility of a voter i ∈ N for a project p ∈ P is given by
ui(p) = u(p) · I[p ∈ Ai], where I is the indicator function. Important special cases are
u(p) ≡ 1 (approval utilities) and u(p) = cost(p) for all p ∈ P (cost utilities). For each T ⊆ P
we write u(T ) =

∑
p∈T u(p) and ui(T ) =

∑
p∈T ui(p).

Price System A price system for an outcome W in an election E(b) =
(N,P, {Ai}i∈N , cost , b) is a collection of nonnegative rational numbers X = (xi,p)i∈N,p∈P ,
where xi,p is voter i’s payment for project p, satisfying the following three conditions:
(1) every voter spends at most her share of the budget:

∑
p∈W xi,p ≤ b

n ; (2) for each
project p ∈ W , the sum of payments towards p equals its cost:

∑
i∈N xi,p = cost(p) for

all p ∈ W ; (3) Voters can only pay for projects they approve: for each i ∈ N if xi,p > 0
then p ∈W ∩Ai. Note that our definition of a price system is less demanding than that
of Peters and Skowron [12], who additionally require that for each project in P \W its
supporters do not have enough money left to pay for it.

If W is an outcome for E(b) and X is a price system for W , we call the pair (W,X) a
solution for E(b). Let Np(X) = {i ∈ N | xi,p > 0} be the set of voters who pay for p in X.
We define Op(X) = Np \Np(X) to be the subset of voters who approve p, but do not pay
for it in X. Also, let ri =

b
n −

∑
p∈P xi,p denote voter i’s leftover budget. We say that X

is equal-shares if for each p ∈ W and all i, j ∈ Np(X) we have xi,p = xj,p: that is, the
voters who pay for p share the cost of p exactly equally. In this case, we also say that
the solution (W,X) is equal-shares.

3 Exact Equal Shares Method

Peters et al. [14] and Kraiczy and Elkind [8] study a variant of MES, which we will call
Exact Equal Shares (EES).2 While they only define EES for approval utilities, we will
now extend their definition to uniform utilities.

2In both of these papers, this rule and the analysis of its properties are a byproduct of the framework
developed for other purposes, and neither paper coins a name for it.

5



Description Given an election E(b), EES starts by allocating each voter a budget
of b

n and setting W = ∅. It then iteratively identifies the set of all projects p ∈ P \W
such that a subset of voters V ⊆ Np have enough leftover budget to split the cost of p
equally (i.e., by paying cost(p)/|V | each), selects a project in this set with the maximum
bang per buck u(p)

cost(p)/|V | , adds it to W and updates the budgets. We assume that ties are
broken according to the order ◁ on P (see Algorithm 1 for the pseudocode). We write
EES (E(b), u) for the solution (W,X) returned by EES when run on the election E(b)
with uniform utility function u. For approval utilities we will simply write EES (E(b)),
and for cost utilities we will write EES (E(b), cost).

The standard Method of Equal Shares (which we refer to as MES) operates similarly,
with one exception: if a voter i approves a project, but cannot afford to pay as much
as the other contributors, she is allowed to help by contributing her entire leftover
budget ri. The order in which projects are selected is nevertheless computed based on
the contributions of fully paying voters. A detailed description of MES is provided by
Peters et al. [15].

Algorithm 1: EES for uniform utilities
Input: E(b) = (N,P, {Ai}i∈N , cost , b), u : P → Q≥0

Output: Solution (W,X)
1 W = ∅, X = 0n·m, ri = b

n for all i ∈ N ;
2 while true do
3 Φ =

{
(p ∈ P \W,V ⊆ Np) | ri ≥ cost(p)

|V | ∀i ∈ V
}

;
4 if Φ = ∅ then
5 return (W,X)
6 end
7 else
8 Let Φ∗ = argmax(p,V )∈Φ

|V |·u(p)
cost(p) ;

9 Choose (p∗, V ∗) from Φ∗ so that p∗ ◁ p for all (p, V ) ∈ Φ∗ \ {(p∗, V ∗)};
10 W = W ∪ {p∗};
11 xi,p∗ = cost(p∗)

|V ∗| , ri = ri − cost(p∗)
|V ∗| ∀i ∈ V ∗;

12 end
13 end

Proportionality Guarantees A key feature of MES is that for approval utilities it
satisfies a strong proportionality axiom known as Extended Justified Representation
(EJR). We will now formulate this axiom and its relaxation EJR1, and argue that EES
is just as attractive as MES from this perspective.

Definition 3.1 (Extended Justified Representation). Given an election E(b) =
(N,P, {Ai}i∈N , cost , b) and a subset of projects T ⊆ P , we say that a group of voters
V is T -cohesive if T ⊆ ∩i∈V Ai and |V |

n · b ≥ cost(T ).

An outcome W for E(b) is said to provide Extended Justified Representation (EJR)
(respectively, Extended Justified Representation up to one project (EJR1)) for uniform
utilities u if for each T ⊆ P and each T -cohesive group V of voters there exists a voter
i ∈ V such that ui(W ) ≥ u(T ) (respectively, ui(W ) ≥ u(T ) or ui(W ∪ {p}) > u(T ) for some
p ∈ P ).

A rule R satisfies EJR (respectively, EJR1) if for each election E(b) the outcome R(E(b))
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provides EJR (respectively, EJR1).

Peters and Skowron [12] show that MES satisfies EJR for approval utilities, and the
results of Peters et al. [14] and Kraiczy and Elkind [8] imply that the same is true for
EES. In contrast, Peters et al. [15] show that finding an outcome that satisfies EJR is
NP-hard for uniform utilities (they reduce from Knapsack, and construct an election
with a single voter, so the utilities are clearly uniform), but MES satisfies EJR1 in
an even more general model, which encompasses uniform utilities (namely, arbitrary
additive utilities). For completeness, we give a simple proof that EES, too, satisfies
EJR1 for uniform utilities.

Theorem 3.2 (♠). EES satisfies EJR1 for uniform utilities.

Thus, in our setting all proportionality guarantees that have been established for MES
also hold for EES.

Fast Implementation Kraiczy and Elkind [8] show how to implement EES with
approval utilities in time O(m2n). We will now argue that their approach can be used
to guarantee the same runtime for EES with uniform utilities.

Let Rt, t ≥ 0, be the list of pairs (rti , i)i∈N , where rti is the leftover budget of voter i after
t projects have been bought, sorted in non-decreasing order of first components. As
every voter starts off with a budget of b

n , we can set R0 =
(
( bn , i)i∈N

)
.

To choose the (t+ 1)-st project, i.e., an as yet unselected project with the highest bang
per buck, for each unselected project p we make a single pass through the sorted list Rt

in order to identify the smallest index j such that the j-th entry (r, i) in Rt[Np] satisfies
r ≥ cost(p)

|Np|−j+1 . The value of j determines the bang per buck offered by p; we let pt+1 be
the project with the highest bang per buck, and let Vt+1 be the voters who pay for pt+1.

We will now explain how to quickly compute Rt+1 given Rt. Suppose each voter in Vt+1

pays δt+1. Then, at step t+1 the budgets of voters in Vt+1 are reduced by δt+1, while the
budgets of voters in N \ Vt+1 remain unchanged. Given the list Rt and the set Vt+1, in a
single pass over Rt we can create sorted lists Rt[N \ Vt+1] and Rt[Vt+1]− δt+1. These two
sorted lists can then be merged into Rt+1 in time O(n). Since this step has to be done
at most m times, it only contributes O(mn) to the overall runtime of the algorithm.

Since the algorithm keeps track of the leftover budgets list, it can easily return this as
auxiliary information; this will be relevant in Section 4.

4 Towards an Efficient Completion Method

Our new completion method for EES relies on solving the following computational
problem, which we call add-opt: Given the outcome of EES for budget b, compute the
minimum value of d such that if every voter gets additional budget d, EES returns
a different outcome, in the sense that the set of selected projects changes or some
project is paid for by more voters (or both).

A key to our approach is solving a subproblem concerning a notion of stability for
equal-shares solutions, where stability is understood as resistance to deviations by
groups of voters. Here we define stability for approval utilities in the spirit of Peters
et al. [14] and Kraiczy and Elkind [8]; we give a generalization to uniform utilities
towards the end of the section.
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For approval utilities, the intuition is as follows. Given a solution (W,X), voter i can
deviate from it by contributing her leftover budget ri to support further projects in Ai.
Moreover, even if i does not have enough budget left to contribute to new projects, she
may still deviate by withdrawing her support from a project in W and reallocating it to
a more cost-efficient project.

Formally, the leximax payment of a voter i ∈ N in a solution (W,X) is the pair ci = (xi, pi),
where xi = max{xi,p | p ∈ P} and pi = max{p | xi,p = xi}.We say that xi and pi are
the leximax budget and the leximax project of voter i, respectively. Given two pairs
(x, p), (x′, p′) ∈ Q × P , we write (x, p) <lex (x′, p′) if x < x′ or x = x′ and p ◁ p′. Given a
solution (W,X), we say that voter i is willing to contribute x to p if x ≤ ri or (x, p) <lex ci.
Note that voter i’s leftover budget ri and her leximax budget xi serve as two distinct
sources of funds that i can use to deviate.

Definition 4.1. A pair (p, V ) with p ∈ P , V ⊆ Np certifies the instability of an equal-
shares solution (W,X) for an election E(b) if |V | > |Np(X)| and each voter i ∈ V \Np(X)
is willing to contribute cost(p)/|V | to p. A project p ∈ P certifies the instability of an
equal-shares solution (W,X) for election E(b) if there exists a set of voters Vp ⊆ Np such
that (p, Vp) certifies the instability of (W,X) for E(b). An equal-shares solution (W,X)
for E(b) is stable if there is no project p ∈ P that certifies the instability of (W,X).

This concept of stability captures the behavior of EES, as formalized by the following
proposition.

Proposition 4.2 (♠). EES returns a stable outcome.

We are now ready to state our key subproblem, GreedyProjectChange: Given an
election E(b) = (N,P, {Ai}i∈N , cost , b), a solution (W,X) for election E(b) (along with
some auxiliary information), and a project p, compute the minimum budget increase d
such that project p certifies the instability of (W,X) for E(b+ dn).

4.1 GreedyProjectChange for Approval Utilities

A simple O(n2) solution to GreedyProjectChange [8] proceeds by iterating over all
values t = |Np(X)| + 1, . . . , |Np| and, for each voter i ∈ Np, calculating the additional
budget d that would enable i to contribute cost(p)

t towards project p. However, we aim
for a solution that is linear in n, as in practice the number of voters is large, while the
number of projects is small.

Intuition As a a warm-up, consider a set of customers [n] with budgets β1 ≤ · · · ≤ βn
interested in jointly purchasing a service that costs c; the costs of the service have to
be shared equally by all participating customers. It is well-known how to identify the
largest group of customers that can share the cost of the service: it suffices to find the
smallest value of i such that βi · (n− i+ 1) ≥ c, so that each of i, i+ 1, . . . , n can afford
to pay c/(n− i+ 1) [6].

Now, suppose βi ·(n−i+1) < c for all i ∈ [n], so no subset of [n] can afford the service, but
we can offer a subsidy of d to each customer; what is the smallest value of d such that
some subset of the customers can purchase the service while sharing its cost equally?
We can approach this question in a similar manner: if the service is to be shared by
customers i, . . . , n, it suffices to set d = max{0, c/(n− i+1)− βi}. Thus, we can compute
the minimum subsidy in linear time by setting d = max{0,mini∈[n](c/(n− i+ 1)− βi)}.
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GreedyProjectChange can be seen as a variant of this problem, with leftover budgets
ri playing the role of βi and c = cost(p). However, it has two additional features: first,
there may be some voters who are already paying for p (i.e., Np(X) ̸= ∅), and second,
the voters may choose to fund p from their leximax budgets rather than their leftover
budgets. We will now argue that, despite these complications, GreedyProjectChange
admits a linear-time algorithm.

Description of the algorithm Our linear-time solution to GreedyProjectChange,
Algorithm 2, uses two pointers, i and j, to iterate over the two lists containing the two
different sources of money voters in Op(X) = Np \ Np(X) can use to pay for p: their
leftover budgets in (W,X) and their leximax payments in (W,X). Both lists are sorted
in non-decreasing order. We will refer to these lists as leftover budgets list and leximax
payments list, respectively.

The key local variables in our algorithm are the per-voter price (PvP), the set of liquid-
voters LQ, and the set of solvent voters SL. The liquid voters are expected to pay for
p by using their leftover budgets, while the solvent voters are expected to pay for p
by deviating from another project. Algorithm 2 starts by placing all voters in LQ, i.e.,
it sets LQ = Op(X). Subsequently, a voter may be moved from LQ to SL or discarded
altogether.

The set of buyers B consists of the voters in Np(X) (who already pay for p in (W,X)),
the liquid voters, and the solvent voters. Throughout the algorithm, we maintain the
property that each buyer in B is willing to pay the per-voter price PvP = cost(p)/|B| towards
p. If at some iteration B contains a voter who cannot afford this payment, they are
removed, thereby increasing PvP in the next iteration. That is, we iterate through the
values PvP = cost(p)/|Np|, . . . , cost(p)/(|Np(X)|+1), and update the value of d whenever it holds
that every voter in B is willing to contribute cost(p)/|B| towards p.

We will now explain how the sets LQ and SL evolve during the execution of the algorithm.
Initially, all voters in Op(X) = Np \ Np(X), i.e., all voters who approve p, but do not
contribute towards it in (W,X), are placed in LQ and no voter is placed in SL. The
algorithm has three means to update these sets of voters: (1) A voter who is liquid may
be relabelled as solvent (Line 12), or a voter may be removed from the set of buyers
either by ceasing to be solvent (Line 8) or by ceasing to be liquid (Line 16).

It each iteration, Algorithm 2 recomputes the per-voter price by sharing the cost of
p among all voters in B. Pointer j keeps track of the solvent voter with the smallest
leximax payment; if this voter cannot afford the current price from her leximax budget,
she is removed and j is increased by 1.

Then Algorithm 2 uses a pointer i to the leftover budgets list to identify a voter vi ∈ LQ
with the smallest leftover budget. It checks if this voter can afford the current per-voter
price from her leximax budget, i.e., if she is willing to deviate from her leximax project
to p; if yes, she is moved to SL. Thus, we maintain the property that the leftover
budgets of solvent voters do not exceed those of the liquid voters.

On the other hand, if vi is not willing to deviate from her leximax project, then, for her
to contribute PvP towards p, her leftover budget should be increased by at least PvP−rvi.
In this case, we update d as d = min{d,PvP − rvi}. We then increase the pointer i by
one and remove vi from LQ, and thereby from the set of buyers, as including vi cannot
reduce d below its current value. Thus, each iteration weakly decreases d.

We provide an example illustrating the executing of Algorithm 2 in the appendix.
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Algorithm 2: GreedyProjectChange (GPC)
Input: E(b) = (N,P, {Ai}i∈N , cost , b), stable equal-shares solution (W,X), project p;
leftover budgets of voters Op(X): rv1 , . . . , rvk with k = |Op(X)|, rvi ≤ rvi+1

for all i ∈ [k − 1];
leximax payments of voters Op(X) in (W,X): cw1

, . . . , cwk
where cwj

≤lex cwj+1
for j ∈ [k − 1];

Output: Minimum value d > 0 such that p certifies the instability of (W,X) for E(b+ nd)

1 i, j ← 1, 1;
2 SL← ∅;
3 LQ← Op(X);
4 d← +∞;
5 while LQ ∪ SL ̸= ∅ do
6 PvP← cost(p)

|Np(X)∪ LQ∪SL| ;
7 if j ≤ |Op(X)| and cwj <lex (PvP, p) then
8 SL← SL \ {wj} ;
9 j ← j + 1;

10 else if cvi >lex (PvP, p) then
11 LQ← LQ \ {vi};
12 SL← SL ∪ {vi};
13 i← i+ 1;
14 else
15 d← min{d,PvP− rvi};
16 LQ← LQ \ {vi};
17 i← i+ 1;
18 end
19 end
20 return d

B := Np(X) ∪ liquid ∪ solvent

We can characterize the running time of Algorithm 2 and the value it computes as
follows.

Theorem 4.3 (♠). Algorithm 2 runs in time O(n). Moreover, given an election E(b), a
stable equal-shares outcome (W,X) of E(b), and a project p, let d∗ be the smallest value
such that there exists a B∗ ⊆ Np with the property that (p,B∗) certifies the instability of
(W,X) in E(b+ nd∗). Then Algorithm 2 returns d∗.

Our add-opt algorithm for approval utilities (Algorithm 3) iterates over all projects,
runs GreedyProjectChange for each project, and returns the minimum value of d
over all such runs.

Theorem 4.4 (♠). Let (W,X) = EES (E(b)), where E(b) = (N,P, {Ai}i∈N , cost , b). Given
(W,X) and E(b), add-opt computes the minimum value d∗ such that d∗ > 0 and EES (E(b+
nd∗)) ̸= (W,X), and runs in time O(mn).

In the appendix, we extend this result to uniform utilities, at the expense of increasing
the running time to O(m2n).

5 Empirical Evaluation

The goal of this section is to compare MES and EES (with and without suitable
completion heuristics) on real-life data. To this end, we execute both of these methods
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Algorithm 3: add-opt
Input: E(b) = (N,P, {Ai}i∈N , cost , b), a stable equal-shares solution (W,X) for E(b);
A = [rv1 , . . . , rvn ] where {v1, . . . , vn} = [n] and rvi ≤ rvi+1 for i ∈ [n− 1];
B = [cw1 , . . . , cwn ] where {w1, . . . , wn} = [n] and cwj ≤lex cwj+1 for j ∈ [n− 1];
Output: Minimum d > 0 such that (W,X) is unstable for E(b+ nd)

1 d = +∞;
2 for p ∈ P do
3 A′ ← subarray of A restricted to voters Op(X);
4 B′ ← subarray of B restricted to voters Op(X);
5 d = min{d,GreedyProjectChange(E, (W,X), p, A′, B′)};
6 end
7 return d

on over 250 real-world participatory budgeting instances, and analyze both the number
of iterations and the ability of each method to find a good virtual budget. We postpone
the description of the datasets and implementation to the appendix.

The key measure that we use to evaluate the performance of aggregation rules for
participatory budgeting elections is their spending efficiency, i.e., the proportion of the
budget they utilize.

Definition 5.1. Given an election E(b) and an outcome W , the spending efficiency of
W is defined as 1

b ·
∑

p∈W cost(p). The spending efficiency of an aggregation rule R on
an election E(b) is the spending efficiency of R(E(b)).

Although it is possible to construct examples where EES uses a larger proportion of
the actual budget, it is natural to expect that, in the absence of completion heuristics,
on most instances MES has a higher spending efficiency than EES: enforcing exact
equal sharing (and not using agents’ leftover budgets) is likely to result in a smaller set
of projects. Our experiments (see Figure 3 and Figure 4 in the appendix) confirm that
this is indeed the case.

However, it is less clear what happens if one extends both of these methods with a
completion heuristic. As a baseline, we execute both MES and EES with the standard
add-one completion heuristic. This heuristic executes the underlying rule with budgets
b, b+ n, b+ 2n, . . . until either all projects are selected or the next increase would result
in overspending.

Our experiments on 250 Pabulib instances (Figure 9) paint a positive picture for EES:
with the add-one completion heuristic in over 77% of cases for cost utilities and in over
85% of cases for approval utilities the spending efficiency of EES is at least as high
as that of MES. Moreover, both for approval and for cost utilities, EES has a higher
spending efficiency than MES on more than 10% of the instances.

Heuristics Our primary motivation for introducing EES is that it admits a more
sophisticated completion heuristic, namely, add-opt. Recall that, given a solution (W,X)
for E(b), add-opt identifies the smallest value of d such that EES (E(b+ nd)) ̸= (W,X).
Crucially, this heuristic is based on reinterpreting the EES outcomes as outcomes
that are stable in the sense of Definition 4.1; it is not clear if MES outcomes can be
interpreted in this way, and, as a consequence, we cannot use add-opt with MES.
Indeed, for MES it is not known if the problem of finding the smallest budget increase
that changes the outcome admits a polynomial-time (let alone a linear-time) algorithm.
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When using EES with add-opt, we start by setting b(1) = b, and compute (W (1), X(1)) =
EES (E(b(1))). Then in each iteration i we compute d(i) by running add-opt on E(b(i))
and (W (i), X(i)), and set b(i+1) = b(i) + n · d(i), (W (i+1), X(i+1)) = EES (E(b(i+1))). Just like
with add-one, we repeat this procedure until the actual budget is exhausted or the
next budget increment results in overspending. We also consider a complete version of
this method EES + add-opt (C), where we increase the budget using add-opt until all
projects are selected, i.e., W (i) = P ; then, among the outcomes W (1), . . . ,W (i) we select
one that has the highest spending efficiency among all outcomes that are feasible for
the original election E(b). We define a complete version of MES with add-one (denoted
by MES+add-one (C)) in a similar way.

Further, leveraging add-opt, we define a new completion method for EES, which we call
add-opt-skip. This method modifies the add-opt heuristic in two key ways. First, given
an outcome of EES, we invoke GreedyProjectChange only for projects not currently
included in the outcome. Second, this process is repeated until all projects have been
selected in a run of the algorithm for the first time. It then returns the feasible outcome
with the highest spending efficiency found.

We evaluate all completion methods based on two criteria: (1) spending efficiency and
(2) the number of calls to the computationally expensive base method (EES or MES)
required by each completion method. Our results for approval utilities are summarized
in Table 1; for cost utilities see Table 2, and Figure 5b in the appendix. The first three
columns refer to the number of iterations, and the last three columns refer to the
spending efficiency.

For add-opt, the mean per-voter budget increment size across our dataset is 37.3 units
for cost utilities and 35 for approval utilities. The median of these budget increments is
6.4 for cost utilities and 4.6 for approval utilities. These values are greater than 1, which
means that typically add-opt considers substantially fewer budgets than add-one,
while also guaranteeing the identification of a budget that maximizes the spending
efficiency within the tested range.

Table 1: Comparison results: approval utilities. ‘Ex’ refers to the number of executions, ‘Eff’
refers to budget efficiency.

TMethod Avg Med Std Avg Med Std
Ex. Ex. Ex. Eff. Eff. Eff.

MES + add-one 535.4 393.0 433.0 0.855 0.890 0.124
MES + add-one (C) 2888.7 1996.0 3132.4 0.862 0.896 0.123
EES + add-opt 279.6 100.0 356.3 0.848 0.888 0.130
EES + add-opt (C) 625.8 237.0 794.9 0.854 0.892 0.131
EES + add-opt-skip 27.9 17.0 27.3 0.853 0.890 0.130
max 563.3 423.0 425.5 0.871 0.906 0.119

Interestingly, we observe that in some iterations add-opt returns a per-voter increase
of less than 1. This means that add-one may skip possible allocations, and thus is not
guaranteed to find the budget that results in the most spending-efficient outcome, even
if that budget lies within the tested range. Indeed, in our dataset we find over 10 such
instances, demonstrating that this is not only theoretically possible, but something
that occurs in realistic PB elections. In contrast, using add-opt enables us to consider
every distinct allocation within our tested range.

We provide a detailed discussion of our experimental findings in the appendix. In
summary, EES with add-opt-skip offers a viable alternative to the state-of-the-art, i.e.,
MES with add-one.
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A Appendix

A.1 Omitted Proofs and Examples

Theorem 3.2 (♠). EES satisfies EJR1 for uniform utilities.

Proof. Let W be the outcome selected by Exact Equal Shares on instance
(N,P, (Ai)i∈N , b, cost). Let S be a T -cohesive group for T ⊆ P . Let Y ⊆ T be the set
of projects in Y paid for by less than |S| voters (this includes being paid by no voters). If
the set Y is empty, we are done since every voter i ∈ S has utility ui(W ) for the outcome
satisfying ui(W ) ≥ u(T ). So suppose set Y is non-empty. Let y∗ ∈ argmaxy∈Y

u(y)
cost(y) .

There must be some voter i ∈ S such that the budget zi not being used to pay for
projects at bang per buck at least u(y∗)|S|

cost(y∗) (this includes leftover budget) satisfies the

inequality zi <
cost(y∗)

|S| , as otherwise the voters in S could jointly pay for a project from
set Y . Now voter i may spend some of her money on projects T \ Y , each such project
P it pays for at most cost(p)

|S| . So on projects in W \ T with bang per buck at least u(y∗)|S|
cost(y∗) ,

i spends at least b
n −

∑
p∈T\Y

cost(p)
|S| − zi. So her utility for the set W \ T can be lower

bounded as follows

ui(W \ T ) ≥
u(y∗)|S|
cost(y∗)

 b

N
−

∑
p∈T\Y

cost(p)

|S|
− zi


≥ u(y∗)

cost(y∗)
·

cost(T )−
∑

p∈T\Y

cost(p)

− |S|zi · u(y∗)
cost(y∗)

>
u(y∗)

cost(y∗)
· cost(Y )− |S|cost(y

∗)

|S|
u(y∗)

cost(y∗)

≥
∑
y∈Y

cost(y)
u(y∗)

cost(y∗)
− u(y∗)

≥
∑
y∈Y

cost(y)
u(y)

cost(y)
− u(y∗) (2)

=
∑
y∈Y

u(y)− u(y∗),

where the line 2 follows since y∗ gives the largest value of u(y)
cost(y) among all projects

y ∈ Y . Overall, voter i has utility at least

ui(W \ T ) + ui(T \ Y ) >

ui(Y ) + ui(T \ Y )− u(y∗) = u(T )− u(y∗)

for projects in W that are paid for by at least |S| people, implying that after including
y∗ we get

u(W ∪ {y∗}) ≥ u(W \ T ) + u(T \ Y ) + u(y∗) > u(T ),

as desired.
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Example A.1. To illustrate Algorithm 2, we consider an instance with five voters
v1, v2, v3, v4, v5 and three projects p1, p2 and p3. The project costs are cost(p1) = 2,
cost(p2) = 3.2 and cost(p3) = 6, and the total budget is b = 10. The project approvals
are given by Np1 = {v1, v2}, Np2 = {v3, v4}, Np3 = {v2, v3, v4, v5}. It is easy to check that
EES selects W = {p1, p2} on this instance, with voters in Np1 sharing the cost of p1
and voters in Np2 sharing the cost of p2. We will now execute Algorithm 2 on (W,X)
with p = p3. Note that |Np3 | = 4 and so PvP = 6

4 = 1.5. All voters in Np3 are initially
placed in LQ. The first two entries of the leximax payments list correspond to voters
v5 and v2, whose leximax budgets are 0 and 1, respectively. Hence, in the first two
iterations of Algorithm 2, pointer j is increased to 3. Note that v5 and v2 will never
be placed in SL, because PvP will never drop below 1.5. For voters v3 and v4 their
leximax budgets are 1.6 > PvP, so they remain on the list (but they are not placed in
SL at that point). In the third iteration we consider v3 at position i = 1 in the leftover
budgets list. Since v3 qualifies as solvent (her leximax budget is 1.6), we move her
from LQ to SL. Similarly, in the fourth iteration we consider v4 at position i = 2 in the
leftover budgets list and move her from LQ to SL. In the fifth iteration, we consider
v2 at position i = 3 in the leftover budgets list. Since v2 does not qualify as solvent,
we update d = min{+∞,PvP − rv2} = 1.5 − 1 = 0.5. We then remove v2 from the set of
buyers (in the pseudocode this is done by removing her from LQ) and increase i to 4.

As a result, PvP is increased to 2. In the next two iterations v3 and v4 are removed
from SL since PvP > 1.6, and j is increased to 5. The last remaining buyer v5 is liquid
(but does not qualify as sD tolvent, as we know from the first iteration) and requires
a subsidy of 4 to pay for p3 on her own; since this is more than 0.5, the algorithm
terminates returning 0.5. Indeed, EES with budget 10 + 0.5 · 5 = 12.5 will select p1 and
p3.

To prove Theorem 4.3, we start by making an observation about the set of solvent
voters.

Lemma A.2. If Algorithm 2 attempts to remove v from SL in some iteration, then v will
never be placed in SL in subsequent iterations.

Proof. If the algorithm attempts to remove v from SL, this means that v satisfies the
condition of the if in Line 7, i.e., cv <lex (PvP, p). In order for v to be added to SL,
Line 10 must be executed, i.e. it must hold that cv >lex (PvP, p). But this is impossible
since PvP is nondecreasing.

We are now ready to establish that GreedyProjectChange runs in linear time.

Proposition A.3. Algorithm 2 runs in time O(n).

Proof. Each iteration of the while loop takes a constant time (we can represent the
sets LQ and SL as k-bit arrays). In each iteration, we increase either i or j by 1. More
precisely, if the if condition in Line 7 is satisfied then j will be incremented, while if the
else if condition in Line 10 or the else condition in Line 14 is satisfied, then i will be
incremented. Further, by design, j can not exceed |Op(X)|+ 1. To complete the proof,
we will now argue that i cannot exceed |Op(X)| + 1 either, and hence the while loop
terminates after at most 2n iterations.

Suppose the algorithm sets i = |Op(X)| + 1 while j ≤ |Op(X)|. Then it has iterated
through the entire leftover budgets list, so the set LQ must be empty at this point. For
the next iteration of the while loop to proceed, it must be the case that SL ̸= ∅. We
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claim that in this iteration, and in all subsequent iterations, the condition in Line 7 is
satisfied and hence the size of SL is reduced by 1. Indeed, suppose the condition in
Line 7 is not satisfied. Line 7 is only executed when LQ∪ SL ̸= ∅, so we have SL ̸= ∅ at
this point. But then (p,Np(X) ∪ SL) witnesses the instability of (W,X), a contradiction
with (W,X) being stable. Thus, each subsequent iteration increments j and hence the
total number of iterations does not exceed 2 · |Op(X)|.

On the other hand, suppose j = |Op(X)| + 1 occurs first. Then the algorithm has
iterated through the entire leximax payments list, and by Lemma A.2 the set SL will
remain empty throughout the remainder of the algorithm. Therefore, every subsequent
iteration will execute Line 16 and Line 17 and remove a voter from LQ. Again, we
terminate after at most 2 · |Op(X)| ≤ 2n iterations.

Proposition 4.2 (♠). EES returns a stable outcome.

Proof. The proposition and its proof is subsumed by Proposition A.8.

Theorem 4.3 (♠). Algorithm 2 runs in time O(n). Moreover, given an election E(b), a
stable equal-shares outcome (W,X) of E(b), and a project p, let d∗ be the smallest value
such that there exists a B∗ ⊆ Np with the property that (p,B∗) certifies the instability of
(W,X) in E(b+ nd∗). Then Algorithm 2 returns d∗.

Proof. Our first claim follows from Proposition A.3. We will now prove our second claim.

Let d denote the value returned by Algorithm 2. First, we will argue that d∗ ≤ d.

Lemma A.4. There exists a B ⊆ Np such that (p,B) certifies the instability of (W,X) for
E(b+ nd).

Proof. Consider the iteration of the while loop in which d is set to its final value. Let
B = Np(X) ∪ LQ ∪ SL be the set of buyers at this point, let π = cost(p)/|B| be the per-voter
price, and let i∗ and j∗ be the values of i and j, respectively. Then d = π − vi∗. We
will show that (p,B) certifies the instability of (W,X) for budget b+ nd. In particular,
we will show that (1) for each v ∈ LQ we have rv + d ≥ π, (2) for each v ∈ SL we have
cv >lex (π, p), and (3) for each v ∈ Np(x) we have xv,p > π.

For (1), recall that Algorithm 2 increments i right after removing vi from LQ, so when
d is set to PvP− rvi∗ , it holds that LQ = {vi∗ , . . . , vk}. Since the leftover budgets list is
sorted in non-decreasing order, this implies rv ≥ rvi∗ and hence rv + d ≥ PvP = π for
each v ∈ LQ.

For (2), if j∗ > |Op(X)| we have SL = ∅, so the claim trivially holds. Now, suppose that
j∗ ≤ |Op(X)|. As j∗ did not trigger the condition in Line 7, and it can not be the case
that cwj∗ = (π, p) (the voter wj∗ is in Op(X), so her leximax project is not p), it follows
that cwj∗ >lex (π, p). Further, whenever j is incremented, voter wj is removed from SL.
By Lemma A.2 it follows that every voter in SL must appear at index j∗ or greater in
the leximax payments list. Since the leximax payments list is sorted in nondecreasing
order, we have cw ≥lex cw∗ >lex (π, p) for each w ∈ SL.

For (3), the condition of the while loop implies LQ ∪ SL ̸= ∅ and hence |B| > |Np(X)|.
Thus, the leximax payment of each v ∈ Np(X) satisfies xv = cost(p)/|Np(X)| > π. This
completes the proof.

Our second lemma establishes that d∗ ≥ d.
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Lemma A.5. Suppose Algorithm 2 sets d to PvP − rvi for some vi ∈ Op(X). Then d∗ ≥
PvP− rvi .

Proof. Note that we can assume that Np(X) ⊆ B∗: otherwise, sharing the cost of p
among the voters in B∗∗ = B∗∪Np(X) would lower the per-voter price and hence (p,B∗∗)
would also certify the instability of (W,X) with budget b + nd∗. On the other hand,
Algorithm 2 always includes Np(X) in the set of buyers B.

At the start of Algorithm 2 we have LQ = Op(X) and hence B = Np(X) ∪ LQ ∪ SL = Np.
In every iteration Algorithm 2 eliminates at most one buyer, and, when it terminates
(which it does by Lemma A.3), we have B = Np(X). Hence, throughout the execution
PvP ranges over cost(p)

|Np| , cost(p)
|Np|−1 , . . . ,

cost(p)
|Np(X)|+1 . Since |Np| ≥ |B∗| > |Np(X)|, there exists

a last iteration q for which PvP = cost(p)
|B∗| . At the beginning of this iteration we have

|B| = |B∗|.

Let i∗ be the index in the leftover budgets list of the voter vi∗ ∈ B∗ with the lowest
remaining budget whose leximax payment satisfies cvi∗ ≤lex (cost(p)/|B∗|, p). We then have
d∗ = cost(p)/|B∗|− rvi∗ .

Suppose the value of the pointer i during iteration q satisfies i > i∗. If vi∗ was removed
from the set of buyers by ceasing to be liquid in iteration ℓ < q, then the value of PvP
was strictly smaller before the removal than in iteration q. Hence, the set of buyers
B during iteration ℓ was larger than |B∗|, implying that after execution of Line 15
it was the case that d = cost(p)

|B| − rvi∗ < cost(p)
|B∗| − rvi∗ = d∗, a contradiction. Otherwise,

vi∗ was moved from LQ to SL in an iteration ℓ < q. In iteration ℓ voter vi∗ satisfied
cvi∗ >lex (PvP, p), while in iteration q it holds that cvi∗ ≤lex (PvP, p). This increase in
per-voter price implies that in the meantime, i.e., in some iteration ℓ2 with ℓ < ℓ2 < q
a voter distinct from vi∗ was removed from B. For a voter in SL to be removed from
B after iteration ℓ, PvP must increase first, as otherwise a voter in SL would have
been removed in iteration ℓ already after Line 7 was executed. But PvP only changes
when we remove voters from B. Thus, at the first iteration ℓ1 during which a voter v is
removed from B, she is removed from the set LQ, and so v = vi′ for some i′ > i∗. Since
rvi′ ≥ rvi∗ and the set of buyers before vi′ ’s removal is strictly larger than B∗, we obtain
a contradiction, as d = cost(p)

|B| − rvi′ ≤
cost(p)
|B| − rvi∗ < cost(p)

|B∗| − rvi∗ = d∗.

Now suppose i ≤ i∗. Every voter v ∈ B∗ \Np(X) who has leximax payment cv >lex (PvP, p)
is still in SL or LQ by the end of iteration q. Every voter v ∈ B∗ \ Np(X) who has
cv <lex PvP must have leftover budget rv ≥ rvi∗ by the definition of i∗ and so has index
i′ ≥ i∗ ≥ i in the leftover budgets list. This implies that at the beginning of iteration q,
v = vi′ is in LQ. In other words, B∗ is a subset of the set of buyers B at the beginning
of iteration q. But then |B| = |B∗| implies B∗ = B. Since we chose q to be the last
iteration in which PvP = cost(p)

|B∗| , a voter is removed from set B in this iteration, and
by the previous argument no voter v ∈ B∗ = B is removed from SL. We conclude that
in iteration q Algorithm 2 executes Line 15, and so d = cost(p)

|B| − rvi ≤
cost(p)
|B∗| − rvi∗ = d∗,

completing the proof.

By combining Lemmas A.4 and A.5, we obtain the desired result.

Theorem 4.4 (♠). Let (W,X) = EES (E(b)), where E(b) = (N,P, {Ai}i∈N , cost , b). Given
(W,X) and E(b), add-opt computes the minimum value d∗ such that d∗ > 0 and EES (E(b+
nd∗)) ̸= (W,X), and runs in time O(mn).
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Proof. By construction, add-opt returns a value d such that (W,X) is unstable for
E(b+nd). By Proposition 4.2, the outcomes of EES are stable, so (W,X) ̸= EES (E(b+nd)).
Hence, d ≥ d∗.

We will now prove that d ≤ d∗. Let (W ∗, X∗) = EES(E(b+ nd∗)). Compare the execution
of EES on E(b+nd∗) and E(b), and let ℓ be the first iteration in which the two executions
differ (they may differ by selecting different projects, or they may select the same project,
but have it funded by different groups of voters; it may also be the case that EES (E(b))
terminates after ℓ− 1 iterations, while EES (E(b+ nd∗)) does not, but not the other way
around). Let p be the project selected by EES on E(b+nd∗) in iteration ℓ, let Vp = Np(X

∗),
and set π = cost(p)/|Vp|. We will show that (p, Vp) certifies the instability of (W,X) for
budget b+ nd∗; this implies d ≤ d∗.

First, we will show that if EES (E(b)) selects p in some iteration ℓ′ > ℓ then the set of
voters V ′

p who share the cost of p in EES (E(b)) is a strict subset of Vp. Indeed, suppose
that V ′

p \ Vp ̸= ∅. Each voter in V ′
p \ Vp can afford to pay cost(p)/|V ′

p | in iteration ℓ′ in
EES (E(b)), so each of them can afford to pay cost(p)/|Vp∪V ′

p | in iteration ℓ in EES (E(b+nd∗)),
a contradiction with the choice of Vp. Thus, V ′

p ⊆ Vp. We will now argue that Vp \V ′
p ̸= ∅.

Let p′ be the project chosen by EES (E(b)) in iteration ℓ. Since EES (E(b+ nd∗)) favors p
over p′ in iteration ℓ, while EES (E(b)) makes the opposite choice, and the two executions
are identical up to that point, it has to be the case that in E(b) some voters in Vp cannot
afford to pay π in iteration ℓ; this will still be the case in iteration ℓ′ > ℓ. Thus, Vp\V ′

p ̸= ∅.
This means that each v ∈ V ′

p contributes more than π towards p in EES (E(b)).

Now, consider a voter v ∈ Vp who does not pay for p in EES (E(b)) (either because p is not
selected in EES (E(b)) or because p is selected, but v ̸∈ V ′

p). Let rv be her leftover budget
after EES has been executed on E(b). We know that after iteration ℓ−1 in the execution
of EES (E(b+ nd∗)) this voter was able to pay π for p, so her remaining budget at that
point in E(b+nd∗) was at least π. Consequently, her remaining budget in E(b) after ℓ−1
iterations was at least π − d∗. If she did not contribute to any projects after the first
ℓ− 1 iterations of EES (E(b)), we have rv ≥ π − d∗. Otherwise, she contributed to some
project p′ in a subsequent iteration. If voters in E(b) could afford p′ in iteration ℓ+ 1 or
later, the voters in E(b+nd∗) could afford p′ in iteration ℓ. Since EES (E(b+nd∗)) chose p
over p′ in iteration ℓ, every supporter of p′ at that point (in both executions) would have
to contribute at least π towards p′, and that would also be the case in all subsequent
iterations. Thus, Xv,p′ ≥ π, and if Xv,p′ = π, then p◁ p′ (because EES (E(b+ nd∗)) chose
p over p′). Thus, we conclude that in this case cv >lex (π, p).

Therefore, for each v ∈ Vp with Xv,p = 0 we have rv ≥ π− d∗ or cv >lex (π, p), and for each
v ∈ Vp with Xv,p > 0 we have Xv,p > π. Hence, (p, Vp) witnesses the instability of (W,X)
for budget b+ nd∗. This concludes the proof.

Remark A.6. Algorithm 2 does not necessarily return the minimum value of d such that
if each voter were given additional budget d, project p would be included in the outcome
selected by EES. Indeed, if there is another project p′ ̸= p such that Algorithm 2
returns d′ < d on p′, then if the budget is increased to b+ nd′, EES may select p′, and
this will enable it to select p at a later step.

Concretely, consider four projects p1, p2, p3 and p4 with costs cost(p1) = 2, cost(p2) = 98,
cost(p3) = 100, cost(p4) = 51 and budget b = 150. The set of voters is {1, 2, 3}, where
A1 = {p1, p2}, A2 = {p2, p3}, and A3 = {p3, p4}. EES selects {p1, p3}. For project p4,
Algorithm 2 returns d = cost(p4) = 51. However, project p2 certifies the instability of
{p1, p3} for budget b′ = b+ 3d′, where d′ = 1 < d, and the outcome selected by EES with
budget 153 is {p1, p2, p4}.
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A.2 Uniform Utilities

In practice, MES is typically used under the assumption of cost utilities. In this section,
we extend our approach to handle uniform utilities, which encompass approval utilities
and cost utilities as special cases. The distinctive feature of approval utilities is the
inverse relationship of the bang per buck of a project p for a voter i and the voter’s
payment xi,p. Specifically, if one project can be bought at a higher bang per buck than
another, that precisely means it is cheaper for the voter. Consequently, if the voter
is willing to contribute some amount to p, she can do so by deviating from at most
one project. In contrast, for more general utilities it is no longer sufficient to simply
reallocate support from a single project with a lower bang per buck. Instead, it may
require withdrawing support from multiple projects, thereby significantly increasing the
combinatorial complexity of the problem. This suggests that extending the algorithm
to handle general uniform utilities may be less efficient.

EES can be implemented so that it returns auxiliary information, such as voters’
leftover budgets in non-decreasing order, without increasing its runtime of O(m2n).
Similarly, we can trivially modify EES to return the selected projects in W in the order
they were selected, i.e. in order of non-increasing bang per buck (with lexicographic
tie-breaking). We will denote this sequence as p1, p2, . . . , pw where w = |W |. Using this
auxiliary input, GreedyProjectChange for uniform utilities can be implemented in
time O(m+ n).The overall solution can be computed in time O(m2n). To achieve this,
we generalize our definition of stability. For this section we define the relation <t for
(x, p) >t (y, p

′), x, y ≥ 0 and p, p′ ∈ P to mean x > y or x = y and p◁ p′3. Consider again
the approval utility case where u(p) = 1 for every project p ∈ P .

Lemma A.7. Given outcome (W,X) and u(p) = 1 for every p ∈ P , voter v is willing to
contribute cost(p)

t if and only if the sum of her leftover budget and the total amount she
spends on less preferred projects p′ in the set {p′ | (BpB(p′), p′) <t (

u(p)t
cost(p) , p)} exceeds

cost(p)
t .

Proof. Let v ∈ V \Np(X) has rv ≥ cost(p)
|V | or ( cost(p)|V | , p) <lex cv. In the latter case, the voter

spends at least cost(p)
|V | on a less preferred project p′. So the sum of her leftover budget

and the budget she spends on less preferred projects is at least cost(p)
|V | , as desired.

For the other direction of the claim, suppose now voter v has tv ≥ cost(p)
|V | where tv is the

combined total of rv and the money spent on projects p′ in {p′ | (BpB(p′), p′) <t (
u(p)t
cost(p) , p)}.

If the latter set is empty, then rv ≥ cost(p)
|V | . If it is non-empty, then such a project p′ has

BpB(p′) ≤ u(p)|V |
cost(p)

⇐⇒
u(p′)|Np′(X)|

cost(p′)
≤ u(p)|V |

cost(p)
⇐⇒

|Np′(X)|
cost(p′)

≤ |V |
cost(p)

⇐⇒ cost(p)

|V |
≤ cost(p)

|Np′(X)|
.

So it follows that ( cost(p)|V | , p) <lex ( cost(p)
|Np′ (X)| , p

′) implying in particular that ( cost(p)|V | , p) <lex cv.

So rv ≥ cost(p)
|V | or ( cost(p)|V | , p) <lex cv hold, implying that v is willing to contribute cost(p)

|V | to
p.

3x and y represent potential values of bang per buck (BpB), where larger values are preferred, unlike
for PvP in Section 4, and so we cannot use (x, p) >lex (y, p′).
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With this result in hand, we can now overload the definition of willingness to contribute
in the case of uniform utilities. Given a pair (W,X), we now say that voter i is willing
to contribute cost(p)

t to p if the second condition in Lemma A.7 holds. With this updated
definition, Definition 4.1 of what it means for (p, V ) to certify the instability of (W,X)
applies to uniform utilities. Note that this definition is equivalent to Definition 4.1 if
u(p) = 1 by Lemma A.7.

Proposition A.8. EES returns a stable (for uniform utilities) outcome.

Proof. Let E be an election and let (W,X) = EES (E). We can trivially modify EES
to return the selected projects in W in the order they were selected, i.e. in order
of non-increasing bang per buck (with lexicographic tie-breaking). We will denote
this sequence as p1, p2, . . . , pw where w = |W |. Suppose for the sake of contradiction
that (W,X) is unstable, as certified by a pair (p, V ). Then for every v ∈ V we have
ri(v) ≥ cost(p)/|V | where i is the smallest index for which (BpB(pi), pi) <t (

u(p)|V |
cost(p) , p). Since

(W,X) is unstable, we have that i is well-defined. Now consider the project selected in
the ith iteration of EES in which pi is selected. By the definition of EES the project
p is affordable by voters V in this round since by the choice of i, ri(v) ≥ cost(p)/|V |.
Furthermore, since (BpB(pi), pi) <t (

u(p)|V |
cost(p) , p) holds, project p has higher priority than

pi, and so would be selected by EES instead. This contradicts that EES returns (W,X)
and the project ordering projects p1, . . . , pw. We conclude that (W,X) is stable.

We now show how to compute L1, . . . , Lw used in Algorithm 4 and computed in Algo-
rithm 5 given Lw+1 and p1, . . . , pw using dynamic programming.

Lemma A.9. Suppose we have W given in order p1, . . . , pw such that (BpB(pi), pi) >t
(BpB(pi+1), pi+1) as well as Lw+1. Then we can compute L1, . . . , Lw in time O(mn).

Proof. Li will contain the values ri(v) sorted in non-decreasing order. We note that
either a voter contributes to project pi or she does not, and in the former case, every
such voter contributes an equal amount by the definition of exact equal shares. So to
obtain Li from Li+1 it suffices to merge the sorted lists Li+1[Npi(X)] + cost(pi)

|Npi (X)| (voters
who pay for pi) and Li+1[Opi(X)] (voters who do not pay for pi) in time O(n). Since we
create w = O(m) lists this way, the overall runtime is O(mn).

For readability, from now on we will refer to outcomes that are stable for uniform
utilities as simply stable.

A.3 Time Complexity and Correctness

Algorithm 4, GreedyProjectChange for uniform utilities, solves the problem of finding
the minimum per voter budget increase d such that project p certifies the instability
for E(b + nd) for uniform utilities. The key insight is that, under uniform utilities,
project costs being shared exactly equally combined with uniform utilities give rise
to the uniform bang per buck, given by BpB(p) =

u(p)Np(X)
cost(p) , for each contributing voter

in Np(X). Similarly to Algorithm 2, for given p ∈ P we compute the minimum budget
increase so that p will certify the instability of (W,X): For each project p we calculate
the additional budget per voter required so exactly t voters can afford to pay for p for
the first time for each t = |Np|, . . . , |Np(X)|+ 1. Leveraging the fact that we only need to
consider the t − |Np(X)| richest voters in Op(X) as measured by how much they are
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willing to contribute with t voters then yields a computationally efficient solution for
uniform utilities.

Key input data to Algorithm 4 consists of the w + 1 lists L1, . . . , Lw+1, where each list
Li, i ≤ w corresponds to a distinct project pi ∈ W and Lw+1 contains voters’ leftover
budgets sorted in nondecreasing order. These lists can be computed in time O(mn) as
a preprocessing step in add-opt for uniform utilities (Algorithm 5). Define rw+1(v) = rv
and for i ∈ [w] ri(v) = ri+1(v) + xv,pi, representing the total amount v spends on projects
pi, . . . , pw and her leftover budget. For i ≥ 1, the i-th list Li contains, in non-decreasing
order, for each voter the total budget ri(v) that each voter v contributes to projects
"no better than" project pi combined with the voter’s leftover budget. Specifically, this
includes precisely those projects p ∈ W with (BpB(p), p) <t (BpB(pi), pi). To identify
voters willing to pay, the lists L1, . . . , Lw+1 are particularly useful due to the following
simple observation.

Lemma A.10. Voter v is willing to contribute cost(p)
t to project p if and only if for some

i ≥ 1 satisfying ( u(p)t
cost(p) , p) >t (BpB(pi), pi) it holds that ri(v) ≥ cost(p)

t or else rv ≥ cost(p)
t .

Algorithm 4: GreedyProjectChange (GPC) for uniform utilities
Input: E = (N,P, {Ai}i∈N , b, cost), equal shares solution (W,X), project p;
lists L1, . . . , Lw, Lw+1

Output: Minimum d > 0 such p certifies the instability of (W,X) for E(b+ dn)
1 d←∞;
2 ℓ← 1;
3 i← w + 1;
4 while ℓ ≤ |Op(X)| do
5 i← min{i | ( u(p)

cost(p)/(ℓ+|Np(X)| , p)) >t (BpB(pi), pi)} ∪ {w + 1};
6 d← min{d, cost(p)

ℓ+|Np(X)| − Li[|Op(X)| − ℓ]};
7 ℓ← ℓ+ 1;
8 end
9 return d;

With this auxiliary information in hand, for each project p and each t = |Np| to t =
|Np(X)|+1 Algorithm 4 computes the budget increase d needed so that at least t voters
would deviate and collectively pay for p.

Lemma A.11. Algorithm 4 returns the minimum amount d∗ such that there exists a set
of voters V such that (V, p) certifies the instability of (W,X) for E(b+ d∗n).

Proof. For ℓ = 1, . . . , |Op(X)| let dℓ be the minimum amount such that there exists a set of
voters Vℓ of size |Np(X)|+ℓ such that (Vℓ, p) certifies the instability of (W,X) for E(b+ndℓ).
Clearly d∗ = min

ℓ∈[|Op(X)|]
dℓ, so it suffices to prove that (1) dℓ = cost(p)

ℓ+|Np(X)| − Li[|Op(X)| − ℓ]

where i is the index at the end of the ℓth iteration of Algorithm 4, and (2) we have
identified a corresponding set V ′

ℓ that certifies the instability of (W,X) for E(b+ ndℓ).
Let V ′

ℓ be the set of voters corresponding to the last ℓ entries of list Li where i is defined
as in Line 5 of Algorithm 4 for our value of ℓ. After an increase in budget by an amount
of cost(p)

ℓ+|Np(X)| − Li[|Op(X)| − ℓ] every voter in V ′
ℓ is willing to contribute an amount cost(p)

ℓ|Np(X)|

to p. Thus, dℓ ≤ cost(p)
ℓ+|Np(X)| −Li[|Op(X)| − ℓ]. Observe that every voter is willing to use the

money corresponding to their entry in in Li to contribute to p with ℓ+ |Np(X)| or more
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voters by the definition of i and similarly, by the definition of i no voter is willing to give
up support for a project pj with j < i. So any other set V ′′

ℓ of size |Np(X)|+ ℓ satisfied
minv∈V ′′

ℓ
ri(v) ≤ minv∈V ′

ℓ
. This implies voters in V ′′

ℓ need at least as much additional
budget as voter V ′

ℓ , implying that dℓ ≥ cost(p)
ℓ+|Np(X)| − Li[|Op(X)| − ℓ]. This completes the

proof.

Lemma A.12. Algorithm 4 can be implemented with runtime O(m+ n).

Proof. Since ℓ increases by 1 in every round, the while loop terminates in O(n) rounds.
Thus, we only need to justify that Line 5 can be implemented efficiently, so that the
overall runtime does not exceed O(m+ n). The key observation is that the values of i
are non-increasing. Suppose that ℓ increases to ℓ2 > ℓ so t = |Np(X)|+ ℓ increases to
t2 = |Np(X)|+ ℓ2. If ( u(p)

cost(p)
t

, p) >t (BpB(pi), pi)} then also ( u(p)
cost(p)

t2

, p) >t (BpB(pi), pi)}.

So since (BpB(pi), pi) >t BpB(pi+1, pi+1) for all i = 1, . . . w − 1, it follows that

min

{
i |

(
u(p)

cost(p)/t
, p

)
>t (BpB(pi), pi)

}
∪{w+1} ≥ min

{
i |

(
u(p)

cost(p)/t2
, p

)
>t (BpB(pi), pi)

}
∪{w+1}.

It follows that as ℓ increases, i does not increase. So it suffices to simply decrease
i until the condition ( u(p)

cost(p)
ℓ+|Np(X)|

, p) >t (BpB(pi), pi) is satisfied. Since i is initialized to

w + 1 = O(m), we conclude that Algorithm 4 runs in time O(m+ n).

Analogously to Section 4, we define add-opt for uniform utilities (Algorithm 5) and
show that it returns the minimum budget increase resulting in instability and runs in
time O(m2n).

Algorithm 5: add-opt for uniform utilities
Input: E = (N,P, {Ai}i∈N , cost , b), equal shares solution (W,X) for E;
p1, . . . , pw where (BpB(pi), pi) >t (BpB(pi+1, )pi+1), Lw+1 = [rv1 , . . . , rvn ] where
rvi ≥ rvi+1, vi ̸= vj , i < j and rv is v’s leftover budget in (W,X);
Output: Minimum d > 0 such that (W,X) is unstable for E(b+ dn)

1 d = +∞;
2 Lℓ = [rℓ(vℓ,1), . . . , rℓ(vℓ,n)] where rℓ(vℓ,i) ≥ rℓ(vℓ,i+1), vℓ,i ̸= vℓ,j , i < j for each pℓ ∈W ;
// Implementation discussed in Lemma A.9

3 for p ∈ P do
4 d = min(d,GPC(E, (W,X), p, L1[Op(X)], . . . , Lw+1[Op(X)]);
5 end
6 return d;

Theorem A.13. Algorithm 5 can be implemented in time O(m2n).

Proof. By Lemma A.9 lists L1, . . . Lw can be computed in time O(mn) from the ordering
p1, . . . , pw and Lw+1. For the remainder of Algorithm 5, we execute Algorithm 4 m
times which by Lemma A.12 can be implemented in time O(m + n). However, when
calling GreedyProjectChange in Line 5, we partially copy the lists L1, . . . , Lw+1 to obtain
the sublists L1(Op(x)) . . . Lw+1(Op(X)) which takes time O(mn), resulting in an overall
runtime of O(m2n). This completes the proof.
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Theorem A.14. Algorithm 5 returns the minimum budget b∗ > b such that EES (E∗) ̸=
(W,X) where E∗ = (N,P, {Ai}i∈N , b∗, cost)

Proof. The proof proceeds in analogy to the proof of Theorem 4.4 with minor differences.
Let (W ∗, X∗) = EES(E(b + nd∗)). Since (W,X) ̸= (W ∗, X∗) we show that there exists
(p, Vp) that certifies the instability of (W,X) for budget b∗, i.e. after an increase of b∗−b

n
per voter from budget b; indeed, there exists a first iteration, say iteration q, in which
EES selects a project p paid for by voters Vp for E(b+nd∗), such that in the qth iteration
for E(b) for budget b the same does not happen (more precisely, the algorithm may
terminate before iteration q or it may not select p in iteration q, or it may be pair for
by a different set of voters). For budget b, either p is never selected or it is eventually
selected. In the first case this means that for budget b∗ at the end of iteration q − 1,
every voter v ∈ Vp has ri(v) ≥ cost(p)

|Vp| for some i with BpB(pi), pi) <t (
u(p)|Vp|
cost(p) , p) which

by Lemma A.10 implies that (Vp, p) certifies the instability of (W,X) for budget b∗, as
claimed. If instead p is (eventually) selected for budget b, it will be paid for by a strict
subset of the voters Vp; indeed if there was be a voter v /∈ Vp paying for p, then this
voter would also pay for p in EES run on E(b∗). Clearly p cannot be paid for by all of Vp,
as then EES would select p paid for by Vp in iteration q for both elections E and E∗,
contrary to our assumption. However, as before, every voter v ∈ Vp has ri(v) ≥ cost(p)

|Vp| for

some i with BpB(pi), pi) <t (
u(p)|Vp|
cost(p) , p) which by Lemma A.10 implies that (Vp, p) certifies

the instability of (W,X) for budget b∗, as claimed. So since an increase of b∗−b
n per voter

results in p certifying the instability of E, by Theorem 4.3, Algorithm 2 for p will return
an amount d ≤ b∗−b

n , so that the output b′ of Algorithm 3 is at most b∗. Furthermore,
for b′ = b + dn where d is computed by Algorithm 3, there exists (p′, V ′

p) that certifies
instability of (W,X). Since EES returns stable outcomes, this implies that for budget
b′, EES does not return (W,X) i.e. EES (E(b′)) ̸= (W,X) and so by our definition of b∗ it
follows that b∗ ≤ b′. This concludes the proof.

A.4 Lower bound on the number of distinct outcomes of EES

Since the algorithms in the previous section aim to find the next budget at which EES
produces a different outcome, and given that for a sufficiently large budget all projects
will be selected4, a natural question arises: How many distinct outcomes are there? In
other words, how large can the set

{EES(E(b), u) | b > 0}

be as a function of the instance size for uniform utilities u?

We are particularly interested in determining whether this size can be bounded by a
polynomial in the size of the instance. For approval utilities, we leave this question as
an open problem. However, for cost utilities, we answer this question in the negative
by presenting an instance with exponentially many different outcomes relative to the
size of the instance.

Theorem A.15. There exists an instance E of size O(m3) and budgets b1 < b2 < . . . < b2m

such that for (Wi, Xi) = EES (E(bi), cost) it holds that Wi ̸= Wj for any i ̸= j, 1 ≤ i, j ≤ 2m.

Proof. We consider the budgets bi =
∑m

j=1 2
j−1di,j where di,m . . . di,2di,1 is the binary

expansion of i for i = 1, . . . , 2m. We construct E(b) = (N,P, {Ai}i∈N , cost , b) where
4without loss of generality, we assume that every project is approved by at least one voter
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N = V ∪ ∪mi=1Di is a set of n = 2m2 + m + m3 voters and the set of projects is
P = {p1, . . . , pm, a1, . . . , am}. We set cost(pi) = 2i

(
2m2+i

n

)
< 2i+1 for i ∈ [m]. We set

the price of ai to cost(ai) = 2i m−i+m2

n to i ∈ [m]. The set of voters Di for each i ∈ [m] has
size m2 and each voter in Di approves only ai. The set of voters V has size 2m2 +m.
For each i ∈ [m], the project pi is approved by exactly 2m2 + i voters among V, and
the approvals are distributed in such a way that every voter in V does not approve
at most one project pi. This is possible because each project pi is not approved by
2m2 +m− (2m2 + i) = m− i voters from V which amounts to a total of

∑m−1
i=0 i = (m−1)m

2
pairs (v, pi) such that v ∈ V does not approve pi, i ∈ [m]. So we can make sure that
less than m2 agents among V do not approve one project pi, i ∈ [m]. To complete the
approval sets, a voter in V who does not approve pi, does approve ai.

We claim that (Wi, Xi) = EES(E(bi)) satisfies Wi ∩ P = {pj | di,j = 1}. Note that if all
its 2m2 + j supporters contributed equally, the PvP of pj is cost(pj)

2m2+j
= 2j

n and its bang
per buck is 2m2 + i. Suppose di,j1 , . . . , di,jk , where jℓ > jℓ+1, are all equal to 1 and di,j
for j /∈ {j1, . . . , jk} is equal to 0. We claim EES selects pj1 , . . . , pjk in this order, shared
exactly by all the respective projects supporters and then proceeds to select the projects
aj1 , . . . , ajk in some order among the set of projects a1, . . . , am, resulting in all voters in
V having run out of money. it potentially selects further projects among a1, . . . , am and
terminates.

We prove the claim by induction. Consider project pm and suppose first that di,m = 1.
We claim that pm is the first project to be selected and is fully paid by all of its supporters.
First of all pm can be afforded by its supporters since bi ≥ 2m and cost(pm)

2m2+m
= 2m

n and
each voter has budget bi

n ≥
2m

n . Indeed, each project ai is supported by m2 voters and
so can achieve a BpB of at most m2 < 2m2 +m, where 2m2 +m is the BpB if pm is paid
for by all of its supporters. Similarly every project pj, j < m has smaller BpB (namely
2m2 + j) even if every agents contributes. Now suppose di,m = 0. In this case bi ≤ 2m− 1

and so cost(pm)
2m2+m

= 2m

n > bi
n and so pm cannot be afforded (even if all of its supporters

contributed).

For the inductive step, consider project pj /∈W , j < m, and assume that for all ℓ with
m ≥ ℓ > j it holds that

1. if di,ℓ = 1, pℓ has been selected by EES and is paid for by all its supporters,

2. if di,ℓ = 0, pℓ has not been selected by EES.

Furthermore, we assume no project pℓ with ℓ ≤ j has been selected and all projects
a1, . . . , am are either not affordable or affordable at a bang per buck at most m2+m ≤ 2m2.
First suppose that di,j = 1, we will show that in this case pj can be paid for equally
by all its 2m2 + j supporters, and since it has the largest bang per buck among all
the affordable projects, is the next in line to be selected. The supporters of pj have

each spent at most
2mdm+...+2j+1

2m2 dj+1

n on projects pj+1, . . . , pm and in particular have at
least 2j

n leftover budget per voter. This is precisely the price per voter if all the 2m2 + i

supporters of pi pay for pi together as cost(pj)
2m2+j

= 2j

n .
Now suppose di,j = 0. All except less than m2 voters from V have spent exactly
2mdi,m+...+2j+1

2m2 di,j+1

n . These voters therefore have a leftover budget of less than 2j

n , implying
that even if every voter contributed towards pj, they would not have enough leftover
budget. So the largest bang per buck for pj we can obtain is less than m2. Since
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di,m, . . . di,2di,1 is the binary expansion of i it holds that dj = 1 for some j ∈ [m]. The
corresponding project aj is affordable at a bang per buck m− j+m2 > m2 and so would
be selected before pj. Furthermore, any for any j with 1 ≤ ℓ < j if dℓ = 1, then the
corresponding bang per buck is 2m2 + ℓ > 2m2 > m2 +m ≥ m2 +m− j, such a project is
selected before pi and before any aℓ, ℓ ∈ [m]. This shows that indeed the first projects
to be selected are exactly pj1 , . . . , pjk . It remains to show that no pj, j /∈ {j1, . . . , jk} is
selected subsequently. Suppose di,j = 1 and so pj was selected. There are m− j voters
in V who did not pay for pj and have exactly 2j

n leftover budget (since by construction
every voter in V does not approve at most one project in {p1, . . . , pm}. These voters all
approve aj and aj can be bought at a bang per buck of m2 +m− j at a per voter cost
of exactly cost(pj)

m2+m−j
= 2j

n since every supporter of aj has leftover budget at least 2j

n . Any
project pℓ with dℓ = 0 we previously argued has a bang per buck of less than m2, so all
affordable projects aj will be prioritized over affordable projects pℓ. It follows that EES
selects each aj with j ∈ {j1, . . . , jk}. After this, no voter V has a leftover budget as either
they approve all projects pj1 , . . . pjk and spent exactly bi

n =
di,j12

j1+...+di,jk2
jk

n on them or

they approve all but one project pjℓ and spent exactly bi
n −

2jℓ
n =

di,j12
j1+...+di,jk2

jk

n − 2jℓ
n

on projects pj1 , . . . pjk and the remaining 2jℓ
n budget on ajℓ. So none of the supporters

of pℓ for dℓ = 0 has any leftover money. This completes the proof.

A.5 Experiments: Further Details

Datasets All our experiments were conducted on real-world data from Pabulib, the
Participatory Budgeting Library [5]. Pabulib contains detailed information on over 300
participatory budgeting elections that took place between 2017 and 2023, of which we
analyze 250; this selection was made due to time limit of 24 hours to complete our
most computationally expensive experiments.

Figure 2 presents key characteristics of our dataset, including distributions of voters,
projects, and budgets.

Implementation We use the pabutools Python library [5] to calculate MES outcomes.
To monitor the number of calls to MES, we implement custom versions of the comple-
tion methods for MES. Similarly, we implement custom Python code for EES and all
completion heuristics defined in this section. The source code for our implementation is
available at https://github.com/psherman2023/Scalable_Proportional_PB/tree/master.

Table 2: Comparison results: cost utilities.

Method Avg Med Std Avg Med Std
Ex. Ex. Ex. Eff. Eff. Eff.

MES + add-one 465.6 346.0 431.4 0.900 0.944 0.110
MES + add-one (C) 2894.9 2033.0 3125.8 0.902 0.945 0.109
EES + add-opt 432.7 106.0 751.2 0.881 0.944 0.140
EES + add-opt (C) 1263.6 360.0 1812.9 0.882 0.945 0.140
EES + add-opt-skip 12.4 10.0 7.3 0.855 0.903 0.138
max 478.0 357.0 428.9 0.909 0.950 0.103

Results and Discussion
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(a) Number of voters versus budget amount in the
selected Pabulib instances.

(b) Histogram of the number of voters across all
selected Pabulib instances.

(c) Histogram of the number of projects across all
selected Pabulib instances.

(d) Histogram of the budget size across all selected
Pabulib instances.

Figure 2: Dataset characteristics showing the distribution of voters, projects, and budgets
across all analyzed Pabulib instances.

Figure 3: A comparison of the
spending efficiency of MES vs. EES
without a completion method: ap-
proval utilities.

Figure 4: A comparison of the
spending efficiency of MES vs. EES
without a completion method: cost
utilities.

Findings Our experiments highlight the advantages of add-opt-skip. Below are our
key findings:

1. EES with add-opt-skip requires an order of magnitude fewer calls to the base
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(a) EES vs. MES number of iterations (b) EES vs. MES spending efficiency

Figure 5: max is the result of running MES + add-one and EES + add-opt-skip and taking the
result with the higher spending efficiency.

Figure 6: Graph showing executions and spending efficiency for identified cases where the
optimal virtual budget occurs after the point at which the true budget is first overspent. In
these cases, EES with add-opt-skip achieves much higher spending efficiency than MES with
add-one, increasing from an average of 78% to 86% for the 3 identified instances with cost
utilities and from 78% to 90% for the 14 identified instances with approval utilities.

method than MES with add-one:

• For approval utilities, the average number of calls drops from 535 to just 28.
• For cost utilities, the average number of calls decreases from 466 to only 12.
• Despite this, EES with add-opt-skip provides comparable spending efficiency:
0.85 for approval utilities (vs. 0.86 for MES with add-one) and 0.86 for cost
utilities (vs. 0.9 for MES with add-one).

2. EES with add-opt-skip often outperforms MES in spending efficiency:

• In 85% of datasets, EES with add-opt-skip achieves spending efficiency that
is at least as high as that of MES with add-one, with strictly higher efficiency
in 16% of cases for approval utilities. For cost utilities, its spending efficiency
is at least as high as that of MES with add-one on 55% of the datasets and
strictly higher on 8% of the datasets.

3. High spending efficiency on non-monotone instances:

• In some real-world instances such as the one in Figure 1, the optimal virtual
budget (in terms of spending efficiency) is larger than the smallest virtual

27



Figure 7: Spending efficiency of
EES with add-opt-skip vs. MES with
add-one: approval utilities.

Figure 8: Spending efficiency of
EES with add-opt-skip vs. MES with
add-one: cost utilities.

budget that causes overspending. We identify 14 such instances for approval
utilities and 3 for cost utilities. Heuristics that terminate as soon as over-
spending occurs perform poorly on such instances. add-opt-skip, on the
other hand, is able to explore the space of virtual budgets in a more compre-
hensive fashion, avoiding these worst-case scenarios, and demonstrates on
average 10% higher spending efficiency in these cases (see Figure 6).

For add-opt, the observed benefits are less pronounced. While it reduces the num-
ber of calls to EES compared to add-one, one needs to execute Algorithm 5 (which
has a runtime comparable to that of EES) for every EES run, leading to minimal
computational savings.

Recommendations Our experimental results suggest that EES+add-opt-skip
achieves comparable spending efficiency to MES+add-one while (1) using orders of
magnitude fewer calls to EES and Algorithm 5, and (2) avoiding worst-case scenarios,
such as the one illustrated in Figure 1. These advantages make EES+add-opt-skip par-
ticularly suitable for real-world use in cities, as well as in computational experiments
on synthetic data, where many repetitions are necessary for statistical significance.
Alternatively, one can explore a hybrid approach, which runs both MES+add-one
and EES+add-opt-skip, as it incurs a negligible computational overhead relative to
MES+add-one (see Figure 5b).

Case Study: Stare Implementation Figure 10 examines a specific implementation
from Stare, Poland, demonstrating how project selection changes with budget allocation.
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(a) Approval utilities. (b) Cost utilities.

Figure 9: Spending efficiency of MES and EES with add-one heuristic. Each point in the
scatter point represents a Pabulib data set.

Figure 10: Graph showing which projects are implemented for a given budget for an instance
from Stare, Poland using add-one until all projects are selected for the first time. The left
shows the spending efficiency for the given virtual budget, the right shows the specific projects
implemented for that budget.
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