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Abstract

We study a model of subscription-based platforms where users pay a fixed fee for unlimited
access to content, and creators receive a share of the revenue. Existing approaches to detecting
fraud predominantly rely on machine learning methods, engaging in an ongoing arms race with
bad actors. We explore revenue division mechanisms that inherently disincentivize manipulation.
We formalize three types of manipulation-resistance axioms and examine which existing rules
satisfy these. We show that a mechanism widely used by streaming platforms, not only fails
to prevent fraud, but also makes detecting manipulation computationally intractable. We also
introduce a novel rule, ScaledUserProp, that satisfies all three manipulation-resistance axioms.
Finally, experiments with both real-world and synthetic streaming data support ScaledUserProp
as a fairer alternative compared to existing rules.

1 Introduction

In September 2024, the FBI criminally charged a musician, Michael Smith, for orchestrating a scheme to
fraudulently inflate his music streams on platforms such as Amazon Music, Apple Music, Spotify, and
YouTube Music—and according to court documents, walked away with over US$10 million in royalty
payments [41]. To successfully execute his scheme, he utilized hundreds of thousands of songs created
using AI, and built a complicated network of over a thousand bot accounts that artificially boost streams
across these platforms billions of times. Although each stream originated from a bona fide, fee-paying
account, the way the platform(s) distributed subscription revenue allowed each bot to generate more in
royalties than it cost to maintain its subscription.

Subscription platforms have seen significant growth in recent years, driven by the rise of internet
streaming services such as Spotify, Apple Music, Netflix, etc. For instance, the annual revenue of the
music streaming industry reached US$27.6 billion in 2023, with significant increases over the last 10
years [26]. Under this business model, users pay a fixed subscription fee to enjoy unlimited access to
all content on the platform, typically by content creators. The platform then takes a fixed revenue cut
and distributes the rest to the creators based on engagement metrics (e.g., play counts or views) and/or
specific agreements between creators and platforms.

Despite efforts to curb manipulation, bad actors persist, using bots and click-farms to inflate user
engagement [14, 39]. This issue is so significant that major music streaming platforms like Amazon
Music and Spotify have established an industry advocacy group [36] to combat such fraud, which
is estimated to cost the industry US$300 million annually [6]. Additionally, the rise of AI-generated
content introduces new challenges— platforms are increasingly flooded with synthetic tracks, videos,
and live streams designed to exploit engagement-driven algorithms. This AI-generated content often
amplifies fraudulent listening activities, making manipulation harder to detect.

Current machine learning approaches to this problem predominantly focus on detecting fraudulent
activity—using sophisticated algorithms ranging from anomaly detection [17] to unsupervised learning
[32] and graph neural networks [29]. For instance, music streaming platforms such as Spotify have
proprietary models that identify whether a stream is legitimate (using meta-data such as IP location,
listening patterns, and other information) and issue fines if many streams are deemed fraudulent [40].

However, as AI continues to evolve, so do the methods used by fraudsters, leading to a continuous arms
race. These bad actors increasingly leverage advanced automation tools to make fraudulent activities
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more sophisticated and harder to detect, challenging the robustness of existing detection frameworks
and driving the need for innovative, adaptive solutions [41].

The root of the problem stems from the way revenue is currently distributed to content creators on
most subscription-based streaming platforms: “funds from the royalty pool are allocated proportionally
among artists based on their respective percentages of total streams” [41]—we call this rule GlobalProp.

In this paper, we tackle this problem from amechanism design perspective. We mathematically formalize
notions of fraud and investigate the existence of revenue division mechanisms that make such fraud
impossible. Hence, there would be no need for expensive and complex fraud detection methods to
combat manipulation.

Additionally, many policymakers and academics have also argued against the fairness of GlobalProp
in favor of an alternative rule: UserProp. In UserProp, a fixed fraction of each user’s subscription fee
is allocated to the creators of the content the user consumes, proportionally to the user’s engagement.
The rule has been supported from an economic [31, 35], empirical [33], theoretical [5], and legal [13]
perspective. Motivated by these debates, we aim to address fairness considerations in our work as well.

1.1 Our Results

In this work, we focus on designing manipulation-resistant mechanisms from a computational and
axiomatic perspective, setting our research apart from all previous work on this model. Although
we build on the standard model for subscription platforms established in prior literature, our key
contribution lies in introducing several axioms that aim to capture both resistance to manipulation and
maintaining fairness and analyzing these axiomswith respect to multiple revenue-divisionmechanisms—
three from existing literature and one novel mechanism that we propose.

Moreover, we challenge the current status quo rule, GlobalProp, by demonstrating that detecting
suspicious activity under this rule is computationally intractable—an important finding in this context.

In Section 2, we establish three fundamental properties that define the space of mechanisms we consider:
anonymity, neutrality, and no free-ridership. The first two ensure that payoffs to artists only depend on
their engagement with users. In particular, mechanisms cannot distinguish between fraudulent and
genuine artists or users. No free-ridership eliminates trivial cases where an artist without engagement
receives a non-zero payoff. Next, we formalize three forms of resistance to strategic manipulation.
Fraud-proofness prevents adversaries from profitably creating new fraudulent users. Bribery-proofness
prevents profitably bribing existing users and is a strengthening of click-fraud-proofness as presented in
Bergantiños and Moreno-Ternero [5]. Finally, (strong) Sybil-proofness ensures that artists cannot gain by
splitting into multiple identities or merging with others. All three axioms are novel in our setting and are
motivated by real-world observations. We also introduce two additional fairness axioms—engagement

monotonicity and Pigou-Dalton consistency, the latter inspired by an equitability concept in welfare
economics.

In Section 3, we conduct an axiomatic study (with respect to our proposed concepts) of several rules
proposed in the literature so far. Notably, we show that GlobalProp fails to satisfy fraud-proofness
and bribery-proofness, in contrast to the other two contenders—UserProp and UserEQ. Contributing
to existing critiques of GlobalProp, we establish a case against GlobalProp through a computational
lens, and in the context of fraud detection. We show that if a platform uses GlobalProp, detecting
potentially fraudulent activity is NP-hard. We then analyze the two other existing rules: UserProp and
UserEQ. We study their axiomatic properties and prove that they satisfy our manipulation-resistance
axioms, unlike GlobalProp. We also demonstrate that portioning rules cataloged in Elkind et al. [16]
fail all the manipulation-resistance axioms we consider.

Finally, in Section 4, we propose and study a new rule—ScaledUserProp. We show that it has the same
axiomatic guarantees as UserProp but is fairer when measured by the popular “pay-per-stream” metric.
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We use this to quantify maximum envy in this setting and empirically verify this against existing rules
in Section 5.

All omitted proofs can be found in the appendix of this paper.

1.2 Related Work

Our work considers the model proposed and studied by several recent works on (music) streaming
platforms.1

Alaei et al. [1] and Lei [28] focused on a comparative study between GlobalProp and UserProp.
More specifically, Alaei et al. [1] focused on providing characterizations of both rules with respect to
newly proposed axioms. They were also concerned with which of these two rules could sustain a set
of artists’ profitability on the platform, as well as comparing them from both the platform’s and the
artists’ perspectives. Lei [28] pointed out the shortcomings of UserProp. They compared the two rules
primarily in terms of egalitarian fairness (i.e., the lowest payout among all artists) and efficiency (i.e.,
“dominance on quality profile”), but they allow for artists to vary stream quality and thus this concept is
not relevant in our model.

Bergantiños and Moreno-Ternero [5] go beyond previous works to consider a family of rules that
interpolates between GlobalProp and UserProp, and they provide further characterizations for both
rules and their interpolation. Subsequently, Bergantiños and Moreno-Ternero [4] introduced the Shapley
index as a rule for this setting and characterized it using existing and new axioms.

Deng et al. [12] investigate revenue-sharing mechanisms for AI-generated music platforms. Their work
centers on the challenge of attributing a new, AI-created track to specific copyrighted recordings in the
training data—an attribution problem that underpins royalty allocation in that setting. This challenge is
fundamentally distinct from the problems we address.

A related stream of work is the museum pass problem, popular in the in the economics literature, and
was first introduced by Ginsburgh and Zang [20, 21]. The problem studies the sharing of revenue among
museums from the sale of museum passes for a price below the aggregate admission fee of individual
member museums (i.e., bundled pricing). Béal and Solal [7] and Ginsburgh and Zang [20, 21] studied
the problem as a coalitional game, whereas Casas-Méndez et al. [8] and Estévez-Fernández et al. [18]
studied the problem as a bankruptcy game. Wang [43] studied the dual version of the problem—the
museum cost sharing problem. All of the works above (including several more recent works which look
at the Shapley value as a rule [2, 3]) essentially conduct an axiomatic study of popular rules in their
respective games modeled, but adapted to this new setting. We refer the reader to the Casas-Méndez
et al. [9] for a survey on earlier works on this area. From 2001 to 2014, works on the topic cumulatively
studied more than 30 axioms, with broadly two kinds of manipulation-resistant axioms—one based on
“ticket prices” and the other based on “reported number of visitors”. However, we note that the museum
pass problem is fundamentally different from our problem, and thus the way axioms (and rules) are
conceptualized would also naturally be distinct. This distinction is particularly apparent when it comes
to concepts relating to manipulation.

Our work also contributes to the broader literature on applying computational and algorithmic methods
to address incentive-related challenges in online economic systems and platforms. For example, manip-
ulation issues have been studied in the contexts of online advertising markets [23, 27], recommendation
systems [15, 44], and e-commerce platforms [24, 25, 30].

1However, we note that this model is also applicable to many other content subscription platforms (e.g., education, art,
etc.).
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2 Model and Axioms

For each positive integer k, let [k] := {1, . . . , k}. Let N = [n] be the set of users and C = [m] be the
set of artists. Suppose that an adversary controls a set of fake users N̂ ⊆ N and a set of fake artists
Ĉ ⊆ C; let n̂ = |N̂ |. For each i ∈ N and j ∈ C , let wij ≥ 0 denote the number of interactions user i
has with artist j.2 For each user i ∈ N , we assume that

∑
j∈C wij > 0, i.e., the user has some non-zero

interactions.3 Let wi = (wi1, . . . , wim) for each i ∈ N . The engagement profile is w = (w1, . . . ,wn).

Without loss of generality, we assume that the subscription fee for each user is 1 unit. Then, the total
subscription fee collected from the users is n. As assumed in the prior works on this topic, and as
observed in the real-world, we assume that the platform takes a cut of (1 − α)n and distributes the
remaining αn to the artists, for some α ∈ (0, 1].

A problem instance I = (N,C,w) is defined by the set of users N , the set of artists C , and the
engagement profile w. A payment rule (or simply rule) is a function ϕ that maps each instance I to an
m-valued vector (ϕI(1), . . . , ϕI(m)), where ϕI(j) is the payment to artist j ∈ C . To simplify notation,
for a subset of artists S ⊆ C , we use ϕI(S) to denote the sum of the payments to the artists in the set
S: ϕI(S) =

∑
j∈S ϕI(j).

2.1 Preliminary Axioms

We begin by introducing three fundamental fairness properties that any reasonable revenue division
mechanism in our setting should satisfy.

The first axiom—anonymity—prescribes that the rule cannot distinguish between real and fake users.

Definition 2.1 (Anonymity). A rule ϕ is anonymous if permuting the labels of the users does not
affect the payoffs of the artists. Formally, rule ϕ is anonymous if for all instances I = (N,C,w) and
I ′ = (N,C,w′) and all permutations σ : N → N , ifwi = w′

σ(i) for all users i ∈ N , then for all artists
j ∈ C , ϕI(j) = ϕI′(j).

The second axiom—neutrality—is similar in nature to anonymity, but for artists. It prescribes that the
rule cannot distinguish between real and fake artists.

Definition 2.2 (Neutrality). A rule ϕ is neutral if permuting the labels of the artists permutes their
payoffs. Formally, rule ϕ is neutral if for all instances I = (N,C,w) and I ′ = (N,C,w′) and all
permutations σ : C → C , if wij = w′

iσ(j) for all users i ∈ N and artists j ∈ C , then for all artists
j ∈ C , ϕI(j) = ϕI′(σ(j)).

In our setting, it is crucial to consider only rules that are anonymous and neutral. In practice, given
the number of users/artists, it is virtually impossible to detect all fake users/artists, even with existing
fraud detection techniques, as noted in our introduction. This inability to reliably distinguish between
real and fake users or artists underscores the importance of addressing the questions we aim to answer.

Finally, the last fundamental axiom we consider is the notion of no free-ridership. Intuitively, this means
that artists who receive no user engagement should not receive any payment.

Definition 2.3 (No free-ridership). A rule ϕ satisfies no free-ridership if, for any instance I = (N,C,w)
and artist j ∈ C where

∑
i∈N wij = 0, then ϕI(j) = 0.

2This is typically defined as a stream (on music streaming platforms like Spotify), whereby a user plays a track for a
minimum duration, or a view (on video streaming platforms like YouTube Live) when a user joins and stays for a minimum
amount of time.

3Note that in many of our proofs, we can without loss of generality assume that weights are rational numbers.

4



This axiom rules out trivial rules that allocate payments disregarding user engagement (e.g., giving
equal payment to each artist irrespective of user engagement) and are, therefore, resistant to strategic
manipulation.

2.2 Axioms for Preventing Strategic Manipulation

We start by formalizing the fraud alleged in the indictment mentioned in the introduction. Intuitively,
no adversary should be able to create fake users (N̂ ), pay their subscription fee, and earn a profit from
her own fake artists (Ĉ).4 Rules that make such fraud impossible are fraud-proof.

Definition 2.4 (Fraud-proofness). A rule ϕ is fraud-proof if the following holds: For any two instances
I = (N \ N̂ , C,w) and I ′ = (N,C,w′) with wi = w′

i for all i ∈ N \ N̂ , and any Ĉ ⊆ C , we have
that ϕI′(Ĉ)− ϕI(Ĉ) ≤ n̂.

A rule ϕ is single-user fraud-proof if n̂ = 1.

Next, we show that single-user fraud-proofness is equivalent to (multi-user) fraud-proofness, simplifying
how one can reason about fraud-proofness.

Proposition 2.5. A rule ϕ is fraud-proof if and only if it is single-user fraud-proof.

Another form of manipulation is bribery. Bribery is particularly relevant in scenarios where the platform
imposes substantially stringent access requirements, making creating fake users significantly more
challenging. However, under such conditions, artists may resort to colluding with and bribing users—
offering to pay the subscription fees of the users to manipulate their engagement profiles. This practice
is commonly observed in streaming farms, the streaming equivalent of click farms in advertising [14].
We call resistance to such bribery as bribery-proofness.

Definition 2.6 (Bribery-proofness). Consider instances I = (N,C,w) and I ′ = (N,C,w′) with
wi ̸= w′

i for exactly k users. A rule ϕ is bribery-proof if for all such pairs I, I ′ and all subsets Ĉ ⊆ C

we have that ϕI′(Ĉ)− ϕI(Ĉ) ≤ k.

A rule ϕ is single-user bribery-proof if k = 1.

Similarly to fraud-proofness, multi-user bribery-proofness and single-user bribery-proofness are equiv-
alent.

Proposition 2.7. A rule is bribery-proof if and only if it is single-user bribery-proof.

We note that (single-user) bribery-proofness substantially strengthens the axiom of click-fraud-proofness
proposed in Bergantiños and Moreno-Ternero [5]. Click-fraud-proofness requires that a single user
altering their engagement cannot alter the payoff of any artist by more than 1. Formally, for all j,
|ϕI′(j) − ϕI(j)| ≤ 1. Single-user bribery-proofness requires that for all subsets of artists Ĉ ⊆ C ,
|ϕI′(Ĉ)− ϕI(Ĉ)| ≤ 1.5 Bribery-proofness implies click-fraud-proofness and protects from multiple
artists colluding.

Fraud-proofness and bribery-proofness capture resilience to two different kinds of manipulation. Despite
being similar, we show that the axioms are not equivalent. Recall that α is the fraction of each user’s
subscription fee that is allocated to the artists, with the remaining portion retained by the platform as a
fixed cut.

Theorem 2.8. Consider some rule ϕ. Then:

4Note that we do not impose any constraints on the listening behavior or engagement profiles of these fake users.
5Note that by Proposition 2.7, it suffices to only consider single-user bribery-proofness.
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(i) If α = 1 and ϕ is fraud-proof, it is also bribery-proof;

(ii) For α ∈ (0, 1], there exists a rule that is bribery-proof but not fraud-proof, even whenm = 2;

(iii) For α < 1, there exists a rule that is fraud-proof but not bribery-proof, even whenm = 2.

The last pair of axioms that we consider—Sybil-proofness6 and its strong counterpart—addresses a
different form of strategic manipulation compared to the two earlier concepts. Intuitively, these
axioms are designed to prevent any artist(s) from splitting or merging to gain an unfair advantage and
fraudulently increasing their revenue share.

Definition 2.9 (Sybil-proofness). A rule ϕ is Sybil-proof if the following holds: For any two instances
I = (N,C,w) and I ′ = (N,C ′,w′) whereby C ⊆ C ′, if for every subset of artists C∗ ⊆ C such that

(i) wij = w′
ij for all i ∈ N, j ∈ C∗; and

(ii)
∑

j∈C\C∗ wij =
∑

j∈C′\C∗ w′
ij for all i ∈ N ,

then we must have that ϕI(C \ C∗) = ϕI′(C ′ \ C∗).

Here, C∗ represents the set of artists which remain constant. Artists C \ C∗ have reallocated their
engagement to the artist set C ′ \ C∗.

We can define a stronger notion of Sybil-proofness by relaxing (i) and (ii), defined as follows. Note that
strong Sybil-proofness implies Sybil-proofness.

Definition 2.10 (Strong Sybil-proofness). A rule ϕ is strongly Sybil-proof if the following holds: For
any two instances I = (N,C,w) and I ′ = (N,C ′,w′) whereby C ⊆ C ′, if for any subset of artists
C∗ ⊆ C such that

(i)
∑

i∈N wij =
∑

i∈N w′
ij for all j ∈ C∗; and

(ii)
∑

i∈N
∑

j∈C\C∗ wij =
∑

i∈N
∑

j∈C′\C∗ w′
ij ,

then we must have that ϕI(C \ C∗) = ϕI′(C ′ \ C∗).

We will show later that GlobalProp is the only neutral rule satisfying strong Sybil-proofness (Theo-
rem 3.2), hence also motivating our study of (the weaker) Sybil-proofness.

2.3 Fairness Axioms

Next, we consider two fairness properties—engagement monotonicity and Pigou-Dalton consistency.

Intuitively, if an artist’s engagement increases while every other artists’ engagement does not increase,
this artist’s payoff should not decrease—this aligns with basic economic principles. It would be funda-
mentally unfair for a creator’s rising popularity to result in a lower payoff. We formalize this fairness
property as follows.

Definition 2.11 (Engagement monotonicity). A rule ϕ is engagement monotone if the following holds:
For any two instances I = (N,C,w) and I ′ = (N,C,w′), if there exists a j∗ ∈ C such that

(i) wij∗ ≤ w′
ij∗ for all i ∈ N ; and

(ii) wij ≥ w′
ij for all i ∈ N and j ∈ C \ {j∗},

6The name is inspired by the concept of a Sybil attack in computer networks.
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Axioms / Rules GlobalProp UserProp UserEq ScaledUserProp
Fraud-proofness ✗ ✓ ✓ ✓

Bribery-proofness ✗ ✓ ✓ ✓

Sybil-proofness ✓ ✓ ✗ ✓

Strong Sybil-proofness ✓ ✗ ✗ ✗

Engagement monotonicity ✓ ✓ ✓ ✓

Pigou-Dalton consistency ✓ ✗ ✓ ✗

Table 1: Axiomatic properties of the revenue division rules.

then we must have that ϕI(j∗) ≤ ϕI′(j∗).

Next, the Pigou-Dalton principle [37, 11], is a fundamental fairness notion from welfare economics
and often referenced in collective decision-making [34]—it states that among similar outcomes, the
equitable one should be picked. We interpret this principle in our setting: all other things being equal,
an artist who is more “uniformly enjoyed” should receive weakly more payoff from an equally popular
but “polarizing” artist.

Definition 2.12 (Pigou-Dalton consistency). A rule ϕ is Pigou-Dalton consistent if the following holds:
For any two instances I = (N,C,w) and I ′ = (N,C,w′), if there exists some i, i′ ∈ N and j ∈ C
such that

(i) w′
ij = wij − δ (where δ > 0 and wij − δ > 0);

(ii) w′
i′j = wi′j + δ and w′

i′j ≤ w′
ij ; and

(iii) wkj′ = w′
kj′ for all k ∈ N and j′ ∈ C \ {j}, and wkj = w′

kj for all k ∈ N \ {i, i′}.

then we must have that ϕI(j) ≤ ϕI′(j).

3 Existing Mechanisms

In this section, we formally define the three existing mechanisms proposed in the literature, and study
which axioms they satisfy. We summarize our results in Table 1. At the end of the section, we discuss
how our analysis applies to portioning rules..

3.1 GlobalProp: The Status Quo

GlobalProp distributes the payoff to each artist proportionally to the artist’s share of total engagement.
According to court documents [41], this is the rule that major streaming platforms use.7

GlobalProp
Given an instance I = (N,C,w) and for each j ∈ C , the payment rule GlobalProp is defined as
follows.

ϕI(j) =

∑
i∈N wij∑

j′∈C
∑

i∈N wij′
× αn.

It is easy to observe that users with higher engagement exert a disproportionate influence on revenue
distribution. Given this, it is not surprising that this rule fails to satisfy both fraud-proofness and
bribery-proofness.

7It is also sometimes known as the pro-rata rule.
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Theorem 3.1. GlobalProp satisfies strong Sybil-proofness, but fails fraud-proofness and bribery-proofness.

Moreover, strong Sybil-proofness uniquely characterizes GlobalProp, given our neutrality assumption.

Theorem 3.2. GlobalProp is the only neutral rule satisfying strong Sybil-proofness.

GlobalProp also satisfies our fairness axioms.

Theorem 3.3. GlobalProp satisfies no free-ridership, engagement monotonicity, and Pigou-Dalton

consistency.

A Case Against GlobalProp: The Computational Intractability of Fraud Detection. We have
shown that GlobalProp is not fraud-proof. One might hope that artists benefiting from fraud could be
easily identified and removed. Unfortunately, detecting the artists who gain the most from fraudulent
activity is computationally intractable.

Importantly, a user who streams music extensively is not inherently suspicious—some people naturally
listen to music for most of their waking hours. Thus, instead of targeting individual active users, we
should focus on identifying artists who may be used as vehicles for fraud by an adversary.8

Definition 3.4 (Potentially Suspicious Profits). Given a set of artists U ⊆ C , their potentially suspicious
profit (PSP) from GlobalProp is their maximum marginal profits from a set of users V , less the cost of
creating these users:

PSP(U) = max
V⊆N

(∑
i∈N

∑
j∈U wij∑

i∈N
∑

j∈C wij
× αn

−
∑

i∈N\V
∑

j∈U wij∑
i∈N\V

∑
j∈C wij

× α(n− |V |)− |V |

)
.

Thus, our objective of identifying suspicious artists can be framed as finding a set of artists U ⊆ C such
that PSP(U) is high. However, the choice of |U | is crucial. If we restrict U to a single artist (|U | = 1),
an adversary can easily evade detection by distributing fake users’ listening activity across multiple
fraudulent artists. On the other hand, if we impose no constraint on |U |, we risk identifying a set of
legitimate artists with dedicated fan bases. Also, while an adversary can create multiple fake artists,
doing so incurs administrative overhead—such as setting up identification and banking details—which
makes the creation of an arbitrarily large number of fake artists impractical in many circumstances.

Therefore, we define the problem of finding suspicious artists as finding the set U ⊆ C of size at most
k artists that maximize PSP(U). However, we show that this problem is computationally intractable,
with the following result.

Theorem 3.5. Given an instance I = (N,C,w) and parameters k ≤ |C| and γ > 0, it is NP-hard to
determine if there exists a U ⊆ C such that |U | ≤ k and PSP(U) ≥ γ.

3.2 User-Additive Rules

At the opposite extreme from GlobalProp are rules where each user’s subscription fee is distributed
solely based on their individual engagement profile. Under these rules, an artist’s total payoff is simply
the sum of the amounts they would receive from each user in a single-user setting. We refer to this
class of rules as user-additive.9

8Our objective is to identify fraudulent artists as a means of detecting suspicious interactions between fake users and fake
artists.

9This term is distinct from user-centric, which is sometimes used in the literature to refer to UserProp.
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Definition 3.6 (User-additive rules). For each instance I = (N,C,w), define instances Ii =
({i}, C,wi) for each i ∈ N . Then, a rule ϕ is user-additive if for all instances I and artists j ∈ C ,
ϕI(j) =

∑
i∈N ϕIi(j).

We then show the following.

Proposition 3.7. A user-additive rule is fraud-proof and bribery-proof.

We focus on two user-additive rules that have been discussed in the existing literature: UserProp
and UserEQ. Under UserProp, an α fraction of each user’s subscription fee is allocated to the artists
proportional to the user’s engagement.

UserProp
Given an instance I = (N,C,w) and for each j ∈ C , the payment rule UserProp is defined as
follows.

ϕI(j) =
∑
i∈N

wij∑
j′∈C wij′

× α.

We show that it satisfies all of the manipulation-resistant axioms (excluding strong Sybil-proofness)
and engagement monotonicity, but fails Pigou-Dalton consistency.

Theorem 3.8. UserProp is fraud-proof, bribery-proof, and Sybil-proof, but fails strong Sybil-proofness.

Theorem 3.9. UserProp satisfies no free-ridership and engagement monotonicity, but fails Pigou-Dalton

consistency.

Next, we consider the UserEQ rule, first studied in Bergantiños and Moreno-Ternero [4]. They estab-
lished the equivalence between UserEQ and the Shapley value, a fundamental measure in cooperative
game theory that ensures a fair distribution of payoffs among players based on their contributions [38].

Now, given an instance I = (N,C,w), for each i ∈ N and j ∈ C , let 1wij>0 be the indicator function
that returns the value 1 ifwij > 0, and 0 otherwise. In UserEQ, an α fraction of each user’s subscription
fee is distributed equally among the artists with strictly positive engagement from the user.

UserEQ

Given an instance I = (N,C,w) and for each j ∈ C , the payment rule UserEQ is defined as follows.

ϕI(j) =
∑
i∈N

1wij>0

|{j′ ∈ C : wij′ > 0}|
× α.

UserEQ has similar guarantees as UserProp, with the difference being that it fails Sybil-proofness, but
satisfies Pigou-Dalton consistency.

Theorem 3.10. UserEQ is fraud-proof and bribery-proof, but fails Sybil-proofness.

Theorem 3.11. UserEQ satisfies no free-ridership, engagement monotonicity, and Pigou-Dalton consis-

tency.

A Generalization of Portioning

We also make an important observation: our model can be viewed as a generalization of portioning
under cardinal preferences [16, 19], where each agent subjectively divides a contiguous resource (such
as time or money) among a given set of candidates, and the goal is to aggregate these preferences to
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obtain one (fair) division. This is similar to our model if we let agents be users, candidates be artists,
and preferences be interactions.10 However, portioning rules require that the engagement of each user
is normalized (i.e., sums to 1). We can then generate rules for our setting by normalizing eachwi and
applying a portioning rule to the instance. There are eight portioning rules cataloged in Elkind et al. [16].
One of them is equivalent to UserProp, but the other seven fail fraud-proofness, bribery-proofness and
Sybil-proofness. This is the case even for the strategy-proof IndependentMarkets rule of Freeman
et al. [19]. We present these rules and prove the results in Appendix C.

4 ScaledUserProp: A Fairer Mechanism

The three rules we considered above are conceptually distinct: GlobalProp allows dedicated fans
to exert a disproportionate influence on revenue distribution, but this also creates opportunities for
fraud by fabricating users who may appear as dedicated fans. In contrast, UserProp is often viewed by
policymakers as a more desirable alternative to GlobalProp. However, UserProp is not necessarily
fairer [28], and user-additive rules in general may fail to meaningfully reward artists for increasing the
engagement within their existing fanbase.

To better understand differences in payment fairness, it is useful to examine the pay-per-streammetric [13,
31]. Given an instance I and an artist j, let the artist pay-per-stream (PPS) for rule ϕ be PPS(ϕ, I, j) =

ϕI(j)∑
i∈N wij

. Using this, we define the maximum envy (ME) of I as ME(ϕ, I) = maxj∈C PPS(ϕ,I,j)
minj′∈C PPS(ϕ,I,j′) . This

ratio quantifies the disparity in PPS between the highest-paid and lowest-paid artists, providing a
measure of the maximum envy in revenue distribution.

Then, we obtain the following result, which essentially implies that any fraud-proof or bribery-proof
rule has the potential to be extremely unfair (unbounded maximum envy).

Proposition 4.1. For all α ∈ (0, 1] and rules ϕ, if there exists k ∈ R such that for all instances I ,
ME(ϕ, I) ≤ k, then ϕ fails fraud-proofness and bribery-proofness.

However, not all such rules may perform equally bad on this front—we will analyze this later through
experiments (in Section 5), with a slight variant of the ME definition.

Given this, we attempt to achieve a compromise by designing a rule that has the same axiomatic
guarantees as UserProp, while offering empirically (in Section 5) stronger fairness guarantees than
UserProp and UserEQ. ScaledUserProp works by having the platform take a disproportionate amount

of commission from low-engagement users. The platform then runs UserProp on the remaining
subscription fees. It is defined as follows.

ScaledUserProp

Given an instance I = (N,C,w), let γ be a constant such that
∑

i∈N min
(
γ ·
∑

j∈C wij , 1
)
= αn.

Then, for each j ∈ C , the payment rule ScaledUserProp is defined as follows.

ϕI(j) =
∑
i∈N

min(γ ·
∑
j′∈C

wij′ , 1)×
wij∑

j′∈C wij′

 .

Note that when α = 1, we have min(γ ·
∑

j′∈C wij′ , 1) = 1 for all i ∈ N , making ScaledUserProp
equivalent to UserProp. For α < 1, if no user’s engagement exceeds 1

α times the average engagement,
then ScaledUserProp is equivalent to GlobalProp, which we show below.

Theorem 4.2. Fix an instance I = (N,C,w). If
∑

j∈C wij ≤ 1
nα

∑
i∈N

∑
j∈C wij for all i ∈ N , then

ScaledUserProp is equivalent to GlobalProp.

10We note that this analogy requires imposing rational number constraints on preferences, as assumed in the preliminaries.
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Thus, ScaledUserProp can be viewed as a variant of GlobalProp that “limits the influence” of users
who have engagement significantly above average. We then show that ScaledUserProp has exactly
the same axiomatic guarantees as UserProp, with the following results.
Theorem 4.3. ScaledUserProp satisfies fraud-proofness, bribery-proofness, and Sybil-proofness, but fails

strong Sybil-proofness.

Theorem 4.4. ScaledUserProp satisfies no free-ridership, engagement monotonicity, but fails Pigou-

Dalton consistency.

5 Experiments

To complement our theoretical analysis, we conduct experiments to evaluate our fraud-proof (and
bribery-proof) mechanisms—UserProp, UserEQ, ScaledUserProp—using both synthetic and real-
world datasets. Motivated by our definition of maximum envy in Proposition 4.1, for each rule, we
analyze the top and bottom few users based on their pay-per-stream (PPS) relative to GlobalProp’s
PPS, as the revenue share (α) varies.11 Notably, only ScaledUserProp is influenced non-linearly by
changes in α (the other rules scale linearly with α). Consequently, the pay-per-stream values for the
other three rules remain constant across different values of α.

Synthetic datasets We generate synthetic problem instances involving 10, 000 users and 1, 000
artists. For each user, we first determine the number of artists they interact with by drawing a value
uniformly at random from the range [1, 100]. Based on this value, we randomly select the corresponding
number of artists from the pool of 1, 000. For each chosen artist, the number of times the user streams
their music is sampled from a Poisson distribution with λ = 1. We repeat the experiments 100 times.

Real-world datasets We utilize data from the Music Listening Histories Dataset [42], that contains
the listening history of approximately 583, 000 users, 439, 000 artists, and a cumulative total of 27
billion listening events (i.e., user-artist interactions).12

Discussion On real-world data, ScaledUserProp emerges as fairest mechanism among those
considered, especially for values of α not close to 1; whereas UserEQ, which treats avid and casual
listeners equally, is the least fair. ScaledUserProp significantly reduces the top 100 artists’ PPS even
for α > 0.9, but it only gradually increases the bottom 100 PPS as α decreases. To understand this
outcome, we first observe that artists with high PPS typically attract infrequent listeners, while those
with low PPS tend to have a more dedicated, avid fanbase.

We also observe that under ScaledUserProp, each stream from a user contributes min(γ, 1∑
j∈C wij

),
whereas under UserProp, it contributes α∑

j∈C wij
. For avid listeners with high

∑
j∈C wij , a stream

under ScaledUserProp is worth 1
α times its value under UserProp. Conversely, for infrequent listeners,

ScaledUserProp caps a stream’s worth at γ, while under UserProp, it can reach up to α in the extreme
case where

∑
j∈C wij = 1.

On synthetic data, ScaledUserProp remains the fairest mechanism as α decreases. However, in contrast
to the real-world data, we observe two key differences: (1) the top and bottom PPS are much closer
in magnitude, and (2) UserProp and UserEQ perform nearly identically. These differences can be
partly attributed to the way synthetic instances are generated. While our model accounts for users with
varying streaming frequencies, it does not capture the real-world tendency of certain artists to attract
predominantly avid or infrequent listeners.

11Note that in Proposition 4.1, maximum envy is defined with respect to the single top and bottom user, which differs
from the metric used in this section. In our experiments, we chose to report metrics for the top and bottom few users rather
than just the single best and worst, as we believe this provides a more robust assessment—mitigating the impact of potential
outliers that may disproportionately affect the extremes. However, our definition and theoretical results would easily extend
to top and bottom few users, making it consistent with that used for the experiments.

12Our code is accessible at https://github.com/nicteh/Fraud-Proof-Revenue-Division.

11

https://github.com/nicteh/Fraud-Proof-Revenue-Division


(a) Real data, top 100 artists’ PPS relative to GP (b) Real data, bottom 100 artists’ PPS relative to GP

(c) Synthetic data, top 10 artists’ PPS relative to GP (d) Synthetic data, bottom 10 artists’ PPS relative to GP

Figure 1: Overview of graphs from real and synthetic data. (a) and (b) show results for real data, while (c) and (d)
show results for synthetic data. GP is short for GlobalProp.

6 Conclusion

In this work, we formalized three types of manipulation by fraudulent agents in subscription-based
platforms, motivated by a real-world multi-million dollar fraud case. We show that the axioms we
introduced are not equivalent and study the rules that satisfy them. GlobalProp, which is used
by streaming platforms, does not satisfy fraud-proofness or bribery-proofness. However, we show
that UserProp and UserEQ do. We introduce a novel rule, ScaledUserProp. It is as strong in
resisting manipulation as UserProp and incentivizes artists to increase their overall engagement
similarly to GlobalProp. Our empirical study on real and synthetic data of fraud-proof rules support
ScaledUserProp is a fairer fraud-proof alternative to other rules

A natural follow-up direction would be to study a freemium model, by incorporating users who have to
watch advertisements to gain access to content on the platform, and have been adopted by streaming
platforms such as YouTube and Spotify, among others. Revenue division in this context would have
different considerations and call for more appropriate axioms to be defined. Machine learning approaches
have been adopted here as well [22]; it would be interesting to explore these questions from amechanism
design perspective.
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Appendix

A Omitted Proofs from Section 2

A.1 Proof of Proposition 2.5

If ϕ is fraud-proof then by definition it is single-user fraud-proof. Now, suppose rule ϕ is single-
user fraud-proof. Consider instances I = (N,C,w), I ′ = (N ∪ N̂ , C,w′) and Ĉ ⊆ C . Enumerate
N̂ = {n̂1, . . . , n̂k}, then for j ≤ kwe construct instances Ij = (N∪{n̂1, . . . , n̂j}, C,w | wn̂1

, . . .wn̂j
)

where we adjoin engagement vectors wn̂1
, . . .wn̂j

to w. We have I0 = I and Ink
= I ′.

By single user fraud-proofness, for all j: ϕIj+1(Ĉ)− ϕIj (Ĉ) ≤ 1. So,
∑k−1

j=0 ϕIj+1(Ĉ)− ϕIj (Ĉ) ≤ k,
but as a telescoping sum, ϕIk(Ĉ)− ϕI0(Ĉ) = ϕI(Ĉ)− ϕI′(Ĉ) ≤ k. So, ϕ is fraud-proof.

A.2 Proof of Proposition 2.7

If a rule is bribery-proof it is also trivially single-user bribery proof. Suppose a rule is not bribery-
proof. Then, there are instances I , I ′ with wi ̸= w′

i precisely for users {1, . . . , k} and C+ ⊆ C
with ϕI′(C+) − ϕI(C

+) > k. Now, consider instances I0 = I, I1, . . . , Ik = I ′ with the profile
of user i in instance Ij being w′

i if i ≤ j and wi otherwise. Then
∑k−1

j=0 ϕIj+1(C
+) − ϕIj (C

+) =

ϕI′(C+)− ϕI(C
+) > k and so in particular at least one term in the sum is greater than 1. So the rule

is not single-user bribery-proof.

A.3 Proof of Theorem 2.8

(i) Suppose ruleϕ is not bribery-proof and consider a pair of instances I, I ′ such that bribery-proofness
is violated. Let C+ the set of artists with a higher payoff in I ′, namely C+ = {c | ϕI′(c) > ϕI(c)}. We
can similarly define C− and C=. Then, by the violation of bribery-proofness, ϕI′(C+)− ϕI(C

+) > 1.
Now, consider an instance with one less user: F . As α = 1, ϕF (C) = ϕI(C)− 1.

By fraud-proofness, ϕF (C+ ∪ C=) ≥ ϕI′(C+ ∪ C=) − 1 and ϕF (C−) ≥ ϕI(C
−) − 1. So, adding

up the inequalities, ϕF (C) > ϕI′(C+ ∪ C=) + ϕI(C
−)− 2. As this is a bribery-proofness violation,

ϕI′(C+) > ϕI(C
+) + 1, and by definition ϕI(C=) = ϕI′(C=). So, the inequality becomes ϕF (C) >

ϕI(C)− 1, but ϕF (C) = ϕI(C)− 1, giving rise to a contradiction.

(ii) Let ϕ be a version of UserProp that gives a discrete subsidy to low performing users. UserProp
is defined in Section 3.2, what is relevant to this proof is that UserProp is bribery-proof. Rule ϕ runs
UserProp for two artists, if an artist receives a payoff less than β = 2

⌊
nα
20

⌋
, we round it up to β.

Conversely, an artist’s payoff is capped at nα− β. Rule ϕ inherits the bribery-proofness of UserProp:
users are distributing at most α payoff to the artists. However, this rule is not fraud-proof. If an artist is
receiving a payoff of β and 2

⌊
nα
20

⌋
< 2
⌊
(n+1)α

20

⌋
, then the artist can benefit by creating a fraudulent

user to increase her subsidy by 2.

(iii) We construct rule ϕ as follows. Let n the number of users and ε a small constant, it is sufficient
that ε < 1− α. Let k the smallest integer such that kα > 2(1 + ε). For n ≤ k, rule ϕ distributes the
payoff equally among the two users. For n > k, the rule distributes the payoff based on the number of
users approving an artist. A user approves of an artist if and only if their engagement with the artist is
at least 1. If both artists are approved by the same number of users they split the payoff in half, namely
nα
2 . If not, the most approved artist receives 1 + ε more than the least approved artist, namely nα+1+ε

2 .
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This rule is fraud-proof. If we add a user in an instance with n < k we simply increase the payoff of each
artist by α

2 < 1. Similarly, if n ≥ k and the most approved artist does not change. If the artists were tied,
adding a user that approves only artist A would increase A’s payoff by (n+1)α+1+ε

2 − nα
2 = α+1+ε

2 < 1
by our choice of ε. Similarly, if B was least approved but adding an artist caused B to be tied with A,
B’s payoff would increase by (n+1)α

2 − nα−1−ε
2 = α+1+ε

2 < 1.

However, this rule is not bribery-proof. If artist A has one less approval than artist B, flipping an
approval from B to A would provide her with benefit of 1 + ε.

A.4 User-addition monotonicity

As an additional tool, we consider the user-addition monotonicity property, which will be frequently
used in proving several of our axioms. Intuitively, it states that adding a user should not decrease an
artist’s payoff. This property is considerably strong and implies fraud-proofness and bribery-proofness.
With user-addition monotonicity the axiom implications are captured by Figure 2.

Fraud-proofnessBribery-proofness

User-addition nonotonicity

α = 1

Figure 2: Relationship of axioms, arrows denote implications. The dashed arrow denotes conditional implication.

Definition A.1 (User-addition monotonicity). For an instance I and any engagement profile wn+1

consider instance In+1 constructed by adding a user with profile wn+1 to I . A rule ϕ satisfies user-
addition monotonicity if for all I , wn+1 and In+1 for all artists c, ϕI(c) ≤ ϕIn+1(c).

Proposition A.2. If a rule is user-addition monotone, then it is both fraud-proof and bribery-proof.

Proof. Consider instances I and In+1 for some wn+1. A user adds α to the total payoff: ϕIn+1(C)−
ϕI(C) = α. So for Ĉ ⊆ C :

ϕIn+1(Ĉ)− ϕI(Ĉ) + ϕIn+1(C \ Ĉ)− ϕI(C \ Ĉ) = α

But, by monotonicity, for S ⊆ C the marginal contribution of user n+ 1 is non-negative: ϕIn+1(S)−
ϕI(S) ≥ 0. So, ϕIn+1(Ĉ)− ϕI(Ĉ) ≤ α ≤ 1 and ϕ is fraud-proof.

Now to prove bribery-proofness. Consider an instance I , instance I−n with user n removed and
instance I ′ with user n added with any profile w′

n ̸= wn. Then, for all Ĉ ⊆ C , ϕI−n(Ĉ)− ϕI(Ĉ) ≤ 0
by monotonicity. By fraud-proofness, ϕI′(Ĉ) − ϕI−n(Ĉ) ≤ 1. Adding up, for all I and I ′ with
engagement differing for a single user ϕI′(Ĉ)− ϕI′(Ĉ) ≤ 1 proving bribery-proofness.

B Omitted Proofs from Section 3

B.1 Proof of Theorem 3.1

We will prove each property separately.

GlobalProp is not fraud-proof. Consider an instance I = (N, {1, 2},w) with |N | > 2
α + 1. Let

for all wi = (1, 0), such that ϕI(2) = 0. Then, constructing an instance I ′ by adding a single profile
wn+1 = (0, n), would result in a payoff of ϕI′(2) = n

2n(n+1)α > 1 by assumption on n, contradicting
fraud-proofness.
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GlobalProp is not bribery-proof. Similarly, for an instance I = (N, {1, 2},w) with |N | > 2
α +1

and for each i, wi = (1, 0) we have that ϕI(2) = 0. However, if we construct I ′ by bribing user n to
change their profile to w′

n = (0, n), ϕI′(2) = n
2nnα > 1 by assumption.

B.2 Proof of Theorem 3.2

Suppose ϕ is strongly Sybil-proof and neutral.

Observe first, that if ϕ is strongly Sybil-proof, there exists a function f such that:

ϕI(c) = f

∑
i∈N

wic,
∑
i∈N

∑
j∈C

wij , N


To see this, suppose there are instances I = (N,C,w) and I ′ = (N,C ′,w′) with

∑
i∈N wic =∑

i∈N w′
ic and

∑
i∈N

∑
j∈C′ wij =

∑
i∈N

∑
j∈C w

′
ij . So,

∑
i∈N

∑
j ̸=cwij =

∑
i∈N

∑
j ̸=cw

′
ij and the

criteria for strong Sybil-proofness hold for C∗ = {c}. So, ϕI(C \ {c}) = ϕI′(C ′ \ {c}). Because the
number of users is equal in I and I ′, ϕI(C) = ϕI′(C ′) = |N |α. Hence,

ϕI(c) = ϕI(C)− ϕI(C \ {c})
= ϕI′(C ′)− ϕI′(C ′ \ {c})
= ϕI′(c).

We now claim that f is a linear function of
∑

i∈N wic.13 To see this, observe that
f
(∑

i∈N wic,
∑

i∈N
∑

j∈C wij , N
)
=
∑

i∈N wic × g
(∑

i∈N
∑

j∈C wij , N
)
. Clearly, if

∑
i∈N wic =

0, then for all T and N , f(0, T,N) = 0. For any instance I = (N,C∗ ∪ {c},w) with c, d, e /∈ C∗ and
β ∈ (0, 1), we construct Iβ = (N,C∗ ∪ {d, e},w′). For j /∈ {d, e}, w′

ij = wij . We let w′
id = βwic and

w′
ie = (1− β)wic. So, strong Sybil-proofness applies for C∗ and so ϕI(c) = ϕIβ (d) + ϕIβ (e).

But the total engagement of the users and the number of users is equal in I and Iβ . So, f is linear
on
∑

i∈N wij . Now, suppose we fix
∑

i∈N
∑

j∈C wij = T and N . By linearity, if
∑

i∈N wic = 0 then
f (0, T,N) = 0. Conversely, if all artists other than c receive 0 engagement from all users, user c will
receive the entire payoff of nα: ϕI(c) = f (T, T,N) = nα. This determines f uniquely:

f

∑
i∈N

wic,
∑
i∈N

∑
j∈C

wij , N

 =

∑
i∈N wic∑

i∈N
∑

j∈C wij
× nα.

Which is equivalent to GlobalProp.

B.3 Proof of Theorem 3.3

We will prove each property separately.

GlobalProp satisfies no free-ridership. Consider an instance I = (N,C,w). For every j ∈ C
where

∑
i∈N wij = 0,

ϕI(j) =

∑
i∈N wij∑

j′∈C
∑

i∈N wij′
× αn = 0,

since we assume
∑

j′∈C wij′ > 0 for all i ∈ N .
13Here, we consider linearity as typically defined in linear algebra, and thus exclude affine functions.
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GlobalProp is engagement monotone. Consider any two instances I = (N,C,w) and I ′ =
(N,C,w′) whereby for some j∗ ∈ C , we have that (i) wij∗ ≤ w′

ij∗ for all i ∈ N , and (ii) wij ≥ w′
ij for

all i ∈ N and j ∈ C \ {j∗}.

Now, since ∑
i∈N

w′
ij∗ ≥

∑
i∈N

wij∗ and
∑

j∈C\{j∗}

∑
i∈N

wij ≥
∑

j∈C\{j∗}

∑
i∈N

w′
ij ,

we get that ∑
i∈N

w′
ij∗ ·

∑
j∈C\{j∗}

∑
i∈N

wij ≥
∑
i∈N

wij∗ ·
∑

j∈C\{j∗}

∑
i∈N

w′
ij .

Adding
∑

i∈N w′
ij∗ ·

∑
i∈N wij∗ to both sides of the equation, we can factorize the expressions on each

side to obtain∑
i∈N

w′
ij∗ ·

 ∑
j∈C\{j∗}

∑
i∈N

wij +
∑
i∈N

wij∗

 ≥
∑
i∈N

wij∗ ·

 ∑
j∈C\{j∗}

∑
i∈N

w′
ij +

∑
i∈N

w′
ij∗

 .

Algebraic manipulation (note that by our model assumption, for each i ∈ N ,
∑

j′∈C wij′ > 0 and∑
j′∈C w

′
ij′ > 0) gives us∑

i∈N wij∗∑
j∈C\{j∗}

∑
i∈N wij +

∑
i∈N wij∗

≤
∑

i∈N w′
ij∗∑

j∈C\{j∗}
∑

i∈N w′
ij +

∑
i∈N w′

ij∗
,

which simplifies to ∑
i∈N wij∗∑

j′∈C
∑

i∈N wij′
≤

∑
i∈N w′

ij∗∑
j′∈C

∑
i∈N w′

ij′
.

Consequently, we have that

ϕI(j
∗) =

∑
i∈N wij∗∑

j′∈C
∑

i∈N wij′
× αn ≤

∑
i∈N w′

ij∗∑
j′∈C

∑
i∈N w′

ij′
× αn = ϕI′(j∗).

GlobalProp is Pigou-Dalton consistent. Consider any two instances I = (N,C,w) and I ′ =
(N,C,w′) whereby there exists some i, i′ ∈ N and j ∈ C such that

(i) w′
ij = wij − δ (where δ > 0 and wij − δ > 0);

(ii) w′
i′j = wi′j + δ and wi′j ≤ wij ; and

(iii) wkj′ = w′
kj′ for all k ∈ N and j′ ∈ C \ {j}, and wkj = w′

kj for all k ∈ N \ {i, i′}.

Then, we get that

ϕI(j) =

∑
k∈N wkj∑

j′∈C
∑

k∈N wkj′
× αn

=
wij + wi′j +

∑
k∈N\{i,i′}wkj

wij + wi′j +
(∑

j′∈C
∑

k∈N wkj′ − wij − wi′j

) × αn

=
w′
ij + δ + w′

i′j − δ +
∑

k∈N\{i,i′}w
′
kj

w′
ij + δ + w′

i′j − δ +
(∑

j′∈C
∑

k∈N w′
kj′ − w′

ij − δ − w′
i′j + δ

) × αn (using (i), (ii), and (iii))

=

∑
k∈N w′

kj∑
j′∈C

∑
k∈N w′

kj′
× αn

= ϕI′(j),

as desired.
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B.4 Proof of Theorem 3.5

We reduce from the Small Set Bipartite Vertex Expansion (SSBVE) problem. The SSBVE problem is
known to be NP-complete and cannot be approximated better than O(|V |1/4), where V is the set of
vertices, under plausible complexity conjectures [10]. We first define the neighborhood of a set of
vertices in a graph and then formally define the decision variant of SSBVE.

Definition B.1 (Neighborhood). For a graph G = (V,E) and a subset of vertices S ⊆ V , the neigh-
borhood of S is defined as N(S) = {v | ∃(u, v) ∈ E ∧ u ∈ S}. Slightly overloading notation, let
N(v) = N({v}) for v ∈ V .

Definition B.2 (Small Set Bipartite Vertex Expansion (SSBVE)). Given a bipartite graph (U, V,E) and
integers ℓ ≤ |U | and δ ≤ |V |, is there an S ⊆ U with |S| ≥ ℓ and |N(S)| ≤ δ?

We are given an arbitrary instance of SSBVE: (U, V,E, ℓ, δ). Let U = {u1, . . . , u|U |) and V =
{v1, . . . v|V |}. Let d = maxu∈U |N(u)| be the maximum number of neighbors, i.e., degree, of any
vertex in U .

For our reduction, we will construct an instance I = (N,C,w) with |N | = t + |U | users and
|C| = t+ |V |+ 1 artists, where the value of t is specified later, and with w defined as follows

wij =


αd, if i ∈ [t] and j = i,

1, if i− t ∈ [|U |], j − t ∈ [|V |] and (ui−t, vj−t) ∈ E,

d+ 1− |N(ui−t)|, if i− t ∈ [|U |] and j = t+ |V |+ 1,

0, otherwise.

Intuitively, the first t users and t artists are dummy users, where user i listens to only artist j = i, and
does so αd times,14 but does not listen to any other artists. The next |U | users and the next |V | artists
correspond to the nodes inU and V , respectively. The final artist, artist t+ |V |+1, ensures that the total
listening activity of each user i ∈ N \ [t] is d+1, i.e., for all i ∈ [t+1, . . . , t+ |U |],

∑
j∈C wij = d+1.

Note that each user streams at least αd times, i.e., ∀i ∈ N,
∑

j∈C wij ≥ αd. Thus, the pay-per-stream
(PPS) of GlobalProp for the instance will be PPS(I) ≤ α

αd = 1
d . Note that the pay-per-stream remains

bounded above by 1
d even if we remove some users from instance I as we maintain the property that

each user streams at least αd times.

Next, we show that for all ϵ > 0, as long as t ≥ (d+1)|U |
αd2ϵ

, the pay-per-stream of I is at least 1
d − ϵ.

Lemma B.3. If t ≥ (d+1)|U |
αd2ϵ

, then PPS(I) ≥ 1
d − ϵ.

Proof. The pay-per-stream in I is PPS(I) = α(t+|U |)∑
i∈N

∑
j∈C wij

= α(t+|U |)
tαd+|U |(d+1) . Thus,

1

d
− PPS(I) = 1

d
− α(t+ |U |)
tαd+ |U |(d+ 1)

=
|U |(d+ 1)− αtd− α|U |d

tαd2 + d(d+ 1)|U |

<
|U |(d+ 1)

tαd2
, as α, d, |U | are all positive.

If t ≥ (d+1)|U |
αd2ϵ

, then 1
d − PPS(I) < ϵ, and thus PPS(I) ≥ 1

d − ϵ, as required.
14In this proof, we allow the wij values to be non-integers. As long as these are rational numbers, e.g., if α is a rational

number, which is a reasonable assumption in practice, we could scale the weights to make everything integral.
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We note that if ϵ < 1
d|U |(d(δ+1)+1) , then

ℓ−1
d = ℓ

d − 1
d <

ℓ
d − ϵ|U |(d(δ + 1) + 1). Furthermore, at this

value of ϵ, as d ≤ |V | and δ ≤ |V |, we have t = O(dδ|U |2) = (|V |2|U |2), and this reduction can be
done in polynomial time.

We now prove that there is a C ′ ⊆ C such that |C ′| ≤ k = δ + 1 and PSP(C ′) ≥ γ = ℓ−1
d if and only

if there is an S ⊆ U with |S| ≥ ℓ and |N(S)| ≤ δ.

Let C ′ ⊆ C be the subset of artists that maximizes PSP(C ′) among all subsets of size at most δ + 1,
i.e., C ′ = argmax

Ĉ∈C,|Ĉ|≤δ+1
PSP(Ĉ). Further, PSP(C ′) is maximized using some subset of users as

defined in Definition 3.4; let N ′ ⊆ N be the smallest among those subsets, i.e.,

N = argmax
N̂⊆N

(∑
i∈N

∑
j∈C′ wij∑

i∈N
∑

j∈C wij
α(t+ |U |)−

∑
i∈N\{N̂}

∑
j∈C′ wij∑

i∈N\{N̂}
∑

j∈C wij
α(t+ |U | − |N̂ |)− |N̂ |

)
,

N ′ = argmin
N̂∈N

|N̂ |.

Next, we show that N ′ does not contain any of the first t users.

Lemma B.4. [t] ∩N ′ = ∅.

Proof. For the purpose of contradiction, let [t]∩N ′ ̸= ∅. Let us pick an i′ ∈ [t]∩N ′. Consider the three
instances I1, I2, and I3 defined as follows:

• I1 removes all users in N ′ from I .

• I2 removes all users in N ′ \ {i′} from I .

• I3 is constructed as follows: In the instance I2, for some j ∈ C ′, increase wi′j until
∑

j∈C wi′j =∑
i∈N\{N′}

∑
j∈C wij′

|N |−|N ′| (note that
∑

j∈C wi′j was originally αd because i′ ∈ [t], which is the mini-
mum possible total engagement for any user, so we are in fact increasing wij′ ).

Notice that I1, I2, and I3 differ only with respect to user i′, where I1 does not contain i′, I2 contains i′
with its original engagement vector, while I3 contains i′ with an increased engagement for artist j ∈ C ′

to ensure that the total engagement of user i′, and therefore, the average total engagement per user of
I3 matches that of I1. As the engagement of i′ is exactly equal to the average engagement of users in
I3 and I1, so i′ controls exactly 1

|N |−|N ′|+1 fraction of the GlobalProp allocation of I3. Therefore,

ϕI3(C
′)− ϕI1(C

′) ≤ 1

|N | − |N ′|+ 1
α(|N | − |N ′|+ 1) ≤ α.

Furthermore, as GlobalProp is engagement monotone (Theorem 3.3), we have ϕI3(C ′) ≥ ϕI2(C
′). So,

ϕI2(C
′)− ϕI1(C

′) ≤ ϕI3(C
′)− ϕI1(C

′) ≤ α < 1.

As the difference in the total payment to the artists in C ′ from instances I1 and I2 is less than 1, so the
marginal profit of N ′ is less than N ′ \ {i}, which is a contradiction.

Next, we show that N ′ does not contain any user i ∈ N \ [t], if
∑

j∈C′ wij ≤ d.

Lemma B.5. If i ∈ [t+ 1, . . . , t+ |U |] ∩N ′
, then

∑
j∈C′ wij = d+ 1.

Proof. For the purpose of contradiction, let there be an i′ ∈ (N \ [t]) ∩N ′ such that
∑

j∈C′ wi′j ≤ d.
Let us consider the two instances I1 and I2 defined as: I1 removes all users in N ′ from I , and I2
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removes all uses inN ′ \ {i′} from I . As user i′ streams d+1 times, which is the maximum possible, we
have PPS(I2) ≤ PPS(I1). Further, as each user streams at least αd times, we have PPS(I2) ≤ α

αd = 1
d .

Using assumption
∑

j∈C′ wi′j ≤ d, we have

ϕI2(C
′)− ϕI1(C

′)

= PPS(I2)

∑
j∈C′

wi′j +
∑

i∈N\{N ′}

∑
j∈C′

wij

− PPS(I1)

 ∑
i∈N\{N ′}

∑
j∈C′

wij


≤ PPS(I2)

d+ ∑
i∈N\{N ′}

∑
j∈C′

wij

− PPS(I1)

 ∑
i∈N\{N ′}

∑
j∈C′

wij


≤ PPS(I2)d, as PPS(I2) ≤ PPS(I1),

≤ 1, as PPS(I2) <
1

d
.

As the difference in the total payment to the artists in C ′ from instances I1 and I2 is at most 1, so the
marginal profit of N ′ \ {i} is at least as good as N ′, which contradicts the minimality of N ′.

The above two lemmas prove thatN ′ consists only of users i ∈ [t+1, . . . , t+|U |] satisfying
∑

j∈C′ wij =
d+ 1. Let I1 be the the instance that removes all users in N ′ from I . Note that all users in I either
stream d+ 1 times or stream αd times. As the removed set of users N ′ contains only users who stream
d+ 1 times, so PPS(I) < PPS(I1).

Let L =
∑

i∈N\N ′
∑

j∈C′ wij . All artist in [t] are streamed αd times, all artists in [t+ 1, . . . , t+ |V |]
are streamed at most |U | times, and the artist N + |V |+ 1 is streamed at most d|U | times. Thus,

L =
∑

i∈N\N ′

∑
j∈C′

wij ≤ |C ′|max
j∈C′

∑
i∈N\N ′

wij ≤ |C ′|d|U | ≤ d|U |(δ + 1).

If |N ′| < ℓ, then

PSP(U) = PPS(I)(L+ (d+ 1)|N ′|)− PPS(I1)L− |N ′|
< PPS(I)(d+ 1)|N ′| − |N ′|, as PPS(I) < PPS(I1),

≤ d+ 1

d
|N ′| − |N ′|, as PPS(I) ≤ 1

d
,

≤ ℓ− 1

d
, as |N ′| < ℓ.

If |N ′| ≥ ℓ, then

PSP(U) = PPS(I)(L+ (d+ 1)|N ′|)− PPS(I1)L− |N ′|
= PPS(I)(d+ 1)|N ′| − |N ′| − (PPS(I1)− PPS(I))L

≥
(
1

d
− ϵ

)
(d+ 1)|N ′| − |N ′| − ϵL, as 1

d
− ϵ ≤ PPS(I) ≤ 1

d
and PPS(I1) ≤

1

d
,

≥ |N ′|
d

− ϵ(L+ |N ′|)

≥ ℓ

d
− ϵ|U |(d(δ + 1) + 1), as |N ′| ≤ ℓ and |N ′| ≤ |U |,

≥ ℓ− 1

d
, by our choice of ϵ.
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Thus, we have shown that there is a C ′ ⊆ C such that |C ′| ≤ δ + 1 = k and PSP(C ′) ≥ ℓ−1
d = γ if

and only if there are users N ′ ⊆ [t+ 1, . . . , t+ |U |] such that |N ′| ≥ ℓ and
∑

j∈C′ wij = d+ 1 for all
i ∈ N ′.

We claim that the final artist t + |V | + 1 is in C ′. Notice that the streams of the users in N \ [t] =
[t+1, . . . , t+ |U |] for the artists in [t+1, . . . , t+ |V |] have one-to-one correspondence with the edges
of the graph, by construction. Therefore, for any user i ∈ N \ [t], the total streams for the artists in
[t+ 1, . . . , t+ |V |] is at most the maximum degree d of the graph, i.e.,

∑
j∈[t+1,...,t+|V |]wij ≤ d for all

i ∈ N \ [t], which implies that
∑

j∈[t+1,...,t+|V |]wij ≤ d for all i ∈ N ′ because N ′ ⊆ N \ [t]. Further,
users inN \ [t] do not listen to the first t artists. Therefore, as

∑
j∈C′ wij = d+1 for all i ∈ N ′, we must

have the final artist t+ |V |+ 1 ∈ C ′. This also implies that |C ′ ∩ [t+ 1, . . . , t+ |V |]| ≤ |C ′| − 1 ≤ δ.

Let S ⊆ U be the set that corresponds to N ′. It is clear that N(S) is a subset of the nodes in V that
correspond to C ′. We note that |S| = |N ′| ≥ ℓ and |N(S)| = |C ′ ∩ [t + 1, . . . , t + |V |]| ≤ δ. Thus,
there is a straightforward bijection between the sets (N ′, C ′) such that |N ′| ≥ ℓ and |C ′| ≤ δ + 1 and
the sets (S,N(S)) such that |S| ≥ ℓ and |N(S)| ≤ δ.

B.5 Proof of Proposition 3.7

A user-additive rule is fraud-proof and bribery-proof. A user-additive rule is user-addition
monotone, as ϕIn+1(c) − ϕI(c) = ϕIn+1(c) ≥ 0. By Proposition A.2, it is also fraud-proof and
bribery-proof.

B.6 Proof of Theorem 3.8

We will prove each property separately. Note that the fact that UserProp fails strong Sybil-proofness
follows from Theorem 3.2.

We first show that UserProp is user-additive, which will be useful in proving it is also fraud-proof and
bribery-proof.

UserProp is user-additive. This follows immediately from the definition. For any instance I =
(N,C,w), let In+1 an instance with a profile wn+1 appended to I . Then, for all artists j, ϕIn+1(j)−
ϕI(j) = α

wij∑
k∈C wij

which is exactly the payoff of user j in a single user instance with only user n+ 1.

UserProp is user-addition monotone, fraud-proof and bribery-proof. This claim is just an
application of Proposition 3.7.

UserProp is Sybil-proof. Consider any two instances I = (N,C,w) and I ′ = (N,C ′,w′) such
that C ⊆ C ′. Suppose for any subset of artists C∗ ⊆ C ,

(i) wij = w′
ij for all i ∈ N, j ∈ C∗, and

(ii)
∑

j∈C\C∗ wij =
∑

j∈C′\C∗ w′
ij for all i ∈ N ,
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Then, we get that

ϕI(C \ C∗) =
∑

j∈C\C∗

∑
i∈N

wij∑
j′∈C wij′

× α

=
∑
i∈N

∑
j∈C\C∗ wij∑
j′∈C wij′

× α

=
∑
i∈N

∑
j∈C′\C∗ w′

ij∑
j′∈C w

′
ij′

× α (by (i) and (ii))

=
∑

j∈C′\C∗

∑
i∈N

w′
ij∑

j′∈C wij′
× α

= ϕI′(C ′ \ C∗).

UserProp fails strong Sybil-proofness By Theorem 3.2, only GlobalProp is strongly Sybil-proof.
Hence, UserProp is not strongly Sybil-proof.

B.7 Proof of Theorem 3.9

We will prove each property separately.

UserProp satisfies no free-ridership. Consider an instance I = (N,C,w). For every j ∈ C
where

∑
i∈N wij = 0,

ϕI(j) =
∑
i∈N

wij∑
j′∈C wij′

× α = 0,

since we assume
∑

j′∈C wij′ > 0 for all i ∈ N .

UserProp is engagement monotone. Consider any two instances I = (N,C,w) and I ′ =
(N,C,w′) whereby for some j∗ ∈ C , we have that (i) wij∗ ≤ w′

ij∗ for all i ∈ N , and (ii) wij ≥ w′
ij for

all i ∈ N and j ∈ C \ {j∗}.

Now, consider any i ∈ N . Since

w′
ij∗ ≥ wij∗ and

∑
j∈C\{j∗}

wij ≥
∑

j∈C\{j∗}

w′
ij ,

we get that
w′
ij∗ ·

∑
j∈C\{j∗}

wij ≥ wij∗ ·
∑

j∈C\{j∗}

w′
ij .

Adding w′
ij∗ ·wij∗ to both sides of the equation, we can factorize the expressions on each side to obtain

w′
ij∗ ·

 ∑
j∈C\{j∗}

+wij∗

 ≥ wij∗ ·

 ∑
j∈C\{j∗}

+w′
ij∗

 . (1)

Algebraic manipulation (note that by our model assumption, for each i ∈ N ,
∑

j′∈C wij′ > 0 and∑
j′∈C w

′
ij′ > 0) gives us

wij∗∑
j∈C\{j∗}wij

≤
w′
ij∗∑

j∈C\{j∗}w
′
ij

,

24



which simplifies to
wij∗∑

j′∈C wij′
≤

w′
ij∗∑

j′∈C w
′
ij′
.

Taking the sum over all users i ∈ N on both sides, we have that

ϕI(j
∗) =

∑
i∈N

wij∗∑
j′∈C wij′

× αn ≤
∑
i∈N

w′
ij∗∑

j′∈C w
′
ij′

× αn = ϕI′(j∗).

UserProp fails Pigou-Dalton consistency. Consider an instance I with two users and two artists.
Let wi = (1, 2) and w2 = (9, 0). Then ϕI(2) = 2

3α. Suppose instead we consider I ′, with w′
1 = (1, 1)

andw′
2 = (9, 1). Then, I ′ is a Pigou-Dalton improvement on I as engagement is transferred from a user

with higher engagement to a user with a lower engagement. But, ϕI′(2) = 3
5α < ϕI(2) contradicting

Pigou-Dalton consistency.

B.8 Proof of Theorem 3.10

We first show that UserProp is user-additive, which will be useful in proving it is also fraud-proof and
bribery-proof.

UserEQ is user-additive. This follows immediately from the definition. For any instance I =
(N,C,w), let In+1 an instance with a profile wn+1 appended to I . Then, for all artists j, ϕIn+1(j)−
ϕI(j) =

1wij>0

|{j′∈C:wij′>0}| × α which is exactly the payoff of user j in a single user instance with only
user n+ 1.

UserEQ is user-additionmonotone, fraud-proof and bribery-proof. As UserEQ is user-additive,
by Proposition 3.7, we have that UserEQ is user-addition monotone, fraud-proof and bribery-proof.

UserEQ fails Sybil-proofness. Consider an instance with one user and two artists, C = {1, 2}.
Suppose w1 = (1, 1), then ϕI(1) = 1

2α. Suppose instead we consider “split" artist 2 to artists 2′ and
3′, with C ′ = {1, 2′, 3′}. If w′

1 = (1, 12 ,
1
2), UserEQ will assign payoff of 1

3α to each user, and so the
combined payoff of 2′ and 3′ in instance I ′ is greater than that in I , contradicting Sybil-proofness.

B.9 Proof of Theorem 3.11

We will prove each property separately.

UserEQ satisfies no free-ridership. Consider an instance I = (N,C,w). For every j ∈ C where∑
i∈N wij = 0,

ϕI(j) =
∑
i∈N

1wij>0

|{j′ ∈ C : wij′ > 0}|
× α = 0,

since we assume
∑

j′∈C wij′ > 0 for all i ∈ N , and so |{j′ ∈ C : wij′ > 0}| > 0 for all i ∈ N .
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UserEQ is engagementmonotone. Consider any two instances I = (N,C,w) and I ′ = (N,C,w′)
whereby for some j∗ ∈ C , we have that (i) wij∗ ≤ w′

ij∗ for all i ∈ N , and (ii) wij ≥ w′
ij for all i ∈ N

and j ∈ C \ {j∗}.

Consider any i ∈ N . If wij∗ = 0, then we trivially get that

ϕI(j
∗) =

1wij∗>0

|{j′ ∈ C : wij′ > 0}|
= 0 ≤

1w′
ij∗>0

|{j′ ∈ C : w′
ij′ > 0}|

= ϕI′(j∗).

Note that by our model assumption,
∑

j′∈C wij′ > 0 and
∑

j′∈C w
′
ij′ > 0, and thus the fractions are

well-defined. If wij∗ > 0, then w′
ij∗ ≥ wij∗ > 0, by (i). Together with (ii), this means that

|{j′ ∈ C : wij′ > 0}| ≥ |{j′ ∈ C : w′
ij′ > 0}| > 0.

Then, taking the reciprocal, we get that

1

|{j′ ∈ C : wij′ > 0}|
≤ 1

|{j′ ∈ C : w′
ij′ > 0}|

.

Since 1wij∗>0 = 1w′
ij∗>0 = 1, taking the sum over all i ∈ N , we get that

ϕI(j
∗) =

∑
i∈N

1wij∗>0

|{j′ ∈ C : wij′ > 0}|
× α ≤

∑
i∈N

1w′
ij∗>0

|{j′ ∈ C : w′
ij′ > 0}|

× α = ϕI′(j∗).

UserEQ is Pigou-Dalton consistent. Consider any two instances I = (N,C,w) and I ′ =
(N,C,w′) whereby there exists some i, i′ ∈ N and j ∈ C such that

(i) w′
ij = wij − δ (where δ > 0 and wij − δ > 0);

(ii) w′
i′j = wi′j + δ and wi′j ≤ wij ; and

(iii) wkj′ = w′
kj′ for all k ∈ N and j′ ∈ C \ {j}, and wkj = w′

kj for all k ∈ N \ {i, i′}.

Then, since wij > δ > 0 (by (i)), this implies w′
ij = wij − δ > 0, giving us

1wij>0 = 1w′
ij>0 = 1. (2)

Also, since w′
i′j > δ, we get that

1wi′j>0 ≤ 1 = 1w′
i′j>0. (3)

Then, a direct implication from (2) is

1wij>0

|{j′ ∈ C : wij′ > 0}|
=

1wij>0

|{j′ ∈ C \ {j} : wij′ > 0}|+ 1wij>0

=
1w′

ij>0

|{j′ ∈ C \ {j} : wij′ > 0}|+ 1w′
ij>0

=
1w′

ij>0

|{j′ ∈ C : wij′ > 0}|
.
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Moreover, we also get that

1wi′j>0

|{j′ ∈ C : wi′j′ > 0}|
=

1wi′j>0

|{j′ ∈ C \ {j} : wi′j′ > 0}|+ 1wi′j>0

= 1−
|{j′ ∈ C \ {j} : wi′j′>0}|

|{j′ ∈ C \ {j} : wi′j′ > 0}|+ 1wi′j>0

≤ 1−
|{j′ ∈ C \ {j} : wi′j′>0}|

|{j′ ∈ C \ {j} : wi′j′ > 0}|+ 1w′
i′j>0

(by (3))

= 1−
|{j′ ∈ C \ {j} : w′

i′j′>0}|
|{j′ ∈ C \ {j} : w′

i′j′ > 0}|+ 1w′
i′j>0

(by (iii))

=
1w′

i′j>0

|{j′ ∈ C \ {j} : w′
i′j′ > 0}|+ 1w′

i′j>0

=
1w′

i′j>0

|{j′ ∈ C : w′
i′j′ > 0}|

.

Utilizing the two implications obtained above, together with (iii), we get that

ϕI(j) =
∑
k∈N

1wkj>0

|{j′ ∈ C : wkj′ > 0}|
× α

= α×

 1wij>0

|{j′ ∈ C : wij′ > 0}|
+

1wi′j>0

|{j′ ∈ C : wi′j′ > 0}|
+

∑
k∈N\{i,i′}

1wkj>0

|{j′ ∈ C : wkj′ > 0}|


≤ α×

 1w′
ij>0

|{j′ ∈ C : w′
ij′ > 0}|

+
1w′

i′j>0

|{j′ ∈ C : w′
i′j′ > 0}|

+
∑

k∈N\{i,i′}

1w′
kj>0

|{j′ ∈ C : w′
kj′ > 0}|


=
∑
i∈N

1w′
ij>0

|{j′ ∈ C : w′
ij′ > 0}|

× α

= ϕI′(j),

as desired.

C Connections to Portioning

We first formally define a portioning instance and portioning rule.

Definition C.1 (Portioning Instance). A portioning instance is an instance I = (N,C,w) such that for
all i ∈ N , ∥wi∥1 = 1.

Definition C.2 (Portioning Rule). A portioning rule is a function ψ that maps each portioning instance

I to an m-valued vector (ψI(1), . . . , ψI(m)). Each ψI(j) ≥ 0 and we require additionally that∑
j∈C ψI(j) = 1.

Because of this relationship, we can generate payment rules by normalizing the engagement vectors
and using existing portioning mechanisms. So, for an instance I = (N,C, (wij)) we can construct a
portioning instance I∗ =

(
N,C,

(
wij

∥wi∥1

))
and for a portioning rule ψ, construct a payment rule ϕ

such that for all artists j, the payment is given by the portioning rule ϕI(j) = ψI∗(j)× nα.
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Major portioning rules are cataloged in Elkind et al. [16]. One broad category of portioning rules are
coordinate-wise rules. We can construct these from a function that aggregates the engagement of each
artist and then normalize it.

Definition C.3. Given a family of functions fn : (R≥0)
n → (R≥0) we can construct a coordinate-wise

portioning rule such that the payoff to an artist j is ψI(j) =
fn(w1j ,w2j ,...,wnj)∑

k∈C fn(w1k,w2k,...,wnk)
.

The functions mentioned in Elkind et al. [16] aggregate preferences based on the coordinate-wise
average, the maximum, the minimum, the median and the geometric mean. From these portioning rules,
we can construct analogous payment rules Avg, Max, Min, Med and Geo respectively. We then obtain
the following results.

Theorem C.4. Avg is equivalent to UserProp. As such it satisfies fraud-proofness, bribery-proofness and

Sybil-proofness.

Proof. Given a problem instance I = (N,C,w) with unnormalizedw, Avg will assign artist j a payoff

nα ×
∑

i∈N

wij
∥wi∥1

1
n∑

k∈C

∑
i∈N

wik
∥wi∥1

1
n

= nα ×
∑

i∈N

wij
∥wi∥1∑

i∈N

∑
k∈C

wik
∥wi∥1

. But note that the denominator simplifies to n

giving payoff to each artist j equal to α
∑

i∈N
wij

∥wi∥1 , which is identical to UserProp.

Denote ∥wi∥1 =
∑

j∈C wij .

Theorem C.5. Rules Max, Min, Geo, Med, Util, Egal and IndependentMarkets fail fraud-proofness,

bribery-proofness and Sybil-proofness for all α ∈ (0, 1].

The eighth rule, Avg, assigns payout proportional to the average engagement of an artist. This is
equivalent to the rule UserProp. The strong axiomatic guarantees of Avg in the portioning setting add
an extra layer of support towards UserProp. Conversely, our results that Avg satisfies fraud-proofness
and bribery-proofness in our expanded setting add an extra layer of support towards Avg.

To simplify our analysis, we will prove the Theorem C.5 using four separate results as follows.

Theorem C.6. Coordinate-wise rules Max, Min, Med, Geo fail fraud-proofness and bribery-proofness for

all α ∈ (0, 1], even if there are only two artists.

Proof. We prove that the rules fail fraud-proofness, the counterexamples for bribery-proofness are
very similar. For Max, let n =

⌈
6
α

⌉
+ 1. Let wi = (12 ,

1
2), so that each artist receives a payment

of nα
2 . If an adversary in support of 1 adds wn+1 = (1, 0) then the payment to 1 is 2(n+1)α

3 . But,
2(n+1)α

3 − nα
2 = 4(n+1)α−3nα

6 = nα+α
6 . But n > 6

α so that the benefit from fraud is greater than 1.

For Min, let n = 2⌈ 1
α⌉, C = {1, 2} and for all i ∈ N , wi = (12 ,

1
2), so that each user receives a payoff

of nα
2 . Suppose we construct instance I ′ by adding profile wn+1 = (1, 0). Then, ϕI′(1) = (n+ 1)α

and ϕI′(1)− ϕI(1) = (n+ 1)α− nα
2 = (n+2)α

2 > 1 by n ≥ 2
α .

For Geo, we can reuse the counterexample for Min.

For Med, let n =
⌈
2
α

⌉
if odd or

⌈
2
α

⌉
+ 1 otherwise and n = 2k + 1 for a natural number k. Then for

i ≤ k, wi = (1, 0) and for k + 1 ≤ i ≤ 2k + 1 let wi = (0, 1). Then ϕI(1) = 0. Adding in profile
wn+1 = (1, 0) means ϕI′(1) = (n+1)α

2 > 1 by construction.

Another class of rules focuses on welfare maximization. For a portioning rule ψ we can measure the
disutility of a user i as the ℓ1-difference between their engagement and the output payment profile,
dI(i) =

∑
j∈C |ψI(j)−wij |, the user’s welfare is then−dI(i). Rule Util maximizes utilitarian welfare
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−
∑

i∈N dI(i) and Egal maximizes egalitarian welfaremini∈N (−dI(i)). Ties are broken in favour of
the maximum entropy distribution in the case of Util. For Egal, we break ties in a leximin manner,
however, our counterexamples do not rely on the tie-breaking method.

Theorem C.7. Util and Egal fail fraud-proofness and bribery-proofness for all α ∈ (0, 1].

Proof. We prove that the rules fail fraud-proofness, the counterexamples can be slightly modified to
also prove bribery-proofness. For Util, consider n = 2k+1 and C = {1, 2}, with i ≤ k+1 submitting
wi = (1, 0) and i > k submitting wi = (1, 0), then Util will allocate the entire resource to artist 1
giving payoff ϕI(2) = 0. If a new user is added with wn+1 = (0, 1) then ϕI(2) = nα

2 > 1 for large
enough n.

For Egal, let C = {1, 2} and for all i, wi = (12 ,
1
2). Then ϕI(1) =

nα
2 . If we add a profile (1, 0) then to

minimize disutility, ϕI′(1) = 3
4nα, such that ϕI′(1)− ϕI(1) =

1
4nα > 1 for large n.

The more sophisticated independent markets rule was recently introduced in Freeman et al. [19]. This
rule is strategy-proof and in some precise sense proportional. For an instance with n users, the
rule constructs n + 1 phantom values. Each artist j receives the median of {wij | i ∈ N} and the
n+ 1 phantom values. To compute these phantom values the rule uses functions f0, . . . , fn : [0, 1] →
[0, 1] with fk(t) = min(kt, 1). The rule then uses t∗ such that the payoff to each artist is 1, i.e.,∑

j∈C med(w1j , . . . , wnj , f0(t
∗), . . . , fn(t

∗)) = 1. Unfortunately, despite it’s sophistication the rule
fails to be fraud-proof.

Theorem C.8. The independent markets rule fails to be fraud-proof, bribery-proof or Sybil-proof for all

α ∈ (0, 1].

Proof. For a number of users n, construct an instance In = ({1, . . . , n}, {1, . . . , n + 1},w), with
wi1 = 1 and for artist j with j ̸= 1, wij = 0. Then, ϕIn(1) = nα as the users unanimously assign their
payoff to user 1. Now, suppose we construct instance I ′

n by adding a user profilewn+1 = (0, 1n , . . . ,
1
n).

Then, there are n+ 2 phantom values generated by the independent markets rule and so each player
will be assigned the n+2’nd highest value among the phantom and real values. For player 1 that will be
the second largest phantom value t∗n and for players i > 1 it will be the second lowest phantom value
which is t∗. Given the constraint nt∗ +

∑n+1
i=2 t

∗ = 1, we get that t∗ = 1
2n . So, the total payoff artists

2, . . . , n+ 1 receive is t∗n× (n+ 1)α = (n+1)a
2 . So, for Ĉ = C \ {1}, ϕI′

n
(Ĉ)− ϕI(Ĉ) =

(n+1)α
2 > 1

for large enough n.

Similarly for bribery-proofness, given an instance In, we can construct I ′ by setting the profile wn to
(0, 1n , . . . ,

1
n). By the above analysis this generates revenue of nα

2 which is greater than 1 for n > 2
α .

For Sybil-proofness, construct an instance I = ({1, . . . , n+ 1}, {1, 2},w} with wi = (1, 0) for i ≤ n
andwn+1 = (0, 1). Then the value users 1, 2will be assigned by the independent markets rule is t∗n and
t∗ respectively. As such ϕI(1) = nα and ϕI(2) = α. However, from our example in fraud-proofness,
we can split user 2 to users 2′, 3′, . . . , n+ 1′ and distribute the engagement of user n+ 1 equally. This
would give a payoff of (n+1)α

2 to the Sybil artists which is greater than α for n > 2.

Theorem C.9. Rules Max, Min, Geo, Med, Util, Egal fail Sybil-proofness for all α ∈ (0, 1].

Proof. For Max, consider instances I = ({1, 2, 3}, {1, 2},w) with w1 = (1, 0), w2 = w3 = (0, 1).
Then ϕI(2) = 3α

2 . Suppose construct I ′ by splitting user 2 to user 2′, 3′ and w′
1 = (1, 0, 0),w′

2 =
(0, 1, 0),w′

3 = (0, 0, 1). Then ϕI(2′) + ϕI(3
′) = 2α > ϕI(2) contradicting Sybil-proofness.

For Min, consider instance I with N = {1, 2} and C = {1, 2, 3} and w1 = (13 , 0,
2
3), w2 = (13 ,

2
3 , 0),

then for C ′ = {2, 3}, ϕI(C ′) = 0. If instead we construct I ′ = (N,C,w′) withw′
1 = w1,w′

2 = w′
3 =

(13 ,
1
3 ,

1
3), then ϕI(C

′) = 2α > ϕI(C
′) and contradicting Sybil-proofness.
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For Geo, we can reuse the example from Min.

For Med, consider N = {1, 2, 3}, C = {1, 2, 3} and w1 = (1, 0, 0), w2 = (12 ,
1
2 , 0) and w3 = (12 , 0,

1
2).

For C ′ = {2, 3}, ϕI(C ′) = 0. Now, consider instead w′, with w′
1 = w1, w′

2 = w′
3 = (12 ,

1
4 ,

1
4). Then,

ϕI′(C ′) = 3α
2 > ϕI(C

′) = 0.

For Util, consider N = {1, 2, 3}, C = {1, 2, 3} and w1 = (1, 0, 0), w2 = (0, 1, 0) and w3 = (0, 0, 1),
then for C ′ = {2, 3}, ϕI(C ′) = 2α. Consider instead instance I ′ withw′

1 = w1,w′
2 = w′

3 = (0, 12 ,
1
2).

Then, ϕI′(C ′) = 3α > ϕI(C
′).

For Egal, considerN = {1, 2, 3},C = {1, 2, 3} andw1 = (13 ,
1
3 ,

1
3),w2 = (0, 12 ,

1
2) andw3 = (0, 12 ,

1
2),

then for C ′ = {2, 3}, ϕI(C ′) = 5
2α. Consider instead instance I ′ with w′

1 = w1, w′
2 = (0, 1, 0) and

w′
3 = (0, 0, 1). Then, ϕI′(C ′) = 3α > ϕI(C

′).

D Omitted Proofs from Section 4

D.1 Proof of Proposition 4.1

Consider an instance I with n > ⌈ 2
α⌉ users and two artists. Let

∑
i∈N wi1 = 1

4k and
∑

i∈N wi2 = 1.
Then, if ME(ϕ, I) ≤ k, then ϕI(1) ≤ n

4 . Otherwise, if ϕI(1) > n
4 , then PPS(ϕ, I, 1) ≥ nk and

PPS(ϕ, I, 2) ≥ 3n
4 . Then, ME(ϕ, I) ≥ 4k/4 > k.

Next, we add an additional user i′ such that wi′1 = 3k and wi′2 = 0. Let this instance be I ′. Then, if
ME(ϕ, I ′) ≤ k, then ϕI′(1) ≥ 3(n+1)

4 . Otherwise, if ϕI′(1) < 3(n+1)
4 , then PPS(ϕ, I, 1) < (n+ 1)/4k

and PPS(ϕ, I, 2) ≥ (n+ 1)/4. Then, ME(ϕ, I) > (n+1)/4
(n+1)/4k > k.

Thus, if ME(ϕ, I) ≤ k and ME(ϕ, I ′) ≤ k, then ϕI′(1)− ϕI(1) ≥ 3(n+1)
4 − n

4 >
n
2 . As n > ⌈ 2

α⌉, then
ϕI′(1)− ϕI(1) > 1 and ϕ is not fraud-proof.

By modifying instance I and having user i′ such that wi′1 = 0 and wi′2 = ϵ, a similar argument shows
that ϕ is not bribery-proof.

D.2 Proof of Theorem 4.2

Here, we let ∥wi∥1 =
∑

j∈C wij .

For an instance where for all i, ∥wi∥1 ≤ 1
nα

∑
i′∈n∥wi′∥1 ScaledUserProp and GlobalProp

give the same payoff to each artist. If for all i, ∥wi∥1 ≤ 1
nα

∑
i′∈n∥wi′∥1, γ = nα∑

i∈N∥wi∥1 . From
our inequality we have that γ∥wi∥1 ≤ γ

nα

∑
i∈N∥wi∥1 = 1 and so in particular min(γ∥wi∥1, 1) =

γ∥wi∥1. Also,
∑

i∈N γ∥wi∥1 = nα, so this is the appropriate γ.

So, the payoff to each artist is:

ϕI(j) =
∑
i∈N

γ∥wi∥1
wij

∥wi∥1
=
∑
i∈N

γwij = nα

∑
i∈N wij∑

i∈N∥wi∥1
.

Which is identical to GlobalProp.

D.3 Proof of Theorem 4.3

We will prove each property separately.
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ScaledUserProp is bribery-proof. Suppose for a contradiction the ScaledUserProp does not
satisfy bribery-proofness. Then there are instances I = (N,C,w), I ′ = (N,C,w′) withwi = w′

i for
i < n and wn ̸= w′

n such that for a C+ ⊆ C , ϕI′(C+) − ϕI(C
+) > 1. We will prove this result by

simplifying the cases we need to consider. First, note that without loss of generality we can collapse
C+ to a single artist. For any instance J , we can construct an instance J ∗ by collapsing artists C+

to a single artist in J ∗. Each user i has engagement to a fresh user c+ equal to
∑

j∈C+ wij then in
ScaledUserProp, ϕJ ∗(c+) = ϕJ (C

+). Similarly, for the purposes of this proof we can collapse the
complement C \ C+ to a single user. So without loss of generality, it suffices to prove the result for
C = {1, 2}.

Also, suppose wn1 > 0, then setting wn1 to 0 would weakly decrease the payoff of artist 1 in instance I
and so increase the profit from bribery. So without loss of generality,wn1 = 0 and similarlyw′

n2 = 0. By
engagement monotonicity, the maximum difference ϕI′(1)−ϕI(1) is achieved for profileswn = (0,M)
and wn = (M, 0) for largeM .

If nα ≤ 1 then bribery is inherently impossible as the mechanism does not distribute enough payoff
to cover a single subscription fee. If nα > 1 then it suffices to consider the minimumM∗ such that
γM∗ ≥ 1. IncreasingM pastM∗ does not affect γ.

But note: γ in I and γ′ in I are equal! So, ϕI′(1)− ϕI(1) = min(γM, 1)MM −min(γM, 1) 0
M = 1. So,

the maximum benefit from bribing is at most 1, proving bribery-proofness of ScaledUserProp.

ScaledUserProp is Sybil-proof. Consider any two instances I = (N,C,w) and I ′ = (N,C ′,w′)
such that C ⊆ C ′. Suppose for any subset of artists C∗ ⊆ C ,

(i) wij = w′
ij for all i ∈ N, j ∈ C∗, and

(ii)
∑

j∈C\C∗ wij =
∑

j∈C′\C∗ w′
ij for all i ∈ N ,

Let γ and γ′ be constants such that∑
i∈N

min(γ ·
∑
j∈C

wij , 1) = αn and
∑
i∈N

min(γ′ ·
∑
j∈C

w′
ij , 1) = αn, respectively.

Then, using (i) and (ii), we equivalently get that γ and γ′ are constants such that∑
i∈N

min(γ ·
∑
j∈C

w′
ij , 1) = αn and

∑
i∈N

min(γ′ ·
∑
j∈C

wij , 1) = αn, respectively.

This means that γ = γ′. Then, we get that

ϕI(C \ C∗) =
∑

j∈C\C∗

∑
i∈N

min(γ ·
∑
j′∈C

wij′ , 1)×
wij∑

j′∈C wij′

=
∑
i∈N

min(γ ·
∑
j′∈C

wij′ , 1)×
∑

j∈C\C∗ wij∑
j′∈C wij′

=
∑
i∈N

min(γ′ ·
∑
j′∈C

w′
ij′ , 1)×

∑
j∈C\C∗ w′

ij∑
j′∈C w

′
ij′

(by (i), (ii), and since γ = γ′)

=
∑

j∈C\C∗

∑
i∈N

min(γ′ ·
∑
j′∈C

w′
ij′ , 1)×

w′
ij∑

j′∈C w
′
ij′

= ϕI′(C ′ \ C∗).
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ScaledUserProp is fraud-proof. Denote ∥wi∥1 =
∑

j∈C wij .

We prove this result by first simplifying the cases needed to consider. Consider instances I = (N,C,w)
and I ′ = (N ∪ {n}, C,w′) such that for i < n, wi = w′

i but for some coalition of artists C∗ ⊆ C ,
ϕI′(C∗) − ϕI(C

∗) > 1. Similarly to the proof of bribery-proofness, without loss of generality the
coalition C∗ contains a single userm. In this new instance,m receives engagement from user i equal
to
∑

j∈C∗ wij .

Also, for any vector wn with fixed ℓ1-norm, the payoff to user m, ϕI(m), is maximized for wni = 0
for i < n and wnm = ∥wn∥1. Fixing ∥wn∥1 fixes γ and to maximize the term wnm

∥wn∥1 , we place all
engagement in coordinate wnm. So without loss of generality, it suffices to consider wn only of the
form (0, 0, . . . , 0,M).

By engagement monotonicity, forM < M ′, if wn = (0, 0, . . . , 0,M) is a fraud-proofness violation, so
is wn = (0, 0, . . . , 0,M ′).

Now, let γ and γ′ be the parameters produced in instances I and I ′ respectively. Without loss of
generality we consider instances of the form wn = (0, 0, . . . , 0,M), with the property that γ′M > 1.
This is possible because we assume that (n+ 1)α > 1, which is a requirement for there to be fraud.
Then:

ϕI′(m)− ϕI(m) = 1 +
∑
i∈N

(
min(γ′∥wi∥1, 1)−min(γ∥wi∥1, 1)

)
× wij

∥wi∥1

But, γ′ ≤ γ because γ′wn ≥ 1 and so α(n + 1) = 1 +
∑

i∈N min(γ′∥wi∥1, 1) =⇒∑
i∈N min(γ′∥wi∥1, 1) = nα − 1 + α ≤ nα =

∑
i∈N min(γ∥wi∥1, 1). So, min(γ′∥wi∥1, 1) −

min(γ∥wi∥1, 1) ≤ 0 and so ϕI′(m)− ϕI(m) ≤ 1, proving fraud-proofness.

ScaledUserProp fails strong Sybil-proofness This follows directly from Theorem 3.2 as the
only rule satisfying strong Sybil-proofness is GlobalProp.

D.4 Proof of Theorem 4.4

We will prove each property separately.

ScaledUserProp satisfies no free-ridership. Consider an instance I = (N,C,w). For every
j ∈ C where

∑
i∈N wij = 0,

ϕI(j) =
∑
i∈N

min(γ ·
∑
j′∈C

wij′ , 1)×
wij∑

j′∈C wij′
= 0,

since we assume
∑

j′∈C wij′ > 0 for all i ∈ N .

ScaledUserProp is engagement monotone. Denote ∥wi∥1 =
∑

j∈C wij and for a specific
ScaledUserProp instance, we write αi as a shorthand formin(γ ·

∑
j′∈C wij′ , 1).

Consider any two instances I = (N,C,w) and I ′ = (N,C,w′) such that for with i ̸= n or j ̸= m,
w′
ij = wij but w′

ij > wij . Let γ, α1, . . . , αn and γ′, α′
1, . . . , α

′
n the values computed for instances

I and I ′ respectively. If γ∥wn∥1 ≥ 1, then γ′ = γ and so for j < m, α′
j = αj . So, we have

ϕI′(m)− ϕI(m) = w′
nm

∥w′
n∥

− wnm
∥wn∥ ≥ 0.

Suppose that γ∥wn∥1 < 1. Then we must have γ′ < γ. So for i < n, α′
i ≤ αi and α′

n ≥ αn. By
nα =

∑
i∈N αi =

∑
i∈N α′

i, α′
n − αn =

∑n−1
i=0 αi − α′

i.
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Suppose in addition, γ′∥w′
n∥1 ≤ 1. So, artist m loses payoff of at most γ′∥w′

n∥1 − γ∥wn∥1 from a
reduction of payment from users 1, . . . n − 1. However, she makes γ′w′

nm − γwnm more from the
contribution of user n. But, (γ′w′

nm−γwnm)−(γ′∥w′
n∥1−γ∥wn∥1) = γ(∥wn∥1−wnm)−γ′(∥w′

n∥1−
w′
nm) ≥ 0 as γ ≥ γ′ and ∥wn∥1 − wnm = ∥w′

n∥1 − w′
nm.

To prove the case γ′∥w′
n∥1 > 1 we can simply consider an intermediate instance I ′′ such that wnm <

w′′
nm < wnm and γ′′∥w′′∥1 = 1. We have proven that the payoff of userm increases from I to I ′ and

from I ′ to I ′′ and hence from I to I ′.

ScaledUserProp fails strong Sybil proofness. This follows directly from Theorem 3.2 as the
only rule satisfying strong Sybil-proofness is GlobalProp.

ScaledUserProp fails Pigou-Dalton consistency for every α ∈ (0, 1]. Denote ∥wi∥1 =∑
j∈C wij .

Fix α ≤ 1. Then, let n = ⌈ 1
α⌉+ 1 and construct instance I = ({1, 2, . . . , n}, {1, 2},w). For i < n, let

wi1 = 1, wi2 = 0. Let wi1 =
M
2 , wi2 =

M
2 forM =

⌈ 1
α
⌉

nα−1 .

Then γ = nα−1
n−1 as γ∥wn∥1 = nα−1

n−1

⌈ 1
α
⌉

nα−1 = 1 and so
∑n

i=1min(γ∥wi∥1, 1) = 1 +
∑n−1

i=1 γ = nα. So,
artist 1 receives payoff ϕI(1) = 1

2 + nα − 1. Suppose now we construct instance I ′ identical to I ,
except w11 =

1
2 and wn1 =

M+1
2 .

Then, γ′ = nα−1
n−1.5 and so γ′ > γ and in particular γ′(M + 1

2) > 1.

So, artist 1 receives payoff ϕI′(1) = M+1
2M+1 + nα− 1 > ϕI(1) =

1
2 + nα− 1. This proves that for all α

there is an instance that violates Pigou-Dalton consistency.
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